]> git.uio.no Git - u/mrichter/AliRoot.git/blame - STEER/AliExternalTrackParam.cxx
A numerical protection for the new energy-loss correction formula
[u/mrichter/AliRoot.git] / STEER / AliExternalTrackParam.cxx
CommitLineData
51ad6848 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18///////////////////////////////////////////////////////////////////////////////
19// //
49d13e89 20// Implementation of the external track parameterisation class. //
51ad6848 21// //
49d13e89 22// This parameterisation is used to exchange tracks between the detectors. //
23// A set of functions returning the position and the momentum of tracks //
24// in the global coordinate system as well as the track impact parameters //
25// are implemented.
26// Origin: I.Belikov, CERN, Jouri.Belikov@cern.ch //
51ad6848 27///////////////////////////////////////////////////////////////////////////////
86be8934 28#include <cassert>
29
30#include <TVectorD.h>
4b189f98 31#include <TMatrixDSym.h>
d46683db 32#include <TPolyMarker3D.h>
33#include <TVector3.h>
cfdb62d4 34#include <TMatrixD.h>
d46683db 35
51ad6848 36#include "AliExternalTrackParam.h"
58e536c5 37#include "AliVVertex.h"
6c94f330 38#include "AliLog.h"
51ad6848 39
40ClassImp(AliExternalTrackParam)
41
ed5f2849 42Double32_t AliExternalTrackParam::fgMostProbablePt=kMostProbablePt;
43
51ad6848 44//_____________________________________________________________________________
90e48c0c 45AliExternalTrackParam::AliExternalTrackParam() :
4f6e22bd 46 AliVTrack(),
90e48c0c 47 fX(0),
c9ec41e8 48 fAlpha(0)
51ad6848 49{
90e48c0c 50 //
51 // default constructor
52 //
c9ec41e8 53 for (Int_t i = 0; i < 5; i++) fP[i] = 0;
54 for (Int_t i = 0; i < 15; i++) fC[i] = 0;
51ad6848 55}
56
6c94f330 57//_____________________________________________________________________________
58AliExternalTrackParam::AliExternalTrackParam(const AliExternalTrackParam &track):
4f6e22bd 59 AliVTrack(track),
6c94f330 60 fX(track.fX),
61 fAlpha(track.fAlpha)
62{
63 //
64 // copy constructor
65 //
66 for (Int_t i = 0; i < 5; i++) fP[i] = track.fP[i];
67 for (Int_t i = 0; i < 15; i++) fC[i] = track.fC[i];
86be8934 68 CheckCovariance();
6c94f330 69}
70
def9660e 71//_____________________________________________________________________________
72AliExternalTrackParam& AliExternalTrackParam::operator=(const AliExternalTrackParam &trkPar)
73{
74 //
75 // assignment operator
76 //
77
78 if (this!=&trkPar) {
4f6e22bd 79 AliVTrack::operator=(trkPar);
def9660e 80 fX = trkPar.fX;
81 fAlpha = trkPar.fAlpha;
82
83 for (Int_t i = 0; i < 5; i++) fP[i] = trkPar.fP[i];
84 for (Int_t i = 0; i < 15; i++) fC[i] = trkPar.fC[i];
86be8934 85 CheckCovariance();
def9660e 86 }
87
88 return *this;
89}
90
51ad6848 91//_____________________________________________________________________________
92AliExternalTrackParam::AliExternalTrackParam(Double_t x, Double_t alpha,
93 const Double_t param[5],
90e48c0c 94 const Double_t covar[15]) :
4f6e22bd 95 AliVTrack(),
90e48c0c 96 fX(x),
c9ec41e8 97 fAlpha(alpha)
51ad6848 98{
90e48c0c 99 //
100 // create external track parameters from given arguments
101 //
c9ec41e8 102 for (Int_t i = 0; i < 5; i++) fP[i] = param[i];
103 for (Int_t i = 0; i < 15; i++) fC[i] = covar[i];
86be8934 104 CheckCovariance();
51ad6848 105}
106
4f6e22bd 107//_____________________________________________________________________________
108AliExternalTrackParam::AliExternalTrackParam(const AliVTrack *vTrack) :
109 AliVTrack(),
110 fX(0.),
111 fAlpha(0.)
112{
113 //
610e3088 114 // Constructor from virtual track,
115 // This is not a copy contructor !
4f6e22bd 116 //
610e3088 117
118 if (vTrack->InheritsFrom("AliExternalTrackParam")) {
119 AliError("This is not a copy constructor. Use AliExternalTrackParam(const AliExternalTrackParam &) !");
120 AliWarning("Calling the default constructor...");
121 AliExternalTrackParam();
122 return;
123 }
124
892be05f 125 Double_t xyz[3],pxpypz[3],cv[21];
126 vTrack->GetXYZ(xyz);
127 pxpypz[0]=vTrack->Px();
128 pxpypz[1]=vTrack->Py();
129 pxpypz[2]=vTrack->Pz();
4f6e22bd 130 vTrack->GetCovarianceXYZPxPyPz(cv);
131 Short_t sign = (Short_t)vTrack->Charge();
132
133 Set(xyz,pxpypz,cv,sign);
134}
135
90e48c0c 136//_____________________________________________________________________________
da4e3deb 137AliExternalTrackParam::AliExternalTrackParam(Double_t xyz[3],Double_t pxpypz[3],
138 Double_t cv[21],Short_t sign) :
4f6e22bd 139 AliVTrack(),
da4e3deb 140 fX(0.),
141 fAlpha(0.)
4f6e22bd 142{
143 //
144 // constructor from the global parameters
145 //
146
147 Set(xyz,pxpypz,cv,sign);
148}
149
150//_____________________________________________________________________________
151void AliExternalTrackParam::Set(Double_t xyz[3],Double_t pxpypz[3],
152 Double_t cv[21],Short_t sign)
da4e3deb 153{
154 //
155 // create external track parameters from the global parameters
156 // x,y,z,px,py,pz and their 6x6 covariance matrix
157 // A.Dainese 10.10.08
158
aff56ff7 159 // Calculate alpha: the rotation angle of the corresponding local system.
160 //
161 // For global radial position inside the beam pipe, alpha is the
162 // azimuthal angle of the momentum projected on (x,y).
163 //
c99948ce 164 // For global radial position outside the ITS, alpha is the
aff56ff7 165 // azimuthal angle of the centre of the TPC sector in which the point
166 // xyz lies
167 //
168 Double_t radPos2 = xyz[0]*xyz[0]+xyz[1]*xyz[1];
c99948ce 169 Double_t radMax = 45.; // approximately ITS outer radius
170 if (radPos2 < radMax*radMax) { // inside the ITS
171
aff56ff7 172 fAlpha = TMath::ATan2(pxpypz[1],pxpypz[0]);
c99948ce 173 } else { // outside the ITS
aff56ff7 174 Float_t phiPos = TMath::Pi()+TMath::ATan2(-xyz[1], -xyz[0]);
175 fAlpha =
176 TMath::DegToRad()*(20*((((Int_t)(phiPos*TMath::RadToDeg()))/20))+10);
177 }
da4e3deb 178
179 // Get the vertex of origin and the momentum
180 TVector3 ver(xyz[0],xyz[1],xyz[2]);
181 TVector3 mom(pxpypz[0],pxpypz[1],pxpypz[2]);
182
183 // Rotate to the local coordinate system
184 ver.RotateZ(-fAlpha);
185 mom.RotateZ(-fAlpha);
186
187 // x of the reference plane
188 fX = ver.X();
189
190 Double_t charge = (Double_t)sign;
191
192 fP[0] = ver.Y();
193 fP[1] = ver.Z();
194 fP[2] = TMath::Sin(mom.Phi());
195 fP[3] = mom.Pz()/mom.Pt();
196 fP[4] = TMath::Sign(1/mom.Pt(),charge);
197
198 // Covariance matrix (formulas to be simplified)
199
200 Double_t pt=1./TMath::Abs(fP[4]);
201 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
202 Double_t r=TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
203
204 Double_t m00=-sn;// m10=cs;
205 Double_t m23=-pt*(sn + fP[2]*cs/r), m43=-pt*pt*(r*cs - fP[2]*sn);
206 Double_t m24= pt*(cs - fP[2]*sn/r), m44=-pt*pt*(r*sn + fP[2]*cs);
207 Double_t m35=pt, m45=-pt*pt*fP[3];
208
209 m43*=GetSign();
210 m44*=GetSign();
211 m45*=GetSign();
212
213 Double_t cv34 = TMath::Sqrt(cv[3 ]*cv[3 ]+cv[4 ]*cv[4 ]);
214 Double_t a1=cv[13]-cv[9]*(m23*m44+m43*m24)/m23/m43;
215 Double_t a2=m23*m24-m23*(m23*m44+m43*m24)/m43;
216 Double_t a3=m43*m44-m43*(m23*m44+m43*m24)/m23;
217 Double_t a4=cv[14]-2.*cv[9]*m24*m44/m23/m43;
218 Double_t a5=m24*m24-2.*m24*m44*m23/m43;
219 Double_t a6=m44*m44-2.*m24*m44*m43/m23;
220
221 fC[0 ] = cv[0 ]+cv[2 ];
222 fC[1 ] = TMath::Sign(cv34,cv[3 ]/m00);
223 fC[2 ] = cv[5 ];
224 fC[3 ] = (cv[10]/m44-cv[6]/m43)/(m24/m44-m23/m43)/m00;
225 fC[10] = (cv[6]/m00-fC[3 ]*m23)/m43;
226 fC[6 ] = (cv[15]/m00-fC[10]*m45)/m35;
227 fC[4 ] = (cv[12]-cv[8]*m44/m43)/(m24-m23*m44/m43);
228 fC[11] = (cv[8]-fC[4]*m23)/m43;
229 fC[7 ] = cv[17]/m35-fC[11]*m45/m35;
230 fC[5 ] = TMath::Abs((a4-a6*a1/a3)/(a5-a6*a2/a3));
231 fC[14] = TMath::Abs(a1/a3-a2*fC[5]/a3);
232 fC[12] = (cv[9]-fC[5]*m23*m23-fC[14]*m43*m43)/m23/m43;
233 Double_t b1=cv[18]-fC[12]*m23*m45-fC[14]*m43*m45;
234 Double_t b2=m23*m35;
235 Double_t b3=m43*m35;
236 Double_t b4=cv[19]-fC[12]*m24*m45-fC[14]*m44*m45;
237 Double_t b5=m24*m35;
238 Double_t b6=m44*m35;
239 fC[8 ] = (b4-b6*b1/b3)/(b5-b6*b2/b3);
240 fC[13] = b1/b3-b2*fC[8]/b3;
241 fC[9 ] = TMath::Abs((cv[20]-fC[14]*(m45*m45)-fC[13]*2.*m35*m45)/(m35*m35));
4f6e22bd 242
86be8934 243 CheckCovariance();
244
4f6e22bd 245 return;
da4e3deb 246}
247
51ad6848 248//_____________________________________________________________________________
c9ec41e8 249void AliExternalTrackParam::Reset() {
1530f89c 250 //
251 // Resets all the parameters to 0
252 //
c9ec41e8 253 fX=fAlpha=0.;
254 for (Int_t i = 0; i < 5; i++) fP[i] = 0;
255 for (Int_t i = 0; i < 15; i++) fC[i] = 0;
51ad6848 256}
257
3775b0ca 258//_____________________________________________________________________________
259void AliExternalTrackParam::AddCovariance(const Double_t c[15]) {
260 //
261 // Add "something" to the track covarince matrix.
262 // May be needed to account for unknown mis-calibration/mis-alignment
263 //
264 fC[0] +=c[0];
265 fC[1] +=c[1]; fC[2] +=c[2];
266 fC[3] +=c[3]; fC[4] +=c[4]; fC[5] +=c[5];
267 fC[6] +=c[6]; fC[7] +=c[7]; fC[8] +=c[8]; fC[9] +=c[9];
268 fC[10]+=c[10]; fC[11]+=c[11]; fC[12]+=c[12]; fC[13]+=c[13]; fC[14]+=c[14];
86be8934 269 CheckCovariance();
3775b0ca 270}
271
272
c9ec41e8 273Double_t AliExternalTrackParam::GetP() const {
274 //---------------------------------------------------------------------
275 // This function returns the track momentum
276 // Results for (nearly) straight tracks are meaningless !
277 //---------------------------------------------------------------------
06fb4a2f 278 if (TMath::Abs(fP[4])<=kAlmost0) return kVeryBig;
c9ec41e8 279 return TMath::Sqrt(1.+ fP[3]*fP[3])/TMath::Abs(fP[4]);
51ad6848 280}
281
1d99986f 282Double_t AliExternalTrackParam::Get1P() const {
283 //---------------------------------------------------------------------
284 // This function returns the 1/(track momentum)
285 //---------------------------------------------------------------------
286 return TMath::Abs(fP[4])/TMath::Sqrt(1.+ fP[3]*fP[3]);
287}
288
c9ec41e8 289//_______________________________________________________________________
c7bafca9 290Double_t AliExternalTrackParam::GetD(Double_t x,Double_t y,Double_t b) const {
c9ec41e8 291 //------------------------------------------------------------------
292 // This function calculates the transverse impact parameter
293 // with respect to a point with global coordinates (x,y)
294 // in the magnetic field "b" (kG)
295 //------------------------------------------------------------------
5773defd 296 if (TMath::Abs(b) < kAlmost0Field) return GetLinearD(x,y);
1530f89c 297 Double_t rp4=GetC(b);
c9ec41e8 298
299 Double_t xt=fX, yt=fP[0];
300
301 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
302 Double_t a = x*cs + y*sn;
303 y = -x*sn + y*cs; x=a;
304 xt-=x; yt-=y;
305
bfd20868 306 sn=rp4*xt - fP[2]; cs=rp4*yt + TMath::Sqrt((1.- fP[2])*(1.+fP[2]));
307 a=2*(xt*fP[2] - yt*TMath::Sqrt((1.-fP[2])*(1.+fP[2])))-rp4*(xt*xt + yt*yt);
1530f89c 308 return -a/(1 + TMath::Sqrt(sn*sn + cs*cs));
309}
310
311//_______________________________________________________________________
312void AliExternalTrackParam::
313GetDZ(Double_t x, Double_t y, Double_t z, Double_t b, Float_t dz[2]) const {
314 //------------------------------------------------------------------
315 // This function calculates the transverse and longitudinal impact parameters
316 // with respect to a point with global coordinates (x,y)
317 // in the magnetic field "b" (kG)
318 //------------------------------------------------------------------
bfd20868 319 Double_t f1 = fP[2], r1 = TMath::Sqrt((1.-f1)*(1.+f1));
1530f89c 320 Double_t xt=fX, yt=fP[0];
321 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
322 Double_t a = x*cs + y*sn;
323 y = -x*sn + y*cs; x=a;
324 xt-=x; yt-=y;
325
326 Double_t rp4=GetC(b);
327 if ((TMath::Abs(b) < kAlmost0Field) || (TMath::Abs(rp4) < kAlmost0)) {
328 dz[0] = -(xt*f1 - yt*r1);
329 dz[1] = fP[1] + (dz[0]*f1 - xt)/r1*fP[3] - z;
330 return;
331 }
332
333 sn=rp4*xt - f1; cs=rp4*yt + r1;
334 a=2*(xt*f1 - yt*r1)-rp4*(xt*xt + yt*yt);
335 Double_t rr=TMath::Sqrt(sn*sn + cs*cs);
336 dz[0] = -a/(1 + rr);
bfd20868 337 Double_t f2 = -sn/rr, r2 = TMath::Sqrt((1.-f2)*(1.+f2));
1530f89c 338 dz[1] = fP[1] + fP[3]/rp4*TMath::ASin(f2*r1 - f1*r2) - z;
51ad6848 339}
340
49d13e89 341//_______________________________________________________________________
342Double_t AliExternalTrackParam::GetLinearD(Double_t xv,Double_t yv) const {
343 //------------------------------------------------------------------
344 // This function calculates the transverse impact parameter
345 // with respect to a point with global coordinates (xv,yv)
346 // neglecting the track curvature.
347 //------------------------------------------------------------------
348 Double_t sn=TMath::Sin(fAlpha), cs=TMath::Cos(fAlpha);
349 Double_t x= xv*cs + yv*sn;
350 Double_t y=-xv*sn + yv*cs;
351
bfd20868 352 Double_t d = (fX-x)*fP[2] - (fP[0]-y)*TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
49d13e89 353
1530f89c 354 return -d;
49d13e89 355}
356
b8e07ed6 357Bool_t AliExternalTrackParam::CorrectForMeanMaterialdEdx
358(Double_t xOverX0, Double_t xTimesRho, Double_t mass,
359 Double_t dEdx,
360 Bool_t anglecorr) {
116b445b 361 //------------------------------------------------------------------
362 // This function corrects the track parameters for the crossed material.
363 // "xOverX0" - X/X0, the thickness in units of the radiation length.
364 // "xTimesRho" - is the product length*density (g/cm^2).
365 // "mass" - the mass of this particle (GeV/c^2).
b8e07ed6 366 // "dEdx" - mean enery loss (GeV/(g/cm^2)
367 // "anglecorr" - switch for the angular correction
116b445b 368 //------------------------------------------------------------------
369 Double_t &fP2=fP[2];
370 Double_t &fP3=fP[3];
371 Double_t &fP4=fP[4];
372
373 Double_t &fC22=fC[5];
374 Double_t &fC33=fC[9];
375 Double_t &fC43=fC[13];
376 Double_t &fC44=fC[14];
377
7dded1d5 378 //Apply angle correction, if requested
379 if(anglecorr) {
bfd20868 380 Double_t angle=TMath::Sqrt((1.+ fP3*fP3)/((1-fP2)*(1.+fP2)));
7dded1d5 381 xOverX0 *=angle;
382 xTimesRho *=angle;
383 }
384
116b445b 385 Double_t p=GetP();
386 Double_t p2=p*p;
387 Double_t beta2=p2/(p2 + mass*mass);
116b445b 388
9f2bec63 389 //Calculating the multiple scattering corrections******************
390 Double_t cC22 = 0.;
391 Double_t cC33 = 0.;
392 Double_t cC43 = 0.;
393 Double_t cC44 = 0.;
116b445b 394 if (xOverX0 != 0) {
395 Double_t theta2=14.1*14.1/(beta2*p2*1e6)*TMath::Abs(xOverX0);
396 //Double_t theta2=1.0259e-6*14*14/28/(beta2*p2)*TMath::Abs(d)*9.36*2.33;
9f2bec63 397 if(theta2>TMath::Pi()*TMath::Pi()) return kFALSE;
bfd20868 398 cC22 = theta2*((1.-fP2)*(1.+fP2))*(1. + fP3*fP3);
9f2bec63 399 cC33 = theta2*(1. + fP3*fP3)*(1. + fP3*fP3);
400 cC43 = theta2*fP3*fP4*(1. + fP3*fP3);
401 cC44 = theta2*fP3*fP4*fP3*fP4;
116b445b 402 }
403
9f2bec63 404 //Calculating the energy loss corrections************************
405 Double_t cP4=1.;
116b445b 406 if ((xTimesRho != 0.) && (beta2 < 1.)) {
b8e07ed6 407 Double_t dE=dEdx*xTimesRho;
116b445b 408 Double_t e=TMath::Sqrt(p2 + mass*mass);
409 if ( TMath::Abs(dE) > 0.3*e ) return kFALSE; //30% energy loss is too much!
c9038cae 410 //cP4 = (1.- e/p2*dE);
76ece3d8 411 if ( (1.+ dE/p2*(dE + 2*e)) < 0. ) return kFALSE;
c9038cae 412 cP4 = 1./TMath::Sqrt(1.+ dE/p2*(dE + 2*e)); //A precise formula by Ruben !
9f2bec63 413 if (TMath::Abs(fP4*cP4)>100.) return kFALSE; //Do not track below 10 MeV/c
4b2fa3ce 414
116b445b 415
416 // Approximate energy loss fluctuation (M.Ivanov)
417 const Double_t knst=0.07; // To be tuned.
418 Double_t sigmadE=knst*TMath::Sqrt(TMath::Abs(dE));
9f2bec63 419 cC44 += ((sigmadE*e/p2*fP4)*(sigmadE*e/p2*fP4));
116b445b 420
421 }
422
9f2bec63 423 //Applying the corrections*****************************
424 fC22 += cC22;
425 fC33 += cC33;
426 fC43 += cC43;
427 fC44 += cC44;
428 fP4 *= cP4;
429
86be8934 430 CheckCovariance();
431
116b445b 432 return kTRUE;
433}
434
b8e07ed6 435Bool_t AliExternalTrackParam::CorrectForMeanMaterial
436(Double_t xOverX0, Double_t xTimesRho, Double_t mass,
437 Bool_t anglecorr,
438 Double_t (*Bethe)(Double_t)) {
439 //------------------------------------------------------------------
440 // This function corrects the track parameters for the crossed material.
441 // "xOverX0" - X/X0, the thickness in units of the radiation length.
442 // "xTimesRho" - is the product length*density (g/cm^2).
443 // "mass" - the mass of this particle (GeV/c^2).
444 // "anglecorr" - switch for the angular correction
445 // "Bethe" - function calculating the energy loss (GeV/(g/cm^2))
446 //------------------------------------------------------------------
447
448 Double_t bg=GetP()/mass;
449 Double_t dEdx=Bethe(bg);
450
451 return CorrectForMeanMaterialdEdx(xOverX0,xTimesRho,mass,dEdx,anglecorr);
452}
453
454Bool_t AliExternalTrackParam::CorrectForMeanMaterialZA
455(Double_t xOverX0, Double_t xTimesRho, Double_t mass,
456 Double_t zOverA,
457 Double_t density,
458 Double_t exEnergy,
459 Double_t jp1,
460 Double_t jp2,
461 Bool_t anglecorr) {
462 //------------------------------------------------------------------
463 // This function corrects the track parameters for the crossed material
464 // using the full Geant-like Bethe-Bloch formula parameterization
465 // "xOverX0" - X/X0, the thickness in units of the radiation length.
466 // "xTimesRho" - is the product length*density (g/cm^2).
467 // "mass" - the mass of this particle (GeV/c^2).
468 // "density" - mean density (g/cm^3)
469 // "zOverA" - mean Z/A
470 // "exEnergy" - mean exitation energy (GeV)
471 // "jp1" - density effect first junction point
472 // "jp2" - density effect second junction point
473 // "anglecorr" - switch for the angular correction
474 //
475 // The default values of the parameters are for silicon
476 //
477 //------------------------------------------------------------------
478
479 Double_t bg=GetP()/mass;
480 Double_t dEdx=BetheBlochGeant(bg,density,jp1,jp2,exEnergy,zOverA);
481
482 return CorrectForMeanMaterialdEdx(xOverX0,xTimesRho,mass,dEdx,anglecorr);
483}
484
485
116b445b 486
ee5dba5e 487Bool_t AliExternalTrackParam::CorrectForMaterial
488(Double_t d, Double_t x0, Double_t mass, Double_t (*Bethe)(Double_t)) {
c7bafca9 489 //------------------------------------------------------------------
116b445b 490 // Deprecated function !
491 // Better use CorrectForMeanMaterial instead of it.
492 //
c7bafca9 493 // This function corrects the track parameters for the crossed material
494 // "d" - the thickness (fraction of the radiation length)
495 // "x0" - the radiation length (g/cm^2)
496 // "mass" - the mass of this particle (GeV/c^2)
497 //------------------------------------------------------------------
c7bafca9 498
b8e07ed6 499 return CorrectForMeanMaterial(d,x0*d,mass,kTRUE,Bethe);
c7bafca9 500
c7bafca9 501}
502
9c56b409 503Double_t AliExternalTrackParam::BetheBlochAleph(Double_t bg,
504 Double_t kp1,
505 Double_t kp2,
506 Double_t kp3,
507 Double_t kp4,
508 Double_t kp5) {
509 //
510 // This is the empirical ALEPH parameterization of the Bethe-Bloch formula.
511 // It is normalized to 1 at the minimum.
512 //
513 // bg - beta*gamma
514 //
515 // The default values for the kp* parameters are for ALICE TPC.
516 // The returned value is in MIP units
517 //
518
519 Double_t beta = bg/TMath::Sqrt(1.+ bg*bg);
520
521 Double_t aa = TMath::Power(beta,kp4);
522 Double_t bb = TMath::Power(1./bg,kp5);
523
524 bb=TMath::Log(kp3+bb);
525
526 return (kp2-aa-bb)*kp1/aa;
527}
528
529Double_t AliExternalTrackParam::BetheBlochGeant(Double_t bg,
530 Double_t kp0,
531 Double_t kp1,
532 Double_t kp2,
533 Double_t kp3,
534 Double_t kp4) {
535 //
536 // This is the parameterization of the Bethe-Bloch formula inspired by Geant.
537 //
538 // bg - beta*gamma
539 // kp0 - density [g/cm^3]
540 // kp1 - density effect first junction point
541 // kp2 - density effect second junction point
542 // kp3 - mean excitation energy [GeV]
543 // kp4 - mean Z/A
544 //
545 // The default values for the kp* parameters are for silicon.
546 // The returned value is in [GeV/(g/cm^2)].
547 //
548
549 const Double_t mK = 0.307075e-3; // [GeV*cm^2/g]
550 const Double_t me = 0.511e-3; // [GeV/c^2]
551 const Double_t rho = kp0;
552 const Double_t x0 = kp1*2.303;
553 const Double_t x1 = kp2*2.303;
554 const Double_t mI = kp3;
555 const Double_t mZA = kp4;
556 const Double_t bg2 = bg*bg;
557 const Double_t maxT= 2*me*bg2; // neglecting the electron mass
558
559 //*** Density effect
560 Double_t d2=0.;
561 const Double_t x=TMath::Log(bg);
562 const Double_t lhwI=TMath::Log(28.816*1e-9*TMath::Sqrt(rho*mZA)/mI);
563 if (x > x1) {
564 d2 = lhwI + x - 0.5;
565 } else if (x > x0) {
566 const Double_t r=(x1-x)/(x1-x0);
567 d2 = lhwI + x - 0.5 + (0.5 - lhwI - x0)*r*r*r;
568 }
569
570 return mK*mZA*(1+bg2)/bg2*
571 (0.5*TMath::Log(2*me*bg2*maxT/(mI*mI)) - bg2/(1+bg2) - d2);
572}
573
d46683db 574Double_t AliExternalTrackParam::BetheBlochSolid(Double_t bg) {
ee5dba5e 575 //------------------------------------------------------------------
d46683db 576 // This is an approximation of the Bethe-Bloch formula,
577 // reasonable for solid materials.
578 // All the parameters are, in fact, for Si.
9b655cba 579 // The returned value is in [GeV/(g/cm^2)]
ee5dba5e 580 //------------------------------------------------------------------
a821848c 581
9c56b409 582 return BetheBlochGeant(bg);
d46683db 583}
ee5dba5e 584
d46683db 585Double_t AliExternalTrackParam::BetheBlochGas(Double_t bg) {
586 //------------------------------------------------------------------
587 // This is an approximation of the Bethe-Bloch formula,
588 // reasonable for gas materials.
589 // All the parameters are, in fact, for Ne.
9b655cba 590 // The returned value is in [GeV/(g/cm^2)]
d46683db 591 //------------------------------------------------------------------
592
593 const Double_t rho = 0.9e-3;
594 const Double_t x0 = 2.;
595 const Double_t x1 = 4.;
596 const Double_t mI = 140.e-9;
597 const Double_t mZA = 0.49555;
598
9c56b409 599 return BetheBlochGeant(bg,rho,x0,x1,mI,mZA);
ee5dba5e 600}
601
49d13e89 602Bool_t AliExternalTrackParam::Rotate(Double_t alpha) {
603 //------------------------------------------------------------------
604 // Transform this track to the local coord. system rotated
605 // by angle "alpha" (rad) with respect to the global coord. system.
606 //------------------------------------------------------------------
dfcef74c 607 if (TMath::Abs(fP[2]) >= kAlmost1) {
608 AliError(Form("Precondition is not satisfied: |sin(phi)|>1 ! %f",fP[2]));
609 return kFALSE;
610 }
611
49d13e89 612 if (alpha < -TMath::Pi()) alpha += 2*TMath::Pi();
613 else if (alpha >= TMath::Pi()) alpha -= 2*TMath::Pi();
614
615 Double_t &fP0=fP[0];
616 Double_t &fP2=fP[2];
617 Double_t &fC00=fC[0];
618 Double_t &fC10=fC[1];
619 Double_t &fC20=fC[3];
620 Double_t &fC21=fC[4];
621 Double_t &fC22=fC[5];
622 Double_t &fC30=fC[6];
623 Double_t &fC32=fC[8];
624 Double_t &fC40=fC[10];
625 Double_t &fC42=fC[12];
626
627 Double_t x=fX;
628 Double_t ca=TMath::Cos(alpha-fAlpha), sa=TMath::Sin(alpha-fAlpha);
bfd20868 629 Double_t sf=fP2, cf=TMath::Sqrt((1.- fP2)*(1.+fP2)); // Improve precision
49d13e89 630
dfcef74c 631 Double_t tmp=sf*ca - cf*sa;
7248cf51 632 if (TMath::Abs(tmp) >= kAlmost1) {
633 if (TMath::Abs(tmp) > 1.+ Double_t(FLT_EPSILON))
634 AliWarning(Form("Rotation failed ! %.10e",tmp));
0b69bbb2 635 return kFALSE;
636 }
dfcef74c 637
49d13e89 638 fAlpha = alpha;
639 fX = x*ca + fP0*sa;
640 fP0= -x*sa + fP0*ca;
dfcef74c 641 fP2= tmp;
49d13e89 642
06fb4a2f 643 if (TMath::Abs(cf)<kAlmost0) {
644 AliError(Form("Too small cosine value %f",cf));
645 cf = kAlmost0;
646 }
647
49d13e89 648 Double_t rr=(ca+sf/cf*sa);
649
650 fC00 *= (ca*ca);
651 fC10 *= ca;
652 fC20 *= ca*rr;
653 fC21 *= rr;
654 fC22 *= rr*rr;
655 fC30 *= ca;
656 fC32 *= rr;
657 fC40 *= ca;
658 fC42 *= rr;
659
86be8934 660 CheckCovariance();
661
49d13e89 662 return kTRUE;
663}
664
665Bool_t AliExternalTrackParam::PropagateTo(Double_t xk, Double_t b) {
666 //----------------------------------------------------------------
667 // Propagate this track to the plane X=xk (cm) in the field "b" (kG)
668 //----------------------------------------------------------------
49d13e89 669 Double_t dx=xk-fX;
e421f556 670 if (TMath::Abs(dx)<=kAlmost0) return kTRUE;
18ebc5ef 671
1530f89c 672 Double_t crv=GetC(b);
5773defd 673 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
674
49d13e89 675 Double_t f1=fP[2], f2=f1 + crv*dx;
bbefa4c4 676 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
49d13e89 677 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
678
679 Double_t &fP0=fP[0], &fP1=fP[1], &fP2=fP[2], &fP3=fP[3], &fP4=fP[4];
680 Double_t
681 &fC00=fC[0],
682 &fC10=fC[1], &fC11=fC[2],
683 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
684 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
685 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
686
bfd20868 687 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
49d13e89 688
689 fX=xk;
690 fP0 += dx*(f1+f2)/(r1+r2);
18ebc5ef 691 fP1 += dx*(r2 + f2*(f1+f2)/(r1+r2))*fP3; // Many thanks to P.Hristov !
49d13e89 692 fP2 += dx*crv;
693
694 //f = F - 1
695
696 Double_t f02= dx/(r1*r1*r1); Double_t cc=crv/fP4;
697 Double_t f04=0.5*dx*dx/(r1*r1*r1); f04*=cc;
698 Double_t f12= dx*fP3*f1/(r1*r1*r1);
699 Double_t f14=0.5*dx*dx*fP3*f1/(r1*r1*r1); f14*=cc;
700 Double_t f13= dx/r1;
701 Double_t f24= dx; f24*=cc;
702
703 //b = C*ft
704 Double_t b00=f02*fC20 + f04*fC40, b01=f12*fC20 + f14*fC40 + f13*fC30;
705 Double_t b02=f24*fC40;
706 Double_t b10=f02*fC21 + f04*fC41, b11=f12*fC21 + f14*fC41 + f13*fC31;
707 Double_t b12=f24*fC41;
708 Double_t b20=f02*fC22 + f04*fC42, b21=f12*fC22 + f14*fC42 + f13*fC32;
709 Double_t b22=f24*fC42;
710 Double_t b40=f02*fC42 + f04*fC44, b41=f12*fC42 + f14*fC44 + f13*fC43;
711 Double_t b42=f24*fC44;
712 Double_t b30=f02*fC32 + f04*fC43, b31=f12*fC32 + f14*fC43 + f13*fC33;
713 Double_t b32=f24*fC43;
714
715 //a = f*b = f*C*ft
716 Double_t a00=f02*b20+f04*b40,a01=f02*b21+f04*b41,a02=f02*b22+f04*b42;
717 Double_t a11=f12*b21+f14*b41+f13*b31,a12=f12*b22+f14*b42+f13*b32;
718 Double_t a22=f24*b42;
719
720 //F*C*Ft = C + (b + bt + a)
721 fC00 += b00 + b00 + a00;
722 fC10 += b10 + b01 + a01;
723 fC20 += b20 + b02 + a02;
724 fC30 += b30;
725 fC40 += b40;
726 fC11 += b11 + b11 + a11;
727 fC21 += b21 + b12 + a12;
728 fC31 += b31;
729 fC41 += b41;
730 fC22 += b22 + b22 + a22;
731 fC32 += b32;
732 fC42 += b42;
733
86be8934 734 CheckCovariance();
735
49d13e89 736 return kTRUE;
737}
738
9f2bec63 739Bool_t
740AliExternalTrackParam::Propagate(Double_t alpha, Double_t x, Double_t b) {
741 //------------------------------------------------------------------
742 // Transform this track to the local coord. system rotated
743 // by angle "alpha" (rad) with respect to the global coord. system,
744 // and propagate this track to the plane X=xk (cm) in the field "b" (kG)
745 //------------------------------------------------------------------
746
747 //Save the parameters
748 Double_t as=fAlpha;
749 Double_t xs=fX;
750 Double_t ps[5], cs[15];
751 for (Int_t i=0; i<5; i++) ps[i]=fP[i];
752 for (Int_t i=0; i<15; i++) cs[i]=fC[i];
753
754 if (Rotate(alpha))
755 if (PropagateTo(x,b)) return kTRUE;
756
757 //Restore the parameters, if the operation failed
758 fAlpha=as;
759 fX=xs;
760 for (Int_t i=0; i<5; i++) fP[i]=ps[i];
761 for (Int_t i=0; i<15; i++) fC[i]=cs[i];
762 return kFALSE;
763}
764
266a0f9b 765Bool_t AliExternalTrackParam::PropagateBxByBz
766(Double_t alpha, Double_t x, Double_t b[3]) {
767 //------------------------------------------------------------------
768 // Transform this track to the local coord. system rotated
769 // by angle "alpha" (rad) with respect to the global coord. system,
770 // and propagate this track to the plane X=xk (cm),
771 // taking into account all three components of the B field, "b[3]" (kG)
772 //------------------------------------------------------------------
773
774 //Save the parameters
775 Double_t as=fAlpha;
776 Double_t xs=fX;
777 Double_t ps[5], cs[15];
778 for (Int_t i=0; i<5; i++) ps[i]=fP[i];
779 for (Int_t i=0; i<15; i++) cs[i]=fC[i];
780
781 if (Rotate(alpha))
782 if (PropagateToBxByBz(x,b)) return kTRUE;
783
784 //Restore the parameters, if the operation failed
785 fAlpha=as;
786 fX=xs;
787 for (Int_t i=0; i<5; i++) fP[i]=ps[i];
788 for (Int_t i=0; i<15; i++) fC[i]=cs[i];
789 return kFALSE;
790}
791
9f2bec63 792
052daaff 793void AliExternalTrackParam::Propagate(Double_t len, Double_t x[3],
794Double_t p[3], Double_t bz) const {
795 //+++++++++++++++++++++++++++++++++++++++++
796 // Origin: K. Shileev (Kirill.Shileev@cern.ch)
797 // Extrapolate track along simple helix in magnetic field
798 // Arguments: len -distance alogn helix, [cm]
799 // bz - mag field, [kGaus]
800 // Returns: x and p contain extrapolated positon and momentum
801 // The momentum returned for straight-line tracks is meaningless !
802 //+++++++++++++++++++++++++++++++++++++++++
803 GetXYZ(x);
804
2258e165 805 if (OneOverPt() < kAlmost0 || TMath::Abs(bz) < kAlmost0Field || GetC(bz) < kAlmost0){ //straight-line tracks
052daaff 806 Double_t unit[3]; GetDirection(unit);
807 x[0]+=unit[0]*len;
808 x[1]+=unit[1]*len;
809 x[2]+=unit[2]*len;
810
811 p[0]=unit[0]/kAlmost0;
812 p[1]=unit[1]/kAlmost0;
813 p[2]=unit[2]/kAlmost0;
814 } else {
815 GetPxPyPz(p);
816 Double_t pp=GetP();
817 Double_t a = -kB2C*bz*GetSign();
818 Double_t rho = a/pp;
819 x[0] += p[0]*TMath::Sin(rho*len)/a - p[1]*(1-TMath::Cos(rho*len))/a;
820 x[1] += p[1]*TMath::Sin(rho*len)/a + p[0]*(1-TMath::Cos(rho*len))/a;
821 x[2] += p[2]*len/pp;
822
823 Double_t p0=p[0];
824 p[0] = p0 *TMath::Cos(rho*len) - p[1]*TMath::Sin(rho*len);
825 p[1] = p[1]*TMath::Cos(rho*len) + p0 *TMath::Sin(rho*len);
826 }
827}
828
829Bool_t AliExternalTrackParam::Intersect(Double_t pnt[3], Double_t norm[3],
830Double_t bz) const {
831 //+++++++++++++++++++++++++++++++++++++++++
832 // Origin: K. Shileev (Kirill.Shileev@cern.ch)
833 // Finds point of intersection (if exists) of the helix with the plane.
834 // Stores result in fX and fP.
835 // Arguments: planePoint,planeNorm - the plane defined by any plane's point
836 // and vector, normal to the plane
837 // Returns: kTrue if helix intersects the plane, kFALSE otherwise.
838 //+++++++++++++++++++++++++++++++++++++++++
839 Double_t x0[3]; GetXYZ(x0); //get track position in MARS
840
841 //estimates initial helix length up to plane
842 Double_t s=
843 (pnt[0]-x0[0])*norm[0] + (pnt[1]-x0[1])*norm[1] + (pnt[2]-x0[2])*norm[2];
844 Double_t dist=99999,distPrev=dist;
845 Double_t x[3],p[3];
846 while(TMath::Abs(dist)>0.00001){
847 //calculates helix at the distance s from x0 ALONG the helix
848 Propagate(s,x,p,bz);
849
850 //distance between current helix position and plane
851 dist=(x[0]-pnt[0])*norm[0]+(x[1]-pnt[1])*norm[1]+(x[2]-pnt[2])*norm[2];
852
853 if(TMath::Abs(dist) >= TMath::Abs(distPrev)) {return kFALSE;}
854 distPrev=dist;
855 s-=dist;
856 }
857 //on exit pnt is intersection point,norm is track vector at that point,
858 //all in MARS
859 for (Int_t i=0; i<3; i++) {pnt[i]=x[i]; norm[i]=p[i];}
860 return kTRUE;
861}
862
49d13e89 863Double_t
864AliExternalTrackParam::GetPredictedChi2(Double_t p[2],Double_t cov[3]) const {
865 //----------------------------------------------------------------
866 // Estimate the chi2 of the space point "p" with the cov. matrix "cov"
867 //----------------------------------------------------------------
868 Double_t sdd = fC[0] + cov[0];
869 Double_t sdz = fC[1] + cov[1];
870 Double_t szz = fC[2] + cov[2];
871 Double_t det = sdd*szz - sdz*sdz;
872
873 if (TMath::Abs(det) < kAlmost0) return kVeryBig;
874
875 Double_t d = fP[0] - p[0];
876 Double_t z = fP[1] - p[1];
877
878 return (d*szz*d - 2*d*sdz*z + z*sdd*z)/det;
879}
880
4b189f98 881Double_t AliExternalTrackParam::
882GetPredictedChi2(Double_t p[3],Double_t covyz[3],Double_t covxyz[3]) const {
883 //----------------------------------------------------------------
884 // Estimate the chi2 of the 3D space point "p" and
1e023a36 885 // the full covariance matrix "covyz" and "covxyz"
4b189f98 886 //
887 // Cov(x,x) ... : covxyz[0]
888 // Cov(y,x) ... : covxyz[1] covyz[0]
889 // Cov(z,x) ... : covxyz[2] covyz[1] covyz[2]
890 //----------------------------------------------------------------
891
892 Double_t res[3] = {
893 GetX() - p[0],
894 GetY() - p[1],
895 GetZ() - p[2]
896 };
897
898 Double_t f=GetSnp();
899 if (TMath::Abs(f) >= kAlmost1) return kVeryBig;
bfd20868 900 Double_t r=TMath::Sqrt((1.-f)*(1.+f));
4b189f98 901 Double_t a=f/r, b=GetTgl()/r;
902
903 Double_t s2=333.*333.; //something reasonably big (cm^2)
904
905 TMatrixDSym v(3);
906 v(0,0)= s2; v(0,1)= a*s2; v(0,2)= b*s2;;
907 v(1,0)=a*s2; v(1,1)=a*a*s2 + GetSigmaY2(); v(1,2)=a*b*s2 + GetSigmaZY();
908 v(2,0)=b*s2; v(2,1)=a*b*s2 + GetSigmaZY(); v(2,2)=b*b*s2 + GetSigmaZ2();
909
910 v(0,0)+=covxyz[0]; v(0,1)+=covxyz[1]; v(0,2)+=covxyz[2];
911 v(1,0)+=covxyz[1]; v(1,1)+=covyz[0]; v(1,2)+=covyz[1];
912 v(2,0)+=covxyz[2]; v(2,1)+=covyz[1]; v(2,2)+=covyz[2];
913
914 v.Invert();
915 if (!v.IsValid()) return kVeryBig;
916
917 Double_t chi2=0.;
918 for (Int_t i = 0; i < 3; i++)
919 for (Int_t j = 0; j < 3; j++) chi2 += res[i]*res[j]*v(i,j);
920
921 return chi2;
acdfbc78 922}
923
924Double_t AliExternalTrackParam::
925GetPredictedChi2(const AliExternalTrackParam *t) const {
926 //----------------------------------------------------------------
927 // Estimate the chi2 (5 dof) of this track with respect to the track
928 // given by the argument.
929 // The two tracks must be in the same reference system
930 // and estimated at the same reference plane.
931 //----------------------------------------------------------------
932
933 if (TMath::Abs(1. - t->GetAlpha()/GetAlpha()) > FLT_EPSILON) {
934 AliError("The reference systems of the tracks differ !");
935 return kVeryBig;
936 }
937 if (TMath::Abs(1. - t->GetX()/GetX()) > FLT_EPSILON) {
938 AliError("The reference of the tracks planes differ !");
939 return kVeryBig;
940 }
941
942 TMatrixDSym c(5);
943 c(0,0)=GetSigmaY2();
944 c(1,0)=GetSigmaZY(); c(1,1)=GetSigmaZ2();
945 c(2,0)=GetSigmaSnpY(); c(2,1)=GetSigmaSnpZ(); c(2,2)=GetSigmaSnp2();
946 c(3,0)=GetSigmaTglY(); c(3,1)=GetSigmaTglZ(); c(3,2)=GetSigmaTglSnp(); c(3,3)=GetSigmaTgl2();
947 c(4,0)=GetSigma1PtY(); c(4,1)=GetSigma1PtZ(); c(4,2)=GetSigma1PtSnp(); c(4,3)=GetSigma1PtTgl(); c(4,4)=GetSigma1Pt2();
948
949 c(0,0)+=t->GetSigmaY2();
950 c(1,0)+=t->GetSigmaZY(); c(1,1)+=t->GetSigmaZ2();
951 c(2,0)+=t->GetSigmaSnpY();c(2,1)+=t->GetSigmaSnpZ();c(2,2)+=t->GetSigmaSnp2();
952 c(3,0)+=t->GetSigmaTglY();c(3,1)+=t->GetSigmaTglZ();c(3,2)+=t->GetSigmaTglSnp();c(3,3)+=t->GetSigmaTgl2();
953 c(4,0)+=t->GetSigma1PtY();c(4,1)+=t->GetSigma1PtZ();c(4,2)+=t->GetSigma1PtSnp();c(4,3)+=t->GetSigma1PtTgl();c(4,4)+=t->GetSigma1Pt2();
954 c(0,1)=c(1,0);
955 c(0,2)=c(2,0); c(1,2)=c(2,1);
956 c(0,3)=c(3,0); c(1,3)=c(3,1); c(2,3)=c(3,2);
957 c(0,4)=c(4,0); c(1,4)=c(4,1); c(2,4)=c(4,2); c(3,4)=c(4,3);
958
959 c.Invert();
960 if (!c.IsValid()) return kVeryBig;
961
962
963 Double_t res[5] = {
964 GetY() - t->GetY(),
965 GetZ() - t->GetZ(),
966 GetSnp() - t->GetSnp(),
967 GetTgl() - t->GetTgl(),
968 GetSigned1Pt() - t->GetSigned1Pt()
969 };
4b189f98 970
acdfbc78 971 Double_t chi2=0.;
972 for (Int_t i = 0; i < 5; i++)
973 for (Int_t j = 0; j < 5; j++) chi2 += res[i]*res[j]*c(i,j);
4b189f98 974
acdfbc78 975 return chi2;
4b189f98 976}
977
1e023a36 978Bool_t AliExternalTrackParam::
979PropagateTo(Double_t p[3],Double_t covyz[3],Double_t covxyz[3],Double_t bz) {
980 //----------------------------------------------------------------
981 // Propagate this track to the plane
982 // the 3D space point "p" (with the covariance matrix "covyz" and "covxyz")
983 // belongs to.
984 // The magnetic field is "bz" (kG)
985 //
986 // The track curvature and the change of the covariance matrix
987 // of the track parameters are negleted !
988 // (So the "step" should be small compared with 1/curvature)
989 //----------------------------------------------------------------
990
991 Double_t f=GetSnp();
992 if (TMath::Abs(f) >= kAlmost1) return kFALSE;
bfd20868 993 Double_t r=TMath::Sqrt((1.-f)*(1.+f));
1e023a36 994 Double_t a=f/r, b=GetTgl()/r;
995
996 Double_t s2=333.*333.; //something reasonably big (cm^2)
997
998 TMatrixDSym tV(3);
999 tV(0,0)= s2; tV(0,1)= a*s2; tV(0,2)= b*s2;
1000 tV(1,0)=a*s2; tV(1,1)=a*a*s2; tV(1,2)=a*b*s2;
1001 tV(2,0)=b*s2; tV(2,1)=a*b*s2; tV(2,2)=b*b*s2;
1002
1003 TMatrixDSym pV(3);
1004 pV(0,0)=covxyz[0]; pV(0,1)=covxyz[1]; pV(0,2)=covxyz[2];
1005 pV(1,0)=covxyz[1]; pV(1,1)=covyz[0]; pV(1,2)=covyz[1];
1006 pV(2,0)=covxyz[2]; pV(2,1)=covyz[1]; pV(2,2)=covyz[2];
1007
1008 TMatrixDSym tpV(tV);
1009 tpV+=pV;
1010 tpV.Invert();
1011 if (!tpV.IsValid()) return kFALSE;
1012
1013 TMatrixDSym pW(3),tW(3);
1014 for (Int_t i=0; i<3; i++)
1015 for (Int_t j=0; j<3; j++) {
1016 pW(i,j)=tW(i,j)=0.;
1017 for (Int_t k=0; k<3; k++) {
1018 pW(i,j) += tV(i,k)*tpV(k,j);
1019 tW(i,j) += pV(i,k)*tpV(k,j);
1020 }
1021 }
1022
1023 Double_t t[3] = {GetX(), GetY(), GetZ()};
1024
1025 Double_t x=0.;
1026 for (Int_t i=0; i<3; i++) x += (tW(0,i)*t[i] + pW(0,i)*p[i]);
1027 Double_t crv=GetC(bz);
1028 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1029 f += crv*(x-fX);
1030 if (TMath::Abs(f) >= kAlmost1) return kFALSE;
1031 fX=x;
1032
1033 fP[0]=0.;
1034 for (Int_t i=0; i<3; i++) fP[0] += (tW(1,i)*t[i] + pW(1,i)*p[i]);
1035 fP[1]=0.;
1036 for (Int_t i=0; i<3; i++) fP[1] += (tW(2,i)*t[i] + pW(2,i)*p[i]);
1037
1038 return kTRUE;
1039}
1040
e23a38cb 1041Double_t *AliExternalTrackParam::GetResiduals(
1042Double_t *p,Double_t *cov,Bool_t updated) const {
1043 //------------------------------------------------------------------
1044 // Returns the track residuals with the space point "p" having
1045 // the covariance matrix "cov".
1046 // If "updated" is kTRUE, the track parameters expected to be updated,
1047 // otherwise they must be predicted.
1048 //------------------------------------------------------------------
1049 static Double_t res[2];
1050
1051 Double_t r00=cov[0], r01=cov[1], r11=cov[2];
1052 if (updated) {
1053 r00-=fC[0]; r01-=fC[1]; r11-=fC[2];
1054 } else {
1055 r00+=fC[0]; r01+=fC[1]; r11+=fC[2];
1056 }
1057 Double_t det=r00*r11 - r01*r01;
1058
1059 if (TMath::Abs(det) < kAlmost0) return 0;
1060
1061 Double_t tmp=r00; r00=r11/det; r11=tmp/det;
f0fbf964 1062
1063 if (r00 < 0.) return 0;
1064 if (r11 < 0.) return 0;
1065
e23a38cb 1066 Double_t dy = fP[0] - p[0];
1067 Double_t dz = fP[1] - p[1];
1068
1069 res[0]=dy*TMath::Sqrt(r00);
1070 res[1]=dz*TMath::Sqrt(r11);
1071
1072 return res;
1073}
1074
49d13e89 1075Bool_t AliExternalTrackParam::Update(Double_t p[2], Double_t cov[3]) {
1076 //------------------------------------------------------------------
1077 // Update the track parameters with the space point "p" having
1078 // the covariance matrix "cov"
1079 //------------------------------------------------------------------
1080 Double_t &fP0=fP[0], &fP1=fP[1], &fP2=fP[2], &fP3=fP[3], &fP4=fP[4];
1081 Double_t
1082 &fC00=fC[0],
1083 &fC10=fC[1], &fC11=fC[2],
1084 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
1085 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
1086 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
1087
1088 Double_t r00=cov[0], r01=cov[1], r11=cov[2];
1089 r00+=fC00; r01+=fC10; r11+=fC11;
1090 Double_t det=r00*r11 - r01*r01;
1091
1092 if (TMath::Abs(det) < kAlmost0) return kFALSE;
1093
1094
1095 Double_t tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det;
1096
1097 Double_t k00=fC00*r00+fC10*r01, k01=fC00*r01+fC10*r11;
1098 Double_t k10=fC10*r00+fC11*r01, k11=fC10*r01+fC11*r11;
1099 Double_t k20=fC20*r00+fC21*r01, k21=fC20*r01+fC21*r11;
1100 Double_t k30=fC30*r00+fC31*r01, k31=fC30*r01+fC31*r11;
1101 Double_t k40=fC40*r00+fC41*r01, k41=fC40*r01+fC41*r11;
1102
1103 Double_t dy=p[0] - fP0, dz=p[1] - fP1;
1104 Double_t sf=fP2 + k20*dy + k21*dz;
1105 if (TMath::Abs(sf) > kAlmost1) return kFALSE;
1106
1107 fP0 += k00*dy + k01*dz;
1108 fP1 += k10*dy + k11*dz;
1109 fP2 = sf;
1110 fP3 += k30*dy + k31*dz;
1111 fP4 += k40*dy + k41*dz;
1112
1113 Double_t c01=fC10, c02=fC20, c03=fC30, c04=fC40;
1114 Double_t c12=fC21, c13=fC31, c14=fC41;
1115
1116 fC00-=k00*fC00+k01*fC10; fC10-=k00*c01+k01*fC11;
1117 fC20-=k00*c02+k01*c12; fC30-=k00*c03+k01*c13;
1118 fC40-=k00*c04+k01*c14;
1119
1120 fC11-=k10*c01+k11*fC11;
1121 fC21-=k10*c02+k11*c12; fC31-=k10*c03+k11*c13;
1122 fC41-=k10*c04+k11*c14;
1123
1124 fC22-=k20*c02+k21*c12; fC32-=k20*c03+k21*c13;
1125 fC42-=k20*c04+k21*c14;
1126
1127 fC33-=k30*c03+k31*c13;
1128 fC43-=k30*c04+k31*c14;
1129
1130 fC44-=k40*c04+k41*c14;
1131
86be8934 1132 CheckCovariance();
1133
49d13e89 1134 return kTRUE;
1135}
1136
c7bafca9 1137void
1138AliExternalTrackParam::GetHelixParameters(Double_t hlx[6], Double_t b) const {
1139 //--------------------------------------------------------------------
1140 // External track parameters -> helix parameters
1141 // "b" - magnetic field (kG)
1142 //--------------------------------------------------------------------
1143 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
1144
1530f89c 1145 hlx[0]=fP[0]; hlx[1]=fP[1]; hlx[2]=fP[2]; hlx[3]=fP[3];
c7bafca9 1146
1147 hlx[5]=fX*cs - hlx[0]*sn; // x0
1148 hlx[0]=fX*sn + hlx[0]*cs; // y0
1149//hlx[1]= // z0
1150 hlx[2]=TMath::ASin(hlx[2]) + fAlpha; // phi0
1151//hlx[3]= // tgl
1530f89c 1152 hlx[4]=GetC(b); // C
c7bafca9 1153}
1154
1155
1156static void Evaluate(const Double_t *h, Double_t t,
1157 Double_t r[3], //radius vector
1158 Double_t g[3], //first defivatives
1159 Double_t gg[3]) //second derivatives
1160{
1161 //--------------------------------------------------------------------
1162 // Calculate position of a point on a track and some derivatives
1163 //--------------------------------------------------------------------
1164 Double_t phase=h[4]*t+h[2];
1165 Double_t sn=TMath::Sin(phase), cs=TMath::Cos(phase);
1166
ba4550c4 1167 r[0] = h[5];
1168 r[1] = h[0];
1169 if (TMath::Abs(h[4])>kAlmost0) {
1170 r[0] += (sn - h[6])/h[4];
1171 r[1] -= (cs - h[7])/h[4];
1172 }
c7bafca9 1173 r[2] = h[1] + h[3]*t;
1174
1175 g[0] = cs; g[1]=sn; g[2]=h[3];
1176
1177 gg[0]=-h[4]*sn; gg[1]=h[4]*cs; gg[2]=0.;
1178}
1179
1180Double_t AliExternalTrackParam::GetDCA(const AliExternalTrackParam *p,
1181Double_t b, Double_t &xthis, Double_t &xp) const {
1182 //------------------------------------------------------------
1183 // Returns the (weighed !) distance of closest approach between
1184 // this track and the track "p".
1185 // Other returned values:
1186 // xthis, xt - coordinates of tracks' reference planes at the DCA
1187 //-----------------------------------------------------------
1188 Double_t dy2=GetSigmaY2() + p->GetSigmaY2();
1189 Double_t dz2=GetSigmaZ2() + p->GetSigmaZ2();
1190 Double_t dx2=dy2;
1191
c7bafca9 1192 Double_t p1[8]; GetHelixParameters(p1,b);
1193 p1[6]=TMath::Sin(p1[2]); p1[7]=TMath::Cos(p1[2]);
1194 Double_t p2[8]; p->GetHelixParameters(p2,b);
1195 p2[6]=TMath::Sin(p2[2]); p2[7]=TMath::Cos(p2[2]);
1196
1197
1198 Double_t r1[3],g1[3],gg1[3]; Double_t t1=0.;
1199 Evaluate(p1,t1,r1,g1,gg1);
1200 Double_t r2[3],g2[3],gg2[3]; Double_t t2=0.;
1201 Evaluate(p2,t2,r2,g2,gg2);
1202
1203 Double_t dx=r2[0]-r1[0], dy=r2[1]-r1[1], dz=r2[2]-r1[2];
1204 Double_t dm=dx*dx/dx2 + dy*dy/dy2 + dz*dz/dz2;
1205
1206 Int_t max=27;
1207 while (max--) {
1208 Double_t gt1=-(dx*g1[0]/dx2 + dy*g1[1]/dy2 + dz*g1[2]/dz2);
1209 Double_t gt2=+(dx*g2[0]/dx2 + dy*g2[1]/dy2 + dz*g2[2]/dz2);
1210 Double_t h11=(g1[0]*g1[0] - dx*gg1[0])/dx2 +
1211 (g1[1]*g1[1] - dy*gg1[1])/dy2 +
1212 (g1[2]*g1[2] - dz*gg1[2])/dz2;
1213 Double_t h22=(g2[0]*g2[0] + dx*gg2[0])/dx2 +
1214 (g2[1]*g2[1] + dy*gg2[1])/dy2 +
1215 (g2[2]*g2[2] + dz*gg2[2])/dz2;
1216 Double_t h12=-(g1[0]*g2[0]/dx2 + g1[1]*g2[1]/dy2 + g1[2]*g2[2]/dz2);
1217
1218 Double_t det=h11*h22-h12*h12;
1219
1220 Double_t dt1,dt2;
1221 if (TMath::Abs(det)<1.e-33) {
1222 //(quasi)singular Hessian
1223 dt1=-gt1; dt2=-gt2;
1224 } else {
1225 dt1=-(gt1*h22 - gt2*h12)/det;
1226 dt2=-(h11*gt2 - h12*gt1)/det;
1227 }
1228
1229 if ((dt1*gt1+dt2*gt2)>0) {dt1=-dt1; dt2=-dt2;}
1230
1231 //check delta(phase1) ?
1232 //check delta(phase2) ?
1233
1234 if (TMath::Abs(dt1)/(TMath::Abs(t1)+1.e-3) < 1.e-4)
1235 if (TMath::Abs(dt2)/(TMath::Abs(t2)+1.e-3) < 1.e-4) {
1236 if ((gt1*gt1+gt2*gt2) > 1.e-4/dy2/dy2)
358f16ae 1237 AliDebug(1," stopped at not a stationary point !");
c7bafca9 1238 Double_t lmb=h11+h22; lmb=lmb-TMath::Sqrt(lmb*lmb-4*det);
1239 if (lmb < 0.)
358f16ae 1240 AliDebug(1," stopped at not a minimum !");
c7bafca9 1241 break;
1242 }
1243
1244 Double_t dd=dm;
1245 for (Int_t div=1 ; ; div*=2) {
1246 Evaluate(p1,t1+dt1,r1,g1,gg1);
1247 Evaluate(p2,t2+dt2,r2,g2,gg2);
1248 dx=r2[0]-r1[0]; dy=r2[1]-r1[1]; dz=r2[2]-r1[2];
1249 dd=dx*dx/dx2 + dy*dy/dy2 + dz*dz/dz2;
1250 if (dd<dm) break;
1251 dt1*=0.5; dt2*=0.5;
1252 if (div>512) {
358f16ae 1253 AliDebug(1," overshoot !"); break;
c7bafca9 1254 }
1255 }
1256 dm=dd;
1257
1258 t1+=dt1;
1259 t2+=dt2;
1260
1261 }
1262
358f16ae 1263 if (max<=0) AliDebug(1," too many iterations !");
c7bafca9 1264
1265 Double_t cs=TMath::Cos(GetAlpha());
1266 Double_t sn=TMath::Sin(GetAlpha());
1267 xthis=r1[0]*cs + r1[1]*sn;
1268
1269 cs=TMath::Cos(p->GetAlpha());
1270 sn=TMath::Sin(p->GetAlpha());
1271 xp=r2[0]*cs + r2[1]*sn;
1272
1273 return TMath::Sqrt(dm*TMath::Sqrt(dy2*dz2));
1274}
1275
1276Double_t AliExternalTrackParam::
1277PropagateToDCA(AliExternalTrackParam *p, Double_t b) {
1278 //--------------------------------------------------------------
1279 // Propagates this track and the argument track to the position of the
1280 // distance of closest approach.
1281 // Returns the (weighed !) distance of closest approach.
1282 //--------------------------------------------------------------
1283 Double_t xthis,xp;
1284 Double_t dca=GetDCA(p,b,xthis,xp);
1285
1286 if (!PropagateTo(xthis,b)) {
1287 //AliWarning(" propagation failed !");
1288 return 1e+33;
1289 }
1290
1291 if (!p->PropagateTo(xp,b)) {
1292 //AliWarning(" propagation failed !";
1293 return 1e+33;
1294 }
1295
1296 return dca;
1297}
1298
1299
58e536c5 1300Bool_t AliExternalTrackParam::PropagateToDCA(const AliVVertex *vtx,
e99a34df 1301Double_t b, Double_t maxd, Double_t dz[2], Double_t covar[3]) {
f76701bf 1302 //
e99a34df 1303 // Propagate this track to the DCA to vertex "vtx",
f76701bf 1304 // if the (rough) transverse impact parameter is not bigger then "maxd".
1305 // Magnetic field is "b" (kG).
1306 //
1307 // a) The track gets extapolated to the DCA to the vertex.
1308 // b) The impact parameters and their covariance matrix are calculated.
1309 //
1310 // In the case of success, the returned value is kTRUE
1311 // (otherwise, it's kFALSE)
1312 //
1313 Double_t alpha=GetAlpha();
1314 Double_t sn=TMath::Sin(alpha), cs=TMath::Cos(alpha);
1315 Double_t x=GetX(), y=GetParameter()[0], snp=GetParameter()[2];
58e536c5 1316 Double_t xv= vtx->GetX()*cs + vtx->GetY()*sn;
1317 Double_t yv=-vtx->GetX()*sn + vtx->GetY()*cs, zv=vtx->GetZ();
f76701bf 1318 x-=xv; y-=yv;
1319
1320 //Estimate the impact parameter neglecting the track curvature
bfd20868 1321 Double_t d=TMath::Abs(x*snp - y*TMath::Sqrt((1.-snp)*(1.+snp)));
f76701bf 1322 if (d > maxd) return kFALSE;
1323
1324 //Propagate to the DCA
2258e165 1325 Double_t crv=GetC(b);
e99a34df 1326 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1327
bfd20868 1328 Double_t tgfv=-(crv*x - snp)/(crv*y + TMath::Sqrt((1.-snp)*(1.+snp)));
1329 sn=tgfv/TMath::Sqrt(1.+ tgfv*tgfv); cs=TMath::Sqrt((1.-sn)*(1.+sn));
e99a34df 1330 if (TMath::Abs(tgfv)>0.) cs = sn/tgfv;
1331 else cs=1.;
f76701bf 1332
1333 x = xv*cs + yv*sn;
1334 yv=-xv*sn + yv*cs; xv=x;
1335
1336 if (!Propagate(alpha+TMath::ASin(sn),xv,b)) return kFALSE;
266a0f9b 1337
1338 if (dz==0) return kTRUE;
1339 dz[0] = GetParameter()[0] - yv;
1340 dz[1] = GetParameter()[1] - zv;
1341
1342 if (covar==0) return kTRUE;
1343 Double_t cov[6]; vtx->GetCovarianceMatrix(cov);
1344
1345 //***** Improvements by A.Dainese
1346 alpha=GetAlpha(); sn=TMath::Sin(alpha); cs=TMath::Cos(alpha);
1347 Double_t s2ylocvtx = cov[0]*sn*sn + cov[2]*cs*cs - 2.*cov[1]*cs*sn;
1348 covar[0] = GetCovariance()[0] + s2ylocvtx; // neglecting correlations
1349 covar[1] = GetCovariance()[1]; // between (x,y) and z
1350 covar[2] = GetCovariance()[2] + cov[5]; // in vertex's covariance matrix
1351 //*****
1352
1353 return kTRUE;
1354}
1355
1356Bool_t AliExternalTrackParam::PropagateToDCABxByBz(const AliVVertex *vtx,
1357Double_t b[3], Double_t maxd, Double_t dz[2], Double_t covar[3]) {
1358 //
1359 // Propagate this track to the DCA to vertex "vtx",
1360 // if the (rough) transverse impact parameter is not bigger then "maxd".
1361 //
1362 // This function takes into account all three components of the magnetic
1363 // field given by the b[3] arument (kG)
1364 //
1365 // a) The track gets extapolated to the DCA to the vertex.
1366 // b) The impact parameters and their covariance matrix are calculated.
1367 //
1368 // In the case of success, the returned value is kTRUE
1369 // (otherwise, it's kFALSE)
1370 //
1371 Double_t alpha=GetAlpha();
1372 Double_t sn=TMath::Sin(alpha), cs=TMath::Cos(alpha);
1373 Double_t x=GetX(), y=GetParameter()[0], snp=GetParameter()[2];
1374 Double_t xv= vtx->GetX()*cs + vtx->GetY()*sn;
1375 Double_t yv=-vtx->GetX()*sn + vtx->GetY()*cs, zv=vtx->GetZ();
1376 x-=xv; y-=yv;
1377
1378 //Estimate the impact parameter neglecting the track curvature
bfd20868 1379 Double_t d=TMath::Abs(x*snp - y*TMath::Sqrt((1.-snp)*(1.+snp)));
266a0f9b 1380 if (d > maxd) return kFALSE;
1381
1382 //Propagate to the DCA
8567bf39 1383 Double_t crv=GetC(b[2]);
1384 if (TMath::Abs(b[2]) < kAlmost0Field) crv=0.;
266a0f9b 1385
bfd20868 1386 Double_t tgfv=-(crv*x - snp)/(crv*y + TMath::Sqrt((1.-snp)*(1.+snp)));
1387 sn=tgfv/TMath::Sqrt(1.+ tgfv*tgfv); cs=TMath::Sqrt((1.-sn)*(1.+sn));
266a0f9b 1388 if (TMath::Abs(tgfv)>0.) cs = sn/tgfv;
1389 else cs=1.;
1390
1391 x = xv*cs + yv*sn;
1392 yv=-xv*sn + yv*cs; xv=x;
1393
1394 if (!PropagateBxByBz(alpha+TMath::ASin(sn),xv,b)) return kFALSE;
e99a34df 1395
1396 if (dz==0) return kTRUE;
1397 dz[0] = GetParameter()[0] - yv;
1398 dz[1] = GetParameter()[1] - zv;
1399
1400 if (covar==0) return kTRUE;
58e536c5 1401 Double_t cov[6]; vtx->GetCovarianceMatrix(cov);
e99a34df 1402
1403 //***** Improvements by A.Dainese
1404 alpha=GetAlpha(); sn=TMath::Sin(alpha); cs=TMath::Cos(alpha);
1405 Double_t s2ylocvtx = cov[0]*sn*sn + cov[2]*cs*cs - 2.*cov[1]*cs*sn;
1406 covar[0] = GetCovariance()[0] + s2ylocvtx; // neglecting correlations
1407 covar[1] = GetCovariance()[1]; // between (x,y) and z
1408 covar[2] = GetCovariance()[2] + cov[5]; // in vertex's covariance matrix
1409 //*****
1410
29fbcc93 1411 return kTRUE;
f76701bf 1412}
1413
b1149664 1414void AliExternalTrackParam::GetDirection(Double_t d[3]) const {
1415 //----------------------------------------------------------------
1416 // This function returns a unit vector along the track direction
1417 // in the global coordinate system.
1418 //----------------------------------------------------------------
1419 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
1420 Double_t snp=fP[2];
bfd20868 1421 Double_t csp =TMath::Sqrt((1.-snp)*(1.+snp));
b1149664 1422 Double_t norm=TMath::Sqrt(1.+ fP[3]*fP[3]);
1423 d[0]=(csp*cs - snp*sn)/norm;
1424 d[1]=(snp*cs + csp*sn)/norm;
1425 d[2]=fP[3]/norm;
1426}
1427
c683ddc2 1428Bool_t AliExternalTrackParam::GetPxPyPz(Double_t p[3]) const {
c9ec41e8 1429 //---------------------------------------------------------------------
1430 // This function returns the global track momentum components
1431 // Results for (nearly) straight tracks are meaningless !
1432 //---------------------------------------------------------------------
1433 p[0]=fP[4]; p[1]=fP[2]; p[2]=fP[3];
1434 return Local2GlobalMomentum(p,fAlpha);
1435}
a5e407e9 1436
def9660e 1437Double_t AliExternalTrackParam::Px() const {
957fb479 1438 //---------------------------------------------------------------------
1439 // Returns x-component of momentum
1440 // Result for (nearly) straight tracks is meaningless !
1441 //---------------------------------------------------------------------
def9660e 1442
957fb479 1443 Double_t p[3]={kVeryBig,kVeryBig,kVeryBig};
def9660e 1444 GetPxPyPz(p);
1445
1446 return p[0];
1447}
1448
1449Double_t AliExternalTrackParam::Py() const {
957fb479 1450 //---------------------------------------------------------------------
1451 // Returns y-component of momentum
1452 // Result for (nearly) straight tracks is meaningless !
1453 //---------------------------------------------------------------------
def9660e 1454
957fb479 1455 Double_t p[3]={kVeryBig,kVeryBig,kVeryBig};
def9660e 1456 GetPxPyPz(p);
1457
1458 return p[1];
1459}
1460
c683ddc2 1461Double_t AliExternalTrackParam::Xv() const {
1462 //---------------------------------------------------------------------
1463 // Returns x-component of first track point
1464 //---------------------------------------------------------------------
1465
1466 Double_t r[3]={0.,0.,0.};
1467 GetXYZ(r);
1468
1469 return r[0];
1470}
1471
1472Double_t AliExternalTrackParam::Yv() const {
1473 //---------------------------------------------------------------------
1474 // Returns y-component of first track point
1475 //---------------------------------------------------------------------
1476
1477 Double_t r[3]={0.,0.,0.};
1478 GetXYZ(r);
1479
1480 return r[1];
1481}
1482
def9660e 1483Double_t AliExternalTrackParam::Theta() const {
1484 // return theta angle of momentum
1485
7cdd0c20 1486 return 0.5*TMath::Pi() - TMath::ATan(fP[3]);
def9660e 1487}
1488
1489Double_t AliExternalTrackParam::Phi() const {
957fb479 1490 //---------------------------------------------------------------------
1491 // Returns the azimuthal angle of momentum
1492 // 0 <= phi < 2*pi
1493 //---------------------------------------------------------------------
def9660e 1494
957fb479 1495 Double_t phi=TMath::ASin(fP[2]) + fAlpha;
1496 if (phi<0.) phi+=2.*TMath::Pi();
1497 else if (phi>=2.*TMath::Pi()) phi-=2.*TMath::Pi();
1498
1499 return phi;
def9660e 1500}
1501
1502Double_t AliExternalTrackParam::M() const {
1503 // return particle mass
1504
1505 // No mass information available so far.
1506 // Redifine in derived class!
1507
1508 return -999.;
1509}
1510
1511Double_t AliExternalTrackParam::E() const {
1512 // return particle energy
1513
1514 // No PID information available so far.
1515 // Redifine in derived class!
1516
1517 return -999.;
1518}
1519
1520Double_t AliExternalTrackParam::Eta() const {
1521 // return pseudorapidity
1522
1523 return -TMath::Log(TMath::Tan(0.5 * Theta()));
1524}
1525
1526Double_t AliExternalTrackParam::Y() const {
1527 // return rapidity
1528
1529 // No PID information available so far.
1530 // Redifine in derived class!
1531
1532 return -999.;
1533}
1534
c9ec41e8 1535Bool_t AliExternalTrackParam::GetXYZ(Double_t *r) const {
1536 //---------------------------------------------------------------------
1537 // This function returns the global track position
1538 //---------------------------------------------------------------------
1539 r[0]=fX; r[1]=fP[0]; r[2]=fP[1];
1540 return Local2GlobalPosition(r,fAlpha);
51ad6848 1541}
1542
c9ec41e8 1543Bool_t AliExternalTrackParam::GetCovarianceXYZPxPyPz(Double_t cv[21]) const {
1544 //---------------------------------------------------------------------
1545 // This function returns the global covariance matrix of the track params
1546 //
1547 // Cov(x,x) ... : cv[0]
1548 // Cov(y,x) ... : cv[1] cv[2]
1549 // Cov(z,x) ... : cv[3] cv[4] cv[5]
1550 // Cov(px,x)... : cv[6] cv[7] cv[8] cv[9]
1551 // Cov(py,x)... : cv[10] cv[11] cv[12] cv[13] cv[14]
1552 // Cov(pz,x)... : cv[15] cv[16] cv[17] cv[18] cv[19] cv[20]
a5e407e9 1553 //
c9ec41e8 1554 // Results for (nearly) straight tracks are meaningless !
1555 //---------------------------------------------------------------------
e421f556 1556 if (TMath::Abs(fP[4])<=kAlmost0) {
c9ec41e8 1557 for (Int_t i=0; i<21; i++) cv[i]=0.;
1558 return kFALSE;
a5e407e9 1559 }
49d13e89 1560 if (TMath::Abs(fP[2]) > kAlmost1) {
c9ec41e8 1561 for (Int_t i=0; i<21; i++) cv[i]=0.;
1562 return kFALSE;
1563 }
1564 Double_t pt=1./TMath::Abs(fP[4]);
1565 Double_t cs=TMath::Cos(fAlpha), sn=TMath::Sin(fAlpha);
92934324 1566 Double_t r=TMath::Sqrt((1.-fP[2])*(1.+fP[2]));
c9ec41e8 1567
1568 Double_t m00=-sn, m10=cs;
1569 Double_t m23=-pt*(sn + fP[2]*cs/r), m43=-pt*pt*(r*cs - fP[2]*sn);
1570 Double_t m24= pt*(cs - fP[2]*sn/r), m44=-pt*pt*(r*sn + fP[2]*cs);
1571 Double_t m35=pt, m45=-pt*pt*fP[3];
1572
854d5d49 1573 m43*=GetSign();
1574 m44*=GetSign();
1575 m45*=GetSign();
1576
c9ec41e8 1577 cv[0 ] = fC[0]*m00*m00;
1578 cv[1 ] = fC[0]*m00*m10;
1579 cv[2 ] = fC[0]*m10*m10;
1580 cv[3 ] = fC[1]*m00;
1581 cv[4 ] = fC[1]*m10;
1582 cv[5 ] = fC[2];
1583 cv[6 ] = m00*(fC[3]*m23 + fC[10]*m43);
1584 cv[7 ] = m10*(fC[3]*m23 + fC[10]*m43);
1585 cv[8 ] = fC[4]*m23 + fC[11]*m43;
1586 cv[9 ] = m23*(fC[5]*m23 + fC[12]*m43) + m43*(fC[12]*m23 + fC[14]*m43);
1587 cv[10] = m00*(fC[3]*m24 + fC[10]*m44);
1588 cv[11] = m10*(fC[3]*m24 + fC[10]*m44);
1589 cv[12] = fC[4]*m24 + fC[11]*m44;
1590 cv[13] = m23*(fC[5]*m24 + fC[12]*m44) + m43*(fC[12]*m24 + fC[14]*m44);
1591 cv[14] = m24*(fC[5]*m24 + fC[12]*m44) + m44*(fC[12]*m24 + fC[14]*m44);
1592 cv[15] = m00*(fC[6]*m35 + fC[10]*m45);
1593 cv[16] = m10*(fC[6]*m35 + fC[10]*m45);
1594 cv[17] = fC[7]*m35 + fC[11]*m45;
1595 cv[18] = m23*(fC[8]*m35 + fC[12]*m45) + m43*(fC[13]*m35 + fC[14]*m45);
1596 cv[19] = m24*(fC[8]*m35 + fC[12]*m45) + m44*(fC[13]*m35 + fC[14]*m45);
1597 cv[20] = m35*(fC[9]*m35 + fC[13]*m45) + m45*(fC[13]*m35 + fC[14]*m45);
51ad6848 1598
c9ec41e8 1599 return kTRUE;
51ad6848 1600}
1601
51ad6848 1602
c9ec41e8 1603Bool_t
1604AliExternalTrackParam::GetPxPyPzAt(Double_t x, Double_t b, Double_t *p) const {
1605 //---------------------------------------------------------------------
1606 // This function returns the global track momentum extrapolated to
1607 // the radial position "x" (cm) in the magnetic field "b" (kG)
1608 //---------------------------------------------------------------------
c9ec41e8 1609 p[0]=fP[4];
1530f89c 1610 p[1]=fP[2]+(x-fX)*GetC(b);
c9ec41e8 1611 p[2]=fP[3];
1612 return Local2GlobalMomentum(p,fAlpha);
51ad6848 1613}
1614
7cf7bb6c 1615Bool_t
1616AliExternalTrackParam::GetYAt(Double_t x, Double_t b, Double_t &y) const {
1617 //---------------------------------------------------------------------
1618 // This function returns the local Y-coordinate of the intersection
1619 // point between this track and the reference plane "x" (cm).
1620 // Magnetic field "b" (kG)
1621 //---------------------------------------------------------------------
1622 Double_t dx=x-fX;
1623 if(TMath::Abs(dx)<=kAlmost0) {y=fP[0]; return kTRUE;}
1624
1530f89c 1625 Double_t f1=fP[2], f2=f1 + dx*GetC(b);
7cf7bb6c 1626
1627 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
1628 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
1629
60e55aee 1630 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
7cf7bb6c 1631 y = fP[0] + dx*(f1+f2)/(r1+r2);
1632 return kTRUE;
1633}
1634
6c94f330 1635Bool_t
1636AliExternalTrackParam::GetZAt(Double_t x, Double_t b, Double_t &z) const {
1637 //---------------------------------------------------------------------
1638 // This function returns the local Z-coordinate of the intersection
1639 // point between this track and the reference plane "x" (cm).
1640 // Magnetic field "b" (kG)
1641 //---------------------------------------------------------------------
1642 Double_t dx=x-fX;
1643 if(TMath::Abs(dx)<=kAlmost0) {z=fP[1]; return kTRUE;}
1644
2258e165 1645 Double_t f1=fP[2], f2=f1 + dx*GetC(b);
6c94f330 1646
1647 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
1648 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
1649
60e55aee 1650 Double_t r1=sqrt((1.-f1)*(1.+f1)), r2=sqrt((1.-f2)*(1.+f2));
6c94f330 1651 z = fP[1] + dx*(r2 + f2*(f1+f2)/(r1+r2))*fP[3]; // Many thanks to P.Hristov !
1652 return kTRUE;
1653}
1654
c9ec41e8 1655Bool_t
1656AliExternalTrackParam::GetXYZAt(Double_t x, Double_t b, Double_t *r) const {
1657 //---------------------------------------------------------------------
1658 // This function returns the global track position extrapolated to
1659 // the radial position "x" (cm) in the magnetic field "b" (kG)
1660 //---------------------------------------------------------------------
c9ec41e8 1661 Double_t dx=x-fX;
e421f556 1662 if(TMath::Abs(dx)<=kAlmost0) return GetXYZ(r);
1663
1530f89c 1664 Double_t f1=fP[2], f2=f1 + dx*GetC(b);
c9ec41e8 1665
e421f556 1666 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
49d13e89 1667 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
c9ec41e8 1668
60e55aee 1669 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
c9ec41e8 1670 r[0] = x;
1671 r[1] = fP[0] + dx*(f1+f2)/(r1+r2);
f90a11c9 1672 r[2] = fP[1] + dx*(r2 + f2*(f1+f2)/(r1+r2))*fP[3];//Thanks to Andrea & Peter
1673
c9ec41e8 1674 return Local2GlobalPosition(r,fAlpha);
51ad6848 1675}
1676
51ad6848 1677//_____________________________________________________________________________
1678void AliExternalTrackParam::Print(Option_t* /*option*/) const
1679{
1680// print the parameters and the covariance matrix
1681
1682 printf("AliExternalTrackParam: x = %-12g alpha = %-12g\n", fX, fAlpha);
1683 printf(" parameters: %12g %12g %12g %12g %12g\n",
c9ec41e8 1684 fP[0], fP[1], fP[2], fP[3], fP[4]);
1685 printf(" covariance: %12g\n", fC[0]);
1686 printf(" %12g %12g\n", fC[1], fC[2]);
1687 printf(" %12g %12g %12g\n", fC[3], fC[4], fC[5]);
51ad6848 1688 printf(" %12g %12g %12g %12g\n",
c9ec41e8 1689 fC[6], fC[7], fC[8], fC[9]);
51ad6848 1690 printf(" %12g %12g %12g %12g %12g\n",
c9ec41e8 1691 fC[10], fC[11], fC[12], fC[13], fC[14]);
51ad6848 1692}
5b77d93c 1693
c194ba83 1694Double_t AliExternalTrackParam::GetSnpAt(Double_t x,Double_t b) const {
1695 //
1696 // Get sinus at given x
1697 //
1530f89c 1698 Double_t crv=GetC(b);
c194ba83 1699 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
1700 Double_t dx = x-fX;
1701 Double_t res = fP[2]+dx*crv;
1702 return res;
1703}
bf00ebb8 1704
1705Bool_t AliExternalTrackParam::GetDistance(AliExternalTrackParam *param2, Double_t x, Double_t dist[3], Double_t bz){
1706 //------------------------------------------------------------------------
1707 // Get the distance between two tracks at the local position x
1708 // working in the local frame of this track.
1709 // Origin : Marian.Ivanov@cern.ch
1710 //-----------------------------------------------------------------------
1711 Double_t xyz[3];
1712 Double_t xyz2[3];
1713 xyz[0]=x;
1714 if (!GetYAt(x,bz,xyz[1])) return kFALSE;
1715 if (!GetZAt(x,bz,xyz[2])) return kFALSE;
1716 //
1717 //
1718 if (TMath::Abs(GetAlpha()-param2->GetAlpha())<kAlmost0){
1719 xyz2[0]=x;
1720 if (!param2->GetYAt(x,bz,xyz2[1])) return kFALSE;
1721 if (!param2->GetZAt(x,bz,xyz2[2])) return kFALSE;
1722 }else{
1723 //
1724 Double_t xyz1[3];
1725 Double_t dfi = param2->GetAlpha()-GetAlpha();
1726 Double_t ca = TMath::Cos(dfi), sa = TMath::Sin(dfi);
1727 xyz2[0] = xyz[0]*ca+xyz[1]*sa;
1728 xyz2[1] = -xyz[0]*sa+xyz[1]*ca;
1729 //
1730 xyz1[0]=xyz2[0];
1731 if (!param2->GetYAt(xyz2[0],bz,xyz1[1])) return kFALSE;
1732 if (!param2->GetZAt(xyz2[0],bz,xyz1[2])) return kFALSE;
1733 //
1734 xyz2[0] = xyz1[0]*ca-xyz1[1]*sa;
1735 xyz2[1] = +xyz1[0]*sa+xyz1[1]*ca;
1736 xyz2[2] = xyz1[2];
1737 }
1738 dist[0] = xyz[0]-xyz2[0];
1739 dist[1] = xyz[1]-xyz2[1];
1740 dist[2] = xyz[2]-xyz2[2];
1741
1742 return kTRUE;
1743}
0c19adf7 1744
1745
1746//
1747// Draw functionality.
1748// Origin: Marian Ivanov, Marian.Ivanov@cern.ch
1749//
1750
1751void AliExternalTrackParam::DrawTrack(Float_t magf, Float_t minR, Float_t maxR, Float_t stepR){
1752 //
1753 // Draw track line
1754 //
1755 if (minR>maxR) return ;
1756 if (stepR<=0) return ;
1757 Int_t npoints = TMath::Nint((maxR-minR)/stepR)+1;
1758 if (npoints<1) return;
1759 TPolyMarker3D *polymarker = new TPolyMarker3D(npoints);
1760 FillPolymarker(polymarker, magf,minR,maxR,stepR);
1761 polymarker->Draw();
1762}
1763
1764//
1765void AliExternalTrackParam::FillPolymarker(TPolyMarker3D *pol, Float_t magF, Float_t minR, Float_t maxR, Float_t stepR){
1766 //
1767 // Fill points in the polymarker
1768 //
1769 Int_t counter=0;
1770 for (Double_t r=minR; r<maxR; r+=stepR){
1771 Double_t point[3];
1772 GetXYZAt(r,magF,point);
1773 pol->SetPoint(counter,point[0],point[1], point[2]);
1774 printf("xyz\t%f\t%f\t%f\n",point[0], point[1],point[2]);
1775 counter++;
1776 }
1777}
0e8460af 1778
1779Int_t AliExternalTrackParam::GetIndex(Int_t i, Int_t j) const {
1780 //
1781 Int_t min = TMath::Min(i,j);
1782 Int_t max = TMath::Max(i,j);
1783
1784 return min+(max+1)*max/2;
1785}
8b6e3369 1786
1787
1788void AliExternalTrackParam::g3helx3(Double_t qfield,
1789 Double_t step,
1790 Double_t vect[7]) {
1791/******************************************************************
1792 * *
1793 * GEANT3 tracking routine in a constant field oriented *
1794 * along axis 3 *
1795 * Tracking is performed with a conventional *
1796 * helix step method *
1797 * *
1798 * Authors R.Brun, M.Hansroul ********* *
1799 * Rewritten V.Perevoztchikov *
1800 * *
1801 * Rewritten in C++ by I.Belikov *
1802 * *
1803 * qfield (kG) - particle charge times magnetic field *
1804 * step (cm) - step length along the helix *
1805 * vect[7](cm,GeV/c) - input/output x, y, z, px/p, py/p ,pz/p, p *
1806 * *
1807 ******************************************************************/
1808 const Int_t ix=0, iy=1, iz=2, ipx=3, ipy=4, ipz=5, ipp=6;
bfd20868 1809 const Double_t kOvSqSix=TMath::Sqrt(1./6.);
8b6e3369 1810
1811 Double_t cosx=vect[ipx], cosy=vect[ipy], cosz=vect[ipz];
1812
1813 Double_t rho = qfield*kB2C/vect[ipp];
1814 Double_t tet = rho*step;
1815
1816 Double_t tsint, sintt, sint, cos1t;
1817 if (TMath::Abs(tet) > 0.15) {
1818 sint = TMath::Sin(tet);
1819 sintt = sint/tet;
1820 tsint = (tet - sint)/tet;
1821 Double_t t=TMath::Sin(0.5*tet);
1822 cos1t = 2*t*t/tet;
1823 } else {
1824 tsint = tet*tet/6.;
bfd20868 1825 sintt = (1.-tet*kOvSqSix)*(1.+tet*kOvSqSix); // 1.- tsint;
8b6e3369 1826 sint = tet*sintt;
1827 cos1t = 0.5*tet;
1828 }
1829
1830 Double_t f1 = step*sintt;
1831 Double_t f2 = step*cos1t;
1832 Double_t f3 = step*tsint*cosz;
1833 Double_t f4 = -tet*cos1t;
1834 Double_t f5 = sint;
1835
1836 vect[ix] += f1*cosx - f2*cosy;
1837 vect[iy] += f1*cosy + f2*cosx;
1838 vect[iz] += f1*cosz + f3;
1839
1840 vect[ipx] += f4*cosx - f5*cosy;
1841 vect[ipy] += f4*cosy + f5*cosx;
1842
1843}
1844
1845Bool_t AliExternalTrackParam::PropagateToBxByBz(Double_t xk, const Double_t b[3]) {
1846 //----------------------------------------------------------------
1847 // Extrapolate this track to the plane X=xk in the field b[].
1848 //
1849 // X [cm] is in the "tracking coordinate system" of this track.
1850 // b[]={Bx,By,Bz} [kG] is in the Global coordidate system.
1851 //----------------------------------------------------------------
1852
1853 Double_t dx=xk-fX;
1854 if (TMath::Abs(dx)<=kAlmost0) return kTRUE;
1855
1856 Double_t crv=GetC(b[2]);
1857 if (TMath::Abs(b[2]) < kAlmost0Field) crv=0.;
1858
1859 Double_t f1=fP[2], f2=f1 + crv*dx;
1860 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
1861 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
1862
1863
1864 // Estimate the covariance matrix
1865 Double_t &fP3=fP[3], &fP4=fP[4];
1866 Double_t
1867 &fC00=fC[0],
1868 &fC10=fC[1], &fC11=fC[2],
1869 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
1870 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
1871 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
1872
bfd20868 1873 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
8b6e3369 1874
1875 //f = F - 1
1876 Double_t f02= dx/(r1*r1*r1); Double_t cc=crv/fP4;
1877 Double_t f04=0.5*dx*dx/(r1*r1*r1); f04*=cc;
1878 Double_t f12= dx*fP3*f1/(r1*r1*r1);
1879 Double_t f14=0.5*dx*dx*fP3*f1/(r1*r1*r1); f14*=cc;
1880 Double_t f13= dx/r1;
1881 Double_t f24= dx; f24*=cc;
1882
1883 //b = C*ft
1884 Double_t b00=f02*fC20 + f04*fC40, b01=f12*fC20 + f14*fC40 + f13*fC30;
1885 Double_t b02=f24*fC40;
1886 Double_t b10=f02*fC21 + f04*fC41, b11=f12*fC21 + f14*fC41 + f13*fC31;
1887 Double_t b12=f24*fC41;
1888 Double_t b20=f02*fC22 + f04*fC42, b21=f12*fC22 + f14*fC42 + f13*fC32;
1889 Double_t b22=f24*fC42;
1890 Double_t b40=f02*fC42 + f04*fC44, b41=f12*fC42 + f14*fC44 + f13*fC43;
1891 Double_t b42=f24*fC44;
1892 Double_t b30=f02*fC32 + f04*fC43, b31=f12*fC32 + f14*fC43 + f13*fC33;
1893 Double_t b32=f24*fC43;
1894
1895 //a = f*b = f*C*ft
1896 Double_t a00=f02*b20+f04*b40,a01=f02*b21+f04*b41,a02=f02*b22+f04*b42;
1897 Double_t a11=f12*b21+f14*b41+f13*b31,a12=f12*b22+f14*b42+f13*b32;
1898 Double_t a22=f24*b42;
1899
1900 //F*C*Ft = C + (b + bt + a)
1901 fC00 += b00 + b00 + a00;
1902 fC10 += b10 + b01 + a01;
1903 fC20 += b20 + b02 + a02;
1904 fC30 += b30;
1905 fC40 += b40;
1906 fC11 += b11 + b11 + a11;
1907 fC21 += b21 + b12 + a12;
1908 fC31 += b31;
1909 fC41 += b41;
1910 fC22 += b22 + b22 + a22;
1911 fC32 += b32;
1912 fC42 += b42;
1913
86be8934 1914 CheckCovariance();
8b6e3369 1915
1916 // Appoximate step length
1917 Double_t step=dx*TMath::Abs(r2 + f2*(f1+f2)/(r1+r2));
1918 step *= TMath::Sqrt(1.+ GetTgl()*GetTgl());
1919
1920
1921 // Get the track's (x,y,z) and (px,py,pz) in the Global System
1922 Double_t r[3]; GetXYZ(r);
1923 Double_t p[3]; GetPxPyPz(p);
1924 Double_t pp=GetP();
1925 p[0] /= pp;
1926 p[1] /= pp;
1927 p[2] /= pp;
1928
1929
1930 // Rotate to the system where Bx=By=0.
1931 Double_t bt=TMath::Sqrt(b[0]*b[0] + b[1]*b[1]);
1932 Double_t cosphi=1., sinphi=0.;
1933 if (bt > kAlmost0) {cosphi=b[0]/bt; sinphi=b[1]/bt;}
1934 Double_t bb=TMath::Sqrt(b[0]*b[0] + b[1]*b[1] + b[2]*b[2]);
1935 Double_t costet=1., sintet=0.;
1936 if (bb > kAlmost0) {costet=b[2]/bb; sintet=bt/bb;}
1937 Double_t vect[7];
1938
1939 vect[0] = costet*cosphi*r[0] + costet*sinphi*r[1] - sintet*r[2];
1940 vect[1] = -sinphi*r[0] + cosphi*r[1];
1941 vect[2] = sintet*cosphi*r[0] + sintet*sinphi*r[1] + costet*r[2];
1942
1943 vect[3] = costet*cosphi*p[0] + costet*sinphi*p[1] - sintet*p[2];
1944 vect[4] = -sinphi*p[0] + cosphi*p[1];
1945 vect[5] = sintet*cosphi*p[0] + sintet*sinphi*p[1] + costet*p[2];
1946
1947 vect[6] = pp;
1948
1949
1950 // Do the helix step
1951 g3helx3(GetSign()*bb,step,vect);
1952
1953
1954 // Rotate back to the Global System
1955 r[0] = cosphi*costet*vect[0] - sinphi*vect[1] + cosphi*sintet*vect[2];
1956 r[1] = sinphi*costet*vect[0] + cosphi*vect[1] + sinphi*sintet*vect[2];
1957 r[2] = -sintet*vect[0] + costet*vect[2];
1958
1959 p[0] = cosphi*costet*vect[3] - sinphi*vect[4] + cosphi*sintet*vect[5];
1960 p[1] = sinphi*costet*vect[3] + cosphi*vect[4] + sinphi*sintet*vect[5];
1961 p[2] = -sintet*vect[3] + costet*vect[5];
1962
1963
1964 // Rotate back to the Tracking System
1965 Double_t cosalp = TMath::Cos(fAlpha);
1966 Double_t sinalp =-TMath::Sin(fAlpha);
1967
1968 Double_t
1969 t = cosalp*r[0] - sinalp*r[1];
1970 r[1] = sinalp*r[0] + cosalp*r[1];
1971 r[0] = t;
1972
1973 t = cosalp*p[0] - sinalp*p[1];
1974 p[1] = sinalp*p[0] + cosalp*p[1];
1975 p[0] = t;
1976
1977
1978 // Do the final correcting step to the target plane (linear approximation)
1979 Double_t x=r[0], y=r[1], z=r[2];
1980 if (TMath::Abs(dx) > kAlmost0) {
1981 if (TMath::Abs(p[0]) < kAlmost0) return kFALSE;
1982 dx = xk - r[0];
1983 x += dx;
1984 y += p[1]/p[0]*dx;
1985 z += p[2]/p[0]*dx;
1986 }
1987
1988
1989 // Calculate the track parameters
1990 t=TMath::Sqrt(p[0]*p[0] + p[1]*p[1]);
1991 fX = x;
1992 fP[0] = y;
1993 fP[1] = z;
1994 fP[2] = p[1]/t;
1995 fP[3] = p[2]/t;
1996 fP[4] = GetSign()/(t*pp);
1997
1998 return kTRUE;
1999}
2000
cfdb62d4 2001Bool_t AliExternalTrackParam::Translate(Double_t *vTrasl,Double_t *covV){
2002 //
2003 //Translation: in the event mixing, the tracks can be shifted
2004 //of the difference among primary vertices (vTrasl) and
2005 //the covariance matrix is changed accordingly
2006 //(covV = covariance of the primary vertex).
2007 //Origin: "Romita, Rossella" <R.Romita@gsi.de>
2008 //
2009 TVector3 translation;
2010 // vTrasl coordinates in the local system
2011 translation.SetXYZ(vTrasl[0],vTrasl[1],vTrasl[2]);
2012 translation.RotateZ(-fAlpha);
2013 translation.GetXYZ(vTrasl);
2014
2015 //compute the new x,y,z of the track
5a87bb3d 2016 Double_t newX=fX-vTrasl[0];
2017 Double_t newY=fP[0]-vTrasl[1];
2018 Double_t newZ=fP[1]-vTrasl[2];
cfdb62d4 2019
2020 //define the new parameters
5a87bb3d 2021 Double_t newParam[5];
2022 newParam[0]=newY;
2023 newParam[1]=newZ;
2024 newParam[2]=fP[2];
2025 newParam[3]=fP[3];
2026 newParam[4]=fP[4];
cfdb62d4 2027
2028 // recompute the covariance matrix:
2029 // 1. covV in the local system
2030 Double_t cosRot=TMath::Cos(fAlpha), sinRot=TMath::Sin(fAlpha);
2031 TMatrixD qQi(3,3);
2032 qQi(0,0) = cosRot;
2033 qQi(0,1) = sinRot;
2034 qQi(0,2) = 0.;
2035 qQi(1,0) = -sinRot;
2036 qQi(1,1) = cosRot;
2037 qQi(1,2) = 0.;
2038 qQi(2,0) = 0.;
2039 qQi(2,1) = 0.;
2040 qQi(2,2) = 1.;
2041 TMatrixD uUi(3,3);
2042 uUi(0,0) = covV[0];
2043 uUi(0,0) = covV[0];
2044 uUi(1,0) = covV[1];
2045 uUi(0,1) = covV[1];
2046 uUi(2,0) = covV[3];
2047 uUi(0,2) = covV[3];
2048 uUi(1,1) = covV[2];
2049 uUi(2,2) = covV[5];
2050 uUi(1,2) = covV[4];
2051 if(uUi.Determinant() <= 0.) {return kFALSE;}
2052 TMatrixD uUiQi(uUi,TMatrixD::kMult,qQi);
2053 TMatrixD m(qQi,TMatrixD::kTransposeMult,uUiQi);
2054
2055 //2. compute the new covariance matrix of the track
2056 Double_t sigmaXX=m(0,0);
2057 Double_t sigmaXZ=m(2,0);
2058 Double_t sigmaXY=m(1,0);
2059 Double_t sigmaYY=GetSigmaY2()+m(1,1);
2060 Double_t sigmaYZ=fC[1]+m(1,2);
2061 Double_t sigmaZZ=fC[2]+m(2,2);
2062 Double_t covarianceYY=sigmaYY + (-1.)*((sigmaXY*sigmaXY)/sigmaXX);
2063 Double_t covarianceYZ=sigmaYZ-(sigmaXZ*sigmaXY/sigmaXX);
2064 Double_t covarianceZZ=sigmaZZ-((sigmaXZ*sigmaXZ)/sigmaXX);
2065
2066 Double_t newCov[15];
2067 newCov[0]=covarianceYY;
2068 newCov[1]=covarianceYZ;
2069 newCov[2]=covarianceZZ;
2070 for(Int_t i=3;i<15;i++){
2071 newCov[i]=fC[i];
2072 }
2073
2074 // set the new parameters
2075
5a87bb3d 2076 Set(newX,fAlpha,newParam,newCov);
cfdb62d4 2077
2078 return kTRUE;
2079 }
86be8934 2080
2081void AliExternalTrackParam::CheckCovariance() {
2082
2083 // This function forces the diagonal elements of the covariance matrix to be positive.
2084 // In case the diagonal element is bigger than the maximal allowed value, it is set to
2085 // the limit and the off-diagonal elements that correspond to it are set to zero.
2086
2087 fC[0] = TMath::Abs(fC[0]);
2088 if (fC[0]>kC0max) {
2089 fC[0] = kC0max;
2090 fC[1] = 0;
2091 fC[3] = 0;
2092 fC[6] = 0;
2093 fC[10] = 0;
2094 }
2095 fC[2] = TMath::Abs(fC[2]);
2096 if (fC[2]>kC2max) {
2097 fC[2] = kC2max;
2098 fC[1] = 0;
2099 fC[4] = 0;
2100 fC[7] = 0;
2101 fC[11] = 0;
2102 }
2103 fC[5] = TMath::Abs(fC[5]);
2104 if (fC[5]>kC5max) {
2105 fC[5] = kC5max;
2106 fC[3] = 0;
2107 fC[4] = 0;
2108 fC[8] = 0;
2109 fC[12] = 0;
2110 }
2111 fC[9] = TMath::Abs(fC[9]);
2112 if (fC[9]>kC9max) {
2113 fC[9] = kC9max;
2114 fC[6] = 0;
2115 fC[7] = 0;
2116 fC[8] = 0;
2117 fC[13] = 0;
2118 }
2119 fC[14] = TMath::Abs(fC[14]);
2120 if (fC[14]>kC14max) {
2121 fC[14] = kC14max;
2122 fC[10] = 0;
2123 fC[11] = 0;
2124 fC[12] = 0;
2125 fC[13] = 0;
2126 }
2127
2128 // The part below is used for tests and normally is commented out
2129// TMatrixDSym m(5);
2130// TVectorD eig(5);
2131
2132// m(0,0)=fC[0];
2133// m(1,0)=fC[1]; m(1,1)=fC[2];
2134// m(2,0)=fC[3]; m(2,1)=fC[4]; m(2,2)=fC[5];
2135// m(3,0)=fC[6]; m(3,1)=fC[7]; m(3,2)=fC[8]; m(3,3)=fC[9];
2136// m(4,0)=fC[10]; m(4,1)=fC[11]; m(4,2)=fC[12]; m(4,3)=fC[13]; m(4,4)=fC[14];
2137
2138// m(0,1)=m(1,0);
2139// m(0,2)=m(2,0); m(1,2)=m(2,1);
2140// m(0,3)=m(3,0); m(1,3)=m(3,1); m(2,3)=m(3,2);
2141// m(0,4)=m(4,0); m(1,4)=m(4,1); m(2,4)=m(4,2); m(3,4)=m(4,3);
2142// m.EigenVectors(eig);
2143
2144// // assert(eig(0)>=0 && eig(1)>=0 && eig(2)>=0 && eig(3)>=0 && eig(4)>=0);
2145// if (!(eig(0)>=0 && eig(1)>=0 && eig(2)>=0 && eig(3)>=0 && eig(4)>=0)) {
2146// AliWarning("Negative eigenvalues of the covariance matrix!");
2147// this->Print();
2148// eig.Print();
2149// }
2150}