]> git.uio.no Git - u/mrichter/AliRoot.git/blame - RICH/RICHpadtestC.C
Fixed positioning of spacers inside freon.
[u/mrichter/AliRoot.git] / RICH / RICHpadtestC.C
CommitLineData
6a748468 1Int_t diaglevel=2; // 1->Hits, 2->Spectra, 3->Statistics
2
3
4void RICHpadtestC (Int_t evNumber1=0,Int_t evNumber2=0)
5{
6/////////////////////////////////////////////////////////////////////////
7// This macro is a small example of a ROOT macro
8// illustrating how to read the output of GALICE
9// and do some analysis.
10//
11/////////////////////////////////////////////////////////////////////////
12
13
14 Int_t NpadX = 162; // number of pads on X
15 Int_t NpadY = 162; // number of pads on Y
16
17 Int_t Pad[162][162];
18 for (Int_t i=0;i<NpadX;i++) {
19 for (Int_t j=0;j<NpadY;j++) {
20 Pad[i][j]=0;
21 }
22 }
23
24
25
26// Dynamically link some shared libs
27
28 if (gClassTable->GetID("AliRun") < 0) {
29 gROOT->LoadMacro("loadlibs.C");
30 loadlibs();
31 }
32
33// Connect the Root Galice file containing Geometry, Kine and Hits
34
35 TFile *file = (TFile*)gROOT->GetListOfFiles()->FindObject("galice.root");
36 if (!file) file = new TFile("galice.root");
37
38// Get AliRun object from file or create it if not on file
39
40 if (!gAlice) {
41 gAlice = (AliRun*)file->Get("gAlice");
42 if (gAlice) printf("AliRun object found on file\n");
43 if (!gAlice) gAlice = new AliRun("gAlice","Alice test program");
44 }
45
46// Create some histograms
47
48 Int_t xmin= -NpadX/2;
49 Int_t xmax= NpadX/2;
50 Int_t ymin= -NpadY/2;
51 Int_t ymax= NpadY/2;
52
53 /*TH2F *hc1 = new TH2F("hc1","Chamber 1 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
54 TH2F *hc2 = new TH2F("hc2","Chamber 2 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
55 TH2F *hc3 = new TH2F("hc3","Chamber 3 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
56 TH2F *hc4 = new TH2F("hc4","Chamber 4 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
57 TH2F *hc5 = new TH2F("hc5","Chamber 5 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
58 TH2F *hc6 = new TH2F("hc6","Chamber 6 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
59 TH2F *hc7 = new TH2F("hc7","Chamber 7 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
60 TH2F *h = new TH2F("h","Detector hit distribution",150,-300,300,150,-300,300);
61 TH1F *Clcharge = new TH1F("Clcharge","Cluster Charge Distribution",500,0.,500.);
62 TH2F *cerenkov = new TH2F("cerenkov","Cerenkov hit distribution",150,-300,300,150,-300,300);
63 TH1F *ckovangle = new TH1F("ckovangle","Cerenkov angle per photon",200,.6,.85);
64 TH1F *hckphi = new TH1F("hckphi","Cerenkov phi angle per photon",620,-3.1,3.1);
65 TH2F *feedback = new TH2F("feedback","Feedback hit distribution",150,-300,300,150,-300,300);
66 TH2F *mip = new TH2F("mip","Mip hit distribution",150,-300,300,150,-300,300);
67 TH1F *mother = new TH1F("mother","Cerenkovs per Mip",75,0.,75.);
68 TH1F *radius = new TH1F("radius","Mean distance to Mip",200,0.,20.);
69 TH1F *phspectra1 = new TH1F("phspectra","Photon Spectra",200,5.,10.);
70 TH1F *phspectra2 = new TH1F("phspectra","Photon Spectra",200,5.,10.);
71 TH1F *totalphotons = new TH1F("totalphotons","Produced Photons per Mip",100,200,700.);
72 TH1F *feedbacks = new TH1F("feedbacks","Produced Feedbacks per Mip",50,0.5,50.);
73 TH1F *padnumber = new TH1F("padnumber","Number of pads per cluster",50,-0.5,50.);
74 TH1F *padsev = new TH1F("padsev","Number of pads hit per event",50,0.5,100.);
75 TH1F *clusev = new TH1F("clusev","Number of clusters per event",50,0.5,50.);
76 TH1F *photev = new TH1F("photev","Number of photons per event",50,0.5,50.);
77 TH1F *feedev = new TH1F("feedev","Number of feedbacks per event",50,0.5,50.);
78 TH1F *padsmip = new TH1F("padsmip","Number of pads per event inside MIP region",50,0.5,50.);
79 TH1F *padscl = new TH1F("padscl","Number of pads per event from cluster count",50,0.5,100.);*/
80 TH1F *pionspectra1 = new TH1F("pionspectra1","Pion Spectra",200,-4,2);
81 TH1F *pionspectra2 = new TH1F("pionspectra2","Pion Spectra",200,-4,2);
82 TH1F *pionspectra3 = new TH1F("pionspectra3","Pion Spectra",200,-4,2);
83 TH1F *protonspectra1 = new TH1F("protonspectra1","Proton Spectra",200,-4,2);
84 TH1F *protonspectra2 = new TH1F("protonspectra2","Proton Spectra",200,-4,2);
85 TH1F *protonspectra3 = new TH1F("protonspectra3","Proton Spectra",200,-4,2);
86 TH1F *kaonspectra1 = new TH1F("kaonspectra1","Kaon Spectra",100,-4,2);
87 TH1F *kaonspectra2 = new TH1F("kaonspectra2","Kaon Spectra",100,-4,2);
88 TH1F *kaonspectra3 = new TH1F("kaonspectra3","Kaon Spectra",100,-4,2);
89 TH1F *electronspectra1 = new TH1F("electronspectra1","Electron Spectra",100,-4,2);
90 TH1F *electronspectra2 = new TH1F("electronspectra2","Electron Spectra",100,-4,2);
91 TH1F *electronspectra3 = new TH1F("electronspectra3","Electron Spectra",100,-4,2);
92 TH1F *muonspectra1 = new TH1F("muonspectra1","Muon Spectra",100,-4,2);
93 TH1F *muonspectra2 = new TH1F("muonspectra2","Muon Spectra",100,-4,2);
94 TH1F *muonspectra3 = new TH1F("muonspectra3","Muon Spectra",100,-4,2);
95 TH1F *neutronspectra1 = new TH1F("neutronspectra1","Neutron Spectra",100,-4,2);
96 TH1F *neutronspectra2 = new TH1F("neutronspectra2","Neutron Spectra",100,-4,2);
97 TH1F *neutronspectra3 = new TH1F("neutronspectra2","Neutron Spectra",100,-4,2);
98 TH1F *chargedspectra1 = new TH1F("chargedspectra1","Charged particles above 1 GeV Spectra",100,-1,3);
99 TH1F *chargedspectra2 = new TH1F("chargedspectra2","Charged particles above 1 GeV Spectra",100,-1,3);
100 TH1F *chargedspectra3 = new TH1F("chargedspectra2","Charged particles above 1 GeV Spectra",100,-1,3);
101/* TH1F *hitsX = new TH1F("digitsX","Distribution of hits along x-axis",200,-300,300);
102 TH1F *hitsY = new TH1F("digitsY","Distribution of hits along z-axis",200,-300,300);*/
103 TH2F *production = new TH2F("production","Mother production vertices",100,-300,300,100,0,600);
104
105
106
107
108// Start loop over events
109
110 Int_t Nh=0;
111 Int_t pads=0;
112 Int_t Nh1=0;
113 //Int_t mothers[100000];
114 //Int_t mothers2[100000];
115 Float_t mom[3];
116 Float_t random;
117 Int_t nraw=0;
118 Int_t phot=0;
119 Int_t feed=0;
120 Int_t padmip=0;
121 Int_t pion=0, kaon=0, proton=0, electron=0, neutron=0, muon=0;
122 //for (Int_t i=0;i<100;i++) mothers[i]=0;
123 for (int nev=0; nev<= evNumber2; nev++) {
124 Int_t nparticles = gAlice->GetEvent(nev);
125
126
127 //cout<<"nev "<<nev<<endl;
128 printf ("Event number : %d\n",nev);
129 //cout<<"nparticles "<<nparticles<<endl;
130 printf ("Number of particles: %d\n",nparticles);
131 if (nev < evNumber1) continue;
132 if (nparticles <= 0) return;
133
134// Get pointers to RICH detector and Hits containers
135
136 AliRICH *RICH = (AliRICH*)gAlice->GetDetector("RICH");
137 Int_t nent=(Int_t)gAlice->TreeR()->GetEntries();
138 gAlice->TreeR()->GetEvent(nent-1);
139 TClonesArray *Rawclusters = RICH->RawClustAddress(2); // Raw clusters branch
140 //printf ("Rawclusters:%p",Rawclusters);
141 Int_t nrawclusters = Rawclusters->GetEntriesFast();
142 //printf (" nrawclusters:%d\n",nrawclusters);
143 TTree *TH = gAlice->TreeH();
144 Int_t ntracks = TH->GetEntries();
145
146
147
148 /* Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
149 gAlice->TreeD()->GetEvent(nent-1);
150
151
152 TClonesArray *Digits = RICH->DigitsAddress(2); // Raw clusters branch
153 Int_t ndigits = Digits->GetEntriesFast();
154 //printf("Digits:%d\n",ndigits);
155 padsev->Fill(ndigits,(float) 1);*/
156
157 /* for (Int_t ich=0;ich<7;ich++)
158 {
159 TClonesArray *Digits = RICH->DigitsAddress(ich); // Raw clusters branch
160 Int_t ndigits = Digits->GetEntriesFast();
161 //printf("Digits:%d\n",ndigits);
162 padsev->Fill(ndigits,(float) 1);
163 if (ndigits) {
164 for (Int_t hit=0;hit<ndigits;hit++) {
165 dHit = (AliRICHDigit*) Digits->UncheckedAt(hit);
166 //Int_t nchamber = padHit->fChamber; // chamber number
167 //Int_t nhit = dHit->fHitNumber; // hit number
168 Int_t qtot = dHit->fSignal; // charge
169 Int_t ipx = dHit->fPadX; // pad number on X
170 Int_t ipy = dHit->fPadY; // pad number on Y
171 //Int_t iqpad = dHit->fQpad; // charge per pad
172 //Int_t rpad = dHit->fRSec; // R-position of pad
173 //printf ("Pad hit, PadX:%d, PadY:%d\n",ipx,ipy);
174 if( ipx<=162 && ipy <=162 && ich==0) hc1->Fill(ipx,ipy,(float) qtot);
175 if( ipx<=162 && ipy <=162 && ich==1) hc2->Fill(ipx,ipy,(float) qtot);
176 if( ipx<=162 && ipy <=162 && ich==2) hc3->Fill(ipx,ipy,(float) qtot);
177 if( ipx<=162 && ipy <=162 && ich==3) hc4->Fill(ipx,ipy,(float) qtot);
178 if( ipx<=162 && ipy <=162 && ich==4) hc5->Fill(ipx,ipy,(float) qtot);
179 if( ipx<=162 && ipy <=162 && ich==5) hc6->Fill(ipx,ipy,(float) qtot);
180 if( ipx<=162 && ipy <=162 && ich==6) hc7->Fill(ipx,ipy,(float) qtot);
181 }
182 }
183 }*/
184
185// Start loop on tracks in the hits containers
186 Int_t Nc=0;
187 for (Int_t track=0; track<ntracks;track++) {
188 printf ("Processing Track: %d\n",track);
189 gAlice->ResetHits();
190 Int_t nbytes += TH->GetEvent(track);
191 if (RICH) {
192 //RICH->ResetRawClusters();
193 TClonesArray *PadHits = RICH->PadHits(); // Cluster branch
194 TClonesArray *Hits = RICH->Hits(); // Hits branch
195 TClonesArray *Cerenkovs = RICH->Cerenkovs(); // Cerenkovs branch
196 }
197 //see hits distribution
198 Int_t nhits = Hits->GetEntriesFast();
199 if (nhits) Nh+=nhits;
200 //printf("nhits %d\n",nhits);
201 for (Int_t hit=0;hit<nhits;hit++) {
202 mHit = (AliRICHHit*) Hits->UncheckedAt(hit);
203 Int_t nch = mHit->fChamber; // chamber number
204 Float_t x = mHit->fX; // x-pos of hit
205 Float_t y = mHit->fZ; // y-pos
206 Float_t z = mHit->fY;
207 Int_t index = mHit->fTrack;
208 Int_t particle = mHit->fParticle;
209 Float_t R;
210
211 //hitsX->Fill(x,(float) 1);
212 //hitsY->Fill(y,(float) 1);
213
214 //printf("Particle:%d\n",particle);
215
216 TParticle *current = (TParticle*)(*gAlice->Particles())[index];
217
218 R=TMath::Sqrt(current->Vx()*current->Vx() + current->Vy()*current->Vy());
219
220 //printf("Particle type: %d\n",current->GetPdgCode());
221 if (TMath::Abs(particle) < 50000051)
222 {
223 if (TMath::Abs(particle) == 50000050)
224 {
225 gMC->Rndm(&random, 1);
226 if (random < .1)
227 production->Fill(current->Vz(),R,(float) 1);
228 }
229 else
230 {
231 production->Fill(current->Vz(),R,(float) 1);
232 }
233 //mip->Fill(x,y,(float) 1);
234 }
235
236 if (TMath::Abs(particle)==211 || TMath::Abs(particle)==111)
237 {
238 pionspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
239 if (current->Vx()>.005 && current->Vy()>.005 && current->Vz()>.005)
240 pionspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
241 if (R>2.5 && R<4.5)
242 {
243 pionspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
244 printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\R:%f\n\n\n\n\n\n\n\n\n",R);
245 }
246 printf("Pion mass: %e\n",current->GetCalcMass());
247 pion +=1;
248 }
249 if (TMath::Abs(particle)==2212)
250 {
251 protonspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
252 if (current->Vx()>.005 && current->Vy()>.005 && current->Vz()>.005)
253 protonspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
254 if (R>3 && R<4.3)
255 protonspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
256 //printf("\n\n\n\n\n\n\nProton mass: %e\n\n\n\n\n\n\n\n\n",current->GetCalcMass());
257 proton +=1;
258 }
259 if (TMath::Abs(particle)==321 || TMath::Abs(particle)==130 || TMath::Abs(particle)==310
260 || TMath::Abs(particle)==311)
261 {
262 kaonspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
263 if (current->Vx()>.005 && current->Vy()>.005 && current->Vz()>.005)
264 kaonspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
265 if (R>2.5 && R<4.5)
266 kaonspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
267 printf("Kaon mass: %e\n",current->GetCalcMass());
268 kaon +=1;
269 }
270 if (TMath::Abs(particle)==11)
271 {
272 electronspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
273 if (current->Vx()>.005 && current->Vy()>.005 && current->Vz()>.005)
274 electronspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
275 if (R>2.5 && R<4.5)
276 electronspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
277 printf("Electron mass: %e\n",current->GetCalcMass());
278 electron +=1;
279 }
280 if (TMath::Abs(particle)==13)
281 {
282 muonspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
283 if (current->Vx()>.005 && current->Vy()>.005 && current->Vz()>.005)
284 muonspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
285 if (R>2.5 && R<4.5)
286 muonspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
287 printf("Muon mass: %e\n",current->GetCalcMass());
288 muon +=1;
289 }
290 if (TMath::Abs(particle)==2112)
291 {
292 neutronspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
293 if (current->Vx()>.005 && current->Vy()>.005 && current->Vz()>.005)
294 neutronspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
295 if (R>2.5 && R<4.5)
296 {
297 neutronspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
298 printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\R:%f\n\n\n\n\n\n\n\n\n",R);
299 }
300 printf("Neutron mass: %e\n",current->GetCalcMass());
301 neutron +=1;
302 }
303 if(TMath::Abs(particle)==211 || TMath::Abs(particle)==2212 || TMath::Abs(particle)==321)
304 {
305 if (current->Energy()-current->GetCalcMass()>1)
306 {
307 chargedspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
308 if (current->Vx()>.005 && current->Vy()>.005 && current->Vz()>.005)
309 chargedspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
310 if (R>2.5 && R<4.5)
311 chargedspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
312 }
313 }
314 //printf("Hits:%d\n",hit);
315 //printf ("Chamber number:%d x:%f y:%f\n",nch,x,y);
316 // Fill the histograms
317 Nh1+=nhits;
318 //h->Fill(x,y,(float) 1);
319 //}
320 //}
321 }
322
323/* Int_t ncerenkovs = Cerenkovs->GetEntriesFast();
324
325 if (ncerenkovs) {
326 for (Int_t hit=0;hit<ncerenkovs;hit++) {
327 cHit = (AliRICHCerenkov*) Cerenkovs->UncheckedAt(hit);
328 Int_t nchamber = cHit->fChamber; // chamber number
329 Int_t index = cHit->fTrack;
330 Int_t pindex = cHit->fIndex;
331 Int_t cx = cHit->fX; // x-position
332 Int_t cy = cHit->fZ; // y-position
333 Int_t cmother = cHit->fCMother; // Index of mother particle
334 Int_t closs = cHit->fLoss; // How did the paryicle get lost?
335 //printf ("Cerenkov hit, X:%d, Y:%d\n",cx,cy);
336
337 TParticle *current = (TParticle*)(*gAlice->Particles())[index];
338
339 if (current->GetPdgCode() == 50000051)
340 {
341 if (closs==4)
342 {
343 feedback->Fill(cx,cy,(float) 1);
344 feed++;
345 }
346 }
347 if (current->GetPdgCode() == 50000050)
348 {
349 if (closs==4)
350 cerenkov->Fill(cx,cy,(float) 1);
351
352 TParticle *MIP = (TParticle*)(*gAlice->Particles())[current->GetFirstMother()];
353 //TParticle *MIP = (TParticle*)(*gAlice->Particles())[MIP1->GetFirstDaughter()];
354 //printf("Second Mother:%d",MIP1->GetFirstDaughter());
355 mom[0] = current->Px();
356 mom[1] = current->Py();
357 mom[2] = current->Pz();
358 Float_t energy = current->Energy();
359 Float_t Mip_px = MIP->Px();
360 Float_t Mip_py = MIP->Py();
361 Float_t Mip_pz = MIP->Pz();
362
363 Float_t r = mom[0]*mom[0] + mom[1]*mom[1] + mom[2]*mom[2];
364 Float_t rt = TMath::Sqrt(r);
365 Float_t Mip_r = Mip_px*Mip_px + Mip_py*Mip_py + Mip_pz*Mip_pz;
366 Float_t Mip_rt = TMath::Sqrt(Mip_r);
367 Float_t coscerenkov = (mom[0]*Mip_px + mom[1]*Mip_py + mom[2]*Mip_pz)/(rt*Mip_rt);
368 Float_t cherenkov = TMath::ACos(coscerenkov);
369 ckovangle->Fill(cherenkov,(float) 1); //Cerenkov angle calculus
370 Float_t ckphi=TMath::ATan2(mom[0], mom[2]);
371 hckphi->Fill(ckphi,(float) 1);
372
373 //mipHit = (AliRICHHit*) Hits->UncheckedAt(0);
374
375 Float_t mx = MIP->Vx();
376 Float_t my = MIP->Vz();
377 Float_t mz = MIP->Vy();
378
379 //Float_t mx = mipHit->fX;
380 //Float_t my = mipHit->fZ;
381 Float_t dx = cx - mx;
382 Float_t dy = cy - my;
383 Float_t final_radius = TMath::Sqrt(dx*dx+dy*dy);
384 radius->Fill(final_radius,(float) 1);
385
386 if (closs == 4)
387 {
388 phspectra1->Fill(energy*1e9,(float) 1);
389 phot++;
390 }
391 else
392 phspectra2->Fill(energy*1e9,(float) 1);
393 for (Int_t nmothers=0;nmothers<=ntracks;nmothers++){
394 if (cmother == nmothers){
395 if (closs == 4)
396 mothers2[cmother]++;
397 mothers[cmother]++;
398 }
399 }
400 }
401 }
402 }
403
404 if (nrawclusters) {
405 for (Int_t hit=0;hit<nrawclusters;hit++) {
406 rcHit = (AliRICHRawCluster*) Rawclusters->UncheckedAt(hit);
407 //Int_t nchamber = rcHit->fChamber; // chamber number
408 //Int_t nhit = cHit->fHitNumber; // hit number
409 Int_t qtot = rcHit->fQ; // charge
410 Int_t fx = rcHit->fX; // x-position
411 Int_t fy = rcHit->fY; // y-position
412 Int_t type = rcHit->fCtype; // cluster type ?
413 Int_t mult = rcHit->fMultiplicity; // How many pads form the cluster
414 pads += mult;
415 if (qtot > 0) {
416 if (fx>-4 && fx<4 && fy>-4 && fy<4) {
417 padmip+=mult;
418 } else {
419 padnumber->Fill(mult,(float) 1);
420 nraw++;
421 if (mult<4) Clcharge->Fill(qtot,(float) 1);
422 }
423 }
424 }
425 }*/
426 }
427
428 /* for (Int_t nmothers=0;nmothers<ntracks;nmothers++){
429 totalphotons->Fill(mothers[nmothers],(float) 1);
430 mother->Fill(mothers2[nmothers],(float) 1);
431 //printf ("Entries in %d : %d\n",nmothers, mothers[nmothers]);
432 }*/
433
434 /* clusev->Fill(nraw,(float) 1);
435 photev->Fill(phot,(float) 1);
436 feedev->Fill(feed,(float) 1);
437 padsmip->Fill(padmip,(float) 1);
438 padscl->Fill(pads,(float) 1);
439 printf("Photons:%d\n",phot);
440 phot = 0;
441 feed = 0;
442 pads = 0;
443 nraw=0;
444 padmip=0;*/
445
446 }
447
448 //Create canvases, set the view range, show histograms
449
450 switch(diaglevel)
451 {
452 case 1:
453
454 TCanvas *c1 = new TCanvas("c1","Alice RICH pad hits",50,10,1200,700);
455 c1->Divide(4,2);
456 c1->cd(1);
457 hc1->SetXTitle("ix (npads)");
458 hc1->Draw();
459 c1->cd(2);
460 hc2->SetXTitle("ix (npads)");
461 hc2->Draw();
462 c1->cd(3);
463 hc3->SetXTitle("ix (npads)");
464 hc3->Draw();
465 c1->cd(4);
466 hc4->SetXTitle("ix (npads)");
467 hc4->Draw();
468 c1->cd(5);
469 hc5->SetXTitle("ix (npads)");
470 hc5->Draw();
471 c1->cd(6);
472 hc6->SetXTitle("ix (npads)");
473 hc6->Draw();
474 c1->cd(7);
475 hc7->SetXTitle("ix (npads)");
476 hc7->Draw();
477//
478 TCanvas *c4 = new TCanvas("c4","Hits per type",400,10,600,700);
479 c4->Divide(2,2);
480
481 c4->cd(1);
482 feedback->SetFillColor(42);
483 feedback->SetXTitle("x (pads)");
484 feedback->SetYTitle("y (pads)");
485 feedback->Draw();
486
487 c4->cd(2);
488 mip->SetFillColor(42);
489 mip->SetXTitle("x (pads)");
490 mip->SetYTitle("y (pads)");
491 mip->Draw();
492
493 c4->cd(3);
494 cerenkov->SetFillColor(42);
495 cerenkov->SetXTitle("x (pads)");
496 cerenkov->SetYTitle("y (pads)");
497 cerenkov->Draw();
498
499 c4->cd(4);
500 h->SetFillColor(42);
501 h->SetXTitle("x (cm)");
502 h->SetYTitle("y (cm)");
503 h->Draw();
504
505 TCanvas *c10 = new TCanvas("c10","Hits distribution",400,10,600,350);
506 c10->Divide(2,1);
507
508 c10->cd(1);
509 hitsX->SetFillColor(42);
510 hitsX->SetXTitle("(GeV)");
511 hitsX->Draw();
512
513 c10->cd(2);
514 hitsY->SetFillColor(42);
515 hitsY->SetXTitle("(GeV)");
516 hitsY->Draw();
517
518
519 break;
520//
521 case 2:
522
523 /*TCanvas *c6 = new TCanvas("c6","Photon Spectra",50,10,600,350);
524 c6->Divide(2,1);
525
526 c6->cd(1);
527 phspectra2->SetFillColor(42);
528 phspectra2->SetXTitle("energy (eV)");
529 phspectra2->Draw();
530 c6->cd(2);
531 phspectra1->SetFillColor(42);
532 phspectra1->SetXTitle("energy (eV)");
533 phspectra1->Draw();*/
534
535 //TCanvas *c9 = new TCanvas("c9","Particles Spectra",400,10,600,700);
536 TCanvas *c9 = new TCanvas("c9","Pion Spectra",400,10,600,700);
537 //c9->Divide(2,2);
538
539 //c9->cd(1);
540 pionspectra1->SetFillColor(42);
541 pionspectra1->SetXTitle("log(GeV)");
542 pionspectra2->SetFillColor(46);
543 pionspectra2->SetXTitle("log(GeV)");
544 pionspectra3->SetFillColor(10);
545 pionspectra3->SetXTitle("log(GeV)");
546 //c9->SetLogx();
547 pionspectra1->Draw();
548 pionspectra2->Draw("same");
549 pionspectra3->Draw("same");
550
551 //c9->cd(2);
552
553 TCanvas *c10 = new TCanvas("c10","Proton Spectra",400,10,600,700);
554 protonspectra1->SetFillColor(42);
555 protonspectra1->SetXTitle("log(GeV)");
556 protonspectra2->SetFillColor(46);
557 protonspectra2->SetXTitle("log(GeV)");
558 protonspectra3->SetFillColor(10);
559 protonspectra3->SetXTitle("log(GeV)");
560 //c10->SetLogx();
561 protonspectra1->Draw();
562 protonspectra2->Draw("same");
563 protonspectra3->Draw("same");
564
565 //c9->cd(3);
566 TCanvas *c11 = new TCanvas("c11","Kaon Spectra",400,10,600,700);
567 kaonspectra1->SetFillColor(42);
568 kaonspectra1->SetXTitle("log(GeV)");
569 kaonspectra2->SetFillColor(46);
570 kaonspectra2->SetXTitle("log(GeV)");
571 kaonspectra3->SetFillColor(10);
572 kaonspectra3->SetXTitle("log(GeV)");
573 //c11->SetLogx();
574 kaonspectra1->Draw();
575 kaonspectra2->Draw("same");
576 kaonspectra3->Draw("same");
577
578 //c9->cd(4);
579 TCanvas *c12 = new TCanvas("c12","Charged Particles Spectra",400,10,600,700);
580 chargedspectra1->SetFillColor(42);
581 chargedspectra1->SetXTitle("log(GeV)");
582 chargedspectra2->SetFillColor(46);
583 chargedspectra2->SetXTitle("log(GeV)");
584 chargedspectra3->SetFillColor(10);
585 chargedspectra3->SetXTitle("log(GeV)");
586 //c12->SetLogx();
587 chargedspectra1->Draw();
588 chargedspectra2->Draw("same");
589 chargedspectra3->Draw("same");
590
591 //TCanvas *c16 = new TCanvas("c16","Particles Spectra II",400,10,600,700);
592 //c16->Divide(2,2);
593
594 //c16->cd(1);
595 TCanvas *c13 = new TCanvas("c13","Electron Spectra",400,10,600,700);
596 electronspectra1->SetFillColor(42);
597 electronspectra1->SetXTitle("log(GeV)");
598 electronspectra2->SetFillColor(46);
599 electronspectra2->SetXTitle("log(GeV)");
600 electronspectra3->SetFillColor(10);
601 electronspectra3->SetXTitle("log(GeV)");
602 //c13->SetLogx();
603 electronspectra1->Draw();
604 electronspectra2->Draw("same");
605 electronspectra3->Draw("same");
606
607 //c16->cd(2);
608 TCanvas *c14 = new TCanvas("c14","Muon Spectra",400,10,600,700);
609 muonspectra1->SetFillColor(42);
610 muonspectra1->SetXTitle("log(GeV)");
611 muonspectra2->SetFillColor(46);
612 muonspectra2->SetXTitle("log(GeV)");
613 muonspectra3->SetFillColor(10);
614 muonspectra3->SetXTitle("log(GeV)");
615 //c14->SetLogx();
616 muonspectra1->Draw();
617 muonspectra2->Draw("same");
618 muonspectra3->Draw("same");
619
620 //c16->cd(4);
621 TCanvas *c16 = new TCanvas("c16","Neutron Spectra",400,10,600,700);
622 neutronspectra1->SetFillColor(42);
623 neutronspectra1->SetXTitle("log(GeV)");
624 neutronspectra2->SetFillColor(46);
625 neutronspectra2->SetXTitle("log(GeV)");
626 neutronspectra3->SetFillColor(10);
627 neutronspectra3->SetXTitle("log(GeV)");
628 //c16->SetLogx();
629 neutronspectra1->Draw();
630 neutronspectra2->Draw("same");
631 neutronspectra3->Draw("same");
632
633 TCanvas *c15 = new TCanvas("c15","Mothers Production Vertices",500,100,800,800);
634 production->SetFillColor(42);
635 production->SetXTitle("z (m)");
636 production->SetYTitle("R (m)");
637 production->Draw();
638
639 break;
640
641 case 3:
642
643 if (nrawclusters) {
644 TCanvas *c3=new TCanvas("c3","Clusters Statistics",400,10,600,700);
645 c3->Divide(2,2);
646
647 c3->cd(1);
648 Clcharge->SetFillColor(42);
649 Clcharge->SetXTitle("ADC units");
650 Clcharge->Draw();
651
652 c3->cd(2);
653 padnumber->SetFillColor(42);
654 padnumber->SetXTitle("(counts)");
655 padnumber->Draw();
656
657 c3->cd(3);
658 clusev->SetFillColor(42);
659 clusev->SetXTitle("(counts)");
660 clusev->Draw();
661 }
662
663 if (nev<1)
664 {
665 TCanvas *c11 = new TCanvas("c11","Cherenkov per Mip",400,10,600,700);
666 mother->SetFillColor(42);
667 mother->SetXTitle("counts");
668 mother->Draw();
669 }
670
671
672 TCanvas *c5 = new TCanvas("c5","Ring Statistics",50,10,600,350);
673 c5->Divide(2,1);
674
675 c5->cd(1);
676 ckovangle->SetFillColor(42);
677 ckovangle->SetXTitle("angle (radians)");
678 ckovangle->Draw();
679
680 c5->cd(2);
681 radius->SetFillColor(42);
682 radius->SetXTitle("radius (cm)");
683 radius->Draw();
684
685 TCanvas *c7 = new TCanvas("c7","Production Statistics",400,10,600,700);
686 c7->Divide(2,2);
687
688 c7->cd(1);
689 totalphotons->SetFillColor(42);
690 totalphotons->SetXTitle("Photons (counts)");
691 totalphotons->Draw();
692
693 c7->cd(2);
694 photev->SetFillColor(42);
695 photev->SetXTitle("(counts)");
696 photev->Draw();
697
698 c7->cd(3);
699 feedev->SetFillColor(42);
700 feedev->SetXTitle("(counts)");
701 feedev->Draw();
702
703 c7->cd(4);
704 padsev->SetFillColor(42);
705 padsev->SetXTitle("(counts)");
706 padsev->Draw();
707
708 break;
709
710 }
711
712 /*
713 TCanvas *c8 = new TCanvas("c25","Number of pads per event inside MIP region",400,10,600,700);
714 padsmip->SetFillColor(42);
715 padsmip->SetXTitle("(counts)");
716 padsmip->Draw();
717 */
718
719
720 /*TCanvas *c8 = new TCanvas("c8","Number of pads per event inside MIP region",400,10,600,700);
721 hckphi->SetFillColor(42);
722 hckphi->SetXTitle("phi");
723 hckphi->Draw();*/
724
725
726 // calculate the number of pads which give a signal
727
728
729 Int_t Np=0;
730 for (Int_t i=0; i< NpadX;i++) {
731 for (Int_t j=0;j< NpadY;j++) {
732 if (Pad[i][j]>=6){
733 Np+=1;
734 }
735 }
736 }
737 //printf("The total number of pads which give a signal: %d %d\n",Nh,Nh1);
738
739 printf("Total number of electrons:%d\n",electron);
740 printf("Total number of muons:%d\n",muon);
741 printf("Total number of pions:%d\n",pion);
742 printf("Total number of kaons:%d\n",kaon);
743 printf("Total number of protons:%d\n",proton);
744 printf("Total number of neutrons:%d\n",neutron);
745
746 printf("End of macro\n");
747}
748
749
750
751