]> git.uio.no Git - u/mrichter/AliRoot.git/blame - STARLIGHT/starlight/src/.svn/text-base/beambeamsystem.cpp.svn-base
STARLIGHT code and interface
[u/mrichter/AliRoot.git] / STARLIGHT / starlight / src / .svn / text-base / beambeamsystem.cpp.svn-base
CommitLineData
da32329d
AM
1///////////////////////////////////////////////////////////////////////////
2//
3// Copyright 2010
4//
5// This file is part of starlight.
6//
7// starlight is free software: you can redistribute it and/or modify
8// it under the terms of the GNU General Public License as published by
9// the Free Software Foundation, either version 3 of the License, or
10// (at your option) any later version.
11//
12// starlight is distributed in the hope that it will be useful,
13// but WITHOUT ANY WARRANTY; without even the implied warranty of
14// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15// GNU General Public License for more details.
16//
17// You should have received a copy of the GNU General Public License
18// along with starlight. If not, see <http://www.gnu.org/licenses/>.
19//
20///////////////////////////////////////////////////////////////////////////
21//
22// File and Version Information:
23// $Rev:: $: revision of last commit
24// $Author:: $: author of last commit
25// $Date:: $: date of last commit
26//
27// Description:
28//
29//
30//
31///////////////////////////////////////////////////////////////////////////
32
33
34#include <iostream>
35#include <fstream>
36#include <cmath>
37
38#include "inputParameters.h"
39#include "reportingUtils.h"
40#include "starlightconstants.h"
41#include "bessel.h"
42#include "beambeamsystem.h"
43
44
45using namespace std;
46using namespace starlightConstants;
47
48
49//______________________________________________________________________________
50beamBeamSystem::beamBeamSystem(const beam& beam1,
51 const beam& beam2)
52 : _beamLorentzGamma(inputParametersInstance.beamLorentzGamma()),
53 _beamBreakupMode (inputParametersInstance.beamBreakupMode()),
54 _beam1 (beam1),
55 _beam2 (beam2),
56 _breakupProbabilities(0),
57 _breakupImpactParameterStep(1.007),
58 _breakupCutOff(10e-6)
59{
60 init();
61}
62
63
64
65
66//______________________________________________________________________________
67beamBeamSystem::beamBeamSystem()
68 : _beamLorentzGamma(inputParametersInstance.beamLorentzGamma()),
69 _beamBreakupMode (inputParametersInstance.beamBreakupMode()),
70 _beam1 (inputParametersInstance.beam1Z(),
71 inputParametersInstance.beam1A(),
72 inputParametersInstance.deuteronSlopePar(),
73 inputParametersInstance.coherentProduction()),
74 _beam2 (inputParametersInstance.beam2Z(),
75 inputParametersInstance.beam2A(),
76 inputParametersInstance.deuteronSlopePar(),
77 inputParametersInstance.coherentProduction()),
78 _breakupProbabilities(0),
79 _breakupImpactParameterStep(1.007),
80 _breakupCutOff(10e-10)
81{
82 init();
83}
84
85
86
87//______________________________________________________________________________
88beamBeamSystem::~beamBeamSystem()
89{ }
90
91void beamBeamSystem::init()
92{
93 // Calculate beam gamma in CMS frame
94 double rap1 = acosh(inputParametersInstance.beam1LorentzGamma());
95 double rap2 = -acosh(inputParametersInstance.beam2LorentzGamma());
96
97 _cmsBoost = (rap1+rap2)/2.;
98
99 _beamLorentzGamma = cosh((rap1-rap2)/2);
100 _beam1.setBeamLorentzGamma(_beamLorentzGamma);
101 _beam2.setBeamLorentzGamma(_beamLorentzGamma);
102
103 generateBreakupProbabilities();
104}
105//______________________________________________________________________________
106double
107beamBeamSystem::probabilityOfBreakup(const double D) const
108{
109
110 double bMin = (_beam1.nuclearRadius()+_beam2.nuclearRadius())/2.;
111 double pOfB = 0.; // PofB = 1 means that there will be a UPC event and PofB = 0 means no UPC
112
113 // Do pp here
114 if ((_beam1.Z() == 1) && (_beam1.A() == 1) && (_beam2.Z() == 1) && (_beam2.A() == 1)) {
115 double ppslope=19.8;
116 double GammaProfile = exp(-D * D / (2. * hbarc * hbarc * ppslope));
117 pOfB = (1. - GammaProfile) * (1. - GammaProfile);
118 // if (D < 2. * _beam1.nuclearRadius())
119 // //Should be the total of RNuc1+Rnuc2,used only beam #1
120 // PofB = 0.0;
121 // else
122 // PofB = 1.0;
123 return pOfB;
124 }
125 else if ( ( (_beam1.A() == 1) && (_beam2.A() != 1) ) || ((_beam1.A() != 1) && (_beam2.A() == 1)) ) {
126 // This is pA
127 if( _beam1.A() == 1 ){
128 bMin = _beam2.nuclearRadius() + 0.7;
129 }else if( _beam2.A() == 1 ){
130 bMin = _beam1.nuclearRadius() + 0.7;
131 }else{
132 cout<<"Some logical problem here!"<<endl;
133 }
134 if( D > bMin )pOfB=1.0;
135 return pOfB;
136 }
137
138 //use the lookup table and return...
139 pOfB = 1.;
140 if (D > 0.0) {
141 //Now we must determine which step number in d corresponds to this D,
142 // and use appropiate Ptot(D_i)
143 //int i = (int)(log(D / Bmin) / log(1.01));
144 int i = (int)(log(D / bMin) / log(_breakupImpactParameterStep));
145 if (i <= 0)
146 pOfB = _breakupProbabilities[0];
147 else{
148 if (i >= int(_breakupProbabilities.size()-1))
149 pOfB = _breakupProbabilities[_breakupProbabilities.size()-1];
150 else {
151 // const double DLow = Bmin * pow((1.01), i);
152 const double DLow = bMin * pow((_breakupImpactParameterStep), i);
153 // const double DeltaD = 0.01 * DLow;
154 const double DeltaD = (_breakupImpactParameterStep-1) * DLow;
155 const double DeltaP = _breakupProbabilities[i + 1] - _breakupProbabilities[i];
156 pOfB = _breakupProbabilities[i] + DeltaP * (D - DLow) / DeltaD;
157 }
158 }
159 }
160
161 return pOfB;
162}
163
164void
165beamBeamSystem::generateBreakupProbabilities()
166{
167 // Step = 1.007;//.01; //We will multiplicateively increase Biter by 1%
168
169
170 double bMin = (_beam1.nuclearRadius()+_beam2.nuclearRadius())/2.;
171
172
173 if ((_beam1.Z() != 1) && (_beam1.A() != 1) && (_beam2.Z() != 1) && _beam2.A() != 1) {
174
175 if (_beamBreakupMode == 1)
176 printInfo << "Hard Sphere Break criteria. b > " << 2. * _beam1.nuclearRadius() << endl;
177 if (_beamBreakupMode == 2)
178 printInfo << "Requiring XnXn [Coulomb] breakup. " << endl;
179 if (_beamBreakupMode == 3)
180 printInfo << "Requiring 1n1n [Coulomb only] breakup. " << endl;
181 if (_beamBreakupMode == 4)
182 printInfo << "Requiring both nuclei to remain intact. " << endl;
183 if (_beamBreakupMode == 5)
184 printInfo << "Requiring no hadronic interactions. " << endl;
185 if (_beamBreakupMode == 6)
186 printInfo << "Requiring breakup of one or both nuclei. " << endl;
187 if (_beamBreakupMode == 7)
188 printInfo << "Requiring breakup of one nucleus (Xn,0n). " << endl;
189
190 //pp may cause segmentation fault in here and it does not use this...
191 double pOfB = 0;
192 double b = bMin;
193 double totRad = _beam1.nuclearRadius()+_beam2.nuclearRadius();
194
195 while(1)
196 {
197
198 if(_beamBreakupMode != 5)
199 {
200 if(b > (totRad*1.5))
201 {
202 if(pOfB<_breakupCutOff)
203 {
204// std::cout << "Break off b: " << b << std::endl;
205// std::cout << "Number of PofB bins: " << _breakupProbabilities.size() << std::endl;
206 break;
207 }
208 }
209 }
210 else
211 {
212 if((1-pOfB)<_breakupCutOff)
213 {
214 // std::cout << "Break off b: " << b << std::endl;
215// std::cout << "Number of PofB bins: " << _breakupProbabilities.size() << std::endl;
216 break;
217 }
218 }
219// std::cout << 1-pOfBreakup << std::endl;
220// _pHadronBreakup = 0;
221// _pPhotonBreakup = 0;
222
223// double pHadronBreakup = probabilityOfHadronBreakup(b);
224 probabilityOfHadronBreakup(b);
225 //moved gammatarg into photonbreakup
226// double pPhotonBreakup = probabilityOfPhotonBreakup(b, _beamBreakupMode);
227 probabilityOfPhotonBreakup(b, _beamBreakupMode);
228
229 //What was probability of photonbreakup depending upon mode selection,
230 // is now done in the photonbreakupfunction
231 if (_beamBreakupMode == 1) {
232 if (b >_beam1.nuclearRadius()+_beam2.nuclearRadius()) // symmetry
233 _pHadronBreakup = 0;
234 else
235 _pHadronBreakup = 999.;
236 }
237
238 b *= _breakupImpactParameterStep;
239 pOfB = exp(-1 * _pHadronBreakup) * _pPhotonBreakup;
240 _breakupProbabilities.push_back(pOfB);
241 }
242 }
243 else if (((_beam1.Z() == 1) && (_beam1.A() == 1)) || ((_beam2.Z() == 1) && (_beam2.A() == 1))) {
244
245 double pOfB = 0;
246 double b = bMin;
247 double totRad = _beam1.nuclearRadius()+_beam2.nuclearRadius();
248
249 while(1)
250 {
251 if(_beamBreakupMode != 5)
252 {
253 if(b > (totRad*1.5))
254 {
255 if(pOfB<_breakupCutOff)
256 {
257// std::cout << "Break off b: " << b << std::endl;
258 break;
259 }
260 }
261 }
262 else
263 {
264 if((1-pOfB)<_breakupCutOff)
265 {
266// std::cout << "Break off b: " << b << std::endl;
267 break;
268 }
269 }
270 _beam1.Z() > 1 ? pOfB = exp(-7.35*_beam1.thickness(b)) :
271 pOfB = exp(-7.35*_beam2.thickness(b));
272 _breakupProbabilities.push_back(pOfB);
273 b *= _breakupImpactParameterStep;
274 }
275 }
276
277
278}
279
280//______________________________________________________________________________
281double
282beamBeamSystem::probabilityOfHadronBreakup(const double impactparameter)
283{
284 // double pbreakup =0.;
285 //probability of hadron breakup,
286 //this is what is returned when the function is called
287 double gamma = _beamLorentzGamma;
288 //input for gamma_em
289 //this will need to be StarlightInputParameters::gamma or whatever
290 double b = impactparameter;
291 int ap = _beam1.A();
292 //Notice this is taking from nucleus 1.Still assuming symmetric system?
293
294 static int IFIRSTH = 0;
295 static double DELL=0., DELR=0., SIGNN=0., R1=0., A1=0., R2=0., RHO1=0.;
296 static double RHO2=0., NZ1=0., NZ2=0., NR1=0., NR2=0.,RR1=0., NY=0., NX=0.;
297 static double AN1=0., AN2=0.;
298 double delo=0.,RSQ=0.,Z1=0.,Y=0.,X=0.,XB=0.,RPU=0.,IRUP=0.,RTU=0.;
299 double IRUT=0.,T1=0.,T2=0.;
300 static double DEN1[20002], DEN2[20002];
301 if (IFIRSTH != 0) goto L100;
302 //Initialize
303 //Integration delta x, delta z
304 IFIRSTH = 1;
305 DELL = .05;
306 DELR = .01;
307
308 //use two sigma_NN's. 52mb at rhic 100gev/beam, 88mb at LHC 2.9tev/beam, gamma is in cm system
309 SIGNN = 5.2;
310 if ( gamma > 500. ) SIGNN = 8.8;
311 //use parameter from Constants
312 R1 = ( _beam1.nuclearRadius()); //remember _beam2? better way to do this generically
313 A1 = 0.535; //This is woodsaxonskindepth?
314 //write(6,12)r1,a1,signn Here is where we could probably set this up asymmetrically R2=_beam2.nuclearRadius() and RHO2=ap2=_beam2.A()
315 R2 = R1;
316 RHO1 = ap;
317 RHO2 = RHO1;
318 NZ1 = ((R1+5.)/DELR);
319 NR1 = NZ1;
320 NZ2 = ((R2+5.)/DELR);
321 NR2 = NZ2;
322 RR1 = -DELR;
323 NY = ((R1+5.)/DELL);
324 NX = 2*NY;
325 for ( int IR1 = 1; IR1 <= NR1; IR1++) {
326 DEN1[IR1] = 0.;
327 RR1 = RR1+DELR;
328 Z1 = -DELR/2;
329
330 for ( int IZ1 = 1; IZ1 <= NZ1; IZ1++) {
331 Z1 = Z1+DELR;
332 RSQ = RR1*RR1+Z1*Z1;
333 DEN1[IR1] = DEN1[IR1]+1./(1.+exp((sqrt(RSQ)-R1)/A1));
334 }//for(IZ)
335
336 DEN1[IR1] = DEN1[IR1]*2.*DELR;
337 DEN2[IR1] = DEN1[IR1];
338 }//for(IR)
339
340 AN1 = 0.;
341 RR1 = 0.;
342
343 for ( int IR1 =1; IR1 <= NR1; IR1++) {
344 RR1 = RR1+DELR;
345 AN1 = AN1+RR1*DEN1[IR1]*DELR*2.*3.141592654;
346 }//for(IR)
347
348 AN2 = AN1; //This will also probably need to be changed?
349
350 delo = .05;
351 //.1 to turn mb into fm^2
352 //Calculate breakup probability here
353 L100:
354 _pHadronBreakup = 0.;
355 if ( b > 25. ) return _pHadronBreakup;
356 Y = -.5*DELL;
357 for ( int IY = 1; IY <= NY; IY++) {
358 Y = Y+DELL;
359 X = -DELL*float(NY+1);
360
361 for ( int IX = 1; IX <=NX; IX++) {
362 X = X+DELL;
363 XB = b-X;
364 RPU = sqrt(X*X+Y*Y);
365 IRUP = (RPU/DELR)+1;
366 RTU = sqrt(XB*XB+Y*Y);
367 IRUT = (RTU/DELR)+1;
368 T1 = DEN2[(int)IRUT]*RHO2/AN2;
369 T2 = DEN1[(int)IRUP]*RHO1/AN1;
370 //Eq.6 BCW, Baltz, Chasman, White, Nucl. Inst. & Methods A 417, 1 (1998)
371 _pHadronBreakup=_pHadronBreakup+2.*T1*(1.-exp(-SIGNN*T2))*DELL*DELL;
372 }//for(IX)
373 }//for(IY)
374
375 return _pHadronBreakup;
376}
377
378
379//______________________________________________________________________________
380double
381beamBeamSystem::probabilityOfPhotonBreakup(const double impactparameter, const int mode)
382{
383 static double ee[10001], eee[162], se[10001];
384
385 //double gamma_em=108.4; //This will be an input value.
386 _pPhotonBreakup =0.; //Might default the probability with a different value?
387 double b = impactparameter;
388 int zp = _beam1.Z(); //What about _beam2? Generic approach?
389 int ap = _beam1.A();
390
391 //Was initialized at the start of the function originally, been moved inward.
392 double pxn=0.;
393 double p1n=0.;
394
395 //Used to be done prior to entering the function. Done properly for assymetric?
396 double gammatarg = 2.*_beamLorentzGamma*_beamLorentzGamma-1.;
397 double omaxx =0.;
398 //This was done prior entering the function as well
399 if (_beamLorentzGamma > 500.){
400 omaxx=1.E10;
401 }
402 else{
403 omaxx=1.E7;
404 }
405
406
407 double e1[23]= {0.,103.,106.,112.,119.,127.,132.,145.,171.,199.,230.,235.,
408 254.,280.,300.,320.,330.,333.,373.,390.,420.,426.,440.};
409 double s1[23]= {0.,12.0,11.5,12.0,12.0,12.0,15.0,17.0,28.0,33.0,
410 52.0,60.0,70.0,76.0,85.0,86.0,89.0,89.0,75.0,76.0,69.0,59.0,61.0};
411 double e2[12]={0.,2000.,3270.,4100.,4810.,6210.,6600.,
412 7790.,8400.,9510.,13600.,16400.};
413 double s2[12]={0.,.1266,.1080,.0805,.1017,.0942,.0844,.0841,.0755,.0827,
414 .0626,.0740};
415 double e3[29]={0.,26.,28.,30.,32.,34.,36.,38.,40.,44.,46.,48.,50.,52.,55.,
416 57.,62.,64.,66.,69.,72.,74.,76.,79.,82.,86.,92.,98.,103.};
417 double s3[29]={0.,30.,21.5,22.5,18.5,17.5,15.,14.5,19.,17.5,16.,14.,
418 20.,16.5,17.5,17.,15.5,18.,15.5,15.5,15.,13.5,18.,14.5,15.5,12.5,13.,
419 13.,12.};
420 static double sa[161]={0.,0.,.004,.008,.013,.017,.021,.025,.029,.034,.038,.042,.046,
421 .051,.055,.059,.063,.067,.072,.076,.08,.085,.09,.095,.1,.108,.116,
422 .124,.132,.14,.152,.164,.176,.188,.2,.22,.24,.26,.28,.3,.32,.34,
423 .36,.38,.4,.417,.433,.450,.467,.483,.5,.51,.516,.52,.523,.5245,
424 .525,.5242,
425 .5214,.518,.512,.505,.495,.482,.469,.456,.442,.428,.414,.4,.386,
426 .370,.355,.34,.325,.310,.295,.280,.265,.25,.236,.222,.208,.194,
427 .180,.166,
428 .152,.138,.124,.11,.101,.095,.09,.085,.08,.076,.072,.069,.066,
429 .063,.06,.0575,.055,.0525,.05,.04875,.0475,.04625,.045,.04375,
430 .0425,.04125,.04,.03875,.0375,.03625,.035,.03375,.0325,.03125,.03,
431 .02925,.0285,.02775,.027,.02625,.0255,.02475,.024,.02325,.0225,
432 .02175,.021,.02025,.0195,.01875,.018,.01725,.0165,.01575,.015,
433 .01425,.0135,.01275,.012,.01125,.0105,.00975,.009,.00825,.0075,
434 .00675,.006,.00525,.0045,.00375,.003,.00225,.0015,.00075,0.};
435
436
437
438 double sen[161]={0.,0.,.012,.025,.038,.028,.028,.038,.035,.029,.039,.035,
439 .038,.032,.038,.041,.041,.049,.055,.061,.072,.076,.070,.067,
440 .080,.103,.125,.138,.118,.103,.129,.155,.170,.180,.190,.200,
441 .215,.250,.302,.310,.301,.315,.330,.355,.380,.400,.410,.420,
442 .438,.456,.474,.492,.510,.533,.556,.578,.6,.62,.63,.638,
443 .640,.640,.637,.631,.625,.618,.610,.600,.580,.555,.530,.505,
444 .480,.455,.435,.410,.385,.360,.340,.320,.300,.285,.270,.255,
445 .240,.225,.210,.180,.165,.150,.140,.132,.124,.116,.108,.100,
446 .092,.084,.077,.071,.066,.060,.055,.051,.048,.046,.044,.042,
447 .040,.038,.036,.034,.032,.030,.028,.027,.026,.025,.025,.025,
448 .024,.024,.024,.024,.024,.023,.023,.023,.023,.023,.022,.022,
449 .022,.022,.022,.021,.021,.021,.020,.020,
450 .020,.019,.018,.017,.016,.015,.014,.013,.012,.011,.010,.009,
451 .008,.007,.006,.005,.004,.003,.002,.001,0.};
452
453 // gammay,p gamma,n of Armstrong begin at 265 incr 25
454
455
456 double sigt[160]={0.,.4245,.4870,.5269,.4778,.4066,.3341,.2444,.2245,.2005,
457 .1783,.1769,.1869,.1940,.2117,.2226,.2327,.2395,.2646,.2790,.2756,
458 .2607,.2447,.2211,.2063,.2137,.2088,.2017,.2050,.2015,.2121,.2175,
459 .2152,.1917,.1911,.1747,.1650,.1587,.1622,.1496,.1486,.1438,.1556,
460 .1468,.1536,.1544,.1536,.1468,.1535,.1442,.1515,.1559,.1541,.1461,
461 .1388,.1565,.1502,.1503,.1454,.1389,.1445,.1425,.1415,.1424,.1432,
462 .1486,.1539,.1354,.1480,.1443,.1435,.1491,.1435,.1380,.1317,.1445,
463 .1375,.1449,.1359,.1383,.1390,.1361,.1286,.1359,.1395,.1327,.1387,
464 .1431,.1403,.1404,.1389,.1410,.1304,.1363,.1241,.1284,.1299,.1325,
465 .1343,.1387,.1328,.1444,.1334,.1362,.1302,.1338,.1339,.1304,.1314,
466 .1287,.1404,.1383,.1292,.1436,.1280,.1326,.1321,.1268,.1278,.1243,
467 .1239,.1271,.1213,.1338,.1287,.1343,.1231,.1317,.1214,.1370,.1232,
468 .1301,.1348,.1294,.1278,.1227,.1218,.1198,.1193,.1342,.1323,.1248,
469 .1220,.1139,.1271,.1224,.1347,.1249,.1163,.1362,.1236,.1462,.1356,
470 .1198,.1419,.1324,.1288,.1336,.1335,.1266};
471
472
473 double sigtn[160]={0.,.3125,.3930,.4401,.4582,.3774,.3329,.2996,.2715,.2165,
474 .2297,.1861,.1551,.2020,.2073,.2064,.2193,.2275,.2384,.2150,.2494,
475 .2133,.2023,.1969,.1797,.1693,.1642,.1463,.1280,.1555,.1489,.1435,
476 .1398,.1573,.1479,.1493,.1417,.1403,.1258,.1354,.1394,.1420,.1364,
477 .1325,.1455,.1326,.1397,.1286,.1260,.1314,.1378,.1353,.1264,.1471,
478 .1650,.1311,.1261,.1348,.1277,.1518,.1297,.1452,.1453,.1598,.1323,
479 .1234,.1212,.1333,.1434,.1380,.1330,.12,.12,.12,.12,.12,.12,.12,.12,
480 .12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,
481 .12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,
482 .12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,
483 .12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,
484 .12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12};
485 //89*.12};
486
487
488
489 static int IFIRSTP=0;
490
491
492 // Initialization needed?
493 //double hbar=197.3;
494 //double pi=3.141592654;
495
496 // added
497 double si1=0, g1 =0, o1=0;
498 int ne = 0, ij =0;
499 double delo=0, omax =0, gk1m=0;
500 static double scon=0., zcon=0.,o0=0.;
501
502
503 double x=0,y=0,eps=0,eta=0,em=0,exx=0,s=0,ictr=0,pom=0,vec=0,gk1=0;
504
505 // maximum energy for GDR dissocation (in target frame, in MeV)
506
507 double omax1n=24.01;
508
509 if (IFIRSTP != 0) goto L100;
510
511 IFIRSTP=1;
512
513
514 //This whole thing is dependenant on gold or lead....Might need to expand
515 if (zp == 79)
516 {
517
518
519 ap=197;
520 si1=540.;
521 g1=4.75;
522
523 // peak and minimum energies for GDR excitation (in MeV)
524 o1=13.70;
525 o0=8.1;
526 }
527 else
528 {
529 zp=82; //assumed to be lead
530 ap=208;
531 si1=640.;
532 g1=4.05;
533 o1=13.42;
534 o0=7.4;
535 for(int j=1;j<=160;j++)
536 {
537
538 sa[j]=sen[j];
539 }
540 }
541 //Part II of initialization
542 delo = .05;
543 //.1 to turn mb into fm^2
544 scon = .1*g1*g1*si1;
545 zcon = zp/(gammatarg*( pi)*(
546 hbarcmev))*zp/(gammatarg*( pi)*
547 ( hbarcmev))/137.04;
548
549 //single neutron from GDR, Veyssiere et al. Nucl. Phys. A159, 561 (1970)
550 for ( int i = 1; i <= 160; i++) {
551 eee[i] = o0+.1*(i-1);
552 sa[i] = 100.*sa[i];
553 }
554 //See Baltz, Rhoades-Brown, and Weneser, Phys. Rev. E 54, 4233 (1996)
555 //for details of the following photo cross-sections
556 eee[161]=24.1;
557 ne=int((25.-o0)/delo)+1;
558 //GDR any number of neutrons, Veyssiere et al., Nucl. Phys. A159, 561 (1970)
559 for ( int i = 1; i <= ne; i++ ) {
560 ee[i] = o0+(i-1)*delo;
561 //cout<<" ee 1 "<<ee[i]<<" "<<i<<endl;
562
563 se[i] = scon*ee[i]*ee[i]/(((o1*o1-ee[i]*ee[i])*(o1*o1-ee[i]*ee[i]))
564 +ee[i]*ee[i]*g1*g1);
565 }
566 ij = ne; //Risky?
567 //25-103 MeV, Lepretre, et al., Nucl. Phys. A367, 237 (1981)
568 for ( int j = 1; j <= 27; j++ ) {
569 ij = ij+1;
570 ee[ij] = e3[j];
571 //cout<<" ee 2 "<<ee[ij]<<" "<<ij<<endl;
572
573 se[ij] = .1*ap*s3[j]/208.;
574 }
575 //103-440 MeV, Carlos, et al., Nucl. Phys. A431, 573 (1984)
576 for ( int j = 1; j <= 22; j++ ) {
577 ij = ij+1;
578 ee[ij] = e1[j];
579 //cout<<" ee 3 "<<ee[ij]<<" "<<ij<<endl;
580 se[ij] = .1*ap*s1[j]/208.;
581 }
582 //440 MeV-2 GeV Armstrong et al.
583 for ( int j = 9; j <= 70; j++) {
584 ij = ij+1;
585 ee[ij] = ee[ij-1]+25.;
586 //cout<<" ee 4 "<<ee[ij]<<" "<<ij<<endl;
587 se[ij] = .1*(zp*sigt[j]+(ap-zp)*sigtn[j]);
588 }
589 //2-16.4 GeV Michalowski; Caldwell
590 for ( int j = 1; j <= 11; j++) {
591 ij = ij+1;
592 ee[ij] = e2[j];
593 //cout<<" ee 5 "<<ee[ij]<<" "<<ij<<endl;
594 se[ij] = .1*ap*s2[j];
595 }
596 //Regge paramteres
597 x = .0677;
598 y = .129;
599 eps = .0808;
600 eta = .4525;
601 em = .94;
602 exx = pow(10,.05);
603
604 //Regge model for high energy
605 s = .002*em*ee[ij];
606 //make sure we reach LHC energies
607 ictr = 100;
608 if ( gammatarg > (2.*150.*150.)) ictr = 150;
609 for ( int j = 1; j <= ictr; j++ ) {
610 ij = ij+1;
611 s = s*exx;
612 ee[ij] = 1000.*.5*(s-em*em)/em;
613 //cout<<" ee 6 "<<ee[ij]<<" "<<ij<<endl;
614 pom = x*pow(s,eps);
615 vec = y*pow(s,(-eta));
616 se[ij] = .1*.65*ap*(pom+vec);
617 }
618 ee[ij+1] = 99999999999.;
619 //done with initaliation
620 //write(6,99)o0;
621 //clear counters for 1N, XN
622 L100:
623
624 p1n = 0.;
625 pxn = 0.;
626 //start XN calculation
627 //what's the b-dependent highest energy of interest?
628
629 omax = min(omaxx,4.*gammatarg*( hbarcmev)/b);
630 if ( omax < o0 ) return _pPhotonBreakup;
631 gk1m = bessel::dbesk1(ee[1]*b/(( hbarcmev)*gammatarg));
632 int k = 2;
633 L212:
634 if (ee[k] < omax ) {
635 gk1 = bessel::dbesk1(ee[k]*b/(( hbarcmev)*gammatarg));
636 //Eq. 3 of BCW--NIM in Physics Research A 417 (1998) pp1-8:
637 pxn=pxn+zcon*(ee[k]-ee[k-1])*.5*(se[k-1]*ee[k-1]*gk1m*gk1m+se[k]*ee[k]*gk1*gk1);
638 k = k + 1;
639 gk1m = gk1;
640 goto L212;
641 }
642 //one neutron dissociation
643 omax = min(omax1n,4.*gammatarg*( hbarcmev)/b);
644 gk1m = bessel::dbesk1(eee[1]*b/(( hbarcmev)*gammatarg));
645 k = 2;
646 L102:
647 if (eee[k] < omax ) {
648 gk1 = bessel::dbesk1(eee[k]*b/(( hbarcmev)*gammatarg));
649 //Like Eq3 but with only the one neutron out GDR photo cross section input
650 p1n = p1n+zcon*(eee[k]-eee[k-1])*.5*(sa[k-1]*eee[k-1]*gk1m*gk1m+sa[k]*eee[k]*gk1*gk1);
651 k = k+1;
652 gk1m = gk1;
653 goto L102;
654 }
655
656
657 //This used to be done externally, now it is done internally.
658 if (( mode) == 1) _pPhotonBreakup = 1.;
659 if (( mode) == 2) _pPhotonBreakup = (1-exp(-1*pxn))*(1-exp(-1*pxn));
660 if (( mode) == 3) _pPhotonBreakup = (p1n*exp(-1*pxn))*(p1n*exp(-1*pxn));
661 if (( mode) == 4) _pPhotonBreakup = exp(-2*pxn);
662 if (( mode) == 5) _pPhotonBreakup = 1.;
663 if (( mode) == 6) _pPhotonBreakup = (1. - exp(-2.*pxn));
664 if (( mode) == 7) _pPhotonBreakup = 2.*exp(-pxn)*(1.-exp(-pxn));
665
666 //cout<<pxn<<" "<<zcon<<" "<<ee[k]<<" "<<se[k-1]<<" "<<gk1m<<" "<<gk1<<" "<<k<<" "<<ee[k+1]<< " "<<b<< endl;
667
668 return _pPhotonBreakup;
669}