]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TOF/AliTOFGeometryV4.cxx
class for TOF alignment
[u/mrichter/AliRoot.git] / TOF / AliTOFGeometryV4.cxx
CommitLineData
d3c7bfac 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
a6a9820c 18Revision 1.2 2006/02/28 10:38:00 decaro
19AliTOFGeometry::fAngles, AliTOFGeometry::fHeights, AliTOFGeometry::fDistances arrays: dimension definition in the right location
20
4402e7cb 21Revision 1.1 2005/12/15 08:55:33 decaro
22New TOF geometry description (V5) -G. Cara Romeo and A. De Caro
23
d3c7bfac 24Revision 0.1 2005/07/19 A. De Caro
25 Modify Global methods IsInsideThePad & DistanceToPad
26 according to the PPR TOF geometry
27 Implement Global methods GetPadDx & GetPadDy & GetPadDz
28 Modify Global methods GetDetID & GetPlate & GetSector &
29 GetStrip & GetPadX & GetPadZ
30 according to the PPR TOF geometry
31 Modify Global methods GetPos & GetX & GetY & GetZ
32 according to the PPR TOF geometry
33*/
34
35#include <stdlib.h>
36#include <Riostream.h>
37///////////////////////////////////////////////////////////////////////////////
38// //
39// TOF Geometry class (PPR version) //
40// //
41///////////////////////////////////////////////////////////////////////////////
42
43#include "AliLog.h"
44#include "AliConst.h"
45
46#include "AliTOFGeometry.h"
47#include "AliTOFGeometryV4.h"
48
49ClassImp(AliTOFGeometryV4)
50
51const Int_t AliTOFGeometryV4::kNStripC = 20; // number of strips in C type module
d3c7bfac 52
53const Float_t AliTOFGeometryV4::fgkZlenA = 106.0; // length (cm) of the A module
54const Float_t AliTOFGeometryV4::fgkZlenB = 141.0; // length (cm) of the B module
55const Float_t AliTOFGeometryV4::fgkZlenC = 177.5; // length (cm) of the C module
56const Float_t AliTOFGeometryV4::fgkMaxhZtof = 371.5; // Max half z-size of TOF (cm)
d3c7bfac 57
58const Float_t AliTOFGeometryV4::fgkDeadBndX = 1.0; // Dead Boundaries of a Strip along X direction (length) (cm)
59const Float_t AliTOFGeometryV4::fgkDeadBndZ = 1.5; // Dead Boundaries of a Strip along Z direction (width) (cm)
60const Float_t AliTOFGeometryV4::fgkOverSpc = 15.3; // Space available for sensitive layers in radial direction (cm)
61
62const Float_t AliTOFGeometryV4::fgkDprecMin = 0.0000075;//num.prec.tolerance on Thmin
63const Float_t AliTOFGeometryV4::fgkDprecMax = 0.0000100;//num.prec.tolerance on Thma
64const Float_t AliTOFGeometryV4::fgkDprecCen = 0.0000005;//num.prec.tolerance on <Theta>
65
66const Float_t AliTOFGeometryV4::fgkxTOF = 371.; // Inner radius of the TOF for Reconstruction (cm)
67const Float_t AliTOFGeometryV4::fgkRmin = 370.; // Inner radius of the TOF (cm)
68const Float_t AliTOFGeometryV4::fgkRmax = 399.; // Outer radius of the TOF (cm)
69
70//_____________________________________________________________________________
71AliTOFGeometryV4::AliTOFGeometryV4()
72 :AliTOFGeometry()
73{
74 //
75 // AliTOFGeometryV4 default constructor
76 //
77
78 AliTOFGeometry::kNStripC = kNStripC; // number of strips in C type module
d3c7bfac 79
80 AliTOFGeometry::kZlenA = fgkZlenA; // length (cm) of the A module
81 AliTOFGeometry::kZlenB = fgkZlenB; // length (cm) of the B module
82 AliTOFGeometry::kZlenC = fgkZlenC; // length (cm) of the C module
83 AliTOFGeometry::kMaxhZtof = fgkMaxhZtof; // Max half z-size of TOF (cm)
d3c7bfac 84
85 AliTOFGeometry::fgkxTOF = fgkxTOF; // Inner radius of the TOF for Reconstruction (cm)
86 AliTOFGeometry::fgkRmin = fgkRmin; // Inner radius of the TOF (cm)
87 AliTOFGeometry::fgkRmax = fgkRmax; // Outer radius of the TOF (cm)
88
89 Init();
90
91}
92
93//_____________________________________________________________________________
94AliTOFGeometryV4::~AliTOFGeometryV4()
95{
96 //
97 // AliTOFGeometryV4 destructor
98 //
99
100}
101//_____________________________________________________________________________
a6a9820c 102void AliTOFGeometryV4::ImportGeometry(){
103 TGeoManager::Import("geometry.root");
104}
105//_____________________________________________________________________________
d3c7bfac 106void AliTOFGeometryV4::Init()
107{
108 //
109 // Initialize strip Tilt Angles and Heights
110 //
111 // Strips Tilt Angles
112
113 Float_t const kangles[kNPlates][kMaxNstrip] ={
114
115 {44.494, 43.725, 42.946, 42.156, 41.357, 40.548, 39.729, 38.899,
116 38.060, 37.211, 36.353, 35.484, 34.606, 33.719, 32.822, 31.916,
117 31.001, 30.077, 29.144, 28.202 },
118
119 {26.884, 25.922, 24.952, 23.975, 22.989, 22.320, 21.016, 20.309,
120 19.015, 18.270, 16.989, 16.205, 14.941, 14.117, 12.871, 12.008,
121 10.784, 9.8807, 8.681, 0.0 },
122
123 { 7.5835, 6.4124, 5.4058, 4.2809, 3.2448, 2.1424, 1.078, -0., -1.078,
124 -2.1424, -3.2448, -4.2809, -5.4058, -6.4124, -7.5835, 0.0, 0.0, 0.0,
125 0.0, 0.0 },
126
127 {-8.681, -9.8807, -10.784, -12.008, -12.871, -14.117, -14.941, -16.205,
128 -16.989, -18.27, -19.015, -20.309, -21.016, -22.32, -22.989,
129 -23.975, -24.952, -25.922, -26.884, 0. },
130
131 {-28.202, -29.144, -30.077, -31.001, -31.916, -32.822, -33.719, -34.606,
132 -35.484, -36.353, -37.211, -38.06, -38.899, -39.729, -40.548,
133 -41.357, -42.156, -42.946, -43.725, -44.494 }};
134
135
136 //Strips Heights
137
138 Float_t const kheights[kNPlates][kMaxNstrip]= {
139
140 {-5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5,
141 -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5 },
142
143 {-6.3, -7.1, -7.9, -8.7, -9.5, -3, -9.5, -3, -9.5, -3,
144 -9.5, -3.0, -9.5, -3.0, -9.5, -3, -9.5, -3, -9 , 0.},
145
146 { -3, -9, -4.5, -9, -4.5, -9, -4.5, -9, -4.5, -9,
147 -4.5, -9, -4.5, -9, -3, 0.0, 0.0, 0.0, 0.0, 0.0 },
148
149 { -9, -3, -9.5, -3, -9.5, -3, -9.5, -3, -9.5, -3, -9.5,
150 -3, -9.5, -3, -9.5, -8.7, -7.9, -7.1, -6.3, 0. },
151
152 {-5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5,
153 -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5 }};
154
155 // Deposit in fAngles, fHeights
156
d3c7bfac 157 for (Int_t iplate = 0; iplate < kNPlates; iplate++) {
158 for (Int_t istrip = 0; istrip < kMaxNstrip; istrip++) {
159 AliTOFGeometry::fAngles[iplate][istrip] = kangles[iplate][istrip];
160 AliTOFGeometry::fHeights[iplate][istrip] = kheights[iplate][istrip];
161 }
162 }
163
164}
165
166//_____________________________________________________________________________
a6a9820c 167Float_t AliTOFGeometryV4::DistanceToPadPar(Int_t *det, Float_t *pos, Float_t *dist3d)
d3c7bfac 168{
169//
170// Returns distance of space point with coor pos (x,y,z) (cm) wrt
171// pad with Detector Indices idet (iSect,iPlate,iStrip,iPadX,iPadZ)
172//
173
174 //Transform pos into Sector Frame
175
176 Float_t x = pos[0];
177 Float_t y = pos[1];
178 Float_t z = pos[2];
179
180 Float_t radius = TMath::Sqrt(x*x+y*y);
181 Float_t phi=TMath::ATan2(y,x);
182 if(phi<0) phi=2.*TMath::Pi()+phi;
183 // Get the local angle in the sector philoc
184 Float_t angle = phi*kRaddeg-( Int_t (kRaddeg*phi/fPhiSec) + 0.5)*fPhiSec;
185 Float_t xs = radius*TMath::Cos(angle/kRaddeg);
186 Float_t ys = radius*TMath::Sin(angle/kRaddeg);
187 Float_t zs = z;
188
189 // Do the same for the selected pad
190
191 Float_t g[3];
a6a9820c 192 GetPosPar(det,g);
d3c7bfac 193
194 Float_t padRadius = TMath::Sqrt(g[0]*g[0]+g[1]*g[1]);
195 Float_t padPhi=TMath::ATan2(g[1],g[0]);
196 if(padPhi<0) padPhi=2.*TMath::Pi()+padPhi;
197 // Get the local angle in the sector philoc
198 Float_t padAngle = padPhi*kRaddeg-( Int_t (padPhi*kRaddeg/fPhiSec)+ 0.5) * fPhiSec;
199 Float_t padxs = padRadius*TMath::Cos(padAngle/kRaddeg);
200 Float_t padys = padRadius*TMath::Sin(padAngle/kRaddeg);
201 Float_t padzs = g[2];
202
203 //Now move to local pad coordinate frame. Translate:
204
205 Float_t xt = xs-padxs;
206 Float_t yt = ys-padys;
207 Float_t zt = zs-padzs;
208 //Now Rotate:
209
210 Float_t alpha = GetAngles(det[1],det[2]);
211 Float_t xr = xt*TMath::Cos(alpha/kRaddeg)+zt*TMath::Sin(alpha/kRaddeg);
212 Float_t yr = yt;
213 Float_t zr = -xt*TMath::Sin(alpha/kRaddeg)+zt*TMath::Cos(alpha/kRaddeg);
214
215 Float_t dist = TMath::Sqrt(xr*xr+yr*yr+zr*zr);
d3c7bfac 216 if (dist3d){
217 dist3d[0] = xr;
218 dist3d[1] = yr;
219 dist3d[2] = zr;
220 }
221
222 return dist;
223
224}
225
226//_____________________________________________________________________________
a6a9820c 227Bool_t AliTOFGeometryV4::IsInsideThePadPar(Int_t *det, Float_t *pos)
d3c7bfac 228{
229//
230// Returns true if space point with coor pos (x,y,z) (cm) falls
231// inside pad with Detector Indices idet (iSect,iPlate,iStrip,iPadX,iPadZ)
232//
233
234 Bool_t isInside=false;
235
236 //Transform pos into Sector Frame
237
238 Float_t x = pos[0];
239 Float_t y = pos[1];
240 Float_t z = pos[2];
241
242 Float_t radius = TMath::Sqrt(x*x+y*y);
243 Float_t phi=TMath::ATan2(y,x);
244 if(phi<0) phi=2.*TMath::Pi()+phi;
245 // Get the local angle in the sector philoc
246 Float_t angle = phi*kRaddeg-( Int_t (kRaddeg*phi/fPhiSec) + 0.5) *fPhiSec;
247 Float_t xs = radius*TMath::Cos(angle/kRaddeg);
248 Float_t ys = radius*TMath::Sin(angle/kRaddeg);
249 Float_t zs = z;
250
251 // Do the same for the selected pad
252
253 Float_t g[3];
a6a9820c 254 GetPosPar(det,g);
d3c7bfac 255
256 Float_t padRadius = TMath::Sqrt(g[0]*g[0]+g[1]*g[1]);
257 Float_t padPhi=TMath::ATan2(g[1],g[0]);
258 if(padPhi<0) padPhi=2.*TMath::Pi()+padPhi;
259 // Get the local angle in the sector philoc
260 Float_t padAngle = padPhi*kRaddeg-( Int_t (padPhi*kRaddeg/fPhiSec)+ 0.5) * fPhiSec;
261 Float_t padxs = padRadius*TMath::Cos(padAngle/kRaddeg);
262 Float_t padys = padRadius*TMath::Sin(padAngle/kRaddeg);
263 Float_t padzs = g[2];
264
265 //Now move to local pad coordinate frame. Translate:
266
267 Float_t xt = xs-padxs;
268 Float_t yt = ys-padys;
269 Float_t zt = zs-padzs;
270
271 //Now Rotate:
272
273 Float_t alpha = GetAngles(det[1],det[2]);
274 Float_t xr = xt*TMath::Cos(alpha/kRaddeg)+zt*TMath::Sin(alpha/kRaddeg);
275 Float_t yr = yt;
276 Float_t zr = -xt*TMath::Sin(alpha/kRaddeg)+zt*TMath::Cos(alpha/kRaddeg);
277
278 if(TMath::Abs(xr)<=0.75 && TMath::Abs(yr)<= (fgkXPad*0.5) && TMath::Abs(zr)<= (fgkZPad*0.5))
279 isInside=true;
280 return isInside;
281
282}
283
a6a9820c 284
285//_____________________________________________________________________________
286Float_t AliTOFGeometryV4::DistanceToPad(Int_t *det, TGeoHMatrix mat, Float_t *pos, Float_t *dist3d)
287{
288//
289// Returns distance of space point with coor pos (x,y,z) (cm) wrt
290// pad with Detector Indices idet (iSect,iPlate,iStrip,iPadX,iPadZ)
291//
292 if (!gGeoManager) {
293 printf("ERROR: no TGeo\n");
294 return 0.;
295 }
296 Double_t vecg[3];
297 vecg[0]=pos[0];
298 vecg[1]=pos[1];
299 vecg[2]=pos[2];
300 Double_t veclr[3]={-1.,-1.,-1.};
301 Double_t vecl[3]={-1.,-1.,-1.};
302 mat.MasterToLocal(vecg,veclr);
303 vecl[0]=veclr[1];
304 vecl[1]=veclr[0];
305 vecl[2]=-veclr[2];
306 //Take into account reflections
307 if(det[1]>2){
308 vecl[1]=-veclr[0];
309 vecl[2]= veclr[2];
310 }
311
312 Float_t dist = TMath::Sqrt(vecl[0]*vecl[0]+vecl[1]*vecl[1]+vecl[2]*vecl[2]);
313
314
315 if (dist3d){
316 dist3d[0] = vecl[0];
317 dist3d[1] = vecl[1];
318 dist3d[2] = vecl[2];
319 }
320
321 return dist;
322
323}
324
325
326//_____________________________________________________________________________
327Bool_t AliTOFGeometryV4::IsInsideThePad( Int_t *det, TGeoHMatrix mat, Float_t *pos)
328{
329//
330// Returns true if space point with coor pos (x,y,z) (cm) falls
331// inside pad with Detector Indices idet (iSect,iPlate,iStrip,iPadX,iPadZ)
332//
333
334 const Float_t khsensmy = 0.5; // heigth of Sensitive Layer
335
336 Double_t vecg[3];
337 vecg[0]=pos[0];
338 vecg[1]=pos[1];
339 vecg[2]=pos[2];
340 Double_t veclr[3]={-1.,-1.,-1.};
341 Double_t vecl[3]={-1.,-1.,-1.};
342 mat.MasterToLocal(vecg,veclr);
343 vecl[0]=veclr[1];
344 vecl[1]=veclr[0];
345 vecl[2]=-veclr[2];
346 //Take into account reflections
347 if(det[1]>2){
348 vecl[1]=-veclr[0];
349 vecl[2]= veclr[2];
350 }
351
352 Float_t xr = vecl[0];
353 Float_t yr = vecl[1];
354 Float_t zr = vecl[2];
355
356 Bool_t isInside=false;
357 if(TMath::Abs(xr)<= khsensmy*0.5 && TMath::Abs(yr)<= (fgkXPad*0.5) && TMath::Abs(zr)<= (fgkZPad*0.5))
358 isInside=true;
359 return isInside;
360
361}
d3c7bfac 362//_____________________________________________________________________________
363Float_t AliTOFGeometryV4::GetX(Int_t *det)
364{
365 //
366 // Returns X coordinate (cm)
367 //
368
369 Int_t isector = det[0];
370 Int_t iplate = det[1];
371 Int_t istrip = det[2];
372 Int_t ipadz = det[3];
373 Int_t ipadx = det[4];
374
375 // Find out distance d on the plane wrt median phi:
376 Float_t d = (ipadx+0.5)*fgkXPad-(kNpadX*fgkXPad)*0.5;
377
378 // The radius r in xy plane:
379 Float_t r = (fgkRmin+fgkRmax)/2.+fHeights[iplate][istrip]+
380 (ipadz-0.5)*fgkZPad*TMath::Sin(fAngles[iplate][istrip]/kRaddeg)-0.25;
381
382 // local azimuthal angle in the sector philoc
383 Float_t philoc = TMath:: ATan(d/r);
384
385 // azimuthal angle in the global frame phi
386 Float_t phi = philoc*kRaddeg+(isector+0.5 )*fPhiSec;
387
388 Float_t xCoor = r/TMath::Cos(philoc)*TMath::Cos(phi/kRaddeg);
389
390 return xCoor;
391
392}
393//_____________________________________________________________________________
394Float_t AliTOFGeometryV4::GetY(Int_t *det)
395{
396 //
397 // Returns Y coordinate (cm)
398 //
399
400 Int_t isector = det[0];
401 Int_t iplate = det[1];
402 Int_t istrip = det[2];
403 Int_t ipadz = det[3];
404 Int_t ipadx = det[4];
405
406 // Find out distance d on the plane wrt median phi:
407 Float_t d = (ipadx+0.5)*fgkXPad-(kNpadX*fgkXPad)*0.5;
408
409 // The radius r in xy plane:
410 Float_t r = (fgkRmin+fgkRmax)/2.+fHeights[iplate][istrip]+
411 (ipadz-0.5)*fgkZPad*TMath::Sin(fAngles[iplate][istrip]/kRaddeg)-0.25;
412
413 // local azimuthal angle in the sector philoc
414 Float_t philoc = TMath:: ATan(d/r);
415
416 // azimuthal angle in the global frame phi
417 Float_t phi = philoc*kRaddeg+(isector+0.5 )*fPhiSec;
418
419 Float_t yCoor = r/TMath::Cos(philoc)*TMath::Sin(phi/kRaddeg);
420
421 return yCoor;
422
423}
424
425//_____________________________________________________________________________
426Float_t AliTOFGeometryV4::GetZ(Int_t *det)
427{
428 //
429 // Returns Z coordinate (cm)
430 //
431
432 Int_t iplate = det[1];
433 Int_t istrip = det[2];
434 Int_t ipadz = det[3];
435
436 // The radius r in xy plane:
437 Float_t r = (fgkRmin+fgkRmax)/2.+fHeights[iplate][istrip];
438
439 Float_t zCoor = r*TMath::Tan(0.5*TMath::Pi()-GetStripTheta(iplate,istrip))-
440 (ipadz-0.5)*fgkZPad*TMath::Cos(fAngles[iplate][istrip]/kRaddeg);
441 return zCoor;
442
443}
444
445//_____________________________________________________________________________
446Int_t AliTOFGeometryV4::GetSector(Float_t *pos)
447{
448 //
449 // Returns the Sector index
450 //
451
452 Int_t iSect = -1;
453
454 Float_t x = pos[0];
455 Float_t y = pos[1];
456
457 Float_t phi = TMath::ATan2(y,x);
458 if(phi<0.) phi=2.*TMath::Pi()+phi;
459 iSect = (Int_t) (phi*kRaddeg/fPhiSec);
460
461 return iSect;
462
463}
464
465//_____________________________________________________________________________
466Int_t AliTOFGeometryV4::GetPadX(Float_t *pos)
467{
468 //
469 // Returns the Pad index along X
470 //
471
472 Int_t iPadX = -1;
473
474 Float_t x = pos[0];
475 Float_t y = pos[1];
476 Float_t z = pos[2];
477
478 Int_t isector = GetSector(pos);
479 if(isector == -1){
480 AliError("Detector Index could not be determined");
481 return iPadX;}
482 Int_t iplate = GetPlate(pos);
483 if(iplate == -1){
484 AliError("Detector Index could not be determined");
485 return iPadX;}
486 Int_t istrip = GetStrip(pos);
487 if(istrip == -1){
488 AliError("Detector Index could not be determined");
489 return iPadX;}
490
491
492 Float_t rho=TMath::Sqrt(x*x+y*y);
493 Float_t phi = TMath::ATan2(y,x);
494 if(phi<0.) phi=2.*TMath::Pi()+phi;
495
496 // Get the local angle in the sector philoc
497 Float_t philoc = phi*kRaddeg-(isector+0.5)*fPhiSec;
498 philoc*=TMath::Pi()/180.;
499 // theta projected on the median of the sector
500 Float_t theta = TMath::ATan2(rho*TMath::Cos(philoc),z);
501 // The radius r in xy plane:
502 Float_t r = (fgkRmin+fgkRmax)/2.+fHeights[iplate][istrip]+
503 (theta-GetStripTheta(iplate, istrip))/
504 (GetMaxStripTheta(iplate, istrip)-GetMinStripTheta(iplate, istrip))
505 * 2.*fgkZPad*TMath::Sin(fAngles[iplate][istrip]/kRaddeg)-0.25;
506
507 // Find out distance projected onto the strip plane
508 Float_t d = (r*TMath::Tan(philoc)+(kNpadX*fgkXPad)*0.5);
509
510 iPadX = (Int_t) ( d/fgkXPad);
511 return iPadX;
512
513}
514//_____________________________________________________________________________
515Int_t AliTOFGeometryV4::GetPlate(Float_t *pos)
516{
517 //
518 // Returns the Plate index
519 //
520 Int_t iPlate=-1;
521
522 Int_t isector = GetSector(pos);
523 if(isector == -1){
524 AliError("Detector Index could not be determined");
525 return iPlate;}
526
527 Float_t x = pos[0];
528 Float_t y = pos[1];
529 Float_t z = pos[2];
530
531 Float_t rho=TMath::Sqrt(x*x+y*y);
532 Float_t phi=TMath::ATan2(y,x);
533 if(phi<0) phi=2.*TMath::Pi()+phi;
534 // Get the local angle in the sector philoc
535 Float_t philoc = phi*kRaddeg-(isector+0.5)*fPhiSec;
536 philoc*=TMath::Pi()/180.;
537 // theta projected on the median of the sector
538 Float_t theta=TMath::ATan2(rho*TMath::Cos(philoc),z);
539
540 for (Int_t i=0; i<kNPlates; i++){
541 if ( GetMaxPlateTheta(i) >= theta &&
542 GetMinPlateTheta(i) <= theta)iPlate=i;
543 }
544
545 return iPlate;
546
547}
548
549//_____________________________________________________________________________
550Int_t AliTOFGeometryV4::GetStrip(Float_t *pos)
551{
552 //
553 // Returns the Strip index
554 //
555
556 Int_t iStrip=-1;
557
558
559 Int_t isector = GetSector(pos);
560 if(isector == -1){
561 AliError("Detector Index could not be determined");
562 return iStrip;}
563 Int_t iplate = GetPlate(pos);
564 if(iplate == -1){
565 AliError("Detector Index could not be determined");
566 return iStrip;}
567
568
569 Float_t x = pos[0];
570 Float_t y = pos[1];
571 Float_t z = pos[2];
572
573 Int_t nstrips=0;
574 if(iplate==0 || iplate == 4)nstrips=kNStripC;
575 if(iplate==1 || iplate == 3)nstrips=kNStripB;
576 if(iplate==2) nstrips=kNStripA;
577
578 Float_t rho=TMath::Sqrt(x*x+y*y);
579 Float_t phi=TMath::ATan2(y,x);
580 if(phi<0) phi=2.*TMath::Pi()+phi;
581 // Get the local angle in the sector philoc
582 Float_t philoc = phi*kRaddeg-(isector+0.5)*fPhiSec;
583 philoc*=TMath::Pi()/180.;
584 // theta projected on the median of the sector
585 Float_t theta=TMath::ATan2(rho*TMath::Cos(philoc),z);
586
587 for (Int_t istrip=0; istrip<nstrips; istrip++){
588
589 if(
590 GetMaxStripTheta(iplate,istrip) >= theta
591 &&
592 GetMinStripTheta(iplate,istrip) <= theta ) iStrip = istrip;
593
594 }
595
596 return iStrip;
597
598}
599//_____________________________________________________________________________
600Int_t AliTOFGeometryV4::GetPadZ(Float_t *pos)
601{
602 //
603 // Returns the Pad index along Z
604 //
605 Int_t iPadZ = -1;
606
607 Int_t isector = GetSector(pos);
608 if(isector == -1){
609 AliError("Detector Index could not be determined");
610 return iPadZ;}
611 Int_t iplate = GetPlate(pos);
612 if(iplate == -1){
613 AliError("Detector Index could not be determined");
614 return iPadZ;}
615 Int_t istrip = GetStrip(pos);
616 if(istrip == -1){
617 AliError("Detector Index could not be determined");
618 return iPadZ;}
619
620
621 Float_t x = pos[0];
622 Float_t y = pos[1];
623 Float_t z = pos[2];
624
625 Float_t rho=TMath::Sqrt(x*x+y*y);
626 Float_t phi=TMath::ATan2(y,x);
627 if(phi<0) phi=2.*TMath::Pi()+phi;
628 Float_t philoc = phi*kRaddeg-(isector+0.5)*fPhiSec;
629 philoc*=TMath::Pi()/180.;
630 Float_t theta=TMath::ATan2(rho*TMath::Cos(philoc),z);
631
632 if (theta >= GetStripTheta(iplate, istrip))iPadZ=1;
633 else iPadZ=0;
634
635 return iPadZ;
636
637}
638//_____________________________________________________________________________
639Float_t AliTOFGeometryV4::GetMinPlateTheta(Int_t iPlate)
640{
641 //
642 // Returns the minimum theta angle of a given plate iPlate (rad)
643 //
644
645
646 Int_t index=0;
647
648 Float_t delta =0.;
649 if(iPlate==0)delta = -1. ;
650 if(iPlate==1)delta = -0.5;
651 if(iPlate==3)delta = +0.5;
652 if(iPlate==4)delta = +1. ;
653
654 Float_t z=(fgkRmin+2.)*TMath::Tan(fAngles[iPlate][index]/kRaddeg)+delta;
655 Float_t r=(fgkRmin+fgkRmax)/2.+fHeights[iPlate][index];
656 z =z+fgkZPad*TMath::Cos(fAngles[iPlate][index]/kRaddeg);
657 r =r-fgkZPad*TMath::Sin(fAngles[iPlate][index]/kRaddeg);
658
659 Float_t thmin = 0.5*TMath::Pi()-TMath::ATan(z/r)-fgkDprecMin;
660 return thmin;
661
662}
663//_____________________________________________________________________________
664Float_t AliTOFGeometryV4::GetMaxPlateTheta(Int_t iPlate)
665{
666 //
667 // Returns the maximum theta angle of a given plate iPlate (rad)
668
669 Int_t index=0;
670 if(iPlate==0 ||iPlate == 4)index=kNStripC-1;
671 if(iPlate==1 ||iPlate == 3)index=kNStripB-1;
672 if(iPlate==2) index=kNStripA-1;
673
674 Float_t delta =0.;
675 if(iPlate==0)delta = -1. ;
676 if(iPlate==1)delta = -0.5;
677 if(iPlate==3)delta = +0.5;
678 if(iPlate==4)delta = +1. ;
679
680 Float_t z=(fgkRmin+2.)*TMath::Tan(fAngles[iPlate][index]/kRaddeg)+delta;
681 Float_t r=(fgkRmin+fgkRmax)/2.+fHeights[iPlate][index];
682 z =z-fgkZPad*TMath::Cos(fAngles[iPlate][index]/kRaddeg);
683 r= r+fgkZPad*TMath::Sin(fAngles[iPlate][index]/kRaddeg);
684
685 Float_t thmax = 0.5*TMath::Pi()-TMath::ATan(z/r)+fgkDprecMax;
686
687 return thmax;
688
689}
690//_____________________________________________________________________________
691Float_t AliTOFGeometryV4::GetMaxStripTheta(Int_t iPlate, Int_t iStrip)
692{
693 //
694 // Returns the maximum theta angle of a given strip iStrip (rad)
695 //
696
697
698 Float_t delta =0.;
699 if(iPlate==0)delta = -1. ;
700 if(iPlate==1)delta = -0.5;
701 if(iPlate==3)delta = +0.5;
702 if(iPlate==4)delta = +1. ;
703
704 Float_t r =(fgkRmin+fgkRmax)/2.+fHeights[iPlate][iStrip];
705 Float_t z =(fgkRmin+2.)*TMath::Tan(fAngles[iPlate][iStrip]/kRaddeg)+delta;
706 z = z-fgkZPad*TMath::Cos(fAngles[iPlate][iStrip]/kRaddeg);
707 r = r+fgkZPad*TMath::Sin(fAngles[iPlate][iStrip]/kRaddeg);
708 Float_t thmax =0.5*TMath::Pi()-TMath::ATan(z/r)+fgkDprecMax;
709 return thmax;
710
711}
712//_____________________________________________________________________________
713Float_t AliTOFGeometryV4::GetMinStripTheta(Int_t iPlate, Int_t iStrip)
714{
715 //
716 // Returns the minimum theta angle of a given Strip iStrip (rad)
717 //
718
719
720 Float_t delta =0.;
721 if(iPlate==0)delta = -1. ;
722 if(iPlate==1)delta = -0.5;
723 if(iPlate==3)delta = +0.5;
724 if(iPlate==4)delta = +1. ;
725
726
727 Float_t r =(fgkRmin+fgkRmax)/2.+fHeights[iPlate][iStrip];
728 Float_t z =(fgkRmin+2.)*TMath::Tan(fAngles[iPlate][iStrip]/kRaddeg)+delta;
729 z =z+fgkZPad*TMath::Cos(fAngles[iPlate][iStrip]/kRaddeg);
730 r =r-fgkZPad*TMath::Sin(fAngles[iPlate][iStrip]/kRaddeg);
731 Float_t thmin =0.5*TMath::Pi()-TMath::ATan(z/r)-fgkDprecMin;
732
733 return thmin;
734
735}
736//_____________________________________________________________________________
737Float_t AliTOFGeometryV4::GetStripTheta(Int_t iPlate, Int_t iStrip)
738{
739 //
740 // returns the median theta angle of a given strip iStrip (rad)
741 //
742
743
744 Float_t delta =0.;
745 if(iPlate==0)delta = -1. ;
746 if(iPlate==1)delta = -0.5;
747 if(iPlate==3)delta = +0.5;
748 if(iPlate==4)delta = +1. ;
749
750 Float_t r =(fgkRmin+fgkRmax)/2.+fHeights[iPlate][iStrip];
751 Float_t z =(fgkRmin+2.)*TMath::Tan(fAngles[iPlate][iStrip]/kRaddeg)+delta;
752 Float_t theta =0.5*TMath::Pi()-TMath::ATan(z/r);
753 if(iPlate != 2){
754 if(theta > 0.5*TMath::Pi() )theta+=fgkDprecCen;
755 if(theta < 0.5*TMath::Pi() )theta-=fgkDprecCen;
756 }
757 return theta;
758
759}
760//_____________________________________________________________________________
a6a9820c 761void AliTOFGeometryV4::GetVolumePath(Int_t *ind, Char_t *path ) {
762 //--------------------------------------------------------------------
763 // This function returns the colume path of a given pad
764 //--------------------------------------------------------------------
765 Int_t sector = ind[0];
766 Char_t string1[100];
767 Char_t string2[100];
768 Char_t string3[100];
769 Char_t string4[100];
770 Int_t nstrB = NStripB();
771 Int_t nstrC = NStripC();
772
773 Int_t icopy=-1;
774
775 if(sector<3){
776 icopy=sector+1;
777 sprintf(string1,"/ALIC_1/B077_1/B075_%i/BTO3_1",icopy);
778 }
779 else if(sector<11){
780 // icopy=sector-2;
781 icopy=sector+3;
782 sprintf(string1,"/ALIC_1/B077_1/B071_%i/BTO1_1",icopy);
783 }
784 else if(sector==11 || sector==12){
785 icopy=sector-10;
786 sprintf(string1,"/ALIC_1/B077_1/B074_%i/BTO2_1",icopy);
787 }
788 else {
789 // icopy=sector-4;
790 icopy=sector-12;
791 sprintf(string1,"/ALIC_1/B077_1/B071_%i/BTO1_1",icopy);
792 }
793
794 Int_t modnum=ind[1];
795 Int_t istrip=ind[2];
796
797 if( modnum ==0){
798 sprintf(string2,"FTOC_1/FLTC_0");
799 icopy= nstrC - istrip;
800 sprintf(string3,"FSTR_%i",icopy);
801 }
802 else if( modnum ==1){
803 sprintf(string2,"FTOB_1/FLTB_0");
804 icopy= nstrB - istrip;
805 sprintf(string3,"FSTR_%i",icopy);
806 }
807 else if( modnum ==2){
808 sprintf(string2,"FTOA_0/FLTA_0");
809 icopy= istrip+1;
810 sprintf(string3,"FSTR_%i",icopy);
811 }
812 else if( modnum ==3){
813 sprintf(string2,"FTOB_2/FLTB_0");
814 icopy= istrip+1;
815 sprintf(string3,"FSTR_%i",icopy);
816 }
817 else if( modnum ==4){
818 sprintf(string2,"FTOC_2/FLTC_0");
819 icopy= istrip+1;
820 sprintf(string3,"FSTR_%i",icopy);
821 }
822
823
824 Int_t padz = ind[3]+1;
825 Int_t padx = ind[4]+1;
826 if(modnum==3 || modnum==4){
827 padz = NpadZ() -ind[3];
828 padx = NpadX() -ind[4];
829 }
830 sprintf(string4,"FSEN_0/FSEZ_%i/FSEX_%i",padz,padx);
831 sprintf(path,"%s/%s/%s/%s",string1,string2,string3,string4);
832
833}
834
835//_____________________________________________________________________________
836void AliTOFGeometryV4::GetPos(Int_t *det, Float_t *pos)
837{
838//
839// Returns space point coor (x,y,z) (cm) for Detector
840// Indices (iSect,iPlate,iStrip,iPadX,iPadZ)
841//
842 Char_t path[100];
843 GetVolumePath(det,path );
844 if (!gGeoManager) {
845 printf("ERROR: no TGeo\n");
846 }
847 gGeoManager->cd(path);
848 TGeoHMatrix global;
849 global = *gGeoManager->GetCurrentMatrix();
850 const Double_t *tr = global.GetTranslation();
851
852 pos[0]=tr[0];
853 pos[1]=tr[1];
854 pos[2]=tr[2];
855}
856//_____________________________________________________________________________