]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TEvtGen/EvtGenModels/EvtBtoXsllUtil.cpp
move TVirtualDecayer->Init() to class initializer
[u/mrichter/AliRoot.git] / TEvtGen / EvtGenModels / EvtBtoXsllUtil.cpp
CommitLineData
da0e9ce3 1//--------------------------------------------------------------------------
2//
3// Environment:
4// This software is part of the EvtGen package developed jointly
5// for the BaBar and CLEO collaborations. If you use all or part
6// of it, please give an appropriate acknowledgement.
7//
8// Module: EvtBtoXsllUtil.cc
9//
10// Description: Routine to generate non-resonant B -> Xs l+ l- decays.
11// It generates a dilepton mass spectrum according to
12// F.Kruger and L.M.Sehgal, Phys. Lett. B380, 199 (1996)
13// and then generates the two lepton momenta according to
14// A.Ali, G.Hiller, L.T.Handoko and T.Morozumi, Phys. Rev. D55, 4105 (1997).
15// Expressions for Wilson coefficients and power corrections are taken
16// from A.Ali, E.Lunghi, C.Greub and G.Hiller, Phys. Rev. D66, 034002 (2002).
17// Detailed formulae for shat dependence of these coefficients are taken
18// from H.H.Asatryan, H.M.Asatrian, C.Greub and M.Walker, PRD65, 074004 (2002)
19// and C.Bobeth, M.Misiak and J.Urban, Nucl. Phys. B574, 291 (2000).
20// The resultant Xs particles may be decayed by JETSET.
21//
22// Modification history:
23//
24// Stephane Willocq Jan 19, 2001 Module created
25// Stephane Willocq Nov 6, 2003 Update Wilson Coeffs & dG's
26// &Jeff Berryhill
27//
28//------------------------------------------------------------------------
29//
30#include "EvtGenBase/EvtPatches.hh"
31//
32#include <stdlib.h>
33#include "EvtGenBase/EvtRandom.hh"
34#include "EvtGenBase/EvtParticle.hh"
35#include "EvtGenBase/EvtGenKine.hh"
36#include "EvtGenBase/EvtPDL.hh"
37#include "EvtGenBase/EvtReport.hh"
38#include "EvtGenModels/EvtBtoXsllUtil.hh"
39#include "EvtGenBase/EvtComplex.hh"
40#include "EvtGenBase/EvtConst.hh"
41#include "EvtGenBase/EvtDiLog.hh"
42
43EvtComplex EvtBtoXsllUtil::GetC7Eff0(double sh, bool nnlo)
44{
45 // This function returns the zeroth-order alpha_s part of C7
46
47 if (!nnlo) return -0.313;
48
49 double A7;
50
51 // use energy scale of 2.5 GeV as a computational trick (G.Hiller)
52 // at least for shat > 0.25
53 A7 = -0.353 + 0.023;
54
55 EvtComplex c7eff;
56 if (sh > 0.25)
57 {
58 c7eff = A7;
59 return c7eff;
60 }
61
62 // change energy scale to 5.0 for full NNLO calculation below shat = 0.25
63 A7 = -0.312 + 0.008;
64 c7eff = A7;
65
66 return c7eff;
67}
68
69EvtComplex EvtBtoXsllUtil::GetC7Eff1(double sh, double mbeff, bool nnlo)
70{
71 // This function returns the first-order alpha_s part of C7
72
73 if (!nnlo) return 0.0;
74 double logsh;
75 logsh = log(sh);
76
77 EvtComplex uniti(0.0,1.0);
78
79 EvtComplex c7eff = 0.0;
80 if (sh > 0.25)
81 {
82 return c7eff;
83 }
84
85 // change energy scale to 5.0 for full NNLO calculation below shat = 0.25
86 double muscale = 5.0;
87 double alphas = 0.215;
88 //double A7 = -0.312 + 0.008;
89 double A8 = -0.148;
90 //double A9 = 4.174 + (-0.035);
91 //double A10 = -4.592 + 0.379;
92 double C1 = -0.487;
93 double C2 = 1.024;
94 //double T9 = 0.374 + 0.252;
95 //double U9 = 0.033 + 0.015;
96 //double W9 = 0.032 + 0.012;
97 double Lmu = log(muscale/mbeff);
98
99 EvtComplex F71;
100 EvtComplex f71;
101 EvtComplex k7100(-0.68192,-0.074998);
102 EvtComplex k7101(0.0,0.0);
103 EvtComplex k7110(-0.23935,-0.12289);
104 EvtComplex k7111(0.0027424,0.019676);
105 EvtComplex k7120(-0.0018555,-0.175);
106 EvtComplex k7121(0.022864,0.011456);
107 EvtComplex k7130(0.28248,-0.12783);
108 EvtComplex k7131(0.029027,-0.0082265);
109 f71 = k7100 + k7101*logsh + sh*(k7110 + k7111*logsh) +
110 sh*sh*(k7120 + k7121*logsh) +
111 sh*sh*sh*(k7130 + k7131*logsh);
112 F71 = (-208.0/243.0)*Lmu + f71;
113
114 EvtComplex F72;
115 EvtComplex f72;
116 EvtComplex k7200(4.0915,0.44999);
117 EvtComplex k7201(0.0,0.0);
118 EvtComplex k7210(1.4361,0.73732);
119 EvtComplex k7211(-0.016454,-0.11806);
120 EvtComplex k7220(0.011133,1.05);
121 EvtComplex k7221(-0.13718,-0.068733);
122 EvtComplex k7230(-1.6949,0.76698);
123 EvtComplex k7231(-0.17416,0.049359);
124 f72 = k7200 + k7201*logsh + sh*(k7210 + k7211*logsh) +
125 sh*sh*(k7220 + k7221*logsh) +
126 sh*sh*sh*(k7230 + k7231*logsh);
127 F72 = (416.0/81.0)*Lmu + f72;
128
129 EvtComplex F78;
130 F78 = (-32.0/9.0)*Lmu + 8.0*EvtConst::pi*EvtConst::pi/27.0 + (-44.0/9.0)
131 + (-8.0*EvtConst::pi/9.0)*uniti +
132 (4.0/3.0*EvtConst::pi*EvtConst::pi - 40.0/3.0)*sh +
133 (32.0*EvtConst::pi*EvtConst::pi/9.0 - 316.0/9.0)*sh*sh +
134 (200.0*EvtConst::pi*EvtConst::pi/27.0 - 658.0/9.0)*sh*sh*sh +
135 (-8.0*logsh/9.0)*(sh + sh*sh + sh*sh*sh);
136
137 c7eff = - alphas/(4.0*EvtConst::pi)*(C1*F71 + C2*F72 + A8*F78);
138
139 return c7eff;
140}
141
142
0ca57c2f 143EvtComplex EvtBtoXsllUtil::GetC9Eff0(double sh, double /* mbeff */,
da0e9ce3 144 bool nnlo, bool btod)
145{
146 // This function returns the zeroth-order alpha_s part of C9
147
148 if (!nnlo) return 4.344;
da0e9ce3 149 double mch = 0.29;
150
da0e9ce3 151 double A9;
152 A9 = 4.287 + (-0.218);
da0e9ce3 153 double C1;
154 C1 = -0.697;
155 double C2;
156 C2 = 1.046;
157 double T9;
158 T9 = 0.114 + 0.280;
159 double U9;
160 U9 = 0.045 + 0.023;
161 double W9;
162 W9 = 0.044 + 0.016;
da0e9ce3 163
164 EvtComplex uniti(0.0,1.0);
165
166 EvtComplex hc;
167 double xarg;
168 xarg = 4.0*mch/sh;
169
170 hc = -4.0/9.0*log(mch*mch) + 8.0/27.0 + 4.0*xarg/9.0;
171 if (xarg < 1.0)
172 {
173 hc = hc - 2.0/9.0*(2.0 + xarg)*sqrt(fabs(1.0 - xarg))*
174 (log((sqrt(1.0 - xarg)+1.0)/(sqrt(1.0 - xarg) - 1.0)) -
175 uniti*EvtConst::pi);
176 }
177 else
178 {
179 hc = hc - 2.0/9.0*(2.0 + xarg)*sqrt(fabs(1.0 - xarg))*
180 2.0*atan(1.0/sqrt(xarg-1.0));
181 }
182
183 EvtComplex h1;
184 xarg = 4.0/sh;
185 h1 = 8.0/27.0 + 4.0*xarg/9.0;
186 if (xarg < 1.0)
187 {
188 h1 = h1 - 2.0/9.0*(2.0 + xarg)*sqrt(fabs(1.0 - xarg))*
189 (log((sqrt(1.0 - xarg)+1.0)/(sqrt(1.0 - xarg) - 1.0)) -
190 uniti*EvtConst::pi);
191 }
192 else
193 {
194 h1 = h1 - 2.0/9.0*(2.0 + xarg)*sqrt(fabs(1.0 - xarg))*
195 2.0*atan(1.0/sqrt(xarg-1.0));
196 }
197
198 EvtComplex h0;
199 h0 = 8.0/27.0 - 4.0*log(2.0)/9.0 + 4.0*uniti*EvtConst::pi/9.0;
200
201
202 // X=V_{ud}^* V_ub / V_{td}^* V_tb * (4/3 C_1 +C_2) * (h(\hat m_c^2, hat s)-
203 // h(\hat m_u^2, hat s))
204 EvtComplex Vudstar(1.0 - 0.2279*0.2279/2.0, 0.0);
205 EvtComplex Vub((0.118+0.273)/2.0, -1.0*(0.305+0.393)/2.0);
206 EvtComplex Vtdstar(1.0 - (0.118+0.273)/2.0,(0.305+0.393)/2.0);
207 EvtComplex Vtb(1.0,0.0);
208
209 EvtComplex Xd;
210 Xd = (Vudstar * Vub / Vtdstar * Vtb) * (4.0/3.0*C1 + C2) * (hc - h0);
211
212 EvtComplex c9eff = 4.344;
213 if (sh > 0.25)
214 {
215 c9eff = A9 + T9*hc + U9*h1 + W9*h0;
216 if (btod)
217 {
218 c9eff += Xd;
219 }
220 return c9eff;
221 }
222
223 // change energy scale to 5.0 for full NNLO calculation below shat = 0.25
da0e9ce3 224 A9 = 4.174 + (-0.035);
225 C1 = -0.487;
226 C2 = 1.024;
da0e9ce3 227 T9 = 0.374 + 0.252;
228 U9 = 0.033 + 0.015;
229 W9 = 0.032 + 0.012;
da0e9ce3 230
231 Xd = (Vudstar * Vub / Vtdstar * Vtb) * (4.0/3.0*C1 + C2) * (hc - h0);
232
233 c9eff = A9 + T9*hc + U9*h1 + W9*h0;
234
235 if (btod)
236 {
237 c9eff += Xd;
238 }
239
240 return c9eff;
241}
242
243EvtComplex EvtBtoXsllUtil::GetC9Eff1(double sh, double mbeff,
244 bool nnlo, bool /*btod*/)
245{
246 // This function returns the first-order alpha_s part of C9
247
248 if (!nnlo) return 0.0;
249 double logsh;
250 logsh = log(sh);
251 double mch = 0.29;
252
253 EvtComplex uniti(0.0,1.0);
254
255 EvtComplex c9eff = 0.0;
256 if (sh > 0.25)
257 {
258 return c9eff;
259 }
260
261 // change energy scale to 5.0 for full NNLO calculation below shat = 0.25
262 double muscale = 5.0;
263 double alphas = 0.215;
264 double C1 = -0.487;
265 double C2 = 1.024;
266 double A8 = -0.148;
267 double Lmu = log(muscale/mbeff);
268
269 EvtComplex F91;
270 EvtComplex f91;
271 EvtComplex k9100(-11.973,0.16371);
272 EvtComplex k9101(-0.081271,-0.059691);
273 EvtComplex k9110(-28.432,-0.25044);
274 EvtComplex k9111(-0.040243,0.016442);
275 EvtComplex k9120(-57.114,-0.86486);
276 EvtComplex k9121(-0.035191,0.027909);
277 EvtComplex k9130(-128.8,-2.5243);
278 EvtComplex k9131(-0.017587,0.050639);
279 f91 = k9100 + k9101*logsh + sh*(k9110 + k9111*logsh) +
280 sh*sh*(k9120 + k9121*logsh) +
281 sh*sh*sh*(k9130 + k9131*logsh);
282 F91 = (-1424.0/729.0 + 16.0*uniti*EvtConst::pi/243.0
283 + 64.0/27.0*log(mch))*Lmu - 16.0*Lmu*logsh/243.0 +
284 (16.0/1215.0 - 32.0/135.0/mch/mch)*Lmu*sh +
285 (4.0/2835.0 - 8.0/315.0/mch/mch/mch/mch)*Lmu*sh*sh +
286 (16.0/76545.0 - 32.0/8505.0/mch/mch/mch/mch/mch/mch)*
287 Lmu*sh*sh*sh -256.0*Lmu*Lmu/243.0 + f91;
288
289 EvtComplex F92;
290 EvtComplex f92;
291 EvtComplex k9200(6.6338,-0.98225);
292 EvtComplex k9201(0.48763,0.35815);
293 EvtComplex k9210(3.3585,1.5026);
294 EvtComplex k9211(0.24146,-0.098649);
295 EvtComplex k9220(-1.1906,5.1892);
296 EvtComplex k9221(0.21115,-0.16745);
297 EvtComplex k9230(-17.12,15.146);
298 EvtComplex k9231(0.10552,-0.30383);
299 f92 = k9200 + k9201*logsh + sh*(k9210 + k9211*logsh) +
300 sh*sh*(k9220 + k9221*logsh) +
301 sh*sh*sh*(k9230 + k9231*logsh);
302 F92 = (256.0/243.0 - 32.0*uniti*EvtConst::pi/81.0
303 - 128.0/9.0*log(mch))*Lmu + 32.0*Lmu*logsh/81.0 +
304 (-32.0/405.0 + 64.0/45.0/mch/mch)*Lmu*sh +
305 (-8.0/945.0 + 16.0/105.0/mch/mch/mch/mch)*Lmu*sh*sh +
306 (-32.0/25515.0 + 64.0/2835.0/mch/mch/mch/mch/mch/mch)*
307 Lmu*sh*sh*sh + 512.0*Lmu*Lmu/81.0 + f92;
308
309 EvtComplex F98;
310 F98 = 104.0/9.0 - 32.0*EvtConst::pi*EvtConst::pi/27.0 +
311 (1184.0/27.0 - 40.0*EvtConst::pi*EvtConst::pi/9.0)*sh +
312 (14212.0/135.0 - 32.0*EvtConst::pi*EvtConst::pi/3.0)*sh*sh +
313 (193444.0/945.0 - 560.0*EvtConst::pi*EvtConst::pi/27.0)*sh*sh*sh +
314 16.0*logsh/9.0*(1.0 + sh + sh*sh + sh*sh*sh);
315
316 c9eff = - alphas/(4.0*EvtConst::pi)*(C1*F91 + C2*F92 + A8*F98);
317
318 return c9eff;
319}
320
321EvtComplex EvtBtoXsllUtil::GetC10Eff(double /*sh*/, bool nnlo)
322{
323
324 if (!nnlo) return -4.669;
325 double A10;
326 A10 = -4.592 + 0.379;
327
328 EvtComplex c10eff;
329 c10eff = A10;
330
331 return c10eff;
332}
333
334double EvtBtoXsllUtil::dGdsProb(double mb, double ms, double ml,
335 double s)
336{
337 // Compute the decay probability density function given a value of s
338 // according to Ali-Lunghi-Greub-Hiller's 2002 paper
339 // Note that the form given below is taken from
340 // F.Kruger and L.M.Sehgal, Phys. Lett. B380, 199 (1996)
341 // but the differential rate as a function of dilepton mass
342 // in this latter paper reduces to Eq.(12) in ALGH's 2002 paper
343 // for ml = 0 and ms = 0.
344
345 bool btod = false;
346 bool nnlo = true;
347
348 double delta, lambda, prob;
349 double f1, f2, f3, f4;
350 double msh, mlh, sh;
351 double mbeff = 4.8;
352
353 mlh = ml / mb;
354 msh = ms / mb;
355 // set lepton and strange-quark masses to 0 if need to
356 // be in strict agreement with ALGH 2002 paper
357 // mlh = 0.0; msh = 0.0;
358 // sh = s / (mb*mb);
359 sh = s / (mbeff*mbeff);
360
361 // if sh >1.0 code will return a nan. so just skip it
362 if ( sh > 1.0 ) return 0.0;
363
364
365 EvtComplex c7eff0 = EvtBtoXsllUtil::GetC7Eff0(sh,nnlo);
366 EvtComplex c7eff1 = EvtBtoXsllUtil::GetC7Eff1(sh,mbeff,nnlo);
367 EvtComplex c9eff0 = EvtBtoXsllUtil::GetC9Eff0(sh,mbeff,nnlo,btod);
368 EvtComplex c9eff1 = EvtBtoXsllUtil::GetC9Eff1(sh,mbeff,nnlo,btod);
369 EvtComplex c10eff = EvtBtoXsllUtil::GetC10Eff(sh,nnlo);
370
371 double alphas = 0.119/
372 (1 + 0.119*log(pow(4.8,2)/pow(91.1867,2))*23.0/12.0/EvtConst::pi);
373
374 double omega7 = -8.0/3.0*log(4.8/mb)
375 -4.0/3.0*EvtDiLog::DiLog(sh)
376 -2.0/9.0*EvtConst::pi*EvtConst::pi
377 -2.0/3.0*log(sh)*log(1.0-sh)
378 -log(1-sh)*(8.0+sh)/(2.0+sh)/3.0
379 -2.0/3.0*sh*(2.0 - 2.0*sh - sh*sh)*log(sh)/pow((1.0 - sh),2)/(2.0 + sh)
380 -(16.0 - 11.0*sh - 17.0*sh*sh)/18.0/(2.0 + sh)/(1.0 - sh);
381 double eta7 = 1.0 + alphas*omega7/EvtConst::pi;
382
383 double omega79 = -4.0/3.0*log(4.8/mb)
384 -4.0/3.0*EvtDiLog::DiLog(sh)
385 -2.0/9.0*EvtConst::pi*EvtConst::pi
386 -2.0/3.0*log(sh)*log(1.0-sh)
387 -1.0/9.0*(2.0+7.0*sh)*log(1.0 - sh)/sh
388 -2.0/9.0*sh*(3.0 - 2.0*sh)*log(sh)/pow((1.0 - sh),2)
389 +1.0/18.0*(5.0 - 9.0*sh)/(1.0 - sh);
390 double eta79 = 1.0 + alphas*omega79/EvtConst::pi;
391
392 double omega9 = -2.0/9.0*EvtConst::pi*EvtConst::pi - 4.0/3.0*EvtDiLog::DiLog(sh)
393 - 2.0/3.0*log(sh)*log(1.0-sh)
394 - (5.0+4.0*sh)/(3.0*(1.0+2.0*sh)) * log(1.0-sh)
395 - 2.0*sh*(1.0+sh)*(1.0-2.0*sh)
396 /(3.0*pow(1.0-sh,2)*(1.0+2.0*sh)) * log(sh)
397 + (5.0+9.0*sh-6.0*sh*sh)/(6.0*(1.0-sh)*(1.0+2.0*sh));
398 double eta9 = 1.0 + alphas*omega9/EvtConst::pi;
399
400 EvtComplex c7eff = eta7*c7eff0 + c7eff1;
401 EvtComplex c9eff = eta9*c9eff0 + c9eff1;
402 c10eff *= eta9;
403
404 double c7c7 = abs2(c7eff);
405 double c7c9 = real((eta79*c7eff0 + c7eff1)*conj(eta79*c9eff0 + c9eff1));
406 double c9c9plusc10c10 = abs2(c9eff) + abs2(c10eff);
407 double c9c9minusc10c10 = abs2(c9eff) - abs2(c10eff);
408
409 // Power corrections according to ALGH 2002
410 double lambda_1 = -0.2;
411 double lambda_2 = 0.12;
412 double C1 = -0.487;
413 double C2 = 1.024;
414 double mc = 0.29 * mb;
415
416 EvtComplex F;
417 double r = s / (4.0 * mc * mc);
418 EvtComplex uniti(0.0,1.0);
419 F = 3.0 / (2.0 * r);
420 if (r < 1)
421 {
422 F *= 1.0/sqrt(r*(1.0-r))*atan(sqrt(r/(1.0-r)))-1.0;
423 }
424 else
425 {
426 F *= 0.5/sqrt(r*(r-1.0))*(log((1.0-sqrt(1.0-1.0/r))/(1.0+sqrt(1.0-1.0/r)))
427 +uniti*EvtConst::pi)-1.0;
428 }
429
430 double G1 = 1.0 + lambda_1 / (2.0 * mb * mb)
431 + 3.0 * (1.0 - 15.0*sh*sh + 10.0*sh*sh*sh)
432 / ((1.0 - sh)*(1.0 -sh)*(1.0 + 2.0*sh))
433 * lambda_2 / (2.0*mb*mb);
434 double G2 = 1.0 + lambda_1 / (2.0 * mb * mb)
435 - 3.0 * (6.0 + 3.0*sh - 5.0*sh*sh*sh)
436 / ((1.0 - sh)*(1.0 -sh)*(2.0 + sh))
437 * lambda_2 / (2.0*mb*mb);
438 double G3 = 1.0 + lambda_1 / (2.0 * mb * mb)
439 - (5.0 + 6.0*sh - 7.0*sh*sh)
440 / ((1.0 - sh)*(1.0 -sh))
441 * lambda_2 / (2.0*mb*mb);
442 double Gc = -8.0/9.0 * (C2 - C1/6.0) * lambda_2/(mc*mc)
443 * real(F*(conj(c9eff)*(2.0+sh)+conj(c7eff)*(1.0 + 6.0*sh - sh*sh)/sh));
444
445 // end of power corrections section
446 // now back to Kruger & Sehgal expressions
447
448 double msh2=msh*msh;
449 lambda = 1.0 + sh*sh + msh2*msh2 - 2.0*(sh + sh*msh2 + msh2);
450 // negative lambda screw up sqrt below!
451 if ( lambda < 0.0 ) return 0.0;
452
453 f1 = pow(1.0-msh2,2) - sh*(1.0 + msh2);
454 f2 = 2.0*(1.0 + msh2) * pow(1.0-msh2,2)
455 - sh*(1.0 + 14.0*msh2 + pow(msh,4)) - sh*sh*(1.0 + msh2);
456 f3 = pow(1.0-msh2,2) + sh*(1.0 + msh2) - 2.0*sh*sh
457 + lambda*2.0*mlh*mlh/sh;
458 f4 = 1.0 - sh + msh2;
459
460 delta = ( 12.0*c7c9*f1*G3 + 4.0*c7c7*f2*G2/sh ) * (1.0 + 2.0*mlh*mlh/sh)
461 + c9c9plusc10c10*f3*G1
462 + 6.0*mlh*mlh*c9c9minusc10c10*f4
463 + Gc;
464
465 // avoid negative probs
466 if ( delta < 0.0 ) delta=0.;
467 // negative when sh < 4*mlh*mlh
468 // s < 4*ml*ml
469 /// prob = sqrt(lambda*(1.0 - 4.0*mlh*mlh/sh)) * delta;
470 prob = sqrt(lambda*(1.0 - 4.0*ml*ml/s)) * delta;
471
472 // if ( !(prob>=0.0) && !(prob<=0.0) ) {
473 //nan
474 // std::cout << lambda << " " << mlh << " " << sh << " " << delta << " " << mb << " " << mbeff << std::endl;
475 // std::cout << 4.0*mlh*mlh/sh << " " << 4.0*ml*ml/s << " " << s-4.0*ml*ml << " " << ml << std::endl;
476 // std::cout << sh << " " << sh*sh << " " << msh2*msh2 << " " << msh << std::endl;
477 //std::cout << ( 12.0*c7c9*f1*G3 + 4.0*c7c7*f2*G2/sh ) * (1.0 + 2.0*mlh*mlh/sh)
478 // <<" " << c9c9plusc10c10*f3*G1
479 // << " "<< 6.0*mlh*mlh*c9c9minusc10c10*f4
480 // << " "<< Gc << std::endl;
481 //std::cout << C2 << " " << C1 << " "<< lambda_2 << " " << mc << " " << real(F*(conj(c9eff)*(2.0+sh)+conj(c7eff)*(1.0 + 6.0*sh - sh*sh)/sh)) << " " << sh << " " << r << std::endl;
482 //std::cout << c9eff << " " << eta9 << " " <<c9eff0 << " " << c9eff1 << " " << alphas << " " << omega9 << " " << sh << std::endl;
483
484 //}
485// else{
486// if ( sh > 1.0) std::cout << "not a nan \n";
487// }
488 return prob;
489}
490
491double EvtBtoXsllUtil::dGdsdupProb(double mb, double ms, double ml,
492 double s, double u)
493{
494 // Compute the decay probability density function given a value of s and u
495 // according to Ali-Hiller-Handoko-Morozumi's 1997 paper
496 // see Appendix E
497
498 bool btod = false;
499 bool nnlo = true;
500
501 double prob;
502 double f1sp, f2sp, f3sp;
503 double mbeff = 4.8;
504
505 // double sh = s / (mb*mb);
506 double sh = s / (mbeff*mbeff);
507
508 // if sh >1.0 code will return a nan. so just skip it
509 if ( sh > 1.0 ) return 0.0;
510
511 EvtComplex c7eff0 = EvtBtoXsllUtil::GetC7Eff0(sh,nnlo);
512 EvtComplex c7eff1 = EvtBtoXsllUtil::GetC7Eff1(sh,mbeff,nnlo);
513 EvtComplex c9eff0 = EvtBtoXsllUtil::GetC9Eff0(sh,mbeff,nnlo,btod);
514 EvtComplex c9eff1 = EvtBtoXsllUtil::GetC9Eff1(sh,mbeff,nnlo,btod);
515 EvtComplex c10eff = EvtBtoXsllUtil::GetC10Eff(sh,nnlo);
516
517 double alphas = 0.119/
518 (1 + 0.119*log(pow(4.8,2)/pow(91.1867,2))*23.0/12.0/EvtConst::pi);
519
520 double omega7 = -8.0/3.0*log(4.8/mb)
521 -4.0/3.0*EvtDiLog::DiLog(sh)
522 -2.0/9.0*EvtConst::pi*EvtConst::pi
523 -2.0/3.0*log(sh)*log(1.0-sh)
524 -log(1-sh)*(8.0+sh)/(2.0+sh)/3.0
525 -2.0/3.0*sh*(2.0 - 2.0*sh - sh*sh)*log(sh)/pow((1.0 - sh),2)/(2.0 + sh)
526 -(16.0 - 11.0*sh - 17.0*sh*sh)/18.0/(2.0 + sh)/(1.0 - sh);
527 double eta7 = 1.0 + alphas*omega7/EvtConst::pi;
528
529 double omega79 = -4.0/3.0*log(4.8/mb)
530 -4.0/3.0*EvtDiLog::DiLog(sh)
531 -2.0/9.0*EvtConst::pi*EvtConst::pi
532 -2.0/3.0*log(sh)*log(1.0-sh)
533 -1.0/9.0*(2.0+7.0*sh)*log(1.0 - sh)/sh
534 -2.0/9.0*sh*(3.0 - 2.0*sh)*log(sh)/pow((1.0 - sh),2)
535 +1.0/18.0*(5.0 - 9.0*sh)/(1.0 - sh);
536 double eta79 = 1.0 + alphas*omega79/EvtConst::pi;
537
538 double omega9 = - 2.0/9.0*EvtConst::pi*EvtConst::pi - 4.0/3.0*EvtDiLog::DiLog(sh)
539 - 2.0/3.0*log(sh)*log(1.0-sh)
540 - (5.0+4.0*sh)/(3.0*(1.0+2.0*sh)) * log(1.0-sh)
541 - 2.0*sh*(1.0+sh)*(1.0-2.0*sh)
542 /(3.0*pow(1.0-sh,2)*(1.0+2.0*sh)) * log(sh)
543 + (5.0+9.0*sh-6.0*sh*sh)/(6.0*(1.0-sh)*(1.0+2.0*sh));
544 double eta9 = 1.0 + alphas*omega9/EvtConst::pi;
545
546 EvtComplex c7eff = eta7*c7eff0 + c7eff1;
547 EvtComplex c9eff = eta9*c9eff0 + c9eff1;
548 c10eff *= eta9;
549
550 double c7c7 = abs2(c7eff);
551 double c7c9 = real((eta79*c7eff0 + c7eff1)*conj(eta79*c9eff0 + c9eff1));
552 double c7c10 = real((eta79*c7eff0 + c7eff1)*conj(eta9*c10eff));
553 double c9c10 = real((eta9*c9eff0 + c9eff1)*conj(eta9*c10eff));
554 double c9c9plusc10c10 = abs2(c9eff) + abs2(c10eff);
555
556 f1sp = ( pow(mb*mb-ms*ms,2) - s*s) * c9c9plusc10c10
557 + 4.0*( pow(mb,4) - ms*ms*mb*mb - pow(ms,4)*(1.0 - ms*ms/(mb*mb))
558 - 8.0*s*ms*ms - s*s*(1.0 + ms*ms/(mb*mb) ))*mb*mb*c7c7/s
559 // kludged mass term
560 *(1.0 + 2.0*ml*ml/s)
561 - 8.0*(s*(mb*mb + ms*ms) - pow(mb*mb-ms*ms,2)) * c7c9
562 // kludged mass term
563 *(1.0 + 2.0*ml*ml/s);
564
565 f2sp = 4.0*s*c9c10 + 8.0*(mb*mb + ms*ms)*c7c10;
566 f3sp = - (c9c9plusc10c10)
567 + 4.0*(1.0 + pow(ms/mb,4)) * mb*mb*c7c7/s
568 // kludged mass term
569 *(1.0 + 2.0*ml*ml/s);
570
571 prob = (f1sp + f2sp*u + f3sp*u*u)/ pow(mb,3);
572 if ( prob < 0.0 ) prob=0.;
573
574 return prob;
575}
576
577double EvtBtoXsllUtil::FermiMomentum(double pf)
578{
579 // Pick a value for the b-quark Fermi motion momentum
580 // according to Ali's Gaussian model
581
582 double pb, pbmax, xbox, ybox;
583 pb = 0.0;
584 pbmax = 5.0 * pf;
585
586 while (pb == 0.0)
587 {
588 xbox = EvtRandom::Flat(pbmax);
589 ybox = EvtRandom::Flat();
590 if (ybox < FermiMomentumProb(xbox, pf)) { pb = xbox;}
591 }
592
593 return pb;
594}
595
596double EvtBtoXsllUtil::FermiMomentumProb(double pb, double pf)
597{
598 // Compute probability according to Ali's Gaussian model
599 // the function chosen has a convenient maximum value of 1 for pb = pf
600
601 double prsq = (pb*pb)/(pf*pf);
602 double prob = prsq * exp(1.0 - prsq);
603
604 return prob;
605}
606