]> git.uio.no Git - u/mrichter/AliRoot.git/blame - STEER/STEERBase/AliITSPIDResponse.cxx
Merge branch 'master' into TPCdev
[u/mrichter/AliRoot.git] / STEER / STEERBase / AliITSPIDResponse.cxx
CommitLineData
10d100d4 1/**************************************************************************
2 * Copyright(c) 2005-2007, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18//-----------------------------------------------------------------
19// ITS PID method # 1
20// Implementation of the ITS PID class
21// Very naive one... Should be made better by the detector experts...
22// Origin: Iouri Belikov, CERN, Jouri.Belikov@cern.ch
23//-----------------------------------------------------------------
24#include "TMath.h"
567624b5 25#include "AliVTrack.h"
10d100d4 26#include "AliITSPIDResponse.h"
27#include "AliITSPidParams.h"
28#include "AliExternalTrackParam.h"
29
10d100d4 30ClassImp(AliITSPIDResponse)
31
15e979c9 32AliITSPIDResponse::AliITSPIDResponse(Bool_t isMC):
10d100d4 33 fRes(0.13),
34 fKp1(15.77),
35 fKp2(4.95),
36 fKp3(0.312),
37 fKp4(2.14),
38 fKp5(0.82)
39{
15e979c9 40 if(!isMC){
41 fBBtpcits[0]=0.73;
42 fBBtpcits[1]=14.68;
43 fBBtpcits[2]=0.905;
44 fBBtpcits[3]=1.2;
45 fBBtpcits[4]=6.6;
41cab740 46 fBBdeu[0]=76.43; // parameters for the deuteron - tpcits - value from PbPb 2010 run (S.Trogolo - July 2014)
47 fBBdeu[1]=-34.21;
48 fBBdeu[2]=113.2;
49 fBBdeu[3]=-18.12;
50 fBBdeu[4]=0.6019;
51 fBBtri[0]=13.34; // parameters for the triton - tpcits - value from PbPb 2010 run (S.Trogolo - July 2014)
52 fBBtri[1]=55.17;
53 fBBtri[2]=66.41;
54 fBBtri[3]=-6.601;
55 fBBtri[4]=-0.4134;
62ccfebf 56 fBBsa[0]=2.73198E7; //pure PHOBOS parameterization
88f46717 57 fBBsa[1]=6.92389;
58 fBBsa[2]=1.90088E-6;
59 fBBsa[3]=1.90088E-6;
60 fBBsa[4]=3.40644E-7;
62ccfebf 61 fBBsaHybrid[0]=1.43505E7; //PHOBOS+Polinomial parameterization
62 fBBsaHybrid[1]=49.3402;
63 fBBsaHybrid[2]=1.77741E-7;
64 fBBsaHybrid[3]=1.77741E-7;
65 fBBsaHybrid[4]=1.01311E-7;
66 fBBsaHybrid[5]=77.2777;
67 fBBsaHybrid[6]=33.4099;
68 fBBsaHybrid[7]=46.0089;
69 fBBsaHybrid[8]=-2.26583;
70 fBBsaElectron[0]=4.05799E6; //electrons in the ITS
88f46717 71 fBBsaElectron[1]=38.5713;
72 fBBsaElectron[2]=1.46462E-7;
73 fBBsaElectron[3]=1.46462E-7;
74 fBBsaElectron[4]=4.40284E-7;
8abeb05b 75 fResolSA[0]=1.; // 0 cluster tracks should not be used
88f46717 76 fResolSA[1]=0.25; // rough values for tracks with 1
77 fResolSA[2]=0.131; // value from pp 2010 run (L. Milano, 16-Jun-11)
78 fResolSA[3]=0.113; // value from pp 2010 run
8abeb05b 79 fResolSA[4]=0.104; // value from pp 2010 run
15e979c9 80 for(Int_t i=0; i<5;i++) fResolTPCITS[i]=0.13;
41cab740 81 fResolTPCITSDeu3[0]=0.06918; // deuteron resolution vs p
82 fResolTPCITSDeu3[1]=0.02498; // 3 ITS clusters for PId
83 fResolTPCITSDeu3[2]=1.1; // value from PbPb 2010 run (July 2014)
84 fResolTPCITSDeu4[0]=0.06756;// deuteron resolution vs p
85 fResolTPCITSDeu4[1]=0.02078; // 4 ITS clusters for PId
86 fResolTPCITSDeu4[2]=1.05; // value from PbPb 2010 run (July 2014)
87 fResolTPCITSTri3[0]=0.07239; // triton resolution vs p
88 fResolTPCITSTri3[1]=0.0192; // 3 ITS clusters for PId
89 fResolTPCITSTri3[2]=1.1; // value from PbPb 2010 run (July 2014)
90 fResolTPCITSTri4[0]=0.06083; // triton resolution
91 fResolTPCITSTri4[1]=0.02579; // 4 ITS clusters for PId
92 fResolTPCITSTri4[2]=1.15; // value from PbPb 2010 run (July 2014)
15e979c9 93 }else{
99daa709 94 fBBtpcits[0]=1.04;
95 fBBtpcits[1]=27.14;
96 fBBtpcits[2]=1.00;
97 fBBtpcits[3]=0.964;
98 fBBtpcits[4]=2.59;
62ccfebf 99 fBBsa[0]=2.02078E7; //pure PHOBOS parameterization
88f46717 100 fBBsa[1]=14.0724;
101 fBBsa[2]=3.84454E-7;
102 fBBsa[3]=3.84454E-7;
103 fBBsa[4]=2.43913E-7;
62ccfebf 104 fBBsaHybrid[0]=1.05381E7; //PHOBOS+Polinomial parameterization
105 fBBsaHybrid[1]=89.3933;
106 fBBsaHybrid[2]=2.4831E-7;
107 fBBsaHybrid[3]=2.4831E-7;
108 fBBsaHybrid[4]=7.80591E-8;
109 fBBsaHybrid[5]=62.9214;
110 fBBsaHybrid[6]=32.347;
111 fBBsaHybrid[7]=58.7661;
112 fBBsaHybrid[8]=-3.39869;
113 fBBsaElectron[0]=2.26807E6; //electrons in the ITS
88f46717 114 fBBsaElectron[1]=99.985;
115 fBBsaElectron[2]=0.000714841;
116 fBBsaElectron[3]=0.000259585;
117 fBBsaElectron[4]=1.39412E-7;
8abeb05b 118 fResolSA[0]=1.; // 0 cluster tracks should not be used
88f46717 119 fResolSA[1]=0.25; // rough values for tracks with 1
120 fResolSA[2]=0.126; // value from pp 2010 simulations (L. Milano, 16-Jun-11)
121 fResolSA[3]=0.109; // value from pp 2010 simulations
122 fResolSA[4]=0.097; // value from pp 2010 simulations
15e979c9 123 for(Int_t i=0; i<5;i++) fResolTPCITS[i]=0.13;
124 }
10d100d4 125}
126
56576f1e 127/*
10d100d4 128//_________________________________________________________________________
129AliITSPIDResponse::AliITSPIDResponse(Double_t *param):
9ebbddd4 130 fRes(param[0]),
10d100d4 131 fKp1(15.77),
132 fKp2(4.95),
133 fKp3(0.312),
134 fKp4(2.14),
135 fKp5(0.82)
136{
137 //
138 // The main constructor
139 //
6b4634a4 140 for (Int_t i=0; i<5;i++) {
141 fBBsa[i]=0.;
142 fBBtpcits[i]=0.;
143 fResolSA[i]=0.;
144 fResolTPCITS[i]=0.;
145 }
10d100d4 146}
56576f1e 147*/
10d100d4 148
8abeb05b 149//_________________________________________________________________________
15e979c9 150Double_t AliITSPIDResponse::BetheAleph(Double_t p, Double_t mass) const {
10d100d4 151 //
152 // returns AliExternalTrackParam::BetheBloch normalized to
153 // fgMIP at the minimum
154 //
15e979c9 155
10d100d4 156 Double_t bb=
157 AliExternalTrackParam::BetheBlochAleph(p/mass,fKp1,fKp2,fKp3,fKp4,fKp5);
9ebbddd4 158 return bb;
10d100d4 159}
160
4bd62e52 161//_________________________________________________________________________
162Double_t AliITSPIDResponse::Bethe(Double_t bg, const Double_t * const par, Bool_t isNuclei) const
163{
164
165 const Double_t beta = bg/TMath::Sqrt(1.+ bg*bg);
166 const Double_t gamma=bg/beta;
167 Double_t bb=1.;
168
169 Double_t eff=1.0;
170 if(bg<par[2])
171 eff=(bg-par[3])*(bg-par[3])+par[4];
172 else
173 eff=(par[2]-par[3])*(par[2]-par[3])+par[4];
174
175 if(gamma>=0. && beta>0.){
176 if(isNuclei){
177 //Parameterization for deuteron between 0.4 - 1.5 GeV/c; triton between 0.58 - 1.65 GeV/c
178 bb=par[0] + par[1]/bg + par[2]/(bg*bg) + par[3]/(bg*bg*bg) + par[4]/(bg*bg*bg*bg);
179 }else{ //Parameterization for pion, kaon, proton, electron
180 bb=(par[1]+2.0*TMath::Log(gamma)-beta*beta)*(par[0]/(beta*beta))*eff;
181 }
182 }
183
184 return bb;
185}
186
8abeb05b 187//_________________________________________________________________________
bb40433d 188Double_t AliITSPIDResponse::Bethe(Double_t p, Double_t mass, Bool_t isSA) const {
189
190 //OLD - Mantained for backward compatibility
191 //from the mass check --> Set the Particle Type
192 //at the end use the method Bethe(Double_t p, AliPID::EParticleType species, Bool_t isSA) const to set the right parameter
41cab740 193
15e979c9 194 //
195 // returns AliExternalTrackParam::BetheBloch normalized to
196 // fgMIP at the minimum
197 //
198
41cab740 199 // NEW: Parameterization for Deuteron and Triton energy loss, reproduced with a polynomial in fixed p range
200 // fBBdeu --> parameters for deuteron
201 // fBBtri --> parameters for triton
202
4bd62e52 203 //NOTE
204 //NOTE: if changes are made here, please also check the alternative function below
205 //NOTE
bb40433d 206
207 AliPID::EParticleType species = AliPID::kPion;
208
41cab740 209 if(TMath::AreEqualAbs(mass,AliPID::ParticleMass(0),0.00001)){
88f46717 210 //if is an electron use a specific BB parameterization
211 //To be used only between 100 and 160 MeV/c
bb40433d 212 species=AliPID::kElectron;
88f46717 213 }
41cab740 214
bb40433d 215 if(TMath::AreEqualAbs(mass,AliPID::ParticleMass(5),0.002)) species=AliPID::kDeuteron;
216 if(TMath::AreEqualAbs(mass,AliPID::ParticleMass(6),0.001)) species=AliPID::kTriton;
217
218 return Bethe(p,species,isSA);
4bd62e52 219}
220
221//_________________________________________________________________________
222Double_t AliITSPIDResponse::Bethe(Double_t p, AliPID::EParticleType species, Bool_t isSA) const
223{
bb40433d 224 // NEW - to be used
225 // Alternative bethe function assuming a particle type not a mass
4bd62e52 226 // should be slightly faster
227 //
228
229 const Double_t m=AliPID::ParticleMassZ(species);
230 const Double_t bg=p/m;
231 Bool_t isNuclei=kFALSE;
88f46717 232
4bd62e52 233 //NOTE
234 //NOTE: if changes are made here, please also check the alternative function above
235 //NOTE
236 const Double_t *par=fBBtpcits;
237 if(isSA){
238 if(species == AliPID::kElectron){
239 //if is an electron use a specific BB parameterization
240 //To be used only between 100 and 160 MeV/c
241 par=fBBsaElectron;
242 }else{
243 par=fBBsa;
244 }
245 }else{
246 if(species == AliPID::kDeuteron) {
247 par=fBBdeu;
248 isNuclei=kTRUE;
249 }
250 if(species == AliPID::kTriton ) {
251 par=fBBtri;
252 isNuclei=kTRUE;
41cab740 253 }
15e979c9 254 }
41cab740 255
4bd62e52 256 return Bethe(bg, par, isNuclei);
15e979c9 257}
258
62ccfebf 259//_________________________________________________________________________
260Double_t AliITSPIDResponse::BetheITSsaHybrid(Double_t p, Double_t mass) const {
261 //
262 // returns AliExternalTrackParam::BetheBloch normalized to
263 // fgMIP at the minimum. The PHOBOS parameterization is used for beta*gamma>0.76.
264 // For beta*gamma<0.76 a polinomial function is used
265
266 Double_t bg=p/mass;
267 Double_t beta = bg/TMath::Sqrt(1.+ bg*bg);
268 Double_t gamma=bg/beta;
269 Double_t bb=1.;
270
271 Double_t par[9];
272 //parameters for pi, K, p
273 for(Int_t ip=0; ip<9;ip++) par[ip]=fBBsaHybrid[ip];
274 //if it is an electron the PHOBOS part of the parameterization is tuned for e
275 //in the range used for identification beta*gamma is >0.76 for electrons
276 //To be used only between 100 and 160 MeV/c
277 if(mass>0.0005 && mass<0.00052)for(Int_t ip=0; ip<5;ip++) par[ip]=fBBsaElectron[ip];
278
279 if(gamma>=0. && beta>0. && bg>0.1){
280 if(bg>0.76){//PHOBOS
281 Double_t eff=1.0;
282 if(bg<par[2])
283 eff=(bg-par[3])*(bg-par[3])+par[4];
284 else
285 eff=(par[2]-par[3])*(par[2]-par[3])+par[4];
286
287 bb=(par[1]+2.0*TMath::Log(gamma)-beta*beta)*(par[0]/(beta*beta))*eff;
288 }else{//Polinomial
289 bb=par[5] + par[6]/bg + par[7]/(bg*bg) + par[8]/(bg*bg*bg);
290 }
291 }
292 return bb;
293}
294
8abeb05b 295//_________________________________________________________________________
41cab740 296Double_t AliITSPIDResponse::GetResolution(Double_t bethe,
15e979c9 297 Int_t nPtsForPid,
41cab740 298 Bool_t isSA,
299 Double_t p,
300 AliPID::EParticleType type) const {
301 //
10d100d4 302 // Calculate expected resolution for truncated mean
303 //
41cab740 304 // NEW: Added new variables which are Double_t p and AliPID::EParticleType type
305 // AliPID::EParticleType type is used to set the correct resolution for the different particles
306 // default -> AliPID::EParticleType type = AliPID::kPion
307 // Double_t p is used for the resolution of deuteron and triton, because they are function of the momentum
308 // default -> Double_t p=0.
309
4bd62e52 310 Float_t r=0.f;
311 Double_t c=1.; //this is a correction factor used for the nuclei resolution, while for pion/kaon/proton/electron is 1.
41cab740 312
15e979c9 313 if(isSA) r=fResolSA[nPtsForPid];
41cab740 314 else{
4bd62e52 315 const Double_t *par=0x0;
316 if(type==AliPID::kDeuteron){
317 if(nPtsForPid==3) par = fResolTPCITSDeu3;
318 if(nPtsForPid==4) par = fResolTPCITSDeu4;
319 c=par[2];
320 r=par[0]+par[1]*p;
321 } else if(type==AliPID::kTriton){
322 if(nPtsForPid==3) par = fResolTPCITSTri3;
323 if(nPtsForPid==4) par = fResolTPCITSTri4;
324 c=par[2];
41cab740 325 r=par[0]+par[1]*p;
4bd62e52 326 } else{
327 r=fResolTPCITS[nPtsForPid];
41cab740 328 }
41cab740 329 }
15e979c9 330
41cab740 331 return r*bethe*c;
332}
15e979c9 333
334
8abeb05b 335//_________________________________________________________________________
b52bfc67 336void AliITSPIDResponse::GetITSProbabilities(Float_t mom, Double_t qclu[4], Double_t condprobfun[AliPID::kSPECIES], Bool_t isMC) const {
10d100d4 337 //
338 // Method to calculate PID probabilities for a single track
339 // using the likelihood method
340 //
341 const Int_t nLay = 4;
2ca1f4ee 342 const Int_t nPart= 4;
10d100d4 343
b52bfc67 344 static AliITSPidParams pars(isMC); // Pid parametrisation parameters
10d100d4 345
2ca1f4ee 346 Double_t itsProb[nPart] = {1,1,1,1}; // e, p, K, pi
10d100d4 347
348 for (Int_t iLay = 0; iLay < nLay; iLay++) {
2ca1f4ee 349 if (qclu[iLay] <= 50.)
10d100d4 350 continue;
351
352 Float_t dedx = qclu[iLay];
353 Float_t layProb = pars.GetLandauGausNorm(dedx,AliPID::kProton,mom,iLay+3);
354 itsProb[0] *= layProb;
355
356 layProb = pars.GetLandauGausNorm(dedx,AliPID::kKaon,mom,iLay+3);
10d100d4 357 itsProb[1] *= layProb;
358
359 layProb = pars.GetLandauGausNorm(dedx,AliPID::kPion,mom,iLay+3);
360 itsProb[2] *= layProb;
2ca1f4ee 361
362 layProb = pars.GetLandauGausNorm(dedx,AliPID::kElectron,mom,iLay+3);
363 itsProb[3] *= layProb;
10d100d4 364 }
365
366 // Normalise probabilities
367 Double_t sumProb = 0;
368 for (Int_t iPart = 0; iPart < nPart; iPart++) {
369 sumProb += itsProb[iPart];
370 }
2ca1f4ee 371 sumProb += itsProb[2]; // muon cannot be distinguished from pions
10d100d4 372
373 for (Int_t iPart = 0; iPart < nPart; iPart++) {
374 itsProb[iPart]/=sumProb;
375 }
2ca1f4ee 376 condprobfun[AliPID::kElectron] = itsProb[3];
897a0e31 377 condprobfun[AliPID::kMuon] = itsProb[2];
378 condprobfun[AliPID::kPion] = itsProb[2];
10d100d4 379 condprobfun[AliPID::kKaon] = itsProb[1];
380 condprobfun[AliPID::kProton] = itsProb[0];
381 return;
382}
15e979c9 383
567624b5 384//_________________________________________________________________________
385Double_t AliITSPIDResponse::GetNumberOfSigmas( const AliVTrack* track, AliPID::EParticleType type) const
386{
387 //
388 // number of sigmas
389 //
390 UChar_t clumap=track->GetITSClusterMap();
391 Int_t nPointsForPid=0;
392 for(Int_t i=2; i<6; i++){
393 if(clumap&(1<<i)) ++nPointsForPid;
394 }
395 Float_t mom=track->P();
bb40433d 396
567624b5 397 //check for ITS standalone tracks
398 Bool_t isSA=kTRUE;
399 if( track->GetStatus() & AliVTrack::kTPCin ) isSA=kFALSE;
400
401 const Float_t dEdx=track->GetITSsignal();
402
403 //TODO: in case of the electron, use the SA parametrisation,
404 // this needs to be changed if ITS provides a parametrisation
405 // for electrons also for ITS+TPC tracks
406 return GetNumberOfSigmas(mom,dEdx,type,nPointsForPid,isSA || (type==AliPID::kElectron));
407}
408
409//_________________________________________________________________________
1d59271b 410Double_t AliITSPIDResponse::GetSignalDelta( const AliVTrack* track, AliPID::EParticleType type, Bool_t ratio/*=kFALSE*/) const
567624b5 411{
412 //
413 // Signal - expected
414 //
415 const Float_t mom=track->P();
416 const Double_t chargeFactor = TMath::Power(AliPID::ParticleCharge(type),2.);
417 Bool_t isSA=kTRUE;
418 if( track->GetStatus() & AliVTrack::kTPCin ) isSA=kFALSE;
419
420 const Float_t dEdx=track->GetITSsignal();
421
422 //TODO: in case of the electron, use the SA parametrisation,
423 // this needs to be changed if ITS provides a parametrisation
424 // for electrons also for ITS+TPC tracks
425
1d59271b 426 const Float_t bethe = Bethe(mom,AliPID::ParticleMassZ(type), isSA || (type==AliPID::kElectron))*chargeFactor;
427
428 Double_t delta=-9999.;
429 if (!ratio) delta=dEdx-bethe;
430 else if (bethe>1.e-20) delta=dEdx/bethe;
431
432 return delta;
567624b5 433}
434
8abeb05b 435//_________________________________________________________________________
436Int_t AliITSPIDResponse::GetParticleIdFromdEdxVsP(Float_t mom, Float_t signal, Bool_t isSA) const{
437 // method to get particle identity with simple cuts on dE/dx vs. momentum
438
439 Double_t massp=AliPID::ParticleMass(AliPID::kProton);
440 Double_t massk=AliPID::ParticleMass(AliPID::kKaon);
441 Double_t bethep=Bethe(mom,massp,isSA);
442 Double_t bethek=Bethe(mom,massk,isSA);
443 if(signal>(0.5*(bethep+bethek))) return AliPID::kProton;
444 Double_t masspi=AliPID::ParticleMass(AliPID::kPion);
445 Double_t bethepi=Bethe(mom,masspi,isSA);
446 if(signal>(0.5*(bethepi+bethek))) return AliPID::kKaon;
447 return AliPID::kPion;
448
449}