]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TOF/AliTOFGeometryV4.cxx
New TOF geometry description (V5) -G. Cara Romeo and A. De Caro
[u/mrichter/AliRoot.git] / TOF / AliTOFGeometryV4.cxx
CommitLineData
d3c7bfac 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
18Revision 0.1 2005/07/19 A. De Caro
19 Modify Global methods IsInsideThePad & DistanceToPad
20 according to the PPR TOF geometry
21 Implement Global methods GetPadDx & GetPadDy & GetPadDz
22 Modify Global methods GetDetID & GetPlate & GetSector &
23 GetStrip & GetPadX & GetPadZ
24 according to the PPR TOF geometry
25 Modify Global methods GetPos & GetX & GetY & GetZ
26 according to the PPR TOF geometry
27*/
28
29#include <stdlib.h>
30#include <Riostream.h>
31///////////////////////////////////////////////////////////////////////////////
32// //
33// TOF Geometry class (PPR version) //
34// //
35///////////////////////////////////////////////////////////////////////////////
36
37#include "AliLog.h"
38#include "AliConst.h"
39
40#include "AliTOFGeometry.h"
41#include "AliTOFGeometryV4.h"
42
43ClassImp(AliTOFGeometryV4)
44
45const Int_t AliTOFGeometryV4::kNStripC = 20; // number of strips in C type module
46const Int_t AliTOFGeometryV4::kMaxNstrip = 20; // Max. number of strips
47
48const Float_t AliTOFGeometryV4::fgkZlenA = 106.0; // length (cm) of the A module
49const Float_t AliTOFGeometryV4::fgkZlenB = 141.0; // length (cm) of the B module
50const Float_t AliTOFGeometryV4::fgkZlenC = 177.5; // length (cm) of the C module
51const Float_t AliTOFGeometryV4::fgkMaxhZtof = 371.5; // Max half z-size of TOF (cm)
52const Float_t AliTOFGeometryV4::fgkStripLength = 122.; // Strip Length (rho X phi direction) (cm)
53
54const Float_t AliTOFGeometryV4::fgkDeadBndX = 1.0; // Dead Boundaries of a Strip along X direction (length) (cm)
55const Float_t AliTOFGeometryV4::fgkDeadBndZ = 1.5; // Dead Boundaries of a Strip along Z direction (width) (cm)
56const Float_t AliTOFGeometryV4::fgkOverSpc = 15.3; // Space available for sensitive layers in radial direction (cm)
57
58const Float_t AliTOFGeometryV4::fgkDprecMin = 0.0000075;//num.prec.tolerance on Thmin
59const Float_t AliTOFGeometryV4::fgkDprecMax = 0.0000100;//num.prec.tolerance on Thma
60const Float_t AliTOFGeometryV4::fgkDprecCen = 0.0000005;//num.prec.tolerance on <Theta>
61
62const Float_t AliTOFGeometryV4::fgkxTOF = 371.; // Inner radius of the TOF for Reconstruction (cm)
63const Float_t AliTOFGeometryV4::fgkRmin = 370.; // Inner radius of the TOF (cm)
64const Float_t AliTOFGeometryV4::fgkRmax = 399.; // Outer radius of the TOF (cm)
65
66//_____________________________________________________________________________
67AliTOFGeometryV4::AliTOFGeometryV4()
68 :AliTOFGeometry()
69{
70 //
71 // AliTOFGeometryV4 default constructor
72 //
73
74 AliTOFGeometry::kNStripC = kNStripC; // number of strips in C type module
75 AliTOFGeometry::kMaxNstrip = kMaxNstrip; // Max. number of strips
76
77 AliTOFGeometry::kZlenA = fgkZlenA; // length (cm) of the A module
78 AliTOFGeometry::kZlenB = fgkZlenB; // length (cm) of the B module
79 AliTOFGeometry::kZlenC = fgkZlenC; // length (cm) of the C module
80 AliTOFGeometry::kMaxhZtof = fgkMaxhZtof; // Max half z-size of TOF (cm)
81 AliTOFGeometry::kStripLength = fgkStripLength; // Strip Length (rho X phi direction) (cm)
82
83 AliTOFGeometry::fgkxTOF = fgkxTOF; // Inner radius of the TOF for Reconstruction (cm)
84 AliTOFGeometry::fgkRmin = fgkRmin; // Inner radius of the TOF (cm)
85 AliTOFGeometry::fgkRmax = fgkRmax; // Outer radius of the TOF (cm)
86
87 Init();
88
89}
90
91//_____________________________________________________________________________
92AliTOFGeometryV4::~AliTOFGeometryV4()
93{
94 //
95 // AliTOFGeometryV4 destructor
96 //
97
98}
99//_____________________________________________________________________________
100void AliTOFGeometryV4::Init()
101{
102 //
103 // Initialize strip Tilt Angles and Heights
104 //
105 // Strips Tilt Angles
106
107 Float_t const kangles[kNPlates][kMaxNstrip] ={
108
109 {44.494, 43.725, 42.946, 42.156, 41.357, 40.548, 39.729, 38.899,
110 38.060, 37.211, 36.353, 35.484, 34.606, 33.719, 32.822, 31.916,
111 31.001, 30.077, 29.144, 28.202 },
112
113 {26.884, 25.922, 24.952, 23.975, 22.989, 22.320, 21.016, 20.309,
114 19.015, 18.270, 16.989, 16.205, 14.941, 14.117, 12.871, 12.008,
115 10.784, 9.8807, 8.681, 0.0 },
116
117 { 7.5835, 6.4124, 5.4058, 4.2809, 3.2448, 2.1424, 1.078, -0., -1.078,
118 -2.1424, -3.2448, -4.2809, -5.4058, -6.4124, -7.5835, 0.0, 0.0, 0.0,
119 0.0, 0.0 },
120
121 {-8.681, -9.8807, -10.784, -12.008, -12.871, -14.117, -14.941, -16.205,
122 -16.989, -18.27, -19.015, -20.309, -21.016, -22.32, -22.989,
123 -23.975, -24.952, -25.922, -26.884, 0. },
124
125 {-28.202, -29.144, -30.077, -31.001, -31.916, -32.822, -33.719, -34.606,
126 -35.484, -36.353, -37.211, -38.06, -38.899, -39.729, -40.548,
127 -41.357, -42.156, -42.946, -43.725, -44.494 }};
128
129
130 //Strips Heights
131
132 Float_t const kheights[kNPlates][kMaxNstrip]= {
133
134 {-5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5,
135 -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5 },
136
137 {-6.3, -7.1, -7.9, -8.7, -9.5, -3, -9.5, -3, -9.5, -3,
138 -9.5, -3.0, -9.5, -3.0, -9.5, -3, -9.5, -3, -9 , 0.},
139
140 { -3, -9, -4.5, -9, -4.5, -9, -4.5, -9, -4.5, -9,
141 -4.5, -9, -4.5, -9, -3, 0.0, 0.0, 0.0, 0.0, 0.0 },
142
143 { -9, -3, -9.5, -3, -9.5, -3, -9.5, -3, -9.5, -3, -9.5,
144 -3, -9.5, -3, -9.5, -8.7, -7.9, -7.1, -6.3, 0. },
145
146 {-5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5,
147 -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5 }};
148
149 // Deposit in fAngles, fHeights
150
151 for (Int_t iplate = 0; iplate < kNPlates; iplate++) AliTOFGeometry::fAngles[iplate] = new Float_t[kMaxNstrip];
152 for (Int_t iplate = 0; iplate < kNPlates; iplate++) AliTOFGeometry::fHeights[iplate] = new Float_t[kMaxNstrip];
153
154 for (Int_t iplate = 0; iplate < kNPlates; iplate++) {
155 for (Int_t istrip = 0; istrip < kMaxNstrip; istrip++) {
156 AliTOFGeometry::fAngles[iplate][istrip] = kangles[iplate][istrip];
157 AliTOFGeometry::fHeights[iplate][istrip] = kheights[iplate][istrip];
158 }
159 }
160
161}
162
163//_____________________________________________________________________________
164Float_t AliTOFGeometryV4::DistanceToPad(Int_t *det, Float_t *pos, Float_t *dist3d)
165{
166//
167// Returns distance of space point with coor pos (x,y,z) (cm) wrt
168// pad with Detector Indices idet (iSect,iPlate,iStrip,iPadX,iPadZ)
169//
170
171 //Transform pos into Sector Frame
172
173 Float_t x = pos[0];
174 Float_t y = pos[1];
175 Float_t z = pos[2];
176
177 Float_t radius = TMath::Sqrt(x*x+y*y);
178 Float_t phi=TMath::ATan2(y,x);
179 if(phi<0) phi=2.*TMath::Pi()+phi;
180 // Get the local angle in the sector philoc
181 Float_t angle = phi*kRaddeg-( Int_t (kRaddeg*phi/fPhiSec) + 0.5)*fPhiSec;
182 Float_t xs = radius*TMath::Cos(angle/kRaddeg);
183 Float_t ys = radius*TMath::Sin(angle/kRaddeg);
184 Float_t zs = z;
185
186 // Do the same for the selected pad
187
188 Float_t g[3];
189 GetPos(det,g);
190
191 Float_t padRadius = TMath::Sqrt(g[0]*g[0]+g[1]*g[1]);
192 Float_t padPhi=TMath::ATan2(g[1],g[0]);
193 if(padPhi<0) padPhi=2.*TMath::Pi()+padPhi;
194 // Get the local angle in the sector philoc
195 Float_t padAngle = padPhi*kRaddeg-( Int_t (padPhi*kRaddeg/fPhiSec)+ 0.5) * fPhiSec;
196 Float_t padxs = padRadius*TMath::Cos(padAngle/kRaddeg);
197 Float_t padys = padRadius*TMath::Sin(padAngle/kRaddeg);
198 Float_t padzs = g[2];
199
200 //Now move to local pad coordinate frame. Translate:
201
202 Float_t xt = xs-padxs;
203 Float_t yt = ys-padys;
204 Float_t zt = zs-padzs;
205 //Now Rotate:
206
207 Float_t alpha = GetAngles(det[1],det[2]);
208 Float_t xr = xt*TMath::Cos(alpha/kRaddeg)+zt*TMath::Sin(alpha/kRaddeg);
209 Float_t yr = yt;
210 Float_t zr = -xt*TMath::Sin(alpha/kRaddeg)+zt*TMath::Cos(alpha/kRaddeg);
211
212 Float_t dist = TMath::Sqrt(xr*xr+yr*yr+zr*zr);
213
214 if (dist3d){
215 dist3d[0] = xr;
216 dist3d[1] = yr;
217 dist3d[2] = zr;
218 }
219
220 return dist;
221
222}
223
224//_____________________________________________________________________________
225Bool_t AliTOFGeometryV4::IsInsideThePad(Int_t *det, Float_t *pos)
226{
227//
228// Returns true if space point with coor pos (x,y,z) (cm) falls
229// inside pad with Detector Indices idet (iSect,iPlate,iStrip,iPadX,iPadZ)
230//
231
232 Bool_t isInside=false;
233
234 //Transform pos into Sector Frame
235
236 Float_t x = pos[0];
237 Float_t y = pos[1];
238 Float_t z = pos[2];
239
240 Float_t radius = TMath::Sqrt(x*x+y*y);
241 Float_t phi=TMath::ATan2(y,x);
242 if(phi<0) phi=2.*TMath::Pi()+phi;
243 // Get the local angle in the sector philoc
244 Float_t angle = phi*kRaddeg-( Int_t (kRaddeg*phi/fPhiSec) + 0.5) *fPhiSec;
245 Float_t xs = radius*TMath::Cos(angle/kRaddeg);
246 Float_t ys = radius*TMath::Sin(angle/kRaddeg);
247 Float_t zs = z;
248
249 // Do the same for the selected pad
250
251 Float_t g[3];
252 GetPos(det,g);
253
254 Float_t padRadius = TMath::Sqrt(g[0]*g[0]+g[1]*g[1]);
255 Float_t padPhi=TMath::ATan2(g[1],g[0]);
256 if(padPhi<0) padPhi=2.*TMath::Pi()+padPhi;
257 // Get the local angle in the sector philoc
258 Float_t padAngle = padPhi*kRaddeg-( Int_t (padPhi*kRaddeg/fPhiSec)+ 0.5) * fPhiSec;
259 Float_t padxs = padRadius*TMath::Cos(padAngle/kRaddeg);
260 Float_t padys = padRadius*TMath::Sin(padAngle/kRaddeg);
261 Float_t padzs = g[2];
262
263 //Now move to local pad coordinate frame. Translate:
264
265 Float_t xt = xs-padxs;
266 Float_t yt = ys-padys;
267 Float_t zt = zs-padzs;
268
269 //Now Rotate:
270
271 Float_t alpha = GetAngles(det[1],det[2]);
272 Float_t xr = xt*TMath::Cos(alpha/kRaddeg)+zt*TMath::Sin(alpha/kRaddeg);
273 Float_t yr = yt;
274 Float_t zr = -xt*TMath::Sin(alpha/kRaddeg)+zt*TMath::Cos(alpha/kRaddeg);
275
276 if(TMath::Abs(xr)<=0.75 && TMath::Abs(yr)<= (fgkXPad*0.5) && TMath::Abs(zr)<= (fgkZPad*0.5))
277 isInside=true;
278 return isInside;
279
280}
281
282//_____________________________________________________________________________
283Float_t AliTOFGeometryV4::GetX(Int_t *det)
284{
285 //
286 // Returns X coordinate (cm)
287 //
288
289 Int_t isector = det[0];
290 Int_t iplate = det[1];
291 Int_t istrip = det[2];
292 Int_t ipadz = det[3];
293 Int_t ipadx = det[4];
294
295 // Find out distance d on the plane wrt median phi:
296 Float_t d = (ipadx+0.5)*fgkXPad-(kNpadX*fgkXPad)*0.5;
297
298 // The radius r in xy plane:
299 Float_t r = (fgkRmin+fgkRmax)/2.+fHeights[iplate][istrip]+
300 (ipadz-0.5)*fgkZPad*TMath::Sin(fAngles[iplate][istrip]/kRaddeg)-0.25;
301
302 // local azimuthal angle in the sector philoc
303 Float_t philoc = TMath:: ATan(d/r);
304
305 // azimuthal angle in the global frame phi
306 Float_t phi = philoc*kRaddeg+(isector+0.5 )*fPhiSec;
307
308 Float_t xCoor = r/TMath::Cos(philoc)*TMath::Cos(phi/kRaddeg);
309
310 return xCoor;
311
312}
313//_____________________________________________________________________________
314Float_t AliTOFGeometryV4::GetY(Int_t *det)
315{
316 //
317 // Returns Y coordinate (cm)
318 //
319
320 Int_t isector = det[0];
321 Int_t iplate = det[1];
322 Int_t istrip = det[2];
323 Int_t ipadz = det[3];
324 Int_t ipadx = det[4];
325
326 // Find out distance d on the plane wrt median phi:
327 Float_t d = (ipadx+0.5)*fgkXPad-(kNpadX*fgkXPad)*0.5;
328
329 // The radius r in xy plane:
330 Float_t r = (fgkRmin+fgkRmax)/2.+fHeights[iplate][istrip]+
331 (ipadz-0.5)*fgkZPad*TMath::Sin(fAngles[iplate][istrip]/kRaddeg)-0.25;
332
333 // local azimuthal angle in the sector philoc
334 Float_t philoc = TMath:: ATan(d/r);
335
336 // azimuthal angle in the global frame phi
337 Float_t phi = philoc*kRaddeg+(isector+0.5 )*fPhiSec;
338
339 Float_t yCoor = r/TMath::Cos(philoc)*TMath::Sin(phi/kRaddeg);
340
341 return yCoor;
342
343}
344
345//_____________________________________________________________________________
346Float_t AliTOFGeometryV4::GetZ(Int_t *det)
347{
348 //
349 // Returns Z coordinate (cm)
350 //
351
352 Int_t iplate = det[1];
353 Int_t istrip = det[2];
354 Int_t ipadz = det[3];
355
356 // The radius r in xy plane:
357 Float_t r = (fgkRmin+fgkRmax)/2.+fHeights[iplate][istrip];
358
359 Float_t zCoor = r*TMath::Tan(0.5*TMath::Pi()-GetStripTheta(iplate,istrip))-
360 (ipadz-0.5)*fgkZPad*TMath::Cos(fAngles[iplate][istrip]/kRaddeg);
361 return zCoor;
362
363}
364
365//_____________________________________________________________________________
366Int_t AliTOFGeometryV4::GetSector(Float_t *pos)
367{
368 //
369 // Returns the Sector index
370 //
371
372 Int_t iSect = -1;
373
374 Float_t x = pos[0];
375 Float_t y = pos[1];
376
377 Float_t phi = TMath::ATan2(y,x);
378 if(phi<0.) phi=2.*TMath::Pi()+phi;
379 iSect = (Int_t) (phi*kRaddeg/fPhiSec);
380
381 return iSect;
382
383}
384
385//_____________________________________________________________________________
386Int_t AliTOFGeometryV4::GetPadX(Float_t *pos)
387{
388 //
389 // Returns the Pad index along X
390 //
391
392 Int_t iPadX = -1;
393
394 Float_t x = pos[0];
395 Float_t y = pos[1];
396 Float_t z = pos[2];
397
398 Int_t isector = GetSector(pos);
399 if(isector == -1){
400 AliError("Detector Index could not be determined");
401 return iPadX;}
402 Int_t iplate = GetPlate(pos);
403 if(iplate == -1){
404 AliError("Detector Index could not be determined");
405 return iPadX;}
406 Int_t istrip = GetStrip(pos);
407 if(istrip == -1){
408 AliError("Detector Index could not be determined");
409 return iPadX;}
410
411
412 Float_t rho=TMath::Sqrt(x*x+y*y);
413 Float_t phi = TMath::ATan2(y,x);
414 if(phi<0.) phi=2.*TMath::Pi()+phi;
415
416 // Get the local angle in the sector philoc
417 Float_t philoc = phi*kRaddeg-(isector+0.5)*fPhiSec;
418 philoc*=TMath::Pi()/180.;
419 // theta projected on the median of the sector
420 Float_t theta = TMath::ATan2(rho*TMath::Cos(philoc),z);
421 // The radius r in xy plane:
422 Float_t r = (fgkRmin+fgkRmax)/2.+fHeights[iplate][istrip]+
423 (theta-GetStripTheta(iplate, istrip))/
424 (GetMaxStripTheta(iplate, istrip)-GetMinStripTheta(iplate, istrip))
425 * 2.*fgkZPad*TMath::Sin(fAngles[iplate][istrip]/kRaddeg)-0.25;
426
427 // Find out distance projected onto the strip plane
428 Float_t d = (r*TMath::Tan(philoc)+(kNpadX*fgkXPad)*0.5);
429
430 iPadX = (Int_t) ( d/fgkXPad);
431 return iPadX;
432
433}
434//_____________________________________________________________________________
435Int_t AliTOFGeometryV4::GetPlate(Float_t *pos)
436{
437 //
438 // Returns the Plate index
439 //
440 Int_t iPlate=-1;
441
442 Int_t isector = GetSector(pos);
443 if(isector == -1){
444 AliError("Detector Index could not be determined");
445 return iPlate;}
446
447 Float_t x = pos[0];
448 Float_t y = pos[1];
449 Float_t z = pos[2];
450
451 Float_t rho=TMath::Sqrt(x*x+y*y);
452 Float_t phi=TMath::ATan2(y,x);
453 if(phi<0) phi=2.*TMath::Pi()+phi;
454 // Get the local angle in the sector philoc
455 Float_t philoc = phi*kRaddeg-(isector+0.5)*fPhiSec;
456 philoc*=TMath::Pi()/180.;
457 // theta projected on the median of the sector
458 Float_t theta=TMath::ATan2(rho*TMath::Cos(philoc),z);
459
460 for (Int_t i=0; i<kNPlates; i++){
461 if ( GetMaxPlateTheta(i) >= theta &&
462 GetMinPlateTheta(i) <= theta)iPlate=i;
463 }
464
465 return iPlate;
466
467}
468
469//_____________________________________________________________________________
470Int_t AliTOFGeometryV4::GetStrip(Float_t *pos)
471{
472 //
473 // Returns the Strip index
474 //
475
476 Int_t iStrip=-1;
477
478
479 Int_t isector = GetSector(pos);
480 if(isector == -1){
481 AliError("Detector Index could not be determined");
482 return iStrip;}
483 Int_t iplate = GetPlate(pos);
484 if(iplate == -1){
485 AliError("Detector Index could not be determined");
486 return iStrip;}
487
488
489 Float_t x = pos[0];
490 Float_t y = pos[1];
491 Float_t z = pos[2];
492
493 Int_t nstrips=0;
494 if(iplate==0 || iplate == 4)nstrips=kNStripC;
495 if(iplate==1 || iplate == 3)nstrips=kNStripB;
496 if(iplate==2) nstrips=kNStripA;
497
498 Float_t rho=TMath::Sqrt(x*x+y*y);
499 Float_t phi=TMath::ATan2(y,x);
500 if(phi<0) phi=2.*TMath::Pi()+phi;
501 // Get the local angle in the sector philoc
502 Float_t philoc = phi*kRaddeg-(isector+0.5)*fPhiSec;
503 philoc*=TMath::Pi()/180.;
504 // theta projected on the median of the sector
505 Float_t theta=TMath::ATan2(rho*TMath::Cos(philoc),z);
506
507 for (Int_t istrip=0; istrip<nstrips; istrip++){
508
509 if(
510 GetMaxStripTheta(iplate,istrip) >= theta
511 &&
512 GetMinStripTheta(iplate,istrip) <= theta ) iStrip = istrip;
513
514 }
515
516 return iStrip;
517
518}
519//_____________________________________________________________________________
520Int_t AliTOFGeometryV4::GetPadZ(Float_t *pos)
521{
522 //
523 // Returns the Pad index along Z
524 //
525 Int_t iPadZ = -1;
526
527 Int_t isector = GetSector(pos);
528 if(isector == -1){
529 AliError("Detector Index could not be determined");
530 return iPadZ;}
531 Int_t iplate = GetPlate(pos);
532 if(iplate == -1){
533 AliError("Detector Index could not be determined");
534 return iPadZ;}
535 Int_t istrip = GetStrip(pos);
536 if(istrip == -1){
537 AliError("Detector Index could not be determined");
538 return iPadZ;}
539
540
541 Float_t x = pos[0];
542 Float_t y = pos[1];
543 Float_t z = pos[2];
544
545 Float_t rho=TMath::Sqrt(x*x+y*y);
546 Float_t phi=TMath::ATan2(y,x);
547 if(phi<0) phi=2.*TMath::Pi()+phi;
548 Float_t philoc = phi*kRaddeg-(isector+0.5)*fPhiSec;
549 philoc*=TMath::Pi()/180.;
550 Float_t theta=TMath::ATan2(rho*TMath::Cos(philoc),z);
551
552 if (theta >= GetStripTheta(iplate, istrip))iPadZ=1;
553 else iPadZ=0;
554
555 return iPadZ;
556
557}
558//_____________________________________________________________________________
559Float_t AliTOFGeometryV4::GetMinPlateTheta(Int_t iPlate)
560{
561 //
562 // Returns the minimum theta angle of a given plate iPlate (rad)
563 //
564
565
566 Int_t index=0;
567
568 Float_t delta =0.;
569 if(iPlate==0)delta = -1. ;
570 if(iPlate==1)delta = -0.5;
571 if(iPlate==3)delta = +0.5;
572 if(iPlate==4)delta = +1. ;
573
574 Float_t z=(fgkRmin+2.)*TMath::Tan(fAngles[iPlate][index]/kRaddeg)+delta;
575 Float_t r=(fgkRmin+fgkRmax)/2.+fHeights[iPlate][index];
576 z =z+fgkZPad*TMath::Cos(fAngles[iPlate][index]/kRaddeg);
577 r =r-fgkZPad*TMath::Sin(fAngles[iPlate][index]/kRaddeg);
578
579 Float_t thmin = 0.5*TMath::Pi()-TMath::ATan(z/r)-fgkDprecMin;
580 return thmin;
581
582}
583//_____________________________________________________________________________
584Float_t AliTOFGeometryV4::GetMaxPlateTheta(Int_t iPlate)
585{
586 //
587 // Returns the maximum theta angle of a given plate iPlate (rad)
588
589 Int_t index=0;
590 if(iPlate==0 ||iPlate == 4)index=kNStripC-1;
591 if(iPlate==1 ||iPlate == 3)index=kNStripB-1;
592 if(iPlate==2) index=kNStripA-1;
593
594 Float_t delta =0.;
595 if(iPlate==0)delta = -1. ;
596 if(iPlate==1)delta = -0.5;
597 if(iPlate==3)delta = +0.5;
598 if(iPlate==4)delta = +1. ;
599
600 Float_t z=(fgkRmin+2.)*TMath::Tan(fAngles[iPlate][index]/kRaddeg)+delta;
601 Float_t r=(fgkRmin+fgkRmax)/2.+fHeights[iPlate][index];
602 z =z-fgkZPad*TMath::Cos(fAngles[iPlate][index]/kRaddeg);
603 r= r+fgkZPad*TMath::Sin(fAngles[iPlate][index]/kRaddeg);
604
605 Float_t thmax = 0.5*TMath::Pi()-TMath::ATan(z/r)+fgkDprecMax;
606
607 return thmax;
608
609}
610//_____________________________________________________________________________
611Float_t AliTOFGeometryV4::GetMaxStripTheta(Int_t iPlate, Int_t iStrip)
612{
613 //
614 // Returns the maximum theta angle of a given strip iStrip (rad)
615 //
616
617
618 Float_t delta =0.;
619 if(iPlate==0)delta = -1. ;
620 if(iPlate==1)delta = -0.5;
621 if(iPlate==3)delta = +0.5;
622 if(iPlate==4)delta = +1. ;
623
624 Float_t r =(fgkRmin+fgkRmax)/2.+fHeights[iPlate][iStrip];
625 Float_t z =(fgkRmin+2.)*TMath::Tan(fAngles[iPlate][iStrip]/kRaddeg)+delta;
626 z = z-fgkZPad*TMath::Cos(fAngles[iPlate][iStrip]/kRaddeg);
627 r = r+fgkZPad*TMath::Sin(fAngles[iPlate][iStrip]/kRaddeg);
628 Float_t thmax =0.5*TMath::Pi()-TMath::ATan(z/r)+fgkDprecMax;
629 return thmax;
630
631}
632//_____________________________________________________________________________
633Float_t AliTOFGeometryV4::GetMinStripTheta(Int_t iPlate, Int_t iStrip)
634{
635 //
636 // Returns the minimum theta angle of a given Strip iStrip (rad)
637 //
638
639
640 Float_t delta =0.;
641 if(iPlate==0)delta = -1. ;
642 if(iPlate==1)delta = -0.5;
643 if(iPlate==3)delta = +0.5;
644 if(iPlate==4)delta = +1. ;
645
646
647 Float_t r =(fgkRmin+fgkRmax)/2.+fHeights[iPlate][iStrip];
648 Float_t z =(fgkRmin+2.)*TMath::Tan(fAngles[iPlate][iStrip]/kRaddeg)+delta;
649 z =z+fgkZPad*TMath::Cos(fAngles[iPlate][iStrip]/kRaddeg);
650 r =r-fgkZPad*TMath::Sin(fAngles[iPlate][iStrip]/kRaddeg);
651 Float_t thmin =0.5*TMath::Pi()-TMath::ATan(z/r)-fgkDprecMin;
652
653 return thmin;
654
655}
656//_____________________________________________________________________________
657Float_t AliTOFGeometryV4::GetStripTheta(Int_t iPlate, Int_t iStrip)
658{
659 //
660 // returns the median theta angle of a given strip iStrip (rad)
661 //
662
663
664 Float_t delta =0.;
665 if(iPlate==0)delta = -1. ;
666 if(iPlate==1)delta = -0.5;
667 if(iPlate==3)delta = +0.5;
668 if(iPlate==4)delta = +1. ;
669
670 Float_t r =(fgkRmin+fgkRmax)/2.+fHeights[iPlate][iStrip];
671 Float_t z =(fgkRmin+2.)*TMath::Tan(fAngles[iPlate][iStrip]/kRaddeg)+delta;
672 Float_t theta =0.5*TMath::Pi()-TMath::ATan(z/r);
673 if(iPlate != 2){
674 if(theta > 0.5*TMath::Pi() )theta+=fgkDprecCen;
675 if(theta < 0.5*TMath::Pi() )theta-=fgkDprecCen;
676 }
677 return theta;
678
679}
680//_____________________________________________________________________________