]> git.uio.no Git - u/mrichter/AliRoot.git/blame - STEER/AliLego.cxx
Check status code of particles in Pythia event
[u/mrichter/AliRoot.git] / STEER / AliLego.cxx
CommitLineData
4c039060 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
ee1dd322 18Revision 1.10 2000/02/23 16:25:22 fca
19AliVMC and AliGeant3 classes introduced
20ReadEuclid moved from AliRun to AliModule
21
b13db077 22Revision 1.9 1999/12/03 10:54:01 fca
23Fix lego summary
24
00719c1b 25Revision 1.8 1999/10/01 09:54:33 fca
26Correct logics for Lego StepManager
27
f059c84a 28Revision 1.7 1999/09/29 09:24:29 fca
29Introduction of the Copyright and cvs Log
30
4c039060 31*/
32
fe4da5cc 33//////////////////////////////////////////////////////////////
34//////////////////////////////////////////////////////////////
35//
36// Utility class to evaluate the material budget from
37// a given radius to the surface of an arbitrary cylinder
38// along radial directions from the centre:
39//
40// - radiation length
41// - Interaction length
42// - g/cm2
43//
44// Geantinos are shot in the bins in the fNtheta bins in theta
45// and fNphi bins in phi with specified rectangular limits.
46// The statistics are accumulated per
47// fRadMin < r < fRadMax and <0 < z < fZMax
48//
49// To activate this option, you can do:
50// Root > gAlice.RunLego();
51// or Root > .x menu.C then select menu item "RunLego"
52// Note that when calling gAlice->RunLego, an optional list
53// of arguments may be specified.
54//
55//Begin_Html
56/*
1439f98e 57<img src="picts/alilego.gif">
fe4da5cc 58*/
59//End_Html
60//
61//////////////////////////////////////////////////////////////
62
63#include "TMath.h"
1578254f 64#include "AliLego.h"
fe4da5cc 65#include "AliRun.h"
66#include "AliConst.h"
b13db077 67#include "AliVMC.h"
fe4da5cc 68
69ClassImp(AliLego)
70
71
72//___________________________________________
73AliLego::AliLego()
74{
75 fHistRadl = 0;
76 fHistAbso = 0;
77 fHistGcm2 = 0;
78 fHistReta = 0;
79}
80
81//___________________________________________
b13db077 82AliLego::AliLego(const char *title, Int_t ntheta, Float_t themin, Float_t themax,
83 Int_t nphi, Float_t phimin, Float_t phimax,
84 Float_t rmin, Float_t rmax, Float_t zmax)
85 : TNamed("Lego Generator",title)
fe4da5cc 86{
b13db077 87// specify the angular limits and the size of the rectangular box
88
89 fGener = new AliLegoGenerator(ntheta, themin, themax,
90 nphi, phimin, phimax, rmin, rmax, zmax);
91
ee1dd322 92 gAlice->ResetGenerator(fGener);
b13db077 93
94 Float_t etamin = -TMath::Log(TMath::Tan(TMath::Min((Double_t)themax*kDegrad/2,TMath::Pi()/2-1.e-10)));
95 Float_t etamax = -TMath::Log(TMath::Tan(TMath::Max((Double_t)themin*kDegrad/2, 1.e-10)));
96
97 fHistRadl = new TH2F("hradl","Radiation length map",
98 nphi,phimin,phimax,ntheta,themin,themax);
99 fHistAbso = new TH2F("habso","Interaction length map",
100 nphi,phimin,phimax,ntheta,themin,themax);
101 fHistGcm2 = new TH2F("hgcm2","g/cm2 length map",
102 nphi,phimin,phimax,ntheta,themin,themax);
103 fHistReta = new TH2F("hetar","Radiation length vs. eta",
104 nphi,phimin,phimax,ntheta,etamin,etamax);
105
fe4da5cc 106}
107
108//___________________________________________
109AliLego::~AliLego()
110{
111 delete fHistRadl;
112 delete fHistAbso;
113 delete fHistGcm2;
114 delete fHistReta;
115}
116
b13db077 117
118//___________________________________________
119void AliLego::Run()
120{
121 // loop on phi,theta bins
122 gMC->InitLego();
123 Float_t thed, phid, eta;
124 for (Int_t i=0; i<=fGener->Nphi()*fGener->Ntheta(); ++i) {
125// --- Set to 0 radiation length, absorption length and g/cm2 ---
126 fTotRadl = 0;
127 fTotAbso = 0;
128 fTotGcm2 = 0;
129
130 gVMC->ProcessEvent();
131
132 thed = fGener->CurTheta()*kRaddeg;
133 phid = fGener->CurPhi()*kRaddeg;
134 eta = -TMath::Log(TMath::Tan(TMath::Max(
135 TMath::Min((Double_t)(fGener->CurTheta())/2,
136 TMath::Pi()/2-1.e-10),1.e-10)));
137
138 fHistRadl->Fill(phid,thed,fTotRadl);
139 fHistAbso->Fill(phid,thed,fTotAbso);
140 fHistGcm2->Fill(phid,thed,fTotGcm2);
141 fHistReta->Fill(phid,eta,fTotRadl);
142 gAlice->FinishEvent();
143 }
144 // store histograms in current Root file
145 fHistRadl->Write();
146 fHistAbso->Write();
147 fHistGcm2->Write();
148 fHistReta->Write();
149}
150
151//___________________________________________
152void AliLego::StepManager()
153{
154// called from AliRun::Stepmanager from gustep.
155// Accumulate the 3 parameters step by step
156
157 static Float_t t;
158 Float_t a,z,dens,radl,absl;
159 Int_t i;
160
161 Float_t step = gMC->TrackStep();
162
163 Float_t vect[3], dir[3];
164 TLorentzVector pos, mom;
165
166 gMC->TrackPosition(pos);
167 gMC->TrackMomentum(mom);
168 gMC->CurrentMaterial(a,z,dens,radl,absl);
169
170 if (z < 1) return;
171
172// --- See if we have to stop now
173 if (TMath::Abs(pos[2]) > fGener->ZMax() ||
174 pos[0]*pos[0] +pos[1]*pos[1] > fGener->RadMax()*fGener->RadMax()) {
175 if (gMC->TrackLength()) {
176 // Not the first step, add past contribution
177 fTotAbso += t/absl;
178 fTotRadl += t/radl;
179 fTotGcm2 += t*dens;
180 }
181 gMC->StopTrack();
182 return;
183 }
184
185// --- See how long we have to go
186 for(i=0;i<3;++i) {
187 vect[i]=pos[i];
188 dir[i]=mom[i];
189 }
190
191 t = fGener->PropagateCylinder(vect,dir,fGener->RadMax(),fGener->ZMax());
192
193 if(step) {
194 fTotAbso += step/absl;
195 fTotRadl += step/radl;
196 fTotGcm2 += step*dens;
197 }
198}
199
200ClassImp(AliLegoGenerator)
201
202//___________________________________________
203AliLegoGenerator::AliLegoGenerator(Int_t ntheta, Float_t themin,
204 Float_t themax, Int_t nphi,
205 Float_t phimin, Float_t phimax,
206 Float_t rmin, Float_t rmax, Float_t zmax) :
207 AliGenerator(0), fRadMin(rmin), fRadMax(rmax), fZMax(zmax), fNtheta(ntheta),
208 fNphi(nphi), fThetaBin(ntheta), fPhiBin(-1), fCurTheta(0), fCurPhi(0)
209
210{
211 SetPhiRange(phimin,phimax);
212 SetThetaRange(themin,themax);
213 SetName("Lego");
214}
215
216
fe4da5cc 217//___________________________________________
b13db077 218void AliLegoGenerator::Generate()
fe4da5cc 219{
220// Create a geantino with kinematics corresponding to the current
221// bins in theta and phi.
222
1578254f 223 //
224 // Rootinos are 0
225 const Int_t mpart = 0;
fe4da5cc 226 Float_t orig[3], pmom[3];
227 Float_t t, cost, sint, cosp, sinp;
228
b13db077 229 // Prepare for next step
230 if(fThetaBin>=fNtheta-1)
231 if(fPhiBin>=fNphi-1) {
232 Warning("Generate","End of Lego Generation");
233 return;
234 } else {
235 fPhiBin++;
236 printf("Generating rays in phi bin:%d\n",fPhiBin);
237 fThetaBin=0;
238 } else fThetaBin++;
fe4da5cc 239
b13db077 240 fCurTheta = (fThetaMin+(fThetaBin+0.5)*(fThetaMax-fThetaMin)/fNtheta);
241 fCurPhi = (fPhiMin+(fPhiBin+0.5)*(fPhiMax-fPhiMin)/fNphi);
fe4da5cc 242 cost = TMath::Cos(fCurTheta);
243 sint = TMath::Sin(fCurTheta);
244 cosp = TMath::Cos(fCurPhi);
245 sinp = TMath::Sin(fCurPhi);
b13db077 246
fe4da5cc 247 pmom[0] = cosp*sint;
248 pmom[1] = sinp*sint;
249 pmom[2] = cost;
b13db077 250
251 // --- Where to start
fe4da5cc 252 orig[0] = orig[1] = orig[2] = 0;
253 Float_t dalicz = 3000;
254 if (fRadMin > 0) {
b13db077 255 t = PropagateCylinder(orig,pmom,fRadMin,dalicz);
256 orig[0] = pmom[0]*t;
257 orig[1] = pmom[1]*t;
258 orig[2] = pmom[2]*t;
259 if (TMath::Abs(orig[2]) > fZMax) return;
fe4da5cc 260 }
b13db077 261
fe4da5cc 262 Float_t polar[3]={0.,0.,0.};
263 Int_t ntr;
264 gAlice->SetTrack(1, 0, mpart, pmom, orig, polar, 0, "LEGO ray", ntr);
fe4da5cc 265
266}
267
268//___________________________________________
b13db077 269Float_t AliLegoGenerator::PropagateCylinder(Float_t *x, Float_t *v, Float_t r, Float_t z)
fe4da5cc 270{
271// Propagate to cylinder from inside
272
273 Double_t hnorm, sz, t, t1, t2, t3, sr;
274 Double_t d[3];
275 const Float_t kSmall = 1e-8;
276 const Float_t kSmall2 = kSmall*kSmall;
277
278// ---> Find intesection with Z planes
279 d[0] = v[0];
280 d[1] = v[1];
281 d[2] = v[2];
282 hnorm = TMath::Sqrt(1/(d[0]*d[0]+d[1]*d[1]+d[2]*d[2]));
283 d[0] *= hnorm;
284 d[1] *= hnorm;
285 d[2] *= hnorm;
286 if (d[2] > kSmall) sz = (z-x[2])/d[2];
287 else if (d[2] < -kSmall) sz = -(z+x[2])/d[2];
288 else sz = 1.e10; // ---> Direction parallel to X-Y, no intersection
289
290// ---> Intersection with cylinders
291// Intersection point (x,y,z)
292// (x,y,z) is on track : x=X(1)+t*D(1)
293// y=X(2)+t*D(2)
294// z=X(3)+t*D(3)
295// (x,y,z) is on cylinder : x**2 + y**2 = R**2
296//
297// (D(1)**2+D(2)**2)*t**2
298// +2.*(X(1)*D(1)+X(2)*D(2))*t
299// +X(1)**2+X(2)**2-R**2=0
300// ---> Solve second degree equation
301 t1 = d[0]*d[0] + d[1]*d[1];
302 if (t1 <= kSmall2) {
303 t = sz; // ---> Track parallel to the z-axis, take distance to planes
304 } else {
305 t2 = x[0]*d[0] + x[1]*d[1];
306 t3 = x[0]*x[0] + x[1]*x[1];
307 // ---> It should be positive, but there may be numerical problems
308 sr = (t2 +TMath::Sqrt(TMath::Max(t2*t2-(t3-r*r)*t1,0.)))/t1;
309 // ---> Find minimum distance between planes and cylinder
310 t = TMath::Min(sz,sr);
311 }
312 return t;
313}
314