]> git.uio.no Git - u/mrichter/AliRoot.git/blame - STEER/AliESDV0MI.cxx
Initialization of data members. Additional data members for V0 refit (M.Ivanov)
[u/mrichter/AliRoot.git] / STEER / AliESDV0MI.cxx
CommitLineData
51ad6848 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18//-------------------------------------------------------------------------
19// Origin: Marian Ivanov marian.ivanov@cern.ch
20//-------------------------------------------------------------------------
21
22#include <Riostream.h>
23#include <TMath.h>
0703142d 24
51ad6848 25#include "AliESDV0MI.h"
26#include "AliHelix.h"
27
28
29ClassImp(AliESDV0MI)
30
90e48c0c 31AliESDV0MI::AliESDV0MI() :
32 AliESDv0(),
33 fParamP(),
34 fParamM(),
35 fID(0),
36 fDist1(-1),
37 fDist2(-1),
38 fRr(-1),
39 fStatus(0),
40 fRow0(-1),
41 fDistNorm(0),
42 fDistSigma(0),
43 fChi2Before(0),
44 fNBefore(0),
45 fChi2After(0),
46 fNAfter(0),
47 fPointAngleFi(0),
48 fPointAngleTh(0),
49 fPointAngle(0)
50{
51ad6848 51 //
52 //Dafault constructor
53 //
81e97e0d 54 for (Int_t i=0;i<4;i++){fCausality[i]=0;}
6605de26 55 for (Int_t i=0;i<6;i++){fClusters[0][i]=0; fClusters[1][i]=0;}
81e97e0d 56}
57
58
59void AliESDV0MI::SetCausality(Float_t pb0, Float_t pb1, Float_t pa0, Float_t pa1)
60{
61 //
62 // set probabilities
63 //
64 fCausality[0] = pb0; // probability - track 0 exist before vertex
65 fCausality[1] = pb1; // probability - track 1 exist before vertex
66 fCausality[2] = pa0; // probability - track 0 exist close after vertex
67 fCausality[3] = pa1; // probability - track 1 exist close after vertex
51ad6848 68}
6605de26 69void AliESDV0MI::SetClusters(Int_t *clp, Int_t *clm)
70{
71 //
72 // Set its clusters indexes
73 //
74 for (Int_t i=0;i<6;i++) fClusters[0][i] = clp[i];
75 for (Int_t i=0;i<6;i++) fClusters[1][i] = clm[i];
76}
77
51ad6848 78
79void AliESDV0MI::SetP(const AliExternalTrackParam & paramp) {
80 //
81e97e0d 81 // set track +
51ad6848 82 //
83 fParamP = paramp;
84}
85
86void AliESDV0MI::SetM(const AliExternalTrackParam & paramm){
87 //
81e97e0d 88 //set track -
51ad6848 89 //
90 fParamM = paramm;
51ad6848 91}
92
81e97e0d 93void AliESDV0MI::SetRp(const Double_t *rp){
94 //
95 // set pid +
96 //
97 for (Int_t i=0;i<5;i++) fRP[i]=rp[i];
98}
99
100void AliESDV0MI::SetRm(const Double_t *rm){
101 //
102 // set pid -
103 //
104 for (Int_t i=0;i<5;i++) fRM[i]=rm[i];
105}
106
107
51ad6848 108void AliESDV0MI::UpdatePID(Double_t pidp[5], Double_t pidm[5])
109{
110 //
111 // set PID hypothesy
112 //
113 // norm PID to 1
114 Float_t sump =0;
115 Float_t summ =0;
116 for (Int_t i=0;i<5;i++){
117 fRP[i]=pidp[i];
118 sump+=fRP[i];
119 fRM[i]=pidm[i];
120 summ+=fRM[i];
121 }
122 for (Int_t i=0;i<5;i++){
123 fRP[i]/=sump;
124 fRM[i]/=summ;
125 }
126}
127
128Float_t AliESDV0MI::GetProb(UInt_t p1, UInt_t p2){
129 //
130 //
131 //
132 //
133 return TMath::Max(fRP[p1]+fRM[p2], fRP[p2]+fRM[p1]);
134}
135
136Float_t AliESDV0MI::GetEffMass(UInt_t p1, UInt_t p2){
137 //
138 // calculate effective mass
139 //
0703142d 140 const Float_t kpmass[5] = {5.10000000000000037e-04,1.05660000000000004e-01,1.39570000000000000e-01,
51ad6848 141 4.93599999999999983e-01, 9.38270000000000048e-01};
142 if (p1>4) return -1;
143 if (p2>4) return -1;
0703142d 144 Float_t mass1 = kpmass[p1];
145 Float_t mass2 = kpmass[p2];
51ad6848 146 Double_t *m1 = fPP;
147 Double_t *m2 = fPM;
148 //
6605de26 149 //if (fRP[p1]+fRM[p2]<fRP[p2]+fRM[p1]){
150 // m1 = fPM;
151 // m2 = fPP;
152 //}
51ad6848 153 //
154 Float_t e1 = TMath::Sqrt(mass1*mass1+
155 m1[0]*m1[0]+
156 m1[1]*m1[1]+
157 m1[2]*m1[2]);
158 Float_t e2 = TMath::Sqrt(mass2*mass2+
159 m2[0]*m2[0]+
160 m2[1]*m2[1]+
161 m2[2]*m2[2]);
162 Float_t mass =
163 (m2[0]+m1[0])*(m2[0]+m1[0])+
164 (m2[1]+m1[1])*(m2[1]+m1[1])+
165 (m2[2]+m1[2])*(m2[2]+m1[2]);
166
167 mass = TMath::Sqrt((e1+e2)*(e1+e2)-mass);
168 return mass;
169}
170
171void AliESDV0MI::Update(Float_t vertex[3])
172{
173 //
174 // updates Kink Info
175 //
81e97e0d 176 // Float_t distance1,distance2;
177 Float_t distance2;
51ad6848 178 //
179 AliHelix phelix(fParamP);
180 AliHelix mhelix(fParamM);
181 //
182 //find intersection linear
183 //
184 Double_t phase[2][2],radius[2];
185 Int_t points = phelix.GetRPHIintersections(mhelix, phase, radius,200);
186 Double_t delta1=10000,delta2=10000;
81e97e0d 187 /*
b07a036b 188 if (points<=0) return;
51ad6848 189 if (points>0){
190 phelix.LinearDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1);
191 phelix.LinearDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1);
192 phelix.LinearDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1);
193 }
194 if (points==2){
195 phelix.LinearDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2);
196 phelix.LinearDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2);
197 phelix.LinearDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2);
198 }
199 distance1 = TMath::Min(delta1,delta2);
81e97e0d 200 */
51ad6848 201 //
202 //find intersection parabolic
203 //
204 points = phelix.GetRPHIintersections(mhelix, phase, radius);
205 delta1=10000,delta2=10000;
206 Double_t d1=1000.,d2=10000.;
b07a036b 207 if (points<=0) return;
51ad6848 208 if (points>0){
209 phelix.ParabolicDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1);
210 phelix.ParabolicDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1);
211 Double_t xd[3],xm[3];
212 phelix.Evaluate(phase[0][0],xd);
213 mhelix.Evaluate(phase[0][1],xm);
214 d1 = (xd[0]-xm[0])*(xd[0]-xm[0])+(xd[1]-xm[1])*(xd[1]-xm[1])+(xd[2]-xm[2])*(xd[2]-xm[2]);
215 }
216 if (points==2){
217 phelix.ParabolicDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2);
218 phelix.ParabolicDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2);
219 Double_t xd[3],xm[3];
220 phelix.Evaluate(phase[1][0],xd);
221 mhelix.Evaluate(phase[1][1],xm);
222 d2 = (xd[0]-xm[0])*(xd[0]-xm[0])+(xd[1]-xm[1])*(xd[1]-xm[1])+(xd[2]-xm[2])*(xd[2]-xm[2]);
223 }
224 //
225 distance2 = TMath::Min(delta1,delta2);
226 if (delta1<delta2){
227 //get V0 info
228 Double_t xd[3],xm[3];
229 phelix.Evaluate(phase[0][0],xd);
230 mhelix.Evaluate(phase[0][1], xm);
231 fXr[0] = 0.5*(xd[0]+xm[0]);
232 fXr[1] = 0.5*(xd[1]+xm[1]);
233 fXr[2] = 0.5*(xd[2]+xm[2]);
234 //
235 phelix.GetMomentum(phase[0][0],fPP);
236 mhelix.GetMomentum(phase[0][1],fPM);
237 phelix.GetAngle(phase[0][0],mhelix,phase[0][1],fAngle);
238 fRr = TMath::Sqrt(fXr[0]*fXr[0]+fXr[1]*fXr[1]);
239 }
240 else{
241 Double_t xd[3],xm[3];
242 phelix.Evaluate(phase[1][0],xd);
243 mhelix.Evaluate(phase[1][1], xm);
244 fXr[0] = 0.5*(xd[0]+xm[0]);
245 fXr[1] = 0.5*(xd[1]+xm[1]);
246 fXr[2] = 0.5*(xd[2]+xm[2]);
247 //
248 phelix.GetMomentum(phase[1][0], fPP);
249 mhelix.GetMomentum(phase[1][1], fPM);
250 phelix.GetAngle(phase[1][0],mhelix,phase[1][1],fAngle);
251 fRr = TMath::Sqrt(fXr[0]*fXr[0]+fXr[1]*fXr[1]);
252 }
253 fDist1 = TMath::Sqrt(TMath::Min(d1,d2));
254 fDist2 = TMath::Sqrt(distance2);
255 //
256 //
81e97e0d 257 Double_t v[3] = {fXr[0]-vertex[0],fXr[1]-vertex[1],fXr[2]-vertex[2]};
258 Double_t p[3] = {fPP[0]+fPM[0], fPP[1]+fPM[1],fPP[2]+fPM[2]};
259 Double_t vnorm2 = v[0]*v[0]+v[1]*v[1];
260 Double_t vnorm3 = TMath::Sqrt(v[2]*v[2]+vnorm2);
51ad6848 261 vnorm2 = TMath::Sqrt(vnorm2);
81e97e0d 262 Double_t pnorm2 = p[0]*p[0]+p[1]*p[1];
263 Double_t pnorm3 = TMath::Sqrt(p[2]*p[2]+pnorm2);
51ad6848 264 pnorm2 = TMath::Sqrt(pnorm2);
265 fPointAngleFi = (v[0]*p[0]+v[1]*p[1])/(vnorm2*pnorm2);
266 fPointAngleTh = (v[2]*p[2]+vnorm2*pnorm2)/(vnorm3*pnorm3);
267 fPointAngle = (v[0]*p[0]+v[1]*p[1]+v[2]*p[2])/(vnorm3*pnorm3);
268 //
269}
270