]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TEvtGen/EvtGenModels/EvtVubBLNPHybrid.cpp
ATO-78 - Technical changes to compare different calibrations
[u/mrichter/AliRoot.git] / TEvtGen / EvtGenModels / EvtVubBLNPHybrid.cpp
CommitLineData
da0e9ce3 1
2//////////////////////////////////////////////////////////////////////
3//
4// Module: EvtVubBLNPHybrid.cc
5//
6// Description: Modeled on Riccardo Faccini's EvtVubNLO module
7//
8// tripleDiff from BLNP's notebook (based on BLNP4, hep-ph/0504071)
9//
10//////////////////////////////////////////////////////////////////
11
12#include "EvtGenBase/EvtPatches.hh"
13#include <stdlib.h>
14#include "EvtGenBase/EvtParticle.hh"
15#include "EvtGenBase/EvtGenKine.hh"
16#include "EvtGenBase/EvtPDL.hh"
17#include "EvtGenBase/EvtReport.hh"
18#include "EvtGenModels/EvtVubBLNPHybrid.hh"
19#include <string>
20#include "EvtGenBase/EvtVector4R.hh"
21#include "EvtGenModels/EvtItgSimpsonIntegrator.hh"
22#include "EvtGenModels/EvtItgPtrFunction.hh"
23#include "EvtGenBase/EvtRandom.hh"
24#include "EvtGenModels/EvtPFermi.hh"
25
26// For incomplete gamma function
27#include "math.h"
28#include "signal.h"
29#define ITMAX 100
30#define EPS 3.0e-7
31#define FPMIN 1.0e-30
32
33using std::cout;
34using std::endl;
35
36EvtVubBLNPHybrid::EvtVubBLNPHybrid()
37 : _noHybrid(false), _storeWhat(true),
38 _nbins_mX(0), _nbins_q2(0), _nbins_El(0), _nbins(0),
39 _masscut(0.28), _bins_mX(0), _bins_q2(0), _bins_El(0),
40 _weights(0)
41{}
42
43
44EvtVubBLNPHybrid::~EvtVubBLNPHybrid() {
45 delete [] _bins_mX;
46 delete [] _bins_q2;
47 delete [] _bins_El;
48 delete [] _weights;
49}
50
51std::string EvtVubBLNPHybrid::getName(){
52 return "VUB_BLNPHYBRID";
53}
54
55EvtDecayBase *EvtVubBLNPHybrid::clone() {
56
57 return new EvtVubBLNPHybrid;
58
59}
60
61void EvtVubBLNPHybrid::init() {
62
63 // check that there are at least 3 arguments
64 if (getNArg() < EvtVubBLNPHybrid::nParameters) {
65 report(ERROR,"EvtVubBLNPHybrid") << "EvtVubBLNPHybrid generator expected "
66 << "at least " << EvtVubBLNPHybrid::nParameters
67 << " arguments but found: " << getNArg()
68 << "\nWill terminate execution!"<<endl;
69 ::abort();
70 } else if (getNArg() == EvtVubBLNPHybrid::nParameters) {
71 report(WARNING,"EvtVubBLNPHybrid") << "EvtVubBLNPHybrid: generate B -> Xu l nu events "
72 << "without using the hybrid reweighting."
73 << endl;
74 _noHybrid = true;
75 } else if (getNArg() < EvtVubBLNPHybrid::nParameters+EvtVubBLNPHybrid::nVariables) {
76 report(ERROR,"EvtVubBLNPHybrid") << "EvtVubBLNPHybrid could not read number of bins for "
77 << "all variables used in the reweighting\n"
78 << "Will terminate execution!" << endl;
79 ::abort();
80 }
81
82
83
84 // get parameters (declared in the header file)
85
86 // Input parameters
87 mBB = 5.2792;
88 lambda2 = 0.12;
89
90 // Shape function parameters
91 b = getArg(0);
92 Lambda = getArg(1);
93 Ecut = 1.8;
94 wzero = mBB - 2*Ecut;
95
96 // SF and SSF modes
97 itype = (int)getArg(5);
98 dtype = getArg(5);
99 isubl = (int)getArg(6);
100
101 // flags
102 flag1 = (int)getArg(7);
103 flag2 = (int)getArg(8);
104 flag3 = (int)getArg(9);
105
106 // Quark mass
107 mb = 4.61;
108
109
110 // hidden parameter what and SF stuff
111 const double xlow = 0;
112 const double xhigh = mBB;
113 const int aSize = 10000;
114 EvtPFermi pFermi(Lambda,b);
115 // pf is the cumulative distribution normalized to 1.
116 _pf.resize(aSize);
117 for(int i=0;i<aSize;i++){
118 double what = xlow + (double)(i+0.5)/((double)aSize)*(xhigh-xlow);
119 if ( i== 0 )
120 _pf[i] = pFermi.getSFBLNP(what);
121 else
122 _pf[i] = _pf[i-1] + pFermi.getSFBLNP(what);
123 }
124 for (size_t i=0; i<_pf.size(); i++) {
125 _pf[i]/=_pf[_pf.size()-1];
126 }
127
128
129
130 // Matching scales
131 muh = mBB*getArg(2); // 0.5
132 mui = getArg(3); // 1.5
133 mubar = getArg(4); // 1.5
134
135 // Perturbative quantities
136 CF = 4.0/3.0;
137 CA = 3.0;
138 double nf = 4.0;
139
140 beta0 = 11.0/3.0*CA - 2.0/3.0*nf;
141 beta1 = 34.0/3.0*CA*CA - 10.0/3.0*CA*nf - 2.0*CF*nf;
142 beta2 = 2857.0/54.0*CA*CA*CA + (CF*CF - 205.0/18.0*CF*CA - 1415.0/54.0*CA*CA)*nf + (11.0/9.0*CF + 79.0/54.0*CA)*nf*nf;
143
144 zeta3 = 1.0 + 1/8.0 + 1/27.0 + 1/64.0;
145
146 Gamma0 = 4*CF;
147 Gamma1 = CF*( (268.0/9.0 - 4.0*M_PI*M_PI/3.0)*CA - 40.0/9.0*nf);
148 Gamma2 = 16*CF*( (245.0/24.0 - 67.0/54.0*M_PI*M_PI + + 11.0/180.0*pow(M_PI,4) + 11.0/6.0*zeta3)*CA*CA* + (-209.0/108.0 + 5.0/27.0*M_PI*M_PI - 7.0/3.0*zeta3)*CA*nf + (-55.0/24.0 + 2*zeta3)*CF*nf - nf*nf/27.0);
149
150 gp0 = -5.0*CF;
151 gp1 = -8.0*CF*( (3.0/16.0 - M_PI*M_PI/4.0 + 3*zeta3)*CF + (1549.0/432.0 + 7.0/48.0*M_PI*M_PI - 11.0/4.0*zeta3)*CA - (125.0/216.0 + M_PI*M_PI/24.0)*nf );
152
153 // Lbar and mupisq
154
155 Lbar = Lambda; // all models
156 mupisq = 3*Lambda*Lambda/b;
157 if (itype == 1) mupisq = 3*Lambda*Lambda/b;
158 if (itype == 2) mupisq = 3*Lambda*Lambda*(Gamma(1+0.5*b)*Gamma(0.5*b)/pow( Gamma(0.5 + 0.5*b), 2) - 1);
159
160 // moment2 for SSFs
161 moment2 = pow(0.3,3);
162
163 // inputs for total rate (T for Total); use BLNP notebook defaults
164 flagpower = 1;
165 flag2loop = 1;
166
167 // stuff for the integrator
168 maxLoop = 20;
169 //precision = 1.0e-3;
170 precision = 2.0e-2;
171
172 // vector of global variables, to pass to static functions (which can't access globals);
173 gvars.push_back(0.0); // 0
174 gvars.push_back(0.0); // 1
175 gvars.push_back(mui); // 2
176 gvars.push_back(b); // 3
177 gvars.push_back(Lambda); // 4
178 gvars.push_back(mBB); // 5
179 gvars.push_back(mb); // 6
180 gvars.push_back(wzero); // 7
181 gvars.push_back(beta0); // 8
182 gvars.push_back(beta1); // 9
183 gvars.push_back(beta2); // 10
184 gvars.push_back(dtype); // 11
185
186 // check that there are 3 daughters and 10 arguments
187 checkNDaug(3);
188 // A. Volk: check for number of arguments is not necessary
189 //checkNArg(10);
190
191 if (_noHybrid) return; // Without hybrid weighting, nothing else to do
192
193 _nbins_mX = abs((int)getArg(10));
194 _nbins_q2 = abs((int)getArg(11));
195 _nbins_El = abs((int)getArg(12));
196
197 int nextArg = EvtVubBLNPHybrid::nParameters + EvtVubBLNPHybrid::nVariables;
198
199 _nbins = _nbins_mX*_nbins_q2*_nbins_El; // Binning of weight table
200
201 int expectArgs = nextArg + _nbins_mX +_nbins_q2 + _nbins_El + _nbins;
202
203 if (getNArg() < expectArgs) {
204 report(ERROR,"EvtVubBLNPHybrid")
205 << " finds " << getNArg() << " arguments, expected " << expectArgs
206 << ". Something is wrong with the tables of weights or thresholds."
207 << "\nWill terminate execution!" << endl;
208 ::abort();
209 }
210
211 // read bin boundaries from decay.dec
212 int i;
213
214 _bins_mX = new double[_nbins_mX];
215 for (i = 0; i < _nbins_mX; i++,nextArg++) {
216 _bins_mX[i] = getArg(nextArg);
217 }
218 _masscut = _bins_mX[0];
219
220 _bins_q2 = new double[_nbins_q2];
221 for (i = 0; i < _nbins_q2; i++,nextArg++) {
222 _bins_q2[i] = getArg(nextArg);
223 }
224
225 _bins_El = new double[_nbins_El];
226 for (i = 0; i < _nbins_El; i++,nextArg++) {
227 _bins_El[i] = getArg(nextArg);
228 }
229
230 // read in weights (and rescale to range 0..1)
231 readWeights(nextArg);
232
233}
234
235void EvtVubBLNPHybrid::initProbMax() {
236 noProbMax();
237}
238
239void EvtVubBLNPHybrid::decay(EvtParticle *Bmeson) {
240
241 int j;
242
243 EvtParticle *xuhad, *lepton, *neutrino;
244 EvtVector4R p4;
0ca57c2f 245 double Pp, Pm, Pl, pdf, EX, sh, qsq, El, ml, mpi, ratemax;
da0e9ce3 246
247 double xhigh, xlow, what;
248 double mX;
249
250
251 bool rew(true);
252 while(rew){
253
254 Bmeson->initializePhaseSpace(getNDaug(), getDaugs());
255
256 xuhad = Bmeson->getDaug(0);
257 lepton = Bmeson->getDaug(1);
258 neutrino = Bmeson ->getDaug(2);
259
260 mBB = Bmeson->mass();
261 ml = lepton->mass();
262
263
264
265 // get SF value
266 xlow = 0;
267 xhigh = mBB;
268 // the case for alphas = 0 is not considered
269 what = 2*xhigh;
270 while( what > xhigh || what < xlow ) {
271 what = findBLNPWhat();
272 what = xlow + what*(xhigh-xlow);
273 }
274
275
276
277 bool tryit = true;
278
279 while (tryit) {
280
281 // generate pp between 0 and
282 // Flat(min, max) gives R(max - min) + min, where R = random btwn 0 and 1
283
284 Pp = EvtRandom::Flat(0, mBB); // P+ = EX - |PX|
285 Pl = EvtRandom::Flat(0, mBB); // mBB - 2El
286 Pm = EvtRandom::Flat(0, mBB); // P- = EX + |PX|
287
288 sh = Pm*Pp;
289 EX = 0.5*(Pm + Pp);
da0e9ce3 290 qsq = (mBB - Pp)*(mBB - Pm);
291 El = 0.5*(mBB - Pl);
292
293 // Need maximum rate. Waiting for Mr. Paz to give it to me.
294 // Meanwhile, use this.
295 ratemax = 3.0; // From trial and error - most events below 3.0
296
297 // kinematic bounds (Eq. 2)
298 mpi = 0.14;
299 if ((Pp > 0)&&(Pp <= Pl)&&(Pl <= Pm)&&(Pm < mBB)&&(El > ml)&&(sh > 4*mpi*mpi)) {
300
301 // Probability of pass proportional to PDF
302 pdf = rate3(Pp, Pl, Pm);
303 double testRan = EvtRandom::Flat(0., ratemax);
304 if (pdf >= testRan) tryit = false;
305 }
306 }
307
308 // compute all kinematic variables needed for reweighting
309 mX = sqrt(sh);
310
311 // Reweighting in bins of mX, q2, El
312 if (_nbins>0) {
313 double xran1 = EvtRandom::Flat();
314 double w = 1.0;
315 if (!_noHybrid) w = getWeight(mX, qsq, El);
316 if ( w >= xran1 ) rew = false;
317 }
318 else {
319 rew = false;
320 }
321 }
322 // o.k. we have the three kineamtic variables
323 // now calculate a flat cos Theta_H [-1,1] distribution of the
324 // hadron flight direction w.r.t the B flight direction
325 // because the B is a scalar and should decay isotropic.
326 // Then chose a flat Phi_H [0,2Pi] w.r.t the B flight direction
327 // and and a flat Phi_L [0,2Pi] in the W restframe w.r.t the
328 // W flight direction.
329
330 double ctH = EvtRandom::Flat(-1,1);
331 double phH = EvtRandom::Flat(0,2*M_PI);
332 double phL = EvtRandom::Flat(0,2*M_PI);
333
334 // now compute the four vectors in the B Meson restframe
335
336 double ptmp,sttmp;
337 // calculate the hadron 4 vector in the B Meson restframe
338
339 sttmp = sqrt(1-ctH*ctH);
340 ptmp = sqrt(EX*EX-sh);
341 double pHB[4] = {EX,ptmp*sttmp*cos(phH),ptmp*sttmp*sin(phH),ptmp*ctH};
342 p4.set(pHB[0],pHB[1],pHB[2],pHB[3]);
343 xuhad->init( getDaug(0), p4);
344
345
346 if (_storeWhat ) {
347 // cludge to store the hidden parameter what with the decay;
348 // the lifetime of the Xu is abused for this purpose.
349 // tau = 1 ps corresponds to ctau = 0.3 mm -> in order to
350 // stay well below BaBars sensitivity we take what/(10000 GeV).
351 // To extract what back from the StdHepTrk its necessary to get
352 // delta_ctau = Xu->decayVtx()->point().distanceTo(XuDaughter->decayVtx()->point());
353 //
354 // what = delta_ctau * 100000 * Mass_Xu/Momentum_Xu
355 //
356 xuhad->setLifetime(what/10000.);
357 }
358
359
360 // calculate the W 4 vector in the B Meson restrframe
361
362 double apWB = ptmp;
363 double pWB[4] = {mBB-EX,-pHB[1],-pHB[2],-pHB[3]};
364
365 // first go in the W restframe and calculate the lepton and
366 // the neutrino in the W frame
367
368 double mW2 = mBB*mBB + sh - 2*mBB*EX;
369 double beta = ptmp/pWB[0];
370 double gamma = pWB[0]/sqrt(mW2);
371
372 double pLW[4];
373
374 ptmp = (mW2-ml*ml)/2/sqrt(mW2);
375 pLW[0] = sqrt(ml*ml + ptmp*ptmp);
376
377 double ctL = (El - gamma*pLW[0])/beta/gamma/ptmp;
378 if ( ctL < -1 ) ctL = -1;
379 if ( ctL > 1 ) ctL = 1;
380 sttmp = sqrt(1-ctL*ctL);
381
382 // eX' = eZ x eW
383 double xW[3] = {-pWB[2],pWB[1],0};
384 // eZ' = eW
385 double zW[3] = {pWB[1]/apWB,pWB[2]/apWB,pWB[3]/apWB};
386
387 double lx = sqrt(xW[0]*xW[0]+xW[1]*xW[1]);
388 for (j=0;j<2;j++)
389 xW[j] /= lx;
390
391 // eY' = eZ' x eX'
392 double yW[3] = {-pWB[1]*pWB[3],-pWB[2]*pWB[3],pWB[1]*pWB[1]+pWB[2]*pWB[2]};
393 double ly = sqrt(yW[0]*yW[0]+yW[1]*yW[1]+yW[2]*yW[2]);
394 for (j=0;j<3;j++)
395 yW[j] /= ly;
396
397 // p_lep = |p_lep| * ( sin(Theta) * cos(Phi) * eX'
398 // + sin(Theta) * sin(Phi) * eY'
399 // + cos(Theta) * eZ')
400 for (j=0;j<3;j++)
401 pLW[j+1] = sttmp*cos(phL)*ptmp*xW[j]
402 + sttmp*sin(phL)*ptmp*yW[j]
403 + ctL *ptmp*zW[j];
404
405 double apLW = ptmp;
406
407 // boost them back in the B Meson restframe
408
409 double appLB = beta*gamma*pLW[0] + gamma*ctL*apLW;
410
411 ptmp = sqrt(El*El-ml*ml);
412 double ctLL = appLB/ptmp;
413
414 if ( ctLL > 1 ) ctLL = 1;
415 if ( ctLL < -1 ) ctLL = -1;
416
417 double pLB[4] = {El,0,0,0};
418 double pNB[4] = {pWB[0]-El,0,0,0};
419
420 for (j=1;j<4;j++) {
421 pLB[j] = pLW[j] + (ctLL*ptmp - ctL*apLW)/apWB*pWB[j];
422 pNB[j] = pWB[j] - pLB[j];
423 }
424
425 p4.set(pLB[0],pLB[1],pLB[2],pLB[3]);
426 lepton->init( getDaug(1), p4);
427
428 p4.set(pNB[0],pNB[1],pNB[2],pNB[3]);
429 neutrino->init( getDaug(2), p4);
430
431 return ;
432
433}
434
435double EvtVubBLNPHybrid::rate3(double Pp, double Pl, double Pm) {
436
437 // rate3 in units of GF^2*Vub^2/pi^3
438
439 double factor = 1.0/16*(mBB-Pp)*U1lo(muh, mui)*pow( (Pm - Pp)/(mBB - Pp), alo(muh, mui));
440
441 double doneJS = DoneJS(Pp, Pm, mui);
442 double done1 = Done1(Pp, Pm, mui);
443 double done2 = Done2(Pp, Pm, mui);
444 double done3 = Done3(Pp, Pm, mui);
445
446 // The EvtSimpsonIntegrator returns zero for bad integrals.
447 // So if any of the integrals are zero (ie bad), return zero.
448 // This will cause pdf = 0, so the event will not pass.
449 // I hope this will not introduce a bias.
450 if (doneJS*done1*done2*done3 == 0.0) {
451 //cout << "Integral failed: (Pp, Pm, Pl) = (" << Pp << ", " << Pm << ", " << Pl << ")" << endl;
452 return 0.0;
453 }
454 // if (doneJS*done1*done2*done3 != 0.0) {
455 // cout << "Integral OK: (Pp, Pm, Pl) = (" << Pp << ", " << Pm << ", " << Pl << ")" << endl;
456 //}
457
458 double f1 = F1(Pp, Pm, muh, mui, mubar, doneJS, done1);
459 double f2 = F2(Pp, Pm, muh, mui, mubar, done3);
460 double f3 = F3(Pp, Pm, muh, mui, mubar, done2);
461 double answer = factor*( (mBB + Pl - Pp - Pm)*(Pm - Pl)*f1 + 2*(Pl - Pp)*(Pm - Pl)*f2 + (mBB - Pm)*(Pm - Pp)*f3 );
462 return answer;
463
464}
465
466double EvtVubBLNPHybrid::F1(double Pp, double Pm, double muh, double mui, double mubar, double doneJS, double done1) {
467
468 std::vector<double> vars(12);
469 vars[0] = Pp;
470 vars[1] = Pm;
471 for (int j=2;j<12;j++) {vars[j] = gvars[j];}
472
473 double y = (Pm - Pp)/(mBB - Pp);
474 double ah = CF*alphas(muh, vars)/4/M_PI;
475 double ai = CF*alphas(mui, vars)/4/M_PI;
476 double abar = CF*alphas(mubar, vars)/4/M_PI;
477 double lambda1 = -mupisq;
478
479 double t1 = -4*ai/(Pp - Lbar)*(2*log((Pp - Lbar)/mui) + 1);
480 double t2 = 1 + dU1nlo(muh, mui) + anlo(muh, mui)*log(y);
481 double t3 = -4.0*pow(log(y*mb/muh),2) + 10.0*log(y*mb/muh) - 4.0*log(y) - 2.0*log(y)/(1-y) - 4.0*PolyLog(2, 1-y) - M_PI*M_PI/6.0 - 12.0;
482 double t4 = 2*pow( log(y*mb*Pp/(mui*mui)), 2) - 3*log(y*mb*Pp/(mui*mui)) + 7 - M_PI*M_PI;
483
484 double t5 = -wS(Pp) + 2*t(Pp) + (1.0/y - 1.0)*(u(Pp) - v(Pp));
485 double t6 = -(lambda1 + 3.0*lambda2)/3.0 + 1.0/pow(y,2)*(4.0/3.0*lambda1 - 2.0*lambda2);
486
487 double shapePp = Shat(Pp, vars);
488
489 double answer = (t2 + ah*t3 + ai*t4)*shapePp + ai*doneJS + 1/(mBB - Pp)*(flag2*abar*done1 + flag1*t5) + 1/pow(mBB - Pp, 2)*flag3*shapePp*t6;
490 if (Pp > Lbar + mui/exp(0.5)) answer = answer + t1;
491 return answer;
492
493}
494
0ca57c2f 495double EvtVubBLNPHybrid::F2(double Pp, double Pm, double muh, double /* mui */, double mubar, double done3) {
da0e9ce3 496
497 std::vector<double> vars(12);
498 vars[0] = Pp;
499 vars[1] = Pm;
500 for (int j=2;j<12;j++) {vars[j] = gvars[j];}
501
502 double y = (Pm - Pp)/(mBB - Pp);
503 double lambda1 = -mupisq;
504 double ah = CF*alphas(muh, vars)/4/M_PI;
505 double abar = CF*alphas(mubar, vars)/4/M_PI;
506
507 double t6 = -wS(Pp) - 2*t(Pp) + 1.0/y*(t(Pp) + v(Pp));
508 double t7 = 1/pow(y,2)*(2.0/3.0*lambda1 + 4.0*lambda2) - 1/y*(2.0/3.0*lambda1 + 3.0/2.0*lambda2);
509
510 double shapePp = Shat(Pp, vars);
511
512 double answer = ah*log(y)/(1-y)*shapePp + 1/(mBB - Pp)*(flag2*abar*0.5*done3 + flag1/y*t6) + 1.0/pow(mBB - Pp,2)*flag3*shapePp*t7;
513 return answer;
514
515}
516
0ca57c2f 517double EvtVubBLNPHybrid::F3(double Pp, double Pm, double /*muh*/, double /* mui */, double mubar, double done2) {
da0e9ce3 518
519 std::vector<double> vars(12);
520 vars[0] = Pp;
521 vars[1] = Pm;
522 for (int j=2;j<12;j++) {vars[j] = gvars[j];}
523
524 double y = (Pm - Pp)/(mBB - Pp);
525 double lambda1 = -mupisq;
526 double abar = CF*alphas(mubar, vars)/4/M_PI;
527
528 double t7 = 1.0/pow(y,2)*(-2.0/3.0*lambda1 + lambda2);
529
530 double shapePp = Shat(Pp, vars);
531
532 double answer = 1.0/(Pm - Pp)*flag2*0.5*y*abar*done2 + 1.0/pow(mBB-Pp,2)*flag3*shapePp*t7;
533 return answer;
534
535}
536
0ca57c2f 537double EvtVubBLNPHybrid::DoneJS(double Pp, double Pm, double /* mui */) {
da0e9ce3 538
539 std::vector<double> vars(12);
540 vars[0] = Pp;
541 vars[1] = Pm;
542 for (int j=2;j<12;j++) {vars[j] = gvars[j];}
543
544 double lowerlim = 0.001*Pp;
545 double upperlim = (1.0-0.001)*Pp;
546
547 EvtItgPtrFunction *func = new EvtItgPtrFunction(&IntJS, lowerlim, upperlim, vars);
548 EvtItgSimpsonIntegrator *integ = new EvtItgSimpsonIntegrator(*func, precision, maxLoop);
549 double myintegral = integ->evaluate(lowerlim, upperlim);
550 delete integ;
551 delete func;
552 return myintegral;
553
554}
555
0ca57c2f 556double EvtVubBLNPHybrid::Done1(double Pp, double Pm, double /* mui */) {
da0e9ce3 557
558 std::vector<double> vars(12);
559 vars[0] = Pp;
560 vars[1] = Pm;
561 for (int j=2;j<12;j++) {vars[j] = gvars[j];}
562
563 double lowerlim = 0.001*Pp;
564 double upperlim = (1.0-0.001)*Pp;
565
566 EvtItgPtrFunction *func = new EvtItgPtrFunction(&Int1, lowerlim, upperlim, vars);
567 EvtItgSimpsonIntegrator *integ = new EvtItgSimpsonIntegrator(*func, precision, maxLoop);
568 double myintegral = integ->evaluate(lowerlim, upperlim);
569 delete integ;
570 delete func;
571 return myintegral;
572
573}
574
0ca57c2f 575double EvtVubBLNPHybrid::Done2(double Pp, double Pm, double /* mui */ ) {
da0e9ce3 576
577 std::vector<double> vars(12);
578 vars[0] = Pp;
579 vars[1] = Pm;
580 for (int j=2;j<12;j++) {vars[j] = gvars[j];}
581
582 double lowerlim = 0.001*Pp;
583 double upperlim = (1.0-0.001)*Pp;
584
585 EvtItgPtrFunction *func = new EvtItgPtrFunction(&Int2, lowerlim, upperlim, vars);
586 EvtItgSimpsonIntegrator *integ = new EvtItgSimpsonIntegrator(*func, precision, maxLoop);
587 double myintegral = integ->evaluate(lowerlim, upperlim);
588 delete integ;
589 delete func;
590 return myintegral;
591
592}
593
0ca57c2f 594double EvtVubBLNPHybrid::Done3(double Pp, double Pm, double /* mui */) {
da0e9ce3 595
596 std::vector<double> vars(12);
597 vars[0] = Pp;
598 vars[1] = Pm;
599 for (int j=2;j<12;j++) {vars[j] = gvars[j];}
600
601 double lowerlim = 0.001*Pp;
602 double upperlim = (1.0-0.001)*Pp;
603
604 EvtItgPtrFunction *func = new EvtItgPtrFunction(&Int3, lowerlim, upperlim, vars);
605 EvtItgSimpsonIntegrator *integ = new EvtItgSimpsonIntegrator(*func, precision, maxLoop);
606 double myintegral = integ->evaluate(lowerlim, upperlim);
607 delete integ;
608 delete func;
609 return myintegral;
610
611}
612
613double EvtVubBLNPHybrid::Int1(double what, const std::vector<double> &vars) {
614 return Shat(what, vars)*g1(what, vars);
615}
616
617double EvtVubBLNPHybrid::Int2(double what, const std::vector<double> &vars) {
618 return Shat(what, vars)*g2(what, vars);
619}
620
621double EvtVubBLNPHybrid::Int3(double what, const std::vector<double> &vars) {
622 return Shat(what, vars)*g3(what, vars);
623}
624
625double EvtVubBLNPHybrid::IntJS(double what, const std::vector<double> &vars) {
626
627 double Pp = vars[0];
628 double Pm = vars[1];
629 double mui = vars[2];
630 double mBB = vars[5];
631 double mb = vars[6];
632 double y = (Pm - Pp)/(mBB - Pp);
633
634 return 1/(Pp-what)*(Shat(what, vars) - Shat(Pp, vars))*(4*log(y*mb*(Pp-what)/(mui*mui)) - 3);
635}
636
637double EvtVubBLNPHybrid::g1(double w, const std::vector<double> &vars) {
638
639 double Pp = vars[0];
640 double Pm = vars[1];
641 double mBB = vars[5];
642 double y = (Pm - Pp)/(mBB - Pp);
643 double x = (Pp - w)/(mBB - Pp);
644
645 double q1 = (1+x)*(1+x)*y*(x+y);
646 double q2 = y*(-9 + 10*y) + x*x*(-12.0 + 13.0*y) + 2*x*(-8.0 + 6*y + 3*y*y);
647 double q3 = 4/x*log(y + y/x);
648 double q4 = 3.0*pow(x,4)*(-2.0 + y) - 2*pow(y,3) - 4*pow(x,3)*(2.0+y) - 2*x*y*y*(4+y) - x*x*y*(12 + 4*y + y*y);
649 double q5 = log(1 + y/x);
650
651 double answer = q2/q1 - q3 - 2*q4*q5/(q1*y*x);
652 return answer;
653
654}
655
656double EvtVubBLNPHybrid::g2(double w, const std::vector<double> &vars) {
657
658 double Pp = vars[0];
659 double Pm = vars[1];
660 double mBB = vars[5];
661 double y = (Pm - Pp)/(mBB - Pp);
662 double x = (Pp - w)/(mBB - Pp);
663
664 double q1 = (1+x)*(1+x)*pow(y,3)*(x+y);
665 double q2 = 10.0*pow(x,4) + y*y + 3.0*pow(x,2)*y*(10.0+y) + pow(x,3)*(12.0+19.0*y) + x*y*(8.0 + 4.0*y + y*y);
666 double q3 = 5*pow(x,4) + 2.0*y*y + 6.0*pow(x,3)*(1.0+2.0*y) + 4.0*x*y*(1+2.0*y) + x*x*y*(18.0+5.0*y);
667 double q4 = log(1 + y/x);
668
669 double answer = 2.0/q1*( y*q2 - 2*x*q3*q4);
670 return answer;
671
672}
673
674double EvtVubBLNPHybrid::g3(double w, const std::vector<double> &vars) {
675
676 double Pp = vars[0];
677 double Pm = vars[1];
678 double mBB = vars[5];
679 double y = (Pm - Pp)/(mBB - Pp);
680 double x = (Pp - w)/(mBB - Pp);
681
682 double q1 = (1+x)*(1+x)*pow(y,3)*(x+y);
683 double q2 = 2.0*pow(y,3)*(-11.0+2.0*y) - 10.0*pow(x,4)*(6 - 6*y + y*y) + x*y*y*(-94.0 + 29.0*y + 2.0*y*y) + 2.0*x*x*y*(-72.0 +18.0*y + 13.0*y*y) - x*x*x*(72.0 + 42.0*y - 70.0*y*y + 3.0*y*y*y);
684 double q3 = -6.0*x*(-5.0+y)*pow(y,3) + 4*pow(y,4) + 5*pow(x,5)*(6-6*y + y*y) - 4*x*x*y*y*(-20.0 + 6*y + y*y) + pow(x,3)*y*(90.0 - 10.0*y - 28.0*y*y + y*y*y) + pow(x,4)*(36.0 + 36.0*y - 50.0*y*y + 4*y*y*y);
685 double q4 = log(1 + y/x);
686
687 double answer = q2/q1 + 2/q1/y*q3*q4;
688 return answer;
689
690}
691
692
693double EvtVubBLNPHybrid::Shat(double w, const std::vector<double> &vars) {
694
695 double mui = vars[2];
696 double b = vars[3];
697 double Lambda = vars[4];
698 double wzero = vars[7];
699 int itype = (int)vars[11];
700
701 double norm = 0.0;
702 double shape = 0.0;
703
704 if (itype == 1) {
705
706 double Lambar = (Lambda/b)*(Gamma(1+b)-Gamma(1+b,b*wzero/Lambda))/(Gamma(b) - Gamma(b, b*wzero/Lambda));
707 double muf = wzero - Lambar;
708 double mupisq = 3*pow(Lambda,2)/pow(b,2)*(Gamma(2+b) - Gamma(2+b, b*wzero/Lambda))/(Gamma(b) - Gamma(b, b*wzero/Lambda)) - 3*Lambar*Lambar;
709 norm = Mzero(muf, mui, mupisq, vars)*Gamma(b)/(Gamma(b) - Gamma(b, b*wzero/Lambda));
710 shape = pow(b,b)/Lambda/Gamma(b)*pow(w/Lambda, b-1)*exp(-b*w/Lambda);
711 }
712
713 if (itype == 2) {
714 double dcoef = pow( Gamma(0.5*(1+b))/Gamma(0.5*b), 2);
715 double t1 = wzero*wzero*dcoef/(Lambda*Lambda);
716 double Lambar = Lambda*(Gamma(0.5*(1+b)) - Gamma(0.5*(1+b),t1))/pow(dcoef, 0.5)/(Gamma(0.5*b) - Gamma(0.5*b, t1));
717 double muf = wzero - Lambar;
718 double mupisq = 3*Lambda*Lambda*( Gamma(1+0.5*b) - Gamma(1+0.5*b, t1))/dcoef/(Gamma(0.5*b) - Gamma(0.5*b, t1)) - 3*Lambar*Lambar;
719 norm = Mzero(muf, mui, mupisq, vars)*Gamma(0.5*b)/(Gamma(0.5*b) - Gamma(0.5*b, wzero*wzero*dcoef/(Lambda*Lambda)));
720 shape = 2*pow(dcoef, 0.5*b)/Lambda/Gamma(0.5*b)*pow(w/Lambda, b-1)*exp(-dcoef*w*w/(Lambda*Lambda));
721 }
722
723 double answer = norm*shape;
724 return answer;
725}
726
727double EvtVubBLNPHybrid::Mzero(double muf, double mu, double mupisq, const std::vector<double> &vars) {
728
729 double CF = 4.0/3.0;
730 double amu = CF*alphas(mu, vars)/M_PI;
731 double answer = 1 - amu*( pow(log(muf/mu), 2) + log(muf/mu) + M_PI*M_PI/24.0) + amu*(log(muf/mu) - 0.5)*mupisq/(3*muf*muf);
732 return answer;
733
734}
735
736double EvtVubBLNPHybrid::wS(double w) {
737
738 double answer = (Lbar - w)*Shat(w, gvars);
739 return answer;
740}
741
742double EvtVubBLNPHybrid::t(double w) {
743
744 double t1 = -3*lambda2/mupisq*(Lbar - w)*Shat(w, gvars);
745 double myf = myfunction(w, Lbar, moment2);
746 double myBIK = myfunctionBIK(w, Lbar, moment2);
747 double answer = t1;
748
749 if (isubl == 1) answer = t1;
750 if (isubl == 3) answer = t1 - myf;
751 if (isubl == 4) answer = t1 + myf;
752 if (isubl == 5) answer = t1 - myBIK;
753 if (isubl == 6) answer = t1 + myBIK;
754
755 return answer;
756}
757
758double EvtVubBLNPHybrid::u(double w) {
759
760 double u1 = -2*(Lbar - w)*Shat(w, gvars);
761 double myf = myfunction(w, Lbar, moment2);
762 double myBIK = myfunctionBIK(w, Lbar, moment2);
763 double answer = u1;
764
765 if (isubl == 1) answer = u1;
766 if (isubl == 3) answer = u1 + myf;
767 if (isubl == 4) answer = u1 - myf;
768 if (isubl == 5) answer = u1 + myBIK;
769 if (isubl == 6) answer = u1 - myBIK;
770
771 return answer;
772}
773
774double EvtVubBLNPHybrid::v(double w) {
775
776 double v1 = 3*lambda2/mupisq*(Lbar - w)*Shat(w, gvars);
777 double myf = myfunction(w, Lbar, moment2);
778 double myBIK = myfunctionBIK(w, Lbar, moment2);
779 double answer = v1;
780
781 if (isubl == 1) answer = v1;
782 if (isubl == 3) answer = v1 - myf;
783 if (isubl == 4) answer = v1 + myf;
784 if (isubl == 5) answer = v1 - myBIK;
785 if (isubl == 6) answer = v1 + myBIK;
786
787 return answer;
788}
789
790double EvtVubBLNPHybrid::myfunction(double w, double Lbar, double mom2) {
791
792 double bval = 5.0;
793 double x = w/Lbar;
794 double factor = 0.5*mom2*pow(bval/Lbar, 3);
795 double answer = factor*exp(-bval*x)*(1 - 2*bval*x + 0.5*bval*bval*x*x);
796 return answer;
797
798}
799
0ca57c2f 800double EvtVubBLNPHybrid::myfunctionBIK(double w, double Lbar, double /* mom2 */) {
da0e9ce3 801
802 double aval = 10.0;
803 double normBIK = (4 - M_PI)*M_PI*M_PI/8/(2-M_PI)/aval + 1;
804 double z = 3*M_PI*w/8/Lbar;
805 double q = M_PI*M_PI*2*pow(M_PI*aval, 0.5)*exp(-aval*z*z)/(4*M_PI - 8)*(1 - 2*pow(aval/M_PI, 0.5)*z) + 8/pow(1+z*z, 4)*(z*log(z) + 0.5*z*(1+z*z) - M_PI/4*(1-z*z));
806 double answer = q/normBIK;
807 return answer;
808
809}
810
811double EvtVubBLNPHybrid::dU1nlo(double muh, double mui) {
812
813 double ai = alphas(mui, gvars);
814 double ah = alphas(muh, gvars);
815
816 double q1 = (ah - ai)/(4*M_PI*beta0);
817 double q2 = log(mb/muh)*Gamma1 + gp1;
818 double q3 = 4*beta1*(log(mb/muh)*Gamma0 + gp0) + Gamma2*(1-ai/ah);
819 double q4 = beta1*beta1*Gamma0*(-1.0 + ai/ah)/(4*pow(beta0,3));
820 double q5 = -beta2*Gamma0*(1.0 + ai/ah) + beta1*Gamma1*(3 - ai/ah);
821 double q6 = beta1*beta1*Gamma0*(ah - ai)/beta0 - beta2*Gamma0*ah + beta1*Gamma1*ai;
822
823 double answer = q1*(q2 - q3/4/beta0 + q4 + q5/(4*beta0*beta0)) + 1/(8*M_PI*beta0*beta0*beta0)*log(ai/ah)*q6;
824 return answer;
825}
826
827double EvtVubBLNPHybrid::U1lo(double muh, double mui) {
828 double epsilon = 0.0;
829 double answer = pow(mb/muh, -2*aGamma(muh, mui, epsilon))*exp(2*Sfun(muh, mui, epsilon) - 2*agp(muh, mui, epsilon));
830 return answer;
831}
832
833double EvtVubBLNPHybrid::Sfun(double mu1, double mu2, double epsilon) {
834 double a1 = alphas(mu1, gvars)/4/M_PI;
835 double a2 = alphas(mu2, gvars)/alphas(mu1, gvars);
836
837 double answer = S0(a1,a2) + S1(a1,a2) + epsilon*S2(a1,a2);
838 return answer;
839
840}
841
842double EvtVubBLNPHybrid::S0(double a1, double r) {
843 double answer = -Gamma0/(4.0*beta0*beta0*a1)*(-1.0 + 1.0/r + log(r));
844 return answer;
845}
846
0ca57c2f 847double EvtVubBLNPHybrid::S1(double /* a1 */ , double r) {
da0e9ce3 848 double answer = Gamma0/(4*beta0*beta0)*(0.5*log(r)*log(r)*beta1/beta0 + (Gamma1/Gamma0 - beta1/beta0)*(1 - r + log(r)));
849 return answer;
850}
851
852double EvtVubBLNPHybrid::S2(double a1, double r) {
853
854 double w1 = pow(beta1,2)/pow(beta0,2) - beta2/beta0 - beta1*Gamma1/(beta0*Gamma0) + Gamma2/Gamma0;
855 double w2 = pow(beta1,2)/pow(beta0,2) - beta2/beta0;
856 double w3 = beta1*Gamma1/(beta0*Gamma0) - beta2/beta0;
857 double w4 = a1*Gamma0/(4*beta0*beta0);
858
859 double answer = w4*(-0.5*pow(1-r,2)*w1 + w2*(1-r)*log(r) + w3*(1-r+r*log(r)));
860 return answer;
861}
862
863double EvtVubBLNPHybrid::aGamma(double mu1, double mu2, double epsilon) {
864 double a1 = alphas(mu1, gvars);
865 double a2 = alphas(mu2, gvars);
866 double answer = Gamma0/(2*beta0)*log(a2/a1) + epsilon*(a2-a1)/(8.0*M_PI)*(Gamma1/beta0 - beta1*Gamma0/(beta0*beta0));
867 return answer;
868}
869
870double EvtVubBLNPHybrid::agp(double mu1, double mu2, double epsilon) {
871 double a1 = alphas(mu1, gvars);
872 double a2 = alphas(mu2, gvars);
873 double answer = gp0/(2*beta0)*log(a2/a1) + epsilon*(a2-a1)/(8.0*M_PI)*(gp1/beta0 - beta1*gp0/(beta0*beta0));
874 return answer;
875}
876
877double EvtVubBLNPHybrid::alo(double muh, double mui) { return -2.0*aGamma(muh, mui, 0);}
878
879double EvtVubBLNPHybrid::anlo(double muh, double mui) { // d/depsilon of aGamma
880
881 double ah = alphas(muh, gvars);
882 double ai = alphas(mui, gvars);
883 double answer = (ah-ai)/(8.0*M_PI)*(Gamma1/beta0 - beta1*Gamma0/(beta0*beta0));
884 return answer;
885}
886
887double EvtVubBLNPHybrid::alphas(double mu, const std::vector<double> &vars) {
888
889 // Note: Lambda4 and Lambda5 depend on mbMS = 4.25
890 // So if you change mbMS, then you will have to recalculate them.
891
892 double beta0 = vars[8];
893 double beta1 = vars[9];
894 double beta2 = vars[10];
895
896 double Lambda4 = 0.298791;
897 double lg = 2*log(mu/Lambda4);
898 double answer = 4*M_PI/(beta0*lg)*( 1 - beta1*log(lg)/(beta0*beta0*lg) + beta1*beta1/(beta0*beta0*beta0*beta0*lg*lg)*( (log(lg) - 0.5)*(log(lg) - 0.5) - 5.0/4.0 + beta2*beta0/(beta1*beta1)));
899 return answer;
900
901}
902
903double EvtVubBLNPHybrid::PolyLog(double v, double z) {
904
905 if (z >= 1) cout << "Error in EvtVubBLNPHybrid: 2nd argument to PolyLog is >= 1." << endl;
906
907 double sum = 0.0;
908 for (int k=1; k<101; k++) {
909 sum = sum + pow(z,k)/pow(k,v);
910 }
911 return sum;
912}
913
914double EvtVubBLNPHybrid::Gamma(double z)
915{
916 if (z<=0) return 0;
917
918 double v = lgamma(z);
919 return exp(v);
920}
921
922double EvtVubBLNPHybrid::Gamma(double a, double x)
923{
924 double LogGamma;
925 /* if (x<0.0 || a<= 0.0) raise(SIGFPE);*/
926 if(x<0.0) x=0.0;
927 if(a<=0.0)a=1.e-50;
928 LogGamma = lgamma(a);
929 if (x < (a+1.0))
930 return gamser(a,x,LogGamma);
931 else
932 return 1.0-gammcf(a,x,LogGamma);
933}
934
935/* ------------------Incomplete gamma function-----------------*/
936/* ------------------via its series representation-------------*/
937
938double EvtVubBLNPHybrid::gamser(double a, double x, double LogGamma)
939{
940 double n;
941 double ap,del,sum;
942
943 ap=a;
944 del=sum=1.0/a;
945 for (n=1;n<ITMAX;n++) {
946 ++ap;
947 del *= x/ap;
948 sum += del;
949 if (fabs(del) < fabs(sum)*EPS) return sum*exp(-x + a*log(x) - LogGamma);
950 }
951 raise(SIGFPE);
952
953 return 0.0;
954}
955
956/* ------------------Incomplete gamma function complement------*/
957/* ------------------via its continued fraction representation-*/
958
959double EvtVubBLNPHybrid::gammcf(double a, double x, double LogGamma) {
960
961 double an,b,c,d,del,h;
962 int i;
963
964 b = x + 1.0 -a;
965 c = 1.0/FPMIN;
966 d = 1.0/b;
967 h = d;
968 for (i=1;i<ITMAX;i++) {
969 an = -i*(i-a);
970 b+=2.0;
971 d=an*d+b;
972 if (fabs(d) < FPMIN) d = FPMIN;
973 c = b+an/c;
974 if (fabs(c) < FPMIN) c = FPMIN;
975 d = 1.0/d;
976 del=d*c;
977 h *= del;
978 if (fabs(del-1.0) < EPS) return exp(-x+a*log(x)-LogGamma)*h;
979 }
980 raise(SIGFPE);
981
982 return 0.0;
983
984}
985
986
987double EvtVubBLNPHybrid::findBLNPWhat() {
988
989 double ranNum=EvtRandom::Flat();
990 double oOverBins= 1.0/(float(_pf.size()));
991 int nBinsBelow = 0; // largest k such that I[k] is known to be <= rand
992 int nBinsAbove = _pf.size(); // largest k such that I[k] is known to be > rand
993 int middle;
994
995 while (nBinsAbove > nBinsBelow+1) {
996 middle = (nBinsAbove + nBinsBelow+1)>>1;
997 if (ranNum >= _pf[middle]) {
998 nBinsBelow = middle;
999 } else {
1000 nBinsAbove = middle;
1001 }
1002 }
1003
1004 double bSize = _pf[nBinsAbove] - _pf[nBinsBelow];
1005 // binMeasure is always aProbFunc[nBinsBelow],
1006
1007 if ( bSize == 0 ) {
1008 // rand lies right in a bin of measure 0. Simply return the center
1009 // of the range of that bin. (Any value between k/N and (k+1)/N is
1010 // equally good, in this rare case.)
1011 return (nBinsBelow + .5) * oOverBins;
1012 }
1013
1014 double bFract = (ranNum - _pf[nBinsBelow]) / bSize;
1015
1016 return (nBinsBelow + bFract) * oOverBins;
1017
1018}
1019
1020double EvtVubBLNPHybrid::getWeight(double mX, double q2, double El) {
1021
1022 int ibin_mX = -1;
1023 int ibin_q2 = -1;
1024 int ibin_El = -1;
1025
1026 for (int i = 0; i < _nbins_mX; i++) {
1027 if (mX >= _bins_mX[i]) ibin_mX = i;
1028 }
1029 for (int i = 0; i < _nbins_q2; i++) {
1030 if (q2 >= _bins_q2[i]) ibin_q2 = i;
1031 }
1032 for (int i = 0; i < _nbins_El; i++) {
1033 if (El >= _bins_El[i]) ibin_El = i;
1034 }
1035 int ibin = ibin_mX + ibin_q2*_nbins_mX + ibin_El*_nbins_mX*_nbins_q2;
1036
1037 if ( (ibin_mX < 0) || (ibin_q2 < 0) || (ibin_El < 0) ) {
1038 report(ERROR,"EvtVubHybrid") << "Cannot determine hybrid weight "
1039 << "for this event "
1040 << "-> assign weight = 0" << endl;
1041 return 0.0;
1042 }
1043
1044 return _weights[ibin];
1045}
1046
1047
1048void EvtVubBLNPHybrid::readWeights(int startArg) {
1049 _weights = new double[_nbins];
1050
1051 double maxw = 0.0;
1052 for (int i = 0; i < _nbins; i++, startArg++) {
1053 _weights[i] = getArg(startArg);
1054 if (_weights[i] > maxw) maxw = _weights[i];
1055 }
1056
1057 if (maxw == 0) {
1058 report(ERROR,"EvtVubBLNPHybrid") << "EvtVub generator expected at least one "
1059 << " weight > 0, but found none! "
1060 << "Will terminate execution!"<<endl;
1061 ::abort();
1062 }
1063
1064 // rescale weights (to be in range 0..1)
1065 for (int i = 0; i < _nbins; i++) {
1066 _weights[i] /= maxw;
1067 }
1068}