]> git.uio.no Git - u/mrichter/AliRoot.git/blame - RICH/AliRICHDetect.cxx
Removal of useless dependecies via forward declarations
[u/mrichter/AliRoot.git] / RICH / AliRICHDetect.cxx
CommitLineData
c1076715 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17 $Log$
94de3818 18 Revision 1.5 2000/06/30 16:30:28 dibari
19 Disabled writing to rechits.
20
a366fdbe 21 Revision 1.4 2000/06/15 15:46:59 jbarbosa
22 Corrected compilation errors on HP-UX (replaced pow with TMath::Power)
23
00df6e79 24 Revision 1.3 2000/06/13 13:15:41 jbarbosa
25 Still some code cleanup done (variable names)
26
3a3df9e3 27 Revision 1.2 2000/06/12 15:19:30 jbarbosa
28 Cleaned up version.
29
237c933d 30 Revision 1.1 2000/04/19 13:05:14 morsch
31 J. Barbosa's spot reconstruction algorithm.
32
c1076715 33*/
34
35
36#include "AliRICH.h"
37#include "AliRICHPoints.h"
38#include "AliRICHDetect.h"
237c933d 39#include "AliRICHHit.h"
40#include "AliRICHDigit.h"
c1076715 41#include "AliRun.h"
42#include "TParticle.h"
94de3818 43#include "TTree.h"
c1076715 44#include "TMath.h"
45#include "TRandom.h"
46
47
48
49ClassImp(AliRICHDetect)
50//___________________________________________
51AliRICHDetect::AliRICHDetect() : TObject()
52{
237c933d 53
54// Default constructor
55
c1076715 56 //fChambers = 0;
57}
58
59//___________________________________________
60AliRICHDetect::AliRICHDetect(const char *name, const char *title)
61 : TObject()
62{
63
237c933d 64// Constructor
65
c1076715 66 /*fChambers = new TObjArray(7);
67 for (Int_t i=0; i<7; i++) {
68
69 (*fChambers)[i] = new AliRICHchamber();
70
71 } */
72}
73
74
75void AliRICHDetect::Detect()
76{
77
237c933d 78//
79// Detection algorithm
80
81
c1076715 82 //printf("Detection started!\n");
3a3df9e3 83 Float_t omega,steptheta,stepphi,x,y,cx,cy,l,aux1,aux2,aux3,maxi,maxj,maxk,max;
c1076715 84 //Float_t theta,phi,realomega,realtheta;
85 Int_t i,j,k;
86
87 //const Float_t Noise_Level=0; //Noise Level in percentage of mesh points
88 //const Float_t t=0.6; //Softening of Noise Correction (factor)
89
3a3df9e3 90 const Float_t kPi=3.1415927;
c1076715 91
3a3df9e3 92 const Float_t kHeight=10; //Distance from Radiator to Pads in pads
c1076715 93
94
3a3df9e3 95 const Int_t kDimensionTheta=100; //Matrix dimension for angle Detection
96 const Int_t kDimensionPhi=100;
97 const Int_t kDimensionOmega=100;
c1076715 98
99 //const Float_t SPOTp=.2; //Percentage of spot action
100 //const Int_t np=500; //Number of points to reconstruct elipse
3a3df9e3 101 const Float_t kMaxOmega=65*kPi/180; //Maximum Cherenkov angle to identify
c1076715 102
3a3df9e3 103 Int_t point[kDimensionTheta][kDimensionPhi][kDimensionOmega];
104 //Int_t point1[kDimensionTheta][kDimensionPhi][kDimensionOmega];
c1076715 105
3a3df9e3 106 steptheta=kPi/kDimensionTheta;
107 stepphi=kPi/kDimensionPhi;
c1076715 108
109 AliRICHChamber* iChamber;
110
3a3df9e3 111 AliRICH *pRICH = (AliRICH*)gAlice->GetDetector("RICH");
c1076715 112 Int_t ntracks = (Int_t)gAlice->TreeH()->GetEntries();
113 //Int_t ntrks = gAlice->GetNtrack();
114
115 Float_t trackglob[3];
116 Float_t trackloc[3];
117
118 //printf("Got ntracks:%d\n",ntracks);
119 /*TVector *xp = new TVector(1000);
120 TVector *yp = new TVector(1000);
121 TVector *zp = new TVector(1000);
122 TVector *ptrk = new TVector(1000);
123 TVector *phit = new TVector(1000);*/
124
125 //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45));
126
127
128 for (Int_t track=0; track<ntracks;track++) {
129 gAlice->ResetHits();
130 gAlice->TreeH()->GetEvent(track);
3a3df9e3 131 TClonesArray *pHits = pRICH->Hits();
132 if (pHits == 0) return;
133 Int_t nhits = pHits->GetEntriesFast();
c1076715 134 if (nhits == 0) continue;
135 Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
136 gAlice->TreeD()->GetEvent(nent-1);
137 AliRICHHit *mHit = 0;
138 AliRICHDigit *points = 0;
139 //Int_t npoints=0;
140
141 Int_t counter=0;
142 //Initialization
3a3df9e3 143 for(i=0;i<kDimensionTheta;i++)
c1076715 144 {
3a3df9e3 145 for(j=0;j<kDimensionPhi;j++)
c1076715 146 {
3a3df9e3 147 for(k=0;k<kDimensionOmega;k++)
c1076715 148 {
149 counter++;
3a3df9e3 150 point[i][j][k]=0;
151 //printf("Dimensions theta:%d, phi:%d, omega:%d",kDimensionTheta,kDimensionPhi,kDimensionOmega);
c1076715 152 //printf("Resetting %d %d %d, time %d\n",i,j,k,counter);
3a3df9e3 153 //-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension));
154 //printf("n-%f",-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension)));
c1076715 155 }
156 }
157 }
3a3df9e3 158 mHit = (AliRICHHit*) pHits->UncheckedAt(0);
c1076715 159 //printf("Aqui vou eu\n");
160 Int_t nch = mHit->fChamber;
161 //printf("Aqui fui eu\n");
94de3818 162 trackglob[0] = mHit->X();
163 trackglob[1] = mHit->Y();
164 trackglob[2] = mHit->Z();
c1076715 165
166 cx=trackglob[0];
167 cy=trackglob[2];
168
169
170 //printf("Chamber processed:%d\n",nch);
171 printf("Center processed: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]);
172
3a3df9e3 173 iChamber = &(pRICH->Chamber(nch-1));
c1076715 174
175 //printf("Nch:%d\n",nch);
176
177 iChamber->GlobaltoLocal(trackglob,trackloc);
178
3a3df9e3 179 //printf("Transformation 1: %3.1f %3.1f %3.1f\n",trackloc[0],trackloc[1],trackloc[2]);
c1076715 180
181
182 iChamber->LocaltoGlobal(trackloc,trackglob);
183
3a3df9e3 184 //printf("Transformation 2: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]);
c1076715 185
186
187
188
3a3df9e3 189 TClonesArray *pDigits = pRICH->DigitsAddress(nch-1);
190 Int_t ndigits = pDigits->GetEntriesFast();
c1076715 191
192 //printf("Got %d digits\n",ndigits);
193
194 //printf("Starting calculations\n");
195
3a3df9e3 196 for(Float_t theta=0;theta<kPi/18;theta+=steptheta)
c1076715 197 {
3a3df9e3 198 for(Float_t phi=0;phi<=kPi/3;phi+=stepphi)
c1076715 199 {
200 for (Int_t dig=0;dig<ndigits;dig++)
201 {
3a3df9e3 202 points=(AliRICHDigit*) pDigits->UncheckedAt(dig);
c1076715 203
204 x=points->fPadX-cx;
205 y=points->fPadY-cy;
206 //printf("Loaded digit %d with coordinates x:%f, y%f\n",dig,x,y);
207 //cout<<"x="<<x<<" y="<<y<<endl;
208
00df6e79 209 if (sqrt(TMath::Power(x,2)+TMath::Power(y,2))<kHeight*tan(theta+kMaxOmega)*3/4)
c1076715 210 {
211
3a3df9e3 212 l=kHeight/cos(theta);
c1076715 213
214 aux1=-y*sin(phi)+x*cos(phi);
215 aux2=y*cos(phi)+x*sin(phi);
00df6e79 216 aux3=( TMath::Power(aux1,2)+TMath::Power(cos(theta)*aux2 ,2))/TMath::Power(sin(theta)*aux2+l,2);
c1076715 217 //cout<<"aux1="<<aux1<<" aux2="<<aux2<<" aux3="<<aux3;
218
3a3df9e3 219 omega=atan(sqrt(aux3));
220 //printf("Omega: %f\n",omega);
c1076715 221
3a3df9e3 222 //cout<<"\ni="<<i<<" theta="<<Int_t(2*theta*dimension/kPi)<<" phi="<<Int_t(2*phi*dimension/kPi)<<" omega="<<Int_t(2*omega*dimension/kPi)<<endl<<endl;
c1076715 223 //{Int_t lixo;cin>>lixo;}
3a3df9e3 224 if(omega<kMaxOmega)point[Int_t(2*theta*kDimensionTheta/kPi)][Int_t(2*phi*kDimensionPhi/kPi)][Int_t(omega*kDimensionOmega/kMaxOmega)]+=1;
225 //if(omega<kMaxOmega)point[Int_t(theta)][Int_t(phi)][Int_t(omega)]+=1;
c1076715 226 }
227 }
228 }
229 }
230
231
232
233 //SPOT execute twice
234 /*for(s=1;i<=2;s++)
235 {
236 //buffer copy
3a3df9e3 237 for(i=0;i<=kDimensionTheta;i++)
238 for(j=0;j<=kDimensionPhi;j++)
239 for(k=0;k<=kDimensionOmega;k++)
240 point1[i][j][k]=point[i][j][k];
c1076715 241
242 cout<<"COM SPOT!"<<endl;{Int_t lixo;cin>>lixo;}
243 //SPOT algorithm
3a3df9e3 244 for(i=1;i<kDimensionTheta;i++)
245 for(j=1;j<kDimensionPhi;j++)
246 for(k=1;k<kDimensionOmega;k++)
c1076715 247 {
3a3df9e3 248 if((point[i][k][j]>point[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&&
249 (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&&
250 (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1]))
c1076715 251 {
252 //cout<<"SPOT"<<endl;
253 //Execute SPOT on point
3a3df9e3 254 point1[i][j][k]+=int(SPOTp*(point[i-1][k][j]+point[i+1][k][j]+point[i][k-1][j]+point[i][k+1][j]+point[i][k][j-1]+point[i][k][j+1]));
255 point1[i-1][k][j]=int(SPOTp*point[i-1][k][j]);
256 point1[i+1][k][j]=Int_t(SPOTp*point[i+1][k][j]);
257 point1[i][k-1][j]=Int_t(SPOTp*point[i][k-1][j]);
258 point1[i][k+1][j]=Int_t(SPOTp*point[i][k+1][j]);
259 point1[i][k][j-1]=Int_t(SPOTp*point[i][k][j-1]);
260 point1[i][k][j+1]=Int_t(SPOTp*point[i][k][j+1]);
c1076715 261 }
262 }
263 //copy from buffer copy
3a3df9e3 264 for(i=1;i<kDimensionTheta;i++)
265 for(j=1;j<kDimensionPhi;j++)
266 for(k=1;k<kDimensionOmega;k++)
267 point[i][j][k]=point1[i][j][k];
c1076715 268
269 }*/
270
271
272 //Identification is equivalent to maximum determination
273 max=0;maxi=0;maxj=0;maxk=0;
274
275 //cout<<"Proceeding to Identification"<<endl;
276
3a3df9e3 277 for(i=1;i<kDimensionTheta-3;i++)
278 for(j=1;j<=kDimensionPhi-3;j++)
279 for(k=0;k<=kDimensionOmega;k++)
280 if(point[i][j][k]>max)
c1076715 281 {
3a3df9e3 282 //cout<<"maxi="<<i*90/dimension<<" maxj="<<j*90/dimension<<" maxk="<<k*kMaxOmega/dimension*180/kPi<<" max="<<max<<endl;
c1076715 283 maxi=i;maxj=j;maxk=k;
3a3df9e3 284 max=point[i][j][k];
c1076715 285 //printf("Max Omega %f, Max Theta %f, Max Phi %f\n",maxk,maxi,maxj);
286 }
287
3a3df9e3 288 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",h,cx,cy,maxk*kPi/(kDimensionTheta*4));
289 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",kHeight,cx,cy,maxk);
c1076715 290
291
292 //fscanf(omegas,"%f",&realomega);
293 //fscanf(thetas,"%f",&realtheta);
294 //printf("Real Omega: %f",realomega);
3a3df9e3 295 //cout<<"Detected:theta="<<maxi*90/kDimensionTheta<<"phi="<<maxj*90/kDimensionPhi<<"omega="<<maxk*kMaxOmega/kDimensionOmega*180/kPi<<" OmegaError="<<fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega)<<" ThetaError="<<fabs(maxi*90/kDimensionTheta-realtheta)<<endl<<endl;
c1076715 296
3a3df9e3 297 //fprintf(results,"Center Coordinates, cx=%6.2f cy=%6.2f, Real Omega=%6.2f, Detected Omega=%6.2f, Omega Error=%6.2f Theta Error=%6.2f\n",cx,cy,realomega,maxk*kMaxOmega/kDimensionOmega*180/kPi,fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega),fabs(maxi*90/kDimensionTheta-realtheta));
c1076715 298
299 /*for(j=0;j<np;j++)
3a3df9e3 300 pointpp(maxj*90/kDimensionTheta,maxi*90/kDimensionPhi,maxk*kMaxOmega/kDimensionOmega*180/kPi,cx,cy);//Generates a point on the elipse*/
c1076715 301
302
303 //Start filling rec. hits
304
a366fdbe 305 Float_t rechit[6];
c1076715 306
3a3df9e3 307 rechit[0] = (Float_t)( maxi*kPi/(kDimensionTheta*4));
308 rechit[1] = (Float_t)( maxj*kPi/(kDimensionPhi*4));
309 rechit[2] = (Float_t)( maxk*kPi/(kDimensionOmega*4));
c1076715 310 //rechit[0] = (Float_t)( maxi);
311 //rechit[1] = (Float_t)( maxj);
312 //rechit[2] = (Float_t)( maxk);
313 rechit[3] = cx;
314 rechit[4] = cy;
a366fdbe 315 rechit[5] = 0.5;
c1076715 316
317 //printf ("track %d, theta %f, phi %f, omega %f\n\n\n",track,rechit[0],rechit[1],rechit[2]);
318
319 // fill rechits
a366fdbe 320 //pRICH->AddRecHit(nch-1,rechit);
c1076715 321 }
322 //printf("\n\n\n\n");
323 gAlice->TreeR()->Fill();
324 //TTree *TR=gAlice->TreeR();
325 //Stat_t ndig=TR->GetEntries();
326 TClonesArray *fRec;
237c933d 327 for (i=0;i<kNCH;i++) {
3a3df9e3 328 fRec=pRICH->RecHitsAddress(i);
c1076715 329 int ndig=fRec->GetEntriesFast();
330 printf ("Chamber %d, rings %d\n",i,ndig);
331 }
332 //printf("Number of rec. hits: %d",ndig);
3a3df9e3 333 pRICH->ResetRecHits();
c1076715 334 //char hname[30];
335 //sprintf(hname,"TreeR%d",track);
336 //gAlice->TreeR()->Write(hname);
337
338}
339
3a3df9e3 340Float_t AliRICHDetect:: Area(Float_t theta,Float_t omega)
c1076715 341{
237c933d 342
343//
344// Calculates area of an ellipse for given incidence angles
345
346
c1076715 347 Float_t area;
3a3df9e3 348 const Float_t kHeight=9.25; //Distance from Radiator to Pads in pads
c1076715 349
00df6e79 350 area=TMath::Pi()*TMath::Power(kHeight*tan(omega),2)/TMath::Power(TMath::Power(cos(theta),2)-TMath::Power(tan(omega)*sin(theta),2),3/2);
c1076715 351
352 return (area);
353}
354
355/*Int_t ***AliRICHDetect::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
356// allocate a Float_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh]
357{
358long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1;
359Int_t ***t;
360
361// allocate pointers to pointers to rows
362t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**)));
363if (!t) printf("allocation failure 1 in f3tensor()");
364t += NR_END;
365t -= nrl;
366
367// allocate pointers to rows and set pointers to them
368t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*)));
369if (!t[nrl]) printf("allocation failure 2 in f3tensor()");
370t[nrl] += NR_END;
371t[nrl] -= ncl;
372
373// allocate rows and set pointers to them
374t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t)));
375if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()");
376t[nrl][ncl] += NR_END;
377t[nrl][ncl] -= ndl;
378
379for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep;
380for(i=nrl+1;i<=nrh;i++) {
381t[i]=t[i-1]+ncol;
382t[i][ncl]=t[i-1][ncl]+ncol*ndep;
383for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep;
384}
385
386// return pointer to array of pointers to rows
387return t;
388}*/
389
3a3df9e3 390/*void pointpp(Float_t alfa,Float_t theta,Float_t omega,Float_t cx,Float_t cy)
c1076715 391 {
392 Int_t s;
3a3df9e3 393 Float_t fiducial=h*tan((omega+theta)*kPi/180),l=h/cos(theta*kPi/180),xtrial,y,c0,c1,c2;
c1076715 394
395 //cout<<"fiducial="<<fiducial<<endl;
396
397 c0=0;c1=0;c2=0;
398 while((c1*c1-4*c2*c0)<=0)
399 {
400 //Choose which side to go...
401 if(aleat(1)>.5) s=1; else s=-1;
402 //Trial a y
403 y=s*aleat(fiducial);
3a3df9e3 404 Float_t alfa1=alfa*kPi/180;
405 Float_t theta1=theta*kPi/180;
406 Float_t omega1=omega*kPi/180;
c1076715 407 //Solve the eq for a trial x
00df6e79 408 c0=-TMath::Power(y*cos(alfa1)*cos(theta1),2)-TMath::Power(y*sin(alfa1),2)+TMath::Power(l*tan(omega1),2)+2*l*y*cos(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+TMath::Power(y*cos(alfa1)*sin(theta1)*tan(omega1),2);
409 c1=2*y*cos(alfa1)*sin(alfa1)-2*y*cos(alfa1)*TMath::Power(cos(theta1),2)*sin(alfa1)+2*l*sin(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+2*y*cos(alfa1)*sin(alfa1)*TMath::Power(sin(theta1),2)*TMath::Power(tan(omega1),2);
410 c2=-TMath::Power(cos(alfa1),2)-TMath::Power(cos(theta1)*sin(alfa1),2)+TMath::Power(sin(alfa1)*sin(theta1)*tan(omega1),2);
c1076715 411 //cout<<"Trial: y="<<y<<"c0="<<c0<<" c1="<<c1<<" c2="<<c2<<endl;
412 }
413 //Choose which side to go...
414 if(aleat(1)>.5) s=1; else s=-1;
415 xtrial=cx+(-c1+s*sqrt(c1*c1-4*c2*c0))/(2*c2);
416 //cout<<"x="<<xtrial<<" y="<<cy+y<<endl;
417 fprintf(final,"%f %f\n",xtrial,cy+y);
418 }*/
419
420
421
422
423
424