]> git.uio.no Git - u/mrichter/AliRoot.git/blame - RICH/AliRICHDetectV1.cxx
some cleaning
[u/mrichter/AliRoot.git] / RICH / AliRICHDetectV1.cxx
CommitLineData
02b30ae7 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
803d1ab0 16/* $Id$ */
02b30ae7 17
88cb7938 18#include <stdlib.h>
02b30ae7 19
20#include "AliRICHDetectV1.h"
21#include "AliRICH.h"
22#include "AliRICHPoints.h"
23#include "AliRICHDetect.h"
02b30ae7 24#include "AliRICHDigit.h"
25#include "AliRICHRawCluster.h"
02b30ae7 26#include "AliRICHSegmentationV0.h"
27#include "AliRun.h"
28#include "TParticle.h"
29#include "TTree.h"
30#include "TMath.h"
31#include "TRandom.h"
32#include "TH3.h"
33#include "TH2.h"
34#include "TCanvas.h"
35#include <TStyle.h>
36
37
02b30ae7 38
39ClassImp(AliRICHDetectV1)
40
41
42//___________________________________________
43AliRICHDetectV1::AliRICHDetectV1() : AliRICHDetect()
44{
45
46// Default constructor
47
48 fc1 = 0;
49 fc2 = 0;
50 fc3 = 0;
51
52}
53
54//___________________________________________
55AliRICHDetectV1::AliRICHDetectV1(const char *name, const char *title)
cc23c5c6 56 :AliRICHDetect(name,title)
02b30ae7 57{
58
59 TStyle *mystyle=new TStyle("Plain","mystyle");
60 mystyle->SetPalette(1,0);
61 mystyle->cd();
62
63
64 fc1= new TCanvas("c1","Reconstructed points",50,50,300,350);
65 fc1->Divide(2,2);
66 fc2= new TCanvas("c2","Reconstructed points after SPOT",370,50,300,350);
67 fc2->Divide(2,2);
68 fc3= new TCanvas("c3","Used Digits",690,50,300,350);
69 fc4= new TCanvas("c4","Mesh activation data",50,430,600,350);
70 fc4->Divide(2,1);
71
72
73}
74
75//___________________________________________
76AliRICHDetectV1::~AliRICHDetectV1()
77{
78
79// Destructor
80
81}
82
83
84void AliRICHDetectV1::Detect(Int_t nev, Int_t type)
85{
86
87//
88// Detection algorithm
89
90
91 //printf("Detection started!\n");
92 Float_t omega,omega1,theta1,x,y,q=0,z,cx,cy,max,radius=0,meanradius=0;
93 Int_t maxi,maxj,maxk;
94 Float_t originalOmega, originalPhi, originalTheta;
95 Float_t steptheta,stepphi,stepomega;
96 Float_t binomega, bintheta, binphi;
97 Int_t intomega, inttheta, intphi;
98 Float_t maxRadius,minRadius,eccentricity,angularadius,offset,phi_relative;
99 Int_t i,j,k;
100
101 AliRICH *pRICH = (AliRICH*)gAlice->GetDetector("RICH");
102 AliRICHSegmentationV0* segmentation;
103 AliRICHChamber* iChamber;
104 AliRICHGeometry* geometry;
105
106 iChamber = &(pRICH->Chamber(0));
cc23c5c6 107 segmentation=(AliRICHSegmentationV0*) iChamber->GetSegmentationModel();
02b30ae7 108 geometry=iChamber->GetGeometryModel();
109
110
111 //const Float_t Noise_Level=0; //Noise Level in percentage of mesh points
112 //const Float_t t=0.6; //Softening of Noise Correction (factor)
113
114 const Float_t kPi=TMath::Pi();
115
116 const Float_t kHeight=geometry->GetRadiatorToPads(); //Distance from Radiator to Pads in centimeters
117 //printf("Distance to Pads:%f\n",kHeight);
118
119 const Int_t kSpot=2; //number of passes with spot algorithm
120 const Int_t activ_tresh=0; //activation treshold to identify a track
121
122 const Int_t kDimensionTheta=2; //Matrix dimension for angle Detection
123 const Int_t kDimensionPhi=2;
124 const Int_t kDimensionOmega=50;
125
126 const Float_t SPOTp=.25; //Percentage of spot action
127 const Float_t kMinOmega=.6;
128 const Float_t kMaxOmega=.7; //Maximum Cherenkov angle to identify
129 const Float_t kMinTheta=0;
130 const Float_t kMaxTheta=0.5*kPi/180;
131 const Float_t kMinPhi=0;
132 const Float_t kMaxPhi=20*kPi/180;
133
134 const Float_t sigma=0.5; //half thickness of fiducial band in cm
135
136 Float_t rechit[6]; //Reconstructed point data
137
138 Int_t ***point = i3tensor(0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
139 Int_t ***point1 = i3tensor(0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
140
141 steptheta=(kMaxTheta-kMinTheta)/kDimensionTheta;
142 stepphi=(kMaxPhi-kMinPhi)/kDimensionPhi;
143 stepomega=(kMaxOmega-kMinOmega)/kDimensionOmega;
144
145 static TH3F *Points = new TH3F("Points","Reconstructed points 3D",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
146 static TH2F *ThetaPhi = new TH2F("ThetaPhi","Theta-Phi projection",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi);
147 static TH2F *OmegaTheta = new TH2F("OmegaTheta","Omega-Theta projection",kDimensionTheta,0,kDimensionTheta,kDimensionOmega,0,kDimensionOmega);
148 static TH2F *OmegaPhi = new TH2F("OmegaPhi","Omega-Phi projection",kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
149 static TH3F *SpotPoints = new TH3F("Points","Reconstructed points 3D, spot",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
150 static TH2F *SpotThetaPhi = new TH2F("ThetaPhi","Theta-Phi projection, spot",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi);
151 static TH2F *SpotOmegaTheta = new TH2F("OmegaTheta","Omega-Theta projection, spot",kDimensionTheta,0,kDimensionTheta,kDimensionOmega,0,kDimensionOmega);
152 static TH2F *SpotOmegaPhi = new TH2F("OmegaPhi","Omega-Phi projection, spot",kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
153 static TH2F *DigitsXY = new TH2F("DigitsXY","Pads used for reconstruction",150,-25,25,150,-25,25);
154 static TH1F *AngleAct = new TH1F("AngleAct","Activation per angle",100,.45,1);
155 static TH1F *Activation = new TH1F("Activation","Activation per ring",100,0,25);
156 Points->SetXTitle("theta");
157 Points->SetYTitle("phi");
158 Points->SetZTitle("omega");
159 ThetaPhi->SetXTitle("theta");
160 ThetaPhi->SetYTitle("phi");
161 OmegaTheta->SetXTitle("theta");
162 OmegaTheta->SetYTitle("omega");
163 OmegaPhi->SetXTitle("phi");
164 OmegaPhi->SetYTitle("omega");
165 SpotPoints->SetXTitle("theta");
166 SpotPoints->SetYTitle("phi");
167 SpotPoints->SetZTitle("omega");
168 SpotThetaPhi->SetXTitle("theta");
169 SpotThetaPhi->SetYTitle("phi");
170 SpotOmegaTheta->SetXTitle("theta");
171 SpotOmegaTheta->SetYTitle("omega");
172 SpotOmegaPhi->SetXTitle("phi");
173 SpotOmegaPhi->SetYTitle("omega");
174 AngleAct->SetFillColor(5);
175 AngleAct->SetXTitle("rad");
176 AngleAct->SetYTitle("activation");
177 Activation->SetFillColor(5);
178 Activation->SetXTitle("activation");
179
88cb7938 180 Int_t ntracks = (Int_t)pRICH->TreeH()->GetEntries();
02b30ae7 181
182 Float_t trackglob[3];
183 Float_t trackloc[3];
184
185 //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45));
186
187 Int_t track;
188
189 for (track=0; track<ntracks;track++) {
190 gAlice->ResetHits();
88cb7938 191 pRICH->TreeH()->GetEvent(track);
02b30ae7 192 TClonesArray *pHits = pRICH->Hits();
193 if (pHits == 0) return;
194 Int_t nhits = pHits->GetEntriesFast();
195 if (nhits == 0) continue;
196 //Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
853634d3 197 AliRICHhit *mHit = 0;
02b30ae7 198 //Int_t npoints=0;
199
200 Int_t counter=0, counter1=0;
201 //Initialization
202 for(i=0;i<kDimensionTheta;i++)
203 {
204 for(j=0;j<kDimensionPhi;j++)
205 {
206 for(k=0;k<kDimensionOmega;k++)
207 {
208 counter++;
209 point[i][j][k]=0;
210 //printf("Dimensions theta:%d, phi:%d, omega:%d",kDimensionTheta,kDimensionPhi,kDimensionOmega);
211 //printf("Resetting %d %d %d, time %d\n",i,j,k,counter);
212 //-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension));
213 //printf("n-%f",-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension)));
214 }
215 }
216 }
217
218 Int_t ncerenkovs = pRICH->Cerenkovs()->GetEntriesFast();
219
220
221 originalOmega = 0;
222 counter = 0;
223
224 for (Int_t hit=0;hit<ncerenkovs;hit++) {
225 AliRICHCerenkov* cHit = (AliRICHCerenkov*) pRICH->Cerenkovs()->UncheckedAt(hit);
226 Float_t loss = cHit->fLoss; //did it hit the CsI?
227 Float_t production = cHit->fProduction; //was it produced in freon?
228 Float_t cherenkov = cHit->fCerenkovAngle; //production cerenkov angle
229 if (loss == 4 && production == 1)
230 {
231 counter +=1;
232 originalOmega += cherenkov;
233 //printf("%f\n",cherenkov);
234 }
235 }
236
237 originalOmega = originalOmega/counter;
238
239 //printf("Cerenkovs : %d\n",counter);
240
853634d3 241 mHit = (AliRICHhit*) pHits->UncheckedAt(0);
02b30ae7 242 Int_t nch = mHit->Chamber();
243 originalTheta = mHit->Theta();
244 originalPhi = mHit->Phi();
245 trackglob[0] = mHit->X();
246 trackglob[1] = mHit->Y();
247 trackglob[2] = mHit->Z();
248
249
250 printf("\n--------------------------------------\n");
251 printf("Chamber %d, track %d\n", nch, track);
252 printf("Original omega: %f\n",originalOmega);
253
254 iChamber = &(pRICH->Chamber(nch-1));
255
256 printf("Nch:%d x:%f y:%f\n",nch,trackglob[0],trackglob[2]);
257
258 iChamber->GlobaltoLocal(trackglob,trackloc);
259
260 iChamber->LocaltoGlobal(trackloc,trackglob);
261
262
263 cx=trackloc[0];
264 cy=trackloc[2];
265
266 printf("cy:%f ", cy);
267
268 if(counter != 0) //if there are cerenkovs
269 {
270
271 AliRICHDigit *points = 0;
272 TClonesArray *pDigits = pRICH->DigitsAddress(nch-1);
273
274 AliRICHRawCluster *cluster =0;
275 TClonesArray *pClusters = pRICH->RawClustAddress(nch-1);
276
277 Int_t maxcycle=0;
278
279 //digitize from digits
280
281 if(type==0)
282 {
283 gAlice->TreeD()->GetEvent(0);
284 Int_t ndigits = pDigits->GetEntriesFast();
285 maxcycle=ndigits;
286 //printf("Got %d digits\n",ndigits);
287 }
288
289 //digitize from clusters
290
291 if(type==1)
292 {
293 Int_t nent=(Int_t)gAlice->TreeR()->GetEntries();
294 gAlice->TreeR()->GetEvent(nent-1);
295 Int_t nclusters = pClusters->GetEntriesFast();
296 maxcycle=nclusters;
297 //printf("Got %d clusters\n",nclusters);
298 }
299
300
301
302
303 counter=0;
304 printf("Starting calculations\n");
305 printf(" Start Finish\n");
306 printf("Progress: ");
307
308
309 for(Float_t theta=0;theta<kMaxTheta;theta+=steptheta)
310 {
311 printf(".");
312 for(Float_t phi=0;phi<=kMaxPhi;phi+=stepphi)
313 {
314 for(omega=kMinOmega;omega<=kMaxOmega;omega+=stepomega)
315 {
316 //printf("Entering angle cycle\n");
317 omega1=SnellAngle(omega);
318 theta1=SnellAngle(theta);
319
320 maxRadius = kHeight*(tan(omega1+theta1)+tan(omega1-theta1))/2;
321 minRadius = kHeight*tan(omega1);
322 eccentricity = sqrt(1-(minRadius*minRadius)/(maxRadius*maxRadius));
323
324
325
326 offset = kHeight*(tan(omega1+theta1)-tan(omega1-theta1))/2;
327
328 //printf("phi:%f theta:%f omega:%f \n", phi,theta,omega);
329
330 //printf("offset:%f cx:%f cy:%f \n", offset,cx,cy);
331
332 Float_t cxn = cx + offset * sin(phi);
333 Float_t cyn = cy + offset * cos(phi);
334
335 //printf("cxn:%f cyn:%f\n", cxn, cyn);
336
337 for (Int_t cycle=0;cycle<maxcycle;cycle++)
338 {
339 //printf("Entering point cycle");
340 if(type==0)
341 {
342 points=(AliRICHDigit*) pDigits->UncheckedAt(cycle);
343 segmentation->GetPadC(points->PadX(), points->PadY(),x, y, z);
344 }
345
346 if(type==1)
347 {
348 cluster=(AliRICHRawCluster*) pClusters->UncheckedAt(cycle);
349 x=cluster->fX;
350 y=cluster->fY;
351 q=cluster->fQ;
352 }
353
354 if(type ==0 || q > 100)
355
356 {
357
358 x=x-cxn;
359 y=y-cyn;
360 radius=TMath::Sqrt(TMath::Power(x,2)+TMath::Power(y,2));
361
362 phi_relative = asin(y/radius);
363 phi_relative = TMath::Abs(phi_relative - phi);
364
365 angularadius = maxRadius*sqrt((1-eccentricity*eccentricity)/(1-eccentricity*eccentricity*cos(phi_relative)*cos(phi_relative)));
366
367 //printf("omega:%f min:%f rad:%f max:%f\n",omega, angularadius-sigma,radius,angularadius+sigma);
368
369
370 if((angularadius-sigma)<radius && (angularadius+sigma)>radius)
371 {
372 printf("omega:%f min:%f rad:%f max:%f\n",omega, angularadius-sigma,radius,angularadius+sigma);
373
374 bintheta=theta*kDimensionTheta/kMaxTheta;
375 binphi=phi*kDimensionPhi/kMaxPhi;
376 binomega=omega*kDimensionOmega/(kMaxOmega-kMinOmega);
377
378 if(Int_t(bintheta+0.5)==Int_t(bintheta))
379 inttheta=Int_t(bintheta);
380 else
381 inttheta=Int_t(bintheta+0.5);
382
383 if(Int_t(binomega+0.5)==Int_t(binomega))
384 intomega=Int_t(binomega);
385 else
386 intomega=Int_t(binomega+0.5);
387
388 if(Int_t(binphi+0.5)==Int_t(binphi))
389 intphi=Int_t(binphi);
390 else
391 intphi=Int_t(binphi+0.5);
392
393 //printf("Point added at %d %d %d\n",inttheta,intphi,intomega);
394
395 //if(type==0)
396 point[inttheta][intphi][intomega]+=1;
397 //if(type==1)
398 //point[inttheta][intphi][intomega]+=(Int_t)(q);
399
400 //printf("Omega stored:%d\n",intomega);
401 Points->Fill(inttheta,intphi,intomega,(float) 1);
402 ThetaPhi->Fill(inttheta,intphi,(float) 1);
403 OmegaTheta->Fill(inttheta,intomega,(float) 1);
404 OmegaPhi->Fill(intphi,intomega,(float) 1);
405 //printf("Filling at %d %d %d\n",Int_t(theta*kDimensionTheta/kMaxTheta),Int_t(phi*kDimensionPhi/kMaxPhi),Int_t(omega*kDimensionOmega/kMaxOmega));
406 }
407 //if(omega<kMaxOmega)point[Int_t(theta)][Int_t(phi)][Int_t(omega)]+=1;
408 }
409 }
410 }
411 }
412
413 }
414 //printf("Used %d digits for theta %3.1f\n",counter1, theta*180/kPi);
415
416 printf("\n");
417
418 meanradius=meanradius/counter;
419 //printf("Mean radius:%f, counter:%d\n",meanradius,counter);
420 rechit[5]=meanradius;
421 //printf("Used %d digits\n",counter1);
422 //printf("\n");
423
424 if(nev<2)
425 {
426 if(nev==0)
427 {
428 fc1->cd(1);
429 Points->Draw("colz");
430 fc1->cd(2);
431 ThetaPhi->Draw("colz");
432 fc1->cd(3);
433 OmegaTheta->Draw("colz");
434 fc1->cd(4);
435 OmegaPhi->Draw("colz");
436 fc3->cd();
437 DigitsXY->Draw("colz");
438 }
439 else
440 {
441 //fc1->cd(1);
442 //Points->Draw("same");
443 //fc1->cd(2);
444 //ThetaPhi->Draw("same");
445 //fc1->cd(3);
446 //OmegaTheta->Draw("same");
447 //fc1->cd(4);
448 //OmegaPhi->Draw("same");
449 }
450 }
451
452
453 //SPOT execute twice
454 for(Int_t s=0;s<kSpot;s++)
455 {
456 printf(" Applying Spot algorithm, pass %d\n", s);
457
458 //buffer copy
459 for(i=0;i<=kDimensionTheta;i++)
460 {
461 for(j=0;j<=kDimensionPhi;j++)
462 {
463 for(k=0;k<=kDimensionOmega;k++)
464 {
465 point1[i][j][k]=point[i][j][k];
466 }
467 }
468 }
469
470 //SPOT algorithm
471 for(i=1;i<kDimensionTheta-1;i++)
472 {
473 for(j=1;j<kDimensionPhi-1;j++)
474 {
475 for(k=1;k<kDimensionOmega-1;k++)
476 {
477 if((point[i][k][j]>point[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&&
478 (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&&
479 (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1]))
480 {
481 //cout<<"SPOT"<<endl;
482 //Execute SPOT on point
483 point1[i][j][k]+=Int_t(SPOTp*(point[i-1][k][j]+point[i+1][k][j]+point[i][k-1][j]+point[i][k+1][j]+point[i][k][j-1]+point[i][k][j+1]));
484 point1[i-1][k][j]=Int_t(SPOTp*point[i-1][k][j]);
485 point1[i+1][k][j]=Int_t(SPOTp*point[i+1][k][j]);
486 point1[i][k-1][j]=Int_t(SPOTp*point[i][k-1][j]);
487 point1[i][k+1][j]=Int_t(SPOTp*point[i][k+1][j]);
488 point1[i][k][j-1]=Int_t(SPOTp*point[i][k][j-1]);
489 point1[i][k][j+1]=Int_t(SPOTp*point[i][k][j+1]);
490 }
491 }
492 }
493 }
494
495 //copy from buffer copy
496 counter1=0;
497 for(i=1;i<kDimensionTheta;i++)
498 {
499 for(j=1;j<kDimensionPhi;j++)
500 {
501 for(k=1;k<kDimensionOmega;k++)
502 {
503 point[i][j][k]=point1[i][j][k];
504 if(nev<20)
505 {
506 if(s==kSpot-1)
507 {
508 if(point1[i][j][k] != 0)
509 {
510 SpotPoints->Fill(i,j,k,(float) point1[i][j][k]);
511 //printf("Random number %f\n",random->Rndm(2));
512 //if(random->Rndm() < .2)
513 //{
514 SpotThetaPhi->Fill(i,j,(float) point1[i][j][k]);
515 SpotOmegaTheta->Fill(i,k,(float) point1[i][j][k]);
516 SpotOmegaPhi->Fill(j,k,(float) point1[i][j][k]);
517 counter1++;
518 //}
519 //printf("Filling at %d %d %d value %f\n",i,j,k,(float) point1[i][j][k]);
520 }
521 }
522 }
523 //if(point1[i][j][k] != 0)
524 //printf("Last transfer point: %d, point1, %d\n",point[i][j][k],point1[i][j][k]);
525 }
526 }
527 }
528 }
529
530 //printf("Filled %d cells\n",counter1);
531
532 if(nev<2)
533 {
534 if(nev==0)
535 {
536 fc2->cd(1);
537 SpotPoints->Draw("colz");
538 fc2->cd(2);
539 SpotThetaPhi->Draw("colz");
540 fc2->cd(3);
541 SpotOmegaTheta->Draw("colz");
542 fc2->cd(4);
543 SpotOmegaPhi->Draw("colz");
544 }
545 else
546 {
547 //fc2->cd(1);
548 //SpotPoints->Draw("same");
549 //fc2->cd(2);
550 //SpotThetaPhi->Draw("same");
551 //fc2->cd(3);
552 //SpotOmegaTheta->Draw("same");
553 //fc2->cd(4);
554 //SpotOmegaPhi->Draw("same");
555 }
556 }
557
558
559 //Identification is equivalent to maximum determination
560 max=0;maxi=0;maxj=0;maxk=0;
561
562 printf(" Proceeding to identification");
563
564 for(i=0;i<kDimensionTheta;i++)
565 for(j=0;j<kDimensionPhi;j++)
566 for(k=0;k<kDimensionOmega;k++)
567 if(point[i][j][k]>max)
568 {
569 //cout<<"maxi="<<i*90/dimension<<" maxj="<<j*90/dimension<<" maxk="<<k*kMaxOmega/dimension*180/kPi<<" max="<<max<<endl;
570 maxi=i;maxj=j;maxk=k;
571 max=point[i][j][k];
572 printf(".");
573 //printf("Max Omega %d, Max Theta %d, Max Phi %d (%d counts)\n",maxk,maxi,maxj,max);
574 }
575 printf("\n");
576
577 Float_t FinalOmega;
578 Float_t FinalTheta;
579 Float_t FinalPhi;
580
581
582 if(max>activ_tresh)
583 {
584 FinalOmega = maxk*(kMaxOmega-kMinOmega)/kDimensionOmega;
585 FinalTheta = maxi*kMaxTheta/kDimensionTheta;
586 FinalPhi = maxj*kMaxPhi/kDimensionPhi;
587
588 FinalOmega += kMinOmega;
589 }
590 else
591 {
592 FinalOmega = 0;
593 FinalTheta = 0;
594 FinalPhi = 0;
595
596 printf(" Ambiguous data!\n");
597 }
598
599
600
601 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",h,cx,cy,maxk*kPi/(kDimensionTheta*4));
602 printf(" Indentified angles: cerenkov - %f, theta - %3.1f, phi - %3.1f (%f activation)\n", FinalOmega, FinalTheta*180/kPi, FinalPhi*180/kPi, max);
603 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",kHeight,cx,cy,maxk);
604
605 AngleAct->Fill(FinalOmega, (float) max);
606 Activation->Fill(max, (float) 1);
607
608 //fscanf(omegas,"%f",&realomega);
609 //fscanf(thetas,"%f",&realtheta);
610 //printf("Real Omega: %f",realomega);
611 //cout<<"Detected:theta="<<maxi*90/kDimensionTheta<<"phi="<<maxj*90/kDimensionPhi<<"omega="<<maxk*kMaxOmega/kDimensionOmega*180/kPi<<" OmegaError="<<fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega)<<" ThetaError="<<fabs(maxi*90/kDimensionTheta-realtheta)<<endl<<endl;
612
613 //fprintf(results,"Center Coordinates, cx=%6.2f cy=%6.2f, Real Omega=%6.2f, Detected Omega=%6.2f, Omega Error=%6.2f Theta Error=%6.2f\n",cx,cy,realomega,maxk*kMaxOmega/kDimensionOmega*180/kPi,fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega),fabs(maxi*90/kDimensionTheta-realtheta));
614
615 /*for(j=0;j<np;j++)
616 pointpp(maxj*90/kDimensionTheta,maxi*90/kDimensionPhi,maxk*kMaxOmega/kDimensionOmega*180/kPi,cx,cy);//Generates a point on the elipse*/
617
618
619 //Start filling rec. hits
620
621 rechit[0] = FinalTheta;
622 rechit[1] = 90*kPi/180 + FinalPhi;
623 rechit[2] = FinalOmega;
624 rechit[3] = cx;
625 rechit[4] = cy;
626
627 //CreatePoints(FinalTheta, 270*kPi/180 + FinalPhi, FinalOmega, kHeight);
628
629 //printf ("track %d, theta %f, phi %f, omega %f\n\n\n",track,rechit[0],rechit[1],rechit[2]);
630 //printf("rechit %f %f %f %f %f\n",rechit[0],rechit[1],rechit[2],rechit[3],rechit[4]);
631 //printf("Chamber:%d",nch);
632
633
634 }
635
636 else //if no cerenkovs
637
638 {
639
640 rechit[0] = 0;
641 rechit[1] = 0;
642 rechit[2] = 0;
643 rechit[3] = 0;
644 rechit[4] = 0;
645 originalOmega = 0;
646 originalTheta = 0;
647 originalPhi =0;
648 }
649
650
651 // fill rechits
652 pRICH->AddRecHit3D(nch-1,rechit,originalOmega, originalTheta, originalPhi);
653 printf("track %d, theta r:%f o:%f, phi r:%f o:%f, omega r:%f o:%f cx:%f cy%f\n\n\n", track, rechit[0], originalTheta, rechit[1], originalPhi, rechit[2], originalOmega, cx, cy);
654
655 }
656
657 if(type==1) //reco from clusters
658 {
659 pRICH->ResetRawClusters();
660 //Int_t nent=(Int_t)gAlice->TreeR()->GetEntries();
661 //gAlice->TreeR()->GetEvent(track);
662 //printf("Going to branch %d\n",track);
663 //gAlice->GetEvent(nev);
664 }
665
666
667 //printf("\n\n\n\n");
668 gAlice->TreeR()->Fill();
669 TClonesArray *fRec;
670 for (i=0;i<kNCH;i++) {
671 fRec=pRICH->RecHitsAddress3D(i);
672 int ndig=fRec->GetEntriesFast();
673 printf ("Chamber %d, rings %d\n",i+1,ndig);
674 }
675
676 fc4->cd(1);
677 AngleAct->Draw();
678 fc4->cd(2);
679 Activation->Draw();
680
681 pRICH->ResetRecHits3D();
682
683 free_i3tensor(point,0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
684 free_i3tensor(point1,0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
685
686
687}
688
689Int_t ***AliRICHDetectV1::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
690// allocate a Int_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh]
691{
692 long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1;
693 Int_t ***t;
694
695 int NR_END=1;
696
697 // allocate pointers to pointers to rows
698 t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**)));
699 if (!t) printf("allocation failure 1 in f3tensor()");
700 t += NR_END;
701 t -= nrl;
702
703 // allocate pointers to rows and set pointers to them
704 t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*)));
705 if (!t[nrl]) printf("allocation failure 2 in f3tensor()");
706 t[nrl] += NR_END;
707 t[nrl] -= ncl;
708
709 // allocate rows and set pointers to them
710 t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t)));
711 if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()");
712 t[nrl][ncl] += NR_END;
713 t[nrl][ncl] -= ndl;
714
715 for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep;
716 for(i=nrl+1;i<=nrh;i++) {
717 t[i]=t[i-1]+ncol;
718 t[i][ncl]=t[i-1][ncl]+ncol*ndep;
719 for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep;
720 }
721
722 // return pointer to array of pointers to rows
723 return t;
724}
725
726
727void AliRICHDetectV1::free_i3tensor(int ***t, long nrl, long nrh, long ncl, long nch,long ndl, long ndh)
728// free a Int_t f3tensor allocated by i3tensor()
729{
cc23c5c6 730 nrh++;ndh++;nch++;//to remove warning
02b30ae7 731 int NR_END=1;
732
733 free((char*) (t[nrl][ncl]+ndl-NR_END));
734 free((char*) (t[nrl]+ncl-NR_END));
735 free((char*) (t+nrl-NR_END));
736}