]> git.uio.no Git - u/mrichter/AliRoot.git/blame - RICH/AliRICHDetect.cxx
New code from Piergiorgio added
[u/mrichter/AliRoot.git] / RICH / AliRICHDetect.cxx
CommitLineData
c1076715 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17 $Log$
a366fdbe 18 Revision 1.4 2000/06/15 15:46:59 jbarbosa
19 Corrected compilation errors on HP-UX (replaced pow with TMath::Power)
20
00df6e79 21 Revision 1.3 2000/06/13 13:15:41 jbarbosa
22 Still some code cleanup done (variable names)
23
3a3df9e3 24 Revision 1.2 2000/06/12 15:19:30 jbarbosa
25 Cleaned up version.
26
237c933d 27 Revision 1.1 2000/04/19 13:05:14 morsch
28 J. Barbosa's spot reconstruction algorithm.
29
c1076715 30*/
31
32
33#include "AliRICH.h"
34#include "AliRICHPoints.h"
35#include "AliRICHDetect.h"
237c933d 36#include "AliRICHHit.h"
37#include "AliRICHDigit.h"
c1076715 38#include "AliRun.h"
39#include "TParticle.h"
40#include "TMath.h"
41#include "TRandom.h"
42
43
44
45ClassImp(AliRICHDetect)
46//___________________________________________
47AliRICHDetect::AliRICHDetect() : TObject()
48{
237c933d 49
50// Default constructor
51
c1076715 52 //fChambers = 0;
53}
54
55//___________________________________________
56AliRICHDetect::AliRICHDetect(const char *name, const char *title)
57 : TObject()
58{
59
237c933d 60// Constructor
61
c1076715 62 /*fChambers = new TObjArray(7);
63 for (Int_t i=0; i<7; i++) {
64
65 (*fChambers)[i] = new AliRICHchamber();
66
67 } */
68}
69
70
71void AliRICHDetect::Detect()
72{
73
237c933d 74//
75// Detection algorithm
76
77
c1076715 78 //printf("Detection started!\n");
3a3df9e3 79 Float_t omega,steptheta,stepphi,x,y,cx,cy,l,aux1,aux2,aux3,maxi,maxj,maxk,max;
c1076715 80 //Float_t theta,phi,realomega,realtheta;
81 Int_t i,j,k;
82
83 //const Float_t Noise_Level=0; //Noise Level in percentage of mesh points
84 //const Float_t t=0.6; //Softening of Noise Correction (factor)
85
3a3df9e3 86 const Float_t kPi=3.1415927;
c1076715 87
3a3df9e3 88 const Float_t kHeight=10; //Distance from Radiator to Pads in pads
c1076715 89
90
3a3df9e3 91 const Int_t kDimensionTheta=100; //Matrix dimension for angle Detection
92 const Int_t kDimensionPhi=100;
93 const Int_t kDimensionOmega=100;
c1076715 94
95 //const Float_t SPOTp=.2; //Percentage of spot action
96 //const Int_t np=500; //Number of points to reconstruct elipse
3a3df9e3 97 const Float_t kMaxOmega=65*kPi/180; //Maximum Cherenkov angle to identify
c1076715 98
3a3df9e3 99 Int_t point[kDimensionTheta][kDimensionPhi][kDimensionOmega];
100 //Int_t point1[kDimensionTheta][kDimensionPhi][kDimensionOmega];
c1076715 101
3a3df9e3 102 steptheta=kPi/kDimensionTheta;
103 stepphi=kPi/kDimensionPhi;
c1076715 104
105 AliRICHChamber* iChamber;
106
3a3df9e3 107 AliRICH *pRICH = (AliRICH*)gAlice->GetDetector("RICH");
c1076715 108 Int_t ntracks = (Int_t)gAlice->TreeH()->GetEntries();
109 //Int_t ntrks = gAlice->GetNtrack();
110
111 Float_t trackglob[3];
112 Float_t trackloc[3];
113
114 //printf("Got ntracks:%d\n",ntracks);
115 /*TVector *xp = new TVector(1000);
116 TVector *yp = new TVector(1000);
117 TVector *zp = new TVector(1000);
118 TVector *ptrk = new TVector(1000);
119 TVector *phit = new TVector(1000);*/
120
121 //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45));
122
123
124 for (Int_t track=0; track<ntracks;track++) {
125 gAlice->ResetHits();
126 gAlice->TreeH()->GetEvent(track);
3a3df9e3 127 TClonesArray *pHits = pRICH->Hits();
128 if (pHits == 0) return;
129 Int_t nhits = pHits->GetEntriesFast();
c1076715 130 if (nhits == 0) continue;
131 Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
132 gAlice->TreeD()->GetEvent(nent-1);
133 AliRICHHit *mHit = 0;
134 AliRICHDigit *points = 0;
135 //Int_t npoints=0;
136
137 Int_t counter=0;
138 //Initialization
3a3df9e3 139 for(i=0;i<kDimensionTheta;i++)
c1076715 140 {
3a3df9e3 141 for(j=0;j<kDimensionPhi;j++)
c1076715 142 {
3a3df9e3 143 for(k=0;k<kDimensionOmega;k++)
c1076715 144 {
145 counter++;
3a3df9e3 146 point[i][j][k]=0;
147 //printf("Dimensions theta:%d, phi:%d, omega:%d",kDimensionTheta,kDimensionPhi,kDimensionOmega);
c1076715 148 //printf("Resetting %d %d %d, time %d\n",i,j,k,counter);
3a3df9e3 149 //-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension));
150 //printf("n-%f",-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension)));
c1076715 151 }
152 }
153 }
3a3df9e3 154 mHit = (AliRICHHit*) pHits->UncheckedAt(0);
c1076715 155 //printf("Aqui vou eu\n");
156 Int_t nch = mHit->fChamber;
157 //printf("Aqui fui eu\n");
158 trackglob[0] = mHit->fX;
159 trackglob[1] = mHit->fY;
160 trackglob[2] = mHit->fZ;
161
162 cx=trackglob[0];
163 cy=trackglob[2];
164
165
166 //printf("Chamber processed:%d\n",nch);
167 printf("Center processed: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]);
168
3a3df9e3 169 iChamber = &(pRICH->Chamber(nch-1));
c1076715 170
171 //printf("Nch:%d\n",nch);
172
173 iChamber->GlobaltoLocal(trackglob,trackloc);
174
3a3df9e3 175 //printf("Transformation 1: %3.1f %3.1f %3.1f\n",trackloc[0],trackloc[1],trackloc[2]);
c1076715 176
177
178 iChamber->LocaltoGlobal(trackloc,trackglob);
179
3a3df9e3 180 //printf("Transformation 2: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]);
c1076715 181
182
183
184
3a3df9e3 185 TClonesArray *pDigits = pRICH->DigitsAddress(nch-1);
186 Int_t ndigits = pDigits->GetEntriesFast();
c1076715 187
188 //printf("Got %d digits\n",ndigits);
189
190 //printf("Starting calculations\n");
191
3a3df9e3 192 for(Float_t theta=0;theta<kPi/18;theta+=steptheta)
c1076715 193 {
3a3df9e3 194 for(Float_t phi=0;phi<=kPi/3;phi+=stepphi)
c1076715 195 {
196 for (Int_t dig=0;dig<ndigits;dig++)
197 {
3a3df9e3 198 points=(AliRICHDigit*) pDigits->UncheckedAt(dig);
c1076715 199
200 x=points->fPadX-cx;
201 y=points->fPadY-cy;
202 //printf("Loaded digit %d with coordinates x:%f, y%f\n",dig,x,y);
203 //cout<<"x="<<x<<" y="<<y<<endl;
204
00df6e79 205 if (sqrt(TMath::Power(x,2)+TMath::Power(y,2))<kHeight*tan(theta+kMaxOmega)*3/4)
c1076715 206 {
207
3a3df9e3 208 l=kHeight/cos(theta);
c1076715 209
210 aux1=-y*sin(phi)+x*cos(phi);
211 aux2=y*cos(phi)+x*sin(phi);
00df6e79 212 aux3=( TMath::Power(aux1,2)+TMath::Power(cos(theta)*aux2 ,2))/TMath::Power(sin(theta)*aux2+l,2);
c1076715 213 //cout<<"aux1="<<aux1<<" aux2="<<aux2<<" aux3="<<aux3;
214
3a3df9e3 215 omega=atan(sqrt(aux3));
216 //printf("Omega: %f\n",omega);
c1076715 217
3a3df9e3 218 //cout<<"\ni="<<i<<" theta="<<Int_t(2*theta*dimension/kPi)<<" phi="<<Int_t(2*phi*dimension/kPi)<<" omega="<<Int_t(2*omega*dimension/kPi)<<endl<<endl;
c1076715 219 //{Int_t lixo;cin>>lixo;}
3a3df9e3 220 if(omega<kMaxOmega)point[Int_t(2*theta*kDimensionTheta/kPi)][Int_t(2*phi*kDimensionPhi/kPi)][Int_t(omega*kDimensionOmega/kMaxOmega)]+=1;
221 //if(omega<kMaxOmega)point[Int_t(theta)][Int_t(phi)][Int_t(omega)]+=1;
c1076715 222 }
223 }
224 }
225 }
226
227
228
229 //SPOT execute twice
230 /*for(s=1;i<=2;s++)
231 {
232 //buffer copy
3a3df9e3 233 for(i=0;i<=kDimensionTheta;i++)
234 for(j=0;j<=kDimensionPhi;j++)
235 for(k=0;k<=kDimensionOmega;k++)
236 point1[i][j][k]=point[i][j][k];
c1076715 237
238 cout<<"COM SPOT!"<<endl;{Int_t lixo;cin>>lixo;}
239 //SPOT algorithm
3a3df9e3 240 for(i=1;i<kDimensionTheta;i++)
241 for(j=1;j<kDimensionPhi;j++)
242 for(k=1;k<kDimensionOmega;k++)
c1076715 243 {
3a3df9e3 244 if((point[i][k][j]>point[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&&
245 (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&&
246 (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1]))
c1076715 247 {
248 //cout<<"SPOT"<<endl;
249 //Execute SPOT on point
3a3df9e3 250 point1[i][j][k]+=int(SPOTp*(point[i-1][k][j]+point[i+1][k][j]+point[i][k-1][j]+point[i][k+1][j]+point[i][k][j-1]+point[i][k][j+1]));
251 point1[i-1][k][j]=int(SPOTp*point[i-1][k][j]);
252 point1[i+1][k][j]=Int_t(SPOTp*point[i+1][k][j]);
253 point1[i][k-1][j]=Int_t(SPOTp*point[i][k-1][j]);
254 point1[i][k+1][j]=Int_t(SPOTp*point[i][k+1][j]);
255 point1[i][k][j-1]=Int_t(SPOTp*point[i][k][j-1]);
256 point1[i][k][j+1]=Int_t(SPOTp*point[i][k][j+1]);
c1076715 257 }
258 }
259 //copy from buffer copy
3a3df9e3 260 for(i=1;i<kDimensionTheta;i++)
261 for(j=1;j<kDimensionPhi;j++)
262 for(k=1;k<kDimensionOmega;k++)
263 point[i][j][k]=point1[i][j][k];
c1076715 264
265 }*/
266
267
268 //Identification is equivalent to maximum determination
269 max=0;maxi=0;maxj=0;maxk=0;
270
271 //cout<<"Proceeding to Identification"<<endl;
272
3a3df9e3 273 for(i=1;i<kDimensionTheta-3;i++)
274 for(j=1;j<=kDimensionPhi-3;j++)
275 for(k=0;k<=kDimensionOmega;k++)
276 if(point[i][j][k]>max)
c1076715 277 {
3a3df9e3 278 //cout<<"maxi="<<i*90/dimension<<" maxj="<<j*90/dimension<<" maxk="<<k*kMaxOmega/dimension*180/kPi<<" max="<<max<<endl;
c1076715 279 maxi=i;maxj=j;maxk=k;
3a3df9e3 280 max=point[i][j][k];
c1076715 281 //printf("Max Omega %f, Max Theta %f, Max Phi %f\n",maxk,maxi,maxj);
282 }
283
3a3df9e3 284 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",h,cx,cy,maxk*kPi/(kDimensionTheta*4));
285 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",kHeight,cx,cy,maxk);
c1076715 286
287
288 //fscanf(omegas,"%f",&realomega);
289 //fscanf(thetas,"%f",&realtheta);
290 //printf("Real Omega: %f",realomega);
3a3df9e3 291 //cout<<"Detected:theta="<<maxi*90/kDimensionTheta<<"phi="<<maxj*90/kDimensionPhi<<"omega="<<maxk*kMaxOmega/kDimensionOmega*180/kPi<<" OmegaError="<<fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega)<<" ThetaError="<<fabs(maxi*90/kDimensionTheta-realtheta)<<endl<<endl;
c1076715 292
3a3df9e3 293 //fprintf(results,"Center Coordinates, cx=%6.2f cy=%6.2f, Real Omega=%6.2f, Detected Omega=%6.2f, Omega Error=%6.2f Theta Error=%6.2f\n",cx,cy,realomega,maxk*kMaxOmega/kDimensionOmega*180/kPi,fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega),fabs(maxi*90/kDimensionTheta-realtheta));
c1076715 294
295 /*for(j=0;j<np;j++)
3a3df9e3 296 pointpp(maxj*90/kDimensionTheta,maxi*90/kDimensionPhi,maxk*kMaxOmega/kDimensionOmega*180/kPi,cx,cy);//Generates a point on the elipse*/
c1076715 297
298
299 //Start filling rec. hits
300
a366fdbe 301 Float_t rechit[6];
c1076715 302
3a3df9e3 303 rechit[0] = (Float_t)( maxi*kPi/(kDimensionTheta*4));
304 rechit[1] = (Float_t)( maxj*kPi/(kDimensionPhi*4));
305 rechit[2] = (Float_t)( maxk*kPi/(kDimensionOmega*4));
c1076715 306 //rechit[0] = (Float_t)( maxi);
307 //rechit[1] = (Float_t)( maxj);
308 //rechit[2] = (Float_t)( maxk);
309 rechit[3] = cx;
310 rechit[4] = cy;
a366fdbe 311 rechit[5] = 0.5;
c1076715 312
313 //printf ("track %d, theta %f, phi %f, omega %f\n\n\n",track,rechit[0],rechit[1],rechit[2]);
314
315 // fill rechits
a366fdbe 316 //pRICH->AddRecHit(nch-1,rechit);
c1076715 317 }
318 //printf("\n\n\n\n");
319 gAlice->TreeR()->Fill();
320 //TTree *TR=gAlice->TreeR();
321 //Stat_t ndig=TR->GetEntries();
322 TClonesArray *fRec;
237c933d 323 for (i=0;i<kNCH;i++) {
3a3df9e3 324 fRec=pRICH->RecHitsAddress(i);
c1076715 325 int ndig=fRec->GetEntriesFast();
326 printf ("Chamber %d, rings %d\n",i,ndig);
327 }
328 //printf("Number of rec. hits: %d",ndig);
3a3df9e3 329 pRICH->ResetRecHits();
c1076715 330 //char hname[30];
331 //sprintf(hname,"TreeR%d",track);
332 //gAlice->TreeR()->Write(hname);
333
334}
335
3a3df9e3 336Float_t AliRICHDetect:: Area(Float_t theta,Float_t omega)
c1076715 337{
237c933d 338
339//
340// Calculates area of an ellipse for given incidence angles
341
342
c1076715 343 Float_t area;
3a3df9e3 344 const Float_t kHeight=9.25; //Distance from Radiator to Pads in pads
c1076715 345
00df6e79 346 area=TMath::Pi()*TMath::Power(kHeight*tan(omega),2)/TMath::Power(TMath::Power(cos(theta),2)-TMath::Power(tan(omega)*sin(theta),2),3/2);
c1076715 347
348 return (area);
349}
350
351/*Int_t ***AliRICHDetect::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
352// allocate a Float_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh]
353{
354long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1;
355Int_t ***t;
356
357// allocate pointers to pointers to rows
358t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**)));
359if (!t) printf("allocation failure 1 in f3tensor()");
360t += NR_END;
361t -= nrl;
362
363// allocate pointers to rows and set pointers to them
364t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*)));
365if (!t[nrl]) printf("allocation failure 2 in f3tensor()");
366t[nrl] += NR_END;
367t[nrl] -= ncl;
368
369// allocate rows and set pointers to them
370t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t)));
371if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()");
372t[nrl][ncl] += NR_END;
373t[nrl][ncl] -= ndl;
374
375for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep;
376for(i=nrl+1;i<=nrh;i++) {
377t[i]=t[i-1]+ncol;
378t[i][ncl]=t[i-1][ncl]+ncol*ndep;
379for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep;
380}
381
382// return pointer to array of pointers to rows
383return t;
384}*/
385
3a3df9e3 386/*void pointpp(Float_t alfa,Float_t theta,Float_t omega,Float_t cx,Float_t cy)
c1076715 387 {
388 Int_t s;
3a3df9e3 389 Float_t fiducial=h*tan((omega+theta)*kPi/180),l=h/cos(theta*kPi/180),xtrial,y,c0,c1,c2;
c1076715 390
391 //cout<<"fiducial="<<fiducial<<endl;
392
393 c0=0;c1=0;c2=0;
394 while((c1*c1-4*c2*c0)<=0)
395 {
396 //Choose which side to go...
397 if(aleat(1)>.5) s=1; else s=-1;
398 //Trial a y
399 y=s*aleat(fiducial);
3a3df9e3 400 Float_t alfa1=alfa*kPi/180;
401 Float_t theta1=theta*kPi/180;
402 Float_t omega1=omega*kPi/180;
c1076715 403 //Solve the eq for a trial x
00df6e79 404 c0=-TMath::Power(y*cos(alfa1)*cos(theta1),2)-TMath::Power(y*sin(alfa1),2)+TMath::Power(l*tan(omega1),2)+2*l*y*cos(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+TMath::Power(y*cos(alfa1)*sin(theta1)*tan(omega1),2);
405 c1=2*y*cos(alfa1)*sin(alfa1)-2*y*cos(alfa1)*TMath::Power(cos(theta1),2)*sin(alfa1)+2*l*sin(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+2*y*cos(alfa1)*sin(alfa1)*TMath::Power(sin(theta1),2)*TMath::Power(tan(omega1),2);
406 c2=-TMath::Power(cos(alfa1),2)-TMath::Power(cos(theta1)*sin(alfa1),2)+TMath::Power(sin(alfa1)*sin(theta1)*tan(omega1),2);
c1076715 407 //cout<<"Trial: y="<<y<<"c0="<<c0<<" c1="<<c1<<" c2="<<c2<<endl;
408 }
409 //Choose which side to go...
410 if(aleat(1)>.5) s=1; else s=-1;
411 xtrial=cx+(-c1+s*sqrt(c1*c1-4*c2*c0))/(2*c2);
412 //cout<<"x="<<xtrial<<" y="<<cy+y<<endl;
413 fprintf(final,"%f %f\n",xtrial,cy+y);
414 }*/
415
416
417
418
419
420