]> git.uio.no Git - u/mrichter/AliRoot.git/blame - STEER/STEERBase/AliITSPIDResponse.cxx
ALIROOT-5633 o Increase ClassDef o Speed up code
[u/mrichter/AliRoot.git] / STEER / STEERBase / AliITSPIDResponse.cxx
CommitLineData
10d100d4 1/**************************************************************************
2 * Copyright(c) 2005-2007, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18//-----------------------------------------------------------------
19// ITS PID method # 1
20// Implementation of the ITS PID class
21// Very naive one... Should be made better by the detector experts...
22// Origin: Iouri Belikov, CERN, Jouri.Belikov@cern.ch
23//-----------------------------------------------------------------
24#include "TMath.h"
567624b5 25#include "AliVTrack.h"
10d100d4 26#include "AliITSPIDResponse.h"
27#include "AliITSPidParams.h"
28#include "AliExternalTrackParam.h"
29
10d100d4 30ClassImp(AliITSPIDResponse)
31
15e979c9 32AliITSPIDResponse::AliITSPIDResponse(Bool_t isMC):
10d100d4 33 fRes(0.13),
34 fKp1(15.77),
35 fKp2(4.95),
36 fKp3(0.312),
37 fKp4(2.14),
38 fKp5(0.82)
39{
15e979c9 40 if(!isMC){
41 fBBtpcits[0]=0.73;
42 fBBtpcits[1]=14.68;
43 fBBtpcits[2]=0.905;
44 fBBtpcits[3]=1.2;
45 fBBtpcits[4]=6.6;
41cab740 46 fBBdeu[0]=76.43; // parameters for the deuteron - tpcits - value from PbPb 2010 run (S.Trogolo - July 2014)
47 fBBdeu[1]=-34.21;
48 fBBdeu[2]=113.2;
49 fBBdeu[3]=-18.12;
50 fBBdeu[4]=0.6019;
51 fBBtri[0]=13.34; // parameters for the triton - tpcits - value from PbPb 2010 run (S.Trogolo - July 2014)
52 fBBtri[1]=55.17;
53 fBBtri[2]=66.41;
54 fBBtri[3]=-6.601;
55 fBBtri[4]=-0.4134;
62ccfebf 56 fBBsa[0]=2.73198E7; //pure PHOBOS parameterization
88f46717 57 fBBsa[1]=6.92389;
58 fBBsa[2]=1.90088E-6;
59 fBBsa[3]=1.90088E-6;
60 fBBsa[4]=3.40644E-7;
62ccfebf 61 fBBsaHybrid[0]=1.43505E7; //PHOBOS+Polinomial parameterization
62 fBBsaHybrid[1]=49.3402;
63 fBBsaHybrid[2]=1.77741E-7;
64 fBBsaHybrid[3]=1.77741E-7;
65 fBBsaHybrid[4]=1.01311E-7;
66 fBBsaHybrid[5]=77.2777;
67 fBBsaHybrid[6]=33.4099;
68 fBBsaHybrid[7]=46.0089;
69 fBBsaHybrid[8]=-2.26583;
70 fBBsaElectron[0]=4.05799E6; //electrons in the ITS
88f46717 71 fBBsaElectron[1]=38.5713;
72 fBBsaElectron[2]=1.46462E-7;
73 fBBsaElectron[3]=1.46462E-7;
74 fBBsaElectron[4]=4.40284E-7;
8abeb05b 75 fResolSA[0]=1.; // 0 cluster tracks should not be used
88f46717 76 fResolSA[1]=0.25; // rough values for tracks with 1
77 fResolSA[2]=0.131; // value from pp 2010 run (L. Milano, 16-Jun-11)
78 fResolSA[3]=0.113; // value from pp 2010 run
8abeb05b 79 fResolSA[4]=0.104; // value from pp 2010 run
15e979c9 80 for(Int_t i=0; i<5;i++) fResolTPCITS[i]=0.13;
41cab740 81 fResolTPCITSDeu3[0]=0.06918; // deuteron resolution vs p
82 fResolTPCITSDeu3[1]=0.02498; // 3 ITS clusters for PId
83 fResolTPCITSDeu3[2]=1.1; // value from PbPb 2010 run (July 2014)
84 fResolTPCITSDeu4[0]=0.06756;// deuteron resolution vs p
85 fResolTPCITSDeu4[1]=0.02078; // 4 ITS clusters for PId
86 fResolTPCITSDeu4[2]=1.05; // value from PbPb 2010 run (July 2014)
87 fResolTPCITSTri3[0]=0.07239; // triton resolution vs p
88 fResolTPCITSTri3[1]=0.0192; // 3 ITS clusters for PId
89 fResolTPCITSTri3[2]=1.1; // value from PbPb 2010 run (July 2014)
90 fResolTPCITSTri4[0]=0.06083; // triton resolution
91 fResolTPCITSTri4[1]=0.02579; // 4 ITS clusters for PId
92 fResolTPCITSTri4[2]=1.15; // value from PbPb 2010 run (July 2014)
15e979c9 93 }else{
99daa709 94 fBBtpcits[0]=1.04;
95 fBBtpcits[1]=27.14;
96 fBBtpcits[2]=1.00;
97 fBBtpcits[3]=0.964;
98 fBBtpcits[4]=2.59;
62ccfebf 99 fBBsa[0]=2.02078E7; //pure PHOBOS parameterization
88f46717 100 fBBsa[1]=14.0724;
101 fBBsa[2]=3.84454E-7;
102 fBBsa[3]=3.84454E-7;
103 fBBsa[4]=2.43913E-7;
62ccfebf 104 fBBsaHybrid[0]=1.05381E7; //PHOBOS+Polinomial parameterization
105 fBBsaHybrid[1]=89.3933;
106 fBBsaHybrid[2]=2.4831E-7;
107 fBBsaHybrid[3]=2.4831E-7;
108 fBBsaHybrid[4]=7.80591E-8;
109 fBBsaHybrid[5]=62.9214;
110 fBBsaHybrid[6]=32.347;
111 fBBsaHybrid[7]=58.7661;
112 fBBsaHybrid[8]=-3.39869;
113 fBBsaElectron[0]=2.26807E6; //electrons in the ITS
88f46717 114 fBBsaElectron[1]=99.985;
115 fBBsaElectron[2]=0.000714841;
116 fBBsaElectron[3]=0.000259585;
117 fBBsaElectron[4]=1.39412E-7;
8abeb05b 118 fResolSA[0]=1.; // 0 cluster tracks should not be used
88f46717 119 fResolSA[1]=0.25; // rough values for tracks with 1
120 fResolSA[2]=0.126; // value from pp 2010 simulations (L. Milano, 16-Jun-11)
121 fResolSA[3]=0.109; // value from pp 2010 simulations
122 fResolSA[4]=0.097; // value from pp 2010 simulations
15e979c9 123 for(Int_t i=0; i<5;i++) fResolTPCITS[i]=0.13;
124 }
10d100d4 125}
126
56576f1e 127/*
10d100d4 128//_________________________________________________________________________
129AliITSPIDResponse::AliITSPIDResponse(Double_t *param):
9ebbddd4 130 fRes(param[0]),
10d100d4 131 fKp1(15.77),
132 fKp2(4.95),
133 fKp3(0.312),
134 fKp4(2.14),
135 fKp5(0.82)
136{
137 //
138 // The main constructor
139 //
6b4634a4 140 for (Int_t i=0; i<5;i++) {
141 fBBsa[i]=0.;
142 fBBtpcits[i]=0.;
143 fResolSA[i]=0.;
144 fResolTPCITS[i]=0.;
145 }
10d100d4 146}
56576f1e 147*/
10d100d4 148
8abeb05b 149//_________________________________________________________________________
15e979c9 150Double_t AliITSPIDResponse::BetheAleph(Double_t p, Double_t mass) const {
10d100d4 151 //
152 // returns AliExternalTrackParam::BetheBloch normalized to
153 // fgMIP at the minimum
154 //
15e979c9 155
10d100d4 156 Double_t bb=
157 AliExternalTrackParam::BetheBlochAleph(p/mass,fKp1,fKp2,fKp3,fKp4,fKp5);
9ebbddd4 158 return bb;
10d100d4 159}
160
4bd62e52 161//_________________________________________________________________________
162Double_t AliITSPIDResponse::Bethe(Double_t bg, const Double_t * const par, Bool_t isNuclei) const
163{
164
165 const Double_t beta = bg/TMath::Sqrt(1.+ bg*bg);
166 const Double_t gamma=bg/beta;
167 Double_t bb=1.;
168
169 Double_t eff=1.0;
170 if(bg<par[2])
171 eff=(bg-par[3])*(bg-par[3])+par[4];
172 else
173 eff=(par[2]-par[3])*(par[2]-par[3])+par[4];
174
175 if(gamma>=0. && beta>0.){
176 if(isNuclei){
177 //Parameterization for deuteron between 0.4 - 1.5 GeV/c; triton between 0.58 - 1.65 GeV/c
178 bb=par[0] + par[1]/bg + par[2]/(bg*bg) + par[3]/(bg*bg*bg) + par[4]/(bg*bg*bg*bg);
179 }else{ //Parameterization for pion, kaon, proton, electron
180 bb=(par[1]+2.0*TMath::Log(gamma)-beta*beta)*(par[0]/(beta*beta))*eff;
181 }
182 }
183
184 return bb;
185}
186
8abeb05b 187//_________________________________________________________________________
41cab740 188Double_t AliITSPIDResponse::Bethe(Double_t p, Double_t mass, Bool_t isSA, Bool_t isNuclei) const {
189
15e979c9 190 //
191 // returns AliExternalTrackParam::BetheBloch normalized to
192 // fgMIP at the minimum
193 //
194
41cab740 195 // NEW: Parameterization for Deuteron and Triton energy loss, reproduced with a polynomial in fixed p range
196 // fBBdeu --> parameters for deuteron
197 // fBBtri --> parameters for triton
198
199
4bd62e52 200 const Double_t bg=p/mass;
201
202 //NOTE
203 //NOTE: if changes are made here, please also check the alternative function below
204 //NOTE
205 const Double_t *par=fBBtpcits;
15e979c9 206 if(isSA){
41cab740 207 if(TMath::AreEqualAbs(mass,AliPID::ParticleMass(0),0.00001)){
88f46717 208 //if is an electron use a specific BB parameterization
209 //To be used only between 100 and 160 MeV/c
4bd62e52 210 par=fBBsaElectron;
88f46717 211 }else{
4bd62e52 212 par=fBBsa;
88f46717 213 }
15e979c9 214 }else{
41cab740 215 if(isNuclei){
4bd62e52 216 if(TMath::AreEqualAbs(mass,AliPID::ParticleMass(5),0.002)) par=fBBdeu;
217 if(TMath::AreEqualAbs(mass,AliPID::ParticleMass(6),0.001)) par=fBBtri;
41cab740 218 }
15e979c9 219 }
41cab740 220
4bd62e52 221 return Bethe(bg, par, isNuclei);
222}
223
224//_________________________________________________________________________
225Double_t AliITSPIDResponse::Bethe(Double_t p, AliPID::EParticleType species, Bool_t isSA) const
226{
227 //
228 // Aliternative bethe function assuming a particle type not a mass
229 // should be slightly faster
230 //
231
232 const Double_t m=AliPID::ParticleMassZ(species);
233 const Double_t bg=p/m;
234 Bool_t isNuclei=kFALSE;
88f46717 235
4bd62e52 236 //NOTE
237 //NOTE: if changes are made here, please also check the alternative function above
238 //NOTE
239 const Double_t *par=fBBtpcits;
240 if(isSA){
241 if(species == AliPID::kElectron){
242 //if is an electron use a specific BB parameterization
243 //To be used only between 100 and 160 MeV/c
244 par=fBBsaElectron;
245 }else{
246 par=fBBsa;
247 }
248 }else{
249 if(species == AliPID::kDeuteron) {
250 par=fBBdeu;
251 isNuclei=kTRUE;
252 }
253 if(species == AliPID::kTriton ) {
254 par=fBBtri;
255 isNuclei=kTRUE;
41cab740 256 }
15e979c9 257 }
41cab740 258
4bd62e52 259 return Bethe(bg, par, isNuclei);
15e979c9 260}
261
62ccfebf 262//_________________________________________________________________________
263Double_t AliITSPIDResponse::BetheITSsaHybrid(Double_t p, Double_t mass) const {
264 //
265 // returns AliExternalTrackParam::BetheBloch normalized to
266 // fgMIP at the minimum. The PHOBOS parameterization is used for beta*gamma>0.76.
267 // For beta*gamma<0.76 a polinomial function is used
268
269 Double_t bg=p/mass;
270 Double_t beta = bg/TMath::Sqrt(1.+ bg*bg);
271 Double_t gamma=bg/beta;
272 Double_t bb=1.;
273
274 Double_t par[9];
275 //parameters for pi, K, p
276 for(Int_t ip=0; ip<9;ip++) par[ip]=fBBsaHybrid[ip];
277 //if it is an electron the PHOBOS part of the parameterization is tuned for e
278 //in the range used for identification beta*gamma is >0.76 for electrons
279 //To be used only between 100 and 160 MeV/c
280 if(mass>0.0005 && mass<0.00052)for(Int_t ip=0; ip<5;ip++) par[ip]=fBBsaElectron[ip];
281
282 if(gamma>=0. && beta>0. && bg>0.1){
283 if(bg>0.76){//PHOBOS
284 Double_t eff=1.0;
285 if(bg<par[2])
286 eff=(bg-par[3])*(bg-par[3])+par[4];
287 else
288 eff=(par[2]-par[3])*(par[2]-par[3])+par[4];
289
290 bb=(par[1]+2.0*TMath::Log(gamma)-beta*beta)*(par[0]/(beta*beta))*eff;
291 }else{//Polinomial
292 bb=par[5] + par[6]/bg + par[7]/(bg*bg) + par[8]/(bg*bg*bg);
293 }
294 }
295 return bb;
296}
297
8abeb05b 298//_________________________________________________________________________
41cab740 299Double_t AliITSPIDResponse::GetResolution(Double_t bethe,
15e979c9 300 Int_t nPtsForPid,
41cab740 301 Bool_t isSA,
302 Double_t p,
303 AliPID::EParticleType type) const {
304 //
10d100d4 305 // Calculate expected resolution for truncated mean
306 //
41cab740 307 // NEW: Added new variables which are Double_t p and AliPID::EParticleType type
308 // AliPID::EParticleType type is used to set the correct resolution for the different particles
309 // default -> AliPID::EParticleType type = AliPID::kPion
310 // Double_t p is used for the resolution of deuteron and triton, because they are function of the momentum
311 // default -> Double_t p=0.
312
4bd62e52 313 Float_t r=0.f;
314 Double_t c=1.; //this is a correction factor used for the nuclei resolution, while for pion/kaon/proton/electron is 1.
41cab740 315
15e979c9 316 if(isSA) r=fResolSA[nPtsForPid];
41cab740 317 else{
4bd62e52 318 const Double_t *par=0x0;
319 if(type==AliPID::kDeuteron){
320 if(nPtsForPid==3) par = fResolTPCITSDeu3;
321 if(nPtsForPid==4) par = fResolTPCITSDeu4;
322 c=par[2];
323 r=par[0]+par[1]*p;
324 } else if(type==AliPID::kTriton){
325 if(nPtsForPid==3) par = fResolTPCITSTri3;
326 if(nPtsForPid==4) par = fResolTPCITSTri4;
327 c=par[2];
41cab740 328 r=par[0]+par[1]*p;
4bd62e52 329 } else{
330 r=fResolTPCITS[nPtsForPid];
41cab740 331 }
41cab740 332 }
15e979c9 333
41cab740 334 return r*bethe*c;
335}
15e979c9 336
337
8abeb05b 338//_________________________________________________________________________
b52bfc67 339void AliITSPIDResponse::GetITSProbabilities(Float_t mom, Double_t qclu[4], Double_t condprobfun[AliPID::kSPECIES], Bool_t isMC) const {
10d100d4 340 //
341 // Method to calculate PID probabilities for a single track
342 // using the likelihood method
343 //
344 const Int_t nLay = 4;
2ca1f4ee 345 const Int_t nPart= 4;
10d100d4 346
b52bfc67 347 static AliITSPidParams pars(isMC); // Pid parametrisation parameters
10d100d4 348
2ca1f4ee 349 Double_t itsProb[nPart] = {1,1,1,1}; // e, p, K, pi
10d100d4 350
351 for (Int_t iLay = 0; iLay < nLay; iLay++) {
2ca1f4ee 352 if (qclu[iLay] <= 50.)
10d100d4 353 continue;
354
355 Float_t dedx = qclu[iLay];
356 Float_t layProb = pars.GetLandauGausNorm(dedx,AliPID::kProton,mom,iLay+3);
357 itsProb[0] *= layProb;
358
359 layProb = pars.GetLandauGausNorm(dedx,AliPID::kKaon,mom,iLay+3);
10d100d4 360 itsProb[1] *= layProb;
361
362 layProb = pars.GetLandauGausNorm(dedx,AliPID::kPion,mom,iLay+3);
363 itsProb[2] *= layProb;
2ca1f4ee 364
365 layProb = pars.GetLandauGausNorm(dedx,AliPID::kElectron,mom,iLay+3);
366 itsProb[3] *= layProb;
10d100d4 367 }
368
369 // Normalise probabilities
370 Double_t sumProb = 0;
371 for (Int_t iPart = 0; iPart < nPart; iPart++) {
372 sumProb += itsProb[iPart];
373 }
2ca1f4ee 374 sumProb += itsProb[2]; // muon cannot be distinguished from pions
10d100d4 375
376 for (Int_t iPart = 0; iPart < nPart; iPart++) {
377 itsProb[iPart]/=sumProb;
378 }
2ca1f4ee 379 condprobfun[AliPID::kElectron] = itsProb[3];
897a0e31 380 condprobfun[AliPID::kMuon] = itsProb[2];
381 condprobfun[AliPID::kPion] = itsProb[2];
10d100d4 382 condprobfun[AliPID::kKaon] = itsProb[1];
383 condprobfun[AliPID::kProton] = itsProb[0];
384 return;
385}
15e979c9 386
567624b5 387//_________________________________________________________________________
388Double_t AliITSPIDResponse::GetNumberOfSigmas( const AliVTrack* track, AliPID::EParticleType type) const
389{
390 //
391 // number of sigmas
392 //
393 UChar_t clumap=track->GetITSClusterMap();
394 Int_t nPointsForPid=0;
395 for(Int_t i=2; i<6; i++){
396 if(clumap&(1<<i)) ++nPointsForPid;
397 }
398 Float_t mom=track->P();
399
400 //check for ITS standalone tracks
401 Bool_t isSA=kTRUE;
402 if( track->GetStatus() & AliVTrack::kTPCin ) isSA=kFALSE;
403
404 const Float_t dEdx=track->GetITSsignal();
405
406 //TODO: in case of the electron, use the SA parametrisation,
407 // this needs to be changed if ITS provides a parametrisation
408 // for electrons also for ITS+TPC tracks
409 return GetNumberOfSigmas(mom,dEdx,type,nPointsForPid,isSA || (type==AliPID::kElectron));
410}
411
412//_________________________________________________________________________
1d59271b 413Double_t AliITSPIDResponse::GetSignalDelta( const AliVTrack* track, AliPID::EParticleType type, Bool_t ratio/*=kFALSE*/) const
567624b5 414{
415 //
416 // Signal - expected
417 //
418 const Float_t mom=track->P();
419 const Double_t chargeFactor = TMath::Power(AliPID::ParticleCharge(type),2.);
420 Bool_t isSA=kTRUE;
421 if( track->GetStatus() & AliVTrack::kTPCin ) isSA=kFALSE;
422
423 const Float_t dEdx=track->GetITSsignal();
424
425 //TODO: in case of the electron, use the SA parametrisation,
426 // this needs to be changed if ITS provides a parametrisation
427 // for electrons also for ITS+TPC tracks
428
1d59271b 429 const Float_t bethe = Bethe(mom,AliPID::ParticleMassZ(type), isSA || (type==AliPID::kElectron))*chargeFactor;
430
431 Double_t delta=-9999.;
432 if (!ratio) delta=dEdx-bethe;
433 else if (bethe>1.e-20) delta=dEdx/bethe;
434
435 return delta;
567624b5 436}
437
8abeb05b 438//_________________________________________________________________________
439Int_t AliITSPIDResponse::GetParticleIdFromdEdxVsP(Float_t mom, Float_t signal, Bool_t isSA) const{
440 // method to get particle identity with simple cuts on dE/dx vs. momentum
441
442 Double_t massp=AliPID::ParticleMass(AliPID::kProton);
443 Double_t massk=AliPID::ParticleMass(AliPID::kKaon);
444 Double_t bethep=Bethe(mom,massp,isSA);
445 Double_t bethek=Bethe(mom,massk,isSA);
446 if(signal>(0.5*(bethep+bethek))) return AliPID::kProton;
447 Double_t masspi=AliPID::ParticleMass(AliPID::kPion);
448 Double_t bethepi=Bethe(mom,masspi,isSA);
449 if(signal>(0.5*(bethepi+bethek))) return AliPID::kKaon;
450 return AliPID::kPion;
451
452}