]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TOF/AliTOFReconstructioner.cxx
Added functions needed for SDD new SDigits/Digits (Add and fSigmaAfterElect).
[u/mrichter/AliRoot.git] / TOF / AliTOFReconstructioner.cxx
CommitLineData
db9ba97f 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16//_________________________________________________________________________
17// Manager class for TOF reconstruction.
18//
19//
20//-- Authors: Bologna-ITEP-Salerno Group
21//
22// Description: Manager class for TOF reconstruction (derived from TTask)
23// Summary of the main methods:
24// - extraction of the TPC (assumed to be) reconstructed tracks
25// comment: it has to me moved as soon as possible into a separate
26// class AliTOFTrackReader (K. Safarik suggestion)
27// - geometrical propagation of the above tracks till TOF detector
28// - matching of the tracks with the TOF signals
29//
30// Remark: the GEANT3.21 geometry is used during the geometrical propagation
31// of the tracks in order to know the current volume reached by the track.
32//
33//////////////////////////////////////////////////////////////////////////////
34
35
36#include "TTask.h"
37#include "TBenchmark.h"
38#include "TTree.h"
39#include "TSystem.h"
40#include "TFile.h"
41#include "TParticle.h"
42
43#include "AliConst.h"
44#include "AliRun.h"
45#include "AliTOFConstants.h"
46#include "AliTOFHitMap.h"
47#include "AliTOFSDigit.h"
48#include "AliTOFhit.h"
49#include "AliTOFRecHit.h"
50#include "AliTOFPad.h"
51#include "AliTOFTrack.h"
52#include "AliTOF.h"
53#include "AliTOFv1.h"
54#include "AliTOFv2.h"
55#include "AliTOFv2FHoles.h"
56#include "AliTOFv3.h"
57#include "AliTOFv4.h"
58#include "AliTOFv4T0.h"
59#include "AliTOFReconstructioner.h"
60// this line has to be commented till TPC will provide fPx fPy fPz and fL in
61// AliTPChit class or somewhere
62// #include "../TPC/AliTPC.h"
63#include "AliRun.h"
64#include "AliDetector.h"
65#include "AliMC.h"
66
67#include <TClonesArray.h>
68#include "../TGeant3/TGeant3.h"
69#include "TFile.h"
70#include <TF1.h>
71#include <TF2.h>
72#include "TTask.h"
73#include "TTree.h"
74#include "TSystem.h"
75#include "TROOT.h"
76#include "TFolder.h"
77#include "TNtuple.h"
78#include <stdlib.h>
79#include <iostream.h>
80#include <fstream.h>
81
82ClassImp(AliTOFReconstructioner)
83
84//____________________________________________________________________________
85 AliTOFReconstructioner::AliTOFReconstructioner():TTask("AliTOFReconstructioner","")
86{
87 // default ctor
88 fNevents = 0 ;
89 fg3 = 0;
90 foutputfile = 0;
91 foutputntuple= 0;
92 fZnoise = 0;
93 ftail = 0;
94}
95
96//____________________________________________________________________________
97 AliTOFReconstructioner::AliTOFReconstructioner(char* headerFile, Option_t* opt, char *RecFile ):TTask("AliTOFReconstructioner","")
98{
99 //
100 // ctor
101 //
102 fNevents = 0 ; // Number of events to reconstruct, 0 means all evens in current file
103 fg3 = 0;
104 foutputfile = 0;
105 foutputntuple= 0;
106 fZnoise = 0;
107 ftail = 0;
108
109 Init(opt);
110
111 // create output file
112 if (RecFile){
113 foutputfile= new TFile(RecFile,"RECREATE","root file for matching");
114 } else {
115 char outFileName[100];
116 strcpy(outFileName,"match");
117 strcat(outFileName,headerFile);
118 foutputfile= new TFile(outFileName,"RECREATE","root file for matching");
119 }
120
121 // initialize the ALIROOT geometry
122 gAlice->Init();
123 gAlice->Print();
124
125 // set the fg3 pointer to geometry used by IsInsideThePad method
126 fg3 = (TGeant3*) gMC;
127
128 CreateNTuple();
129
130 // add Task to //root/Tasks folder
131 TTask * roottasks = (TTask*)gROOT->GetRootFolder()->FindObject("Tasks") ;
132 roottasks->Add(this) ;
133}
134//____________________________________________________________________________
135void AliTOFReconstructioner::Init(Option_t* opt)
136{
137 // Initialize the AliTOFReconstructioner setting parameters for
138 // reconstruction.
139 // Option values: Pb-Pb for Pb-Pb events
140 // pp for pp events
141
142 // set common parameters
143 fdbg=1;
144 fNevents = 1;
145 fFirstEvent = 1;
146 fLastEvent = 1;
147 fTimeResolution =0.120;
148 fpadefficiency =0.99 ;
149 fEdgeEffect = 2 ;
150 fEdgeTails = 0 ;
151 fHparameter = 0.4 ;
152 fH2parameter = 0.15;
153 fKparameter = 0.5 ;
154 fK2parameter = 0.35;
155 fEffCenter = fpadefficiency;
156 fEffBoundary = 0.65;
157 fEff2Boundary = 0.90;
158 fEff3Boundary = 0.08;
159 fResCenter = 50. ;
160 fResBoundary = 70. ;
161 fResSlope = 40. ;
162 fTimeWalkCenter = 0. ;
163 fTimeWalkBoundary=0. ;
164 fTimeWalkSlope = 0. ;
165 fTimeDelayFlag = 1 ;
166 fPulseHeightSlope=2.0 ;
167 fTimeDelaySlope =0.060;
168 // was fMinimumCharge = TMath::Exp(fPulseHeightSlope*fKparameter/2.);
169 fMinimumCharge = TMath::Exp(-fPulseHeightSlope*fHparameter);
170 fChargeSmearing=0.0 ;
171 fLogChargeSmearing=0.13;
172 fTimeSmearing =0.022;
173 fAverageTimeFlag=0 ;
174 fChargeFactorForMatching=1;
175 fTrackingEfficiency=1.0; // 100% TPC tracking efficiency assumed
176 fSigmavsp = 1. ;
177 fSigmaZ = 0. ;
178 fSigmarphi= 0. ;
179 fSigmap = 0. ;
180 fSigmaPhi = 0. ;
181 fSigmaTheta=0. ;
182 fField = 0.2 ;
183 // fRadLenTPC : 0.2 includes TRD / 0.03 TPC only
184 fRadLenTPC=0.06 ; // last value
185 fCorrectionTRD=0. ;
186 fLastTPCRow=111 ;
187 fRadiusvtxBound=50. ; // expressed in [cm]
188 fStep = 0.1 ; // expressed in [cm] step during propagation of the
189 // track inside TOF volumes
190 fMatchingStyle=2 ;
191 /* previous values default
192 fMaxPixels=70000 ;
193 fMaxAllTracks=70000 ;
194 fMaxTracks=15000 ;
195 */
196 fMaxPixels=165000 ;
197 fMaxAllTracks=500000 ;
198 fMaxTracks=15000 ;
199
200 fMaxTOFHits=35000 ;
201 fPBound =0.0 ; // bending effect: P_t=0.3*z*B*R , z particle charge
202 fNoiseSlope=20. ;
203 // set parameters as specified in opt
204 //pp case
205 if(strstr(opt,"pp")){
206 fMaxTestTracks=500 ;
207 fNoise = 26. ;
208 fNoiseMeanTof= 26.4 ; // to check
209 }
210 //Pb-Pb case
211 if(strstr(opt,"Pb-Pb")){
212 fMaxTestTracks=20 ;
213 fNoise = 9400. ;
214 fNoiseMeanTof= 26.4 ;
215 }
216}
217
218//____________________________________________________________________________
219 AliTOFReconstructioner::~AliTOFReconstructioner()
220{
221 //
222 // dtor
223 //
224 if (fg3)
225 {
226 delete fg3;
227 fg3 = 0;
228 }
229 if (foutputfile)
230 {
231 delete foutputfile;
232 foutputfile = 0;
233 }
234 if (foutputntuple)
235 {
236 delete foutputntuple;
237 foutputntuple = 0;
238 }
239
240 if (fZnoise)
241 {
242 delete fZnoise;
243 fZnoise = 0;
244 }
245
246 if (ftail)
247 {
248 delete ftail;
249 ftail = 0;
250 }
251}
252
253//____________________________________________________________________________
254void AliTOFReconstructioner::CreateNTuple()
255{
256 //
257 // Create a Ntuple where information about reconstructed charged particles
258 // (both primaries and secondaries) are stored
259 // Variables: event ipart imam xvtx yvtx zvtx pxvtx pyvtx pzvtx time leng matc text mext
260 // Meaning:
261 // event - event number (0, 1, ...)
262 // ipart - PDG code of particles
263 // imam - PDG code for the parent
264 // =0 for primary particle
265 // xvtx - x-coordinate of the vertex (cm)
266 // yvtx - y-coordinate of the vertex (cm)
267 // zvtx - z-coordinate of the vertex (cm)
268 // pxvtx - x-coordinate of the momentum in the vertex (GeV)
269 // pyvtx - y-coordinate of the momentum in the vertex (GeV)
270 // pzvtx - z-coordinate of the momentum in the vertex (GeV)
271 // time - time of flight from TOF for given track (ps) - TOF time for the
272 // first TOF hit of the track
273 // leng - track length to the TOF pixel (cm), evaluate as a sum of the
274 // track length from the track vertex to TPC and the average
275 // length of the extrapolated track from TPC to TOF.
276 // for the track without TOF hits leng=-abs(leng)
277 // matc - index of the (TPC track) - (TOF pixel) matching
278 // =0 for tracks which are not tracks for matching, i.e.
279 // there is not hit on the TPC or Rvxt>200 cm
280 // >0 for tracks with positive matching procedure:
281 // =1 or 2 for non-identified tracks:
282 // =1, if the corresponding pixel is not fired,
283 // =2, if the corresponding pixel is also matched to the
284 // other track,
285 // =3 or 4 for identified tracks:
286 // =3, if identified with true time,
287 // =4, if identified with wrong time.
288 // <0 for tracks with negative mathing procedure:
289 // =-1, if track do not reach the pixel plate (curved in the
290 // magnetic field),
291 // =-2, if track is out of z-size of the TOF,
292 // =-3, if track is or into the RICH hole, or into the PHOS hole, or in the space between the plates,
293 // =-4, if track is into the dead space of the TOF.
294 // text - time of fligth from the matching procedure = time of the
295 // pixel corresponding to the track (ps)
296 // =0 for the tracks with matc<=1
297 // mext - mass of the track from the matching procedure
298 // =p*sqrt(900*(text/leng)**2-1), if 900*(text/leng)**2-1>=0
299 // =-p*sqrt(abs(900*(text/leng)**2-1)), if 900*(text/leng)**2-1<0
300
301 foutputntuple= new TNtuple("Ntuple","matching","event:ipart:imam:xvtx:yvtx:zvtx:pxvtx:pyvtx:pzvtx:time:leng:matc:text:mext",2000000); // buffersize set for 25 Pb-Pb events
302}
303
304//__________________________________________________________________
305Double_t TimeWithTailR(Double_t* x, Double_t* par)
306{
307 // sigma - par[0], alpha - par[1], part - par[2]
308 // at x<part*sigma - gauss
309 // at x>part*sigma - TMath::Exp(-x/alpha)
310 Float_t xx =x[0];
311 Double_t f;
312 if(xx<par[0]*par[2]) {
313 f = TMath::Exp(-xx*xx/(2*par[0]*par[0]));
314 } else {
315 f = TMath::Exp(-(xx-par[0]*par[2])/par[1]-0.5*par[2]*par[2]);
316 }
317 return f;
318}
319
320//____________________________________________________________________________
321void AliTOFReconstructioner::Exec(const char* datafile, Option_t *option)
322{
323 //
324 // Performs reconstruction for TOF detector
325 //
326 gBenchmark->Start("TOFReconstruction");
327
328 TFile *file = TFile::Open(datafile);
329
330 // Get AliRun object from file or create it if not on file
331 gAlice = (AliRun*)file->Get("gAlice");
332
333 AliTOF* TOF = (AliTOF *) gAlice->GetDetector ("TOF");
334 AliDetector* TPC = gAlice->GetDetector("TPC");
335
336 if (!TOF) {
337 Error("AliTOFReconstructioner","TOF not found");
338 return;
339 }
340 if (!TPC) {
341 Error("AliTOFReconstructioner","TPC Detector not found");
342 return;
343 }
344
345 if (fEdgeTails) ftail = new TF1("tail",TimeWithTailR,-2,2,3);
346
347 if (fNevents == 0) fNevents = (Int_t) gAlice->TreeE()->GetEntries();
348 // You have to set the number of event with the ad hoc setter
349 // see testrecon.C
350
351 for (Int_t ievent = 0; ievent < fNevents; ievent++) { // start loop on events
352
353 Int_t nparticles=gAlice->GetEvent(ievent);
354 if (nparticles <= 0) return;
355
356 TClonesArray* tofhits=0;
357 TClonesArray* tpchits=0;
358
359 if (TOF) tofhits = TOF->Hits();
360 if (TPC) tpchits = TPC->Hits();
361
362 TTree *TH = gAlice->TreeH();
363 if (!TH) return;
364 Int_t ntracks = (Int_t) (TH->GetEntries()); // primary tracks
365 cout << "number of primary tracked tracks in current event " << ntracks << endl; // number of primary tracked tracks
366 // array declaration and initialization
367 // TOF arrays
368 // Int_t mapPixels[AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates][AliTOFConstants::fgkNStripC][AliTOFConstants::fgkNpadZ*AliTOFConstants::fgkNpadX];
369
370 Int_t *** mapPixels = new Int_t**[AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates];
371 for (Int_t i=0; i<AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates; i++) mapPixels[i] = new Int_t*[AliTOFConstants::fgkNStripC];
372 for (Int_t i=0; i<AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates; i++) {
373 for (Int_t j=0; j<AliTOFConstants::fgkNStripC; j++) {
374 mapPixels[i][j]= new Int_t[AliTOFConstants::fgkNpadZ*AliTOFConstants::fgkNpadX];
375 }
376 }
377
378
379 // initializing the previous array
380 for (Int_t i=0;i<AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates;i++) {
381 for (Int_t j=0;j<AliTOFConstants::fgkNStripC;j++) {
382 for (Int_t l=0;l<AliTOFConstants::fgkNpadZ*AliTOFConstants::fgkNpadX;l++) {
383 mapPixels[i][j][l]=0;
384 }
385 }
386 }
387
a020d84f 388 Float_t * toftime = new Float_t[fMaxAllTracks];
f9a28264 389 InitArray(toftime, fMaxAllTracks);
db9ba97f 390 AliTOFPad* pixelArray = new AliTOFPad[fMaxPixels];
f9a28264 391 Int_t* iTOFpixel = new Int_t[fMaxAllTracks];
392 InitArray(iTOFpixel , fMaxAllTracks);
393 Int_t* kTOFhitFirst = new Int_t[fMaxAllTracks];
394 InitArray(kTOFhitFirst, fMaxAllTracks);
db9ba97f 395 AliTOFRecHit* hitArray = new AliTOFRecHit[fMaxTOFHits];
396 Int_t isHitOnFiredPad=0; // index used to fill hitArray (array used to store informations
397 // about pads that contains an hit)
398 Int_t ntotFiredPads=0; // index used to fill array -> total number of fired pads (at least one time)
399
400 // TPC arrays
401 AliTOFTrack* trackArray = new AliTOFTrack[fMaxTracks];
f9a28264 402 Int_t * iparticle = new Int_t[fMaxAllTracks];
403 InitArray(iparticle,fMaxAllTracks);
404 Int_t * iTrackPt = new Int_t[fMaxTracks];
405 InitArray(iTrackPt, fMaxTracks); // array
406 Float_t * ptTrack = new Float_t[fMaxTracks];
407 InitArray( ptTrack, fMaxTracks); // array for selected track pt
db9ba97f 408 Int_t ntotTPCtracks=0; // total number of selected TPC tracks
409
410
411 // reading TOF hits
412 if(TOF) ReadTOFHits(ntracks, TH, tofhits, mapPixels, kTOFhitFirst, pixelArray, iTOFpixel, toftime, hitArray,isHitOnFiredPad,ntotFiredPads);
413 cout << "isHitOnFiredPad " << isHitOnFiredPad << " for event " << ievent << endl;
414
415 // start debug for adding noise
416 // adding noise
417 Int_t nHitsNoNoise=isHitOnFiredPad;
418
419
420 if(fNoise) AddNoiseFromOuter(option,mapPixels,pixelArray,hitArray,isHitOnFiredPad,ntotFiredPads);
421 cout << "ntotFiredPads after adding noise " << ntotFiredPads << " for event " << ievent << endl;
422 // set the hitArray distance to nearest hit
423 SetMinDistance(hitArray,nHitsNoNoise);
424
425 // these lines has to be commented till TPC will provide fPx fPy fPz
426 // and fL in AliTPChit class
427 // reading TPC hits
428 /*
429 if(TPC) ReadTPCHits(ntracks, TH, tpchits, iTrackPt, iparticle, ptTrack, trackArray,ntotTPCtracks);
430 */
431
432 // geometrical matching
433 if(TOF && TPC) Matching(trackArray,hitArray,mapPixels,pixelArray,kTOFhitFirst,ntotFiredPads,iTrackPt,iTOFpixel,ntotTPCtracks);
434
435 // fill ntuple with reconstructed particles from current event
436 FillNtuple(ntracks,trackArray,hitArray,pixelArray,iTOFpixel,iparticle,toftime,ntotFiredPads,ntotTPCtracks);
437
438
439 // free used memory
f9a28264 440 delete [] toftime;
441 delete [] pixelArray;
442 delete [] iTOFpixel;
443 delete [] kTOFhitFirst;
444 delete [] hitArray;
445 delete [] trackArray;
446 delete [] iparticle;
447 delete [] iTrackPt;
448 delete [] ptTrack;
db9ba97f 449
450 for (Int_t i=0; i<AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates; i++) {
451 for (Int_t j=0; j<AliTOFConstants::fgkNStripC; j++) {
452 delete [] mapPixels[i][j];
453 }
454 }
455 for (Int_t i=0; i<AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates; i++) delete [] mapPixels[i];
456
457 delete [] mapPixels;
458
459 }//event loop
460
5fff655e 461 // free used memory for ftail
462 if (ftail)
463 {
464 delete ftail;
465 ftail = 0;
466 }
db9ba97f 467
468 // writing ntuple on output file
469 foutputfile->cd();
470 //foutputntuple->Write(0,TObject::kOverwrite);
471 foutputntuple->Write();
472 foutputfile->Write();
473 foutputfile->Close();
474
475 gBenchmark->Stop("TOFReconstruction");
476 cout << "AliTOFReconstructioner:" << endl ;
477 cout << " took " << gBenchmark->GetCpuTime("TOFReconstruction") << " seconds in order to make the reconstruction for " << fNevents << " events " << endl;
478 cout << gBenchmark->GetCpuTime("TOFReconstruction")/fNevents << " seconds per event " << endl ;
479 cout << endl ;
480
481}
482
483//__________________________________________________________________
484void AliTOFReconstructioner::SetRecFile(char * file )
485{
486 //
487 // Set the file name for reconstruction output
488 //
489 if(!fRecFile.IsNull())
490 cout << "Changing destination file for TOF reconstruction from " <<(char *)fRecFile.Data() << " to " << file << endl ;
491 fRecFile=file ;
492}
493//__________________________________________________________________
494void AliTOFReconstructioner::Print(Option_t* option)const
495{
496 //
497 // Print reconstruction output file name
498 //
499 cout << "------------------- "<< GetName() << " -------------" << endl ;
500 if(fRecFile.IsNull())
501 cout << " Writing reconstructed particles to file galice.root "<< endl ;
502 else
503 cout << " Writing reconstructed particle to file " << (char*) fRecFile.Data() << endl ;
504
505}
506
507//__________________________________________________________________
508void AliTOFReconstructioner::PrintParameters()const
509{
510 //
511 // Print parameters used for reconstruction
512 //
513 cout << " ------------------- "<< GetName() << " -------------" << endl ;
514 cout << " Parameters used for TOF reconstruction " << endl ;
515 // Printing the parameters
516
517 cout << " Number of events: " << fNevents << endl;
518 cout << " Recostruction from event "<< fFirstEvent << " to event "<< fLastEvent << endl;
519 cout << " TOF geometry parameters " << endl;
520 cout << " Min. radius of the TOF (cm) "<< AliTOFConstants::fgkrmin << endl;
521 cout << " Max. radius of the TOF (cm) "<< AliTOFConstants::fgkrmax << endl;
522 cout << " Number of TOF geom. levels "<< AliTOFConstants::fgkmaxtoftree<< endl;
523 cout << " Number of TOF sectors "<< AliTOFConstants::fgkNSectors << endl;
524 cout << " Number of TOF modules "<< AliTOFConstants::fgkNPlates << endl;
525 cout << " Max. Number of strips in a module "<< AliTOFConstants::fgkNStripC << endl;
526 cout << " Number of pads per strip "<< AliTOFConstants::fgkNpadX*AliTOFConstants::fgkNpadZ << endl;
527 cout << " Number of strips in central module "<< AliTOFConstants::fgkNStripA << endl;
528 cout << " Number of strips in intermediate modules "<< AliTOFConstants::fgkNStripB << endl;
529 cout << " Number of strips in outer modules "<< AliTOFConstants::fgkNStripC << endl;
530 cout << " Number of MRPC in x strip direction "<< AliTOFConstants::fgkNpadX<< endl;
531 cout << " Size of MRPC (cm) along X "<< AliTOFConstants::fgkXPad<< endl;
532 cout << " Number of MRPC in z strip direction "<< AliTOFConstants::fgkNpadZ<<endl;
533 cout << " Size of MRPC (cm) along Z "<< AliTOFConstants::fgkZPad<<endl;
534 cout << " Module Lengths (cm)" << endl;
535 cout << " A Module: "<< AliTOFConstants::fgkzlenA<< " B Modules: "<< AliTOFConstants::fgkzlenB<< " C Modules: "<< AliTOFConstants::fgkzlenC<< endl;
536 cout << " Inner radius of the TOF detector (cm): "<<AliTOFConstants::fgkrmin << endl;
537 cout << " Outer radius of the TOF detector (cm): "<<AliTOFConstants::fgkrmax << endl;
538 cout << " Max. half z-size of TOF (cm) : "<<AliTOFConstants::fgkMaxhZtof << endl;
539 cout << " TOF Pad parameters " << endl;
540 cout << " Time Resolution (ns) "<< fTimeResolution <<" Pad Efficiency: "<< fpadefficiency << endl;
541 cout << " Edge Effect option: "<< fEdgeEffect<< endl;
542
543 cout << " Boundary Effect Simulation Parameters " << endl;
544 cout << " Hparameter: "<< fHparameter<<" H2parameter:"<< fH2parameter <<" Kparameter:"<< fKparameter<<" K2parameter: "<< fK2parameter << endl;
545 cout << " Efficiency in the central region of the pad: "<< fEffCenter << endl;
546 cout << " Efficiency at the boundary region of the pad: "<< fEffBoundary << endl;
547 cout << " Efficiency value at H2parameter "<< fEff2Boundary << endl;
548 cout << " Efficiency value at K2parameter "<< fEff3Boundary << endl;
549 cout << " Resolution (ps) in the central region of the pad: "<< fResCenter << endl;
550 cout << " Resolution (ps) at the boundary of the pad : "<< fResBoundary << endl;
551 cout << " Slope (ps/K) for neighbouring pad : "<< fResSlope <<endl;
552 cout << " Time walk (ps) in the central region of the pad : "<< fTimeWalkCenter << endl;
553 cout << " Time walk (ps) at the boundary of the pad : "<< fTimeWalkBoundary<< endl;
554 cout << " Slope (ps/K) for neighbouring pad : "<< fTimeWalkSlope<<endl;
555 cout << " Pulse Heigth Simulation Parameters " << endl;
556 cout << " Flag for delay due to the PulseHeightEffect: "<< fTimeDelayFlag <<endl;
557 cout << " Pulse Height Slope : "<< fPulseHeightSlope<<endl;
558 cout << " Time Delay Slope : "<< fTimeDelaySlope<<endl;
559 cout << " Minimum charge amount which could be induced : "<< fMinimumCharge<<endl;
560 cout << " Smearing in charge in (q1/q2) vs x plot : "<< fChargeSmearing<<endl;
561 cout << " Smearing in log of charge ratio : "<< fLogChargeSmearing<<endl;
562 cout << " Smearing in time in time vs log(q1/q2) plot : "<< fTimeSmearing<<endl;
563 cout << " Flag for average time : "<< fAverageTimeFlag<<endl;
564 cout << " Charge factor flag for matching : "<< fChargeFactorForMatching<<endl;
565 cout << " Edge tails option : "<< fEdgeTails << endl;
566 cout << " TPC tracking parameters " << endl;
567 cout << " TPC tracking efficiency : "<< fTrackingEfficiency<< endl;
568 cout << " Sigma vs momentum dependency flag : "<< fSigmavsp << endl;
569 cout << " Space uncertainties (cm). sigma(z) (cm): "<< fSigmaZ << " sigma(R(phi)) (cm): "<< fSigmarphi << endl;
570 cout << " Momentum uncertainties. sigma(delta(P)/P): "<< fSigmap <<" sigma(phi) (rad): "<< fSigmaPhi <<" sigma(theta) (rad): "<< fSigmaTheta << endl;
571 cout << " Parameters for additional noise hits " << endl;
572 cout << " Number of noise hits : " << fNoise <<" Slope parameter (ns) in the time distribution: " << fNoiseSlope << endl;
573 cout << " Mean TOF for noise from outer regions (ns)" << fNoiseMeanTof << endl;
574 cout << " Physical parameters " << endl;
575 cout << " Magnetic Field (tesla) : "<< fField <<endl;
576 cout << " Radiation length of the outer wall of TPC: "<< fRadLenTPC << endl;
577 cout << " (TPC tracks)-(TOF pads) matching parameters " << endl;
578 cout << " TRD Correction flag : "<< fCorrectionTRD <<endl;
579 cout << " Number of the last TPC row: "<< fLastTPCRow <<" Vertex radius (cm) for selected tracks: "<<fRadiusvtxBound<<endl;
580 cout << " Max. number of test tracks: "<<fMaxTestTracks << endl;
581 cout << " Space step (cm) : "<< fStep <<endl;
582 cout << " Matching style option : "<< fMatchingStyle <<endl;
583 cout << " Array parameters " << endl;
584 cout << " Max.number of pads involved in the matching procedure: "<< fMaxPixels << endl;
585 cout << " Max.number of TOF hits per event : "<< fMaxTOFHits<< endl;
586 cout << " Max.number of tracks selected for matching : "<< fMaxTracks << endl;
587 cout << " Max.number of all tracks including the neutral ones : "<< fMaxAllTracks<< endl;
588 cout << " Debug Flag : "<< fdbg << endl;
589 cout << " Cut on momentum for selecting tracks : "<< fPBound << endl;
590
591}
592
593//__________________________________________________________________
594void AliTOFReconstructioner::IsInsideThePad(TGeant3 *g3, Float_t x, Float_t y, Float_t z, Int_t *nGeom, Float_t& zPad, Float_t& xPad)
595{
596 // input: x,y,z - coordinates of a hit
597 // output: array nGeom[]
598 // nGeom[0] - the TOF sector number, 1,2,...,18 along azimuthal direction starting from -90 deg.!!!
599 // nGeom[1] - the TOF module number, 1,2,3,4,5=C,B,A,B,C along z-direction
600 // nGeom[2] - the TOF strip number, 1,2,... along z-direction
601 // nGeom[3] - the TOF padz number, 1,2=NPZ across a strip
602 // nGeom[4] - the TOF padx number, 1,2,...,48=NPX along a strip
603 // zPad, xPad - coordinates of the hit in the pad frame
604 // numbering is adopted for the version 3.05 of AliRoot
605 // example:
606 // from Hits: sec,pla,str,padz,padx=4,2,14,2,35
607 // Vol. n.0: ALIC, copy number 1
608 // Vol. n.1: B077, copy number 1
609 // Vol. n.2: B074, copy number 5
610 // Vol. n.3: BTO2, copy number 1
611 // Vol. n.4: FTOB, copy number 2
612 // Vol. n.5: FLTB, copy number 0
613 // Vol. n.6: FSTR, copy number 14
614 // Vol. n.7: FSEN, copy number 0
615 // Vol. n.8: FSEZ, copy number 2
616 // Vol. n.9: FSEX, copy number 35
617 // Vol. n.10: FPAD, copy number 0
618
619
620 Float_t xTOF[3];
621 Int_t sector=0,module=0,strip=0,padz=0,padx=0;
622 Int_t i,numed,nLevel,copyNumber;
623 Gcvolu_t* gcvolu;
624 char name[5];
625 name[4]=0;
626
627 for (i=0; i<AliTOFConstants::fgkmaxtoftree; i++) nGeom[i]=0;
628 zPad=100.;
629 xPad=100.;
630
631 xTOF[0]=x;
632 xTOF[1]=y;
633 xTOF[2]=z;
634
635 g3->Gmedia(xTOF, numed);
636 gcvolu=g3->Gcvolu();
637 nLevel=gcvolu->nlevel;
638 if(fdbg) {
639 for (Int_t i=0; i<nLevel; i++) {
640 strncpy(name,(char*) (&gcvolu->names[i]),4);
641 cout<<"Vol. n."<<i<<": "<<name<<", copy number "<<gcvolu->number[i]<<endl;
642 }
643 }
644 if(nLevel>=2) {
645 // sector type name: B071(1,2,...,10),B074(1,2,3,4,5-PHOS),B075(1,2,3-RICH)
646 strncpy(name,(char*) (&gcvolu->names[2]),4);
647 // volume copy: 1,2,...,10 for B071, 1,2,3,4,5 for B074, 1,2,3 for B075
648 copyNumber=gcvolu->number[2];
649 if(!strcmp(name,"B071")) {
650 if (copyNumber>=6 && copyNumber<=8) {
651 sector=copyNumber+10;
652 } else if (copyNumber>=1 && copyNumber<=5){
653 sector=copyNumber+7;
654 } else {
655 sector=copyNumber-8;
656 }
657 } else if(!strcmp(name,"B075")) {
658 sector=copyNumber+12;
659 } else if(!strcmp(name,"B074")) {
660 if (copyNumber>=1 && copyNumber<=3){
661 sector=copyNumber+4;
662 } else {
663 sector=copyNumber-1;
664 }
665 }
666 }
667 if(sector) {
668 nGeom[0]=sector;
669 if(nLevel>=4) {
670 // we'll use the module value in z-direction:
671 // 1 2 3 4 5
672 // the module order in z-direction: FTOC,FTOB,FTOA,FTOB,FTOC
673 // the module copy: 2 2 0 1 1
674 // module type name: FTOA, FTOB, FTOC
675 strncpy(name,(char*) (&gcvolu->names[4]),4);
676 // module copy:
677 copyNumber=gcvolu->number[4];
678 if(!strcmp(name,"FTOC")) {
679 if (copyNumber==2) {
680 module=1;
681 } else {
682 module=5;
683 }
684 } else if(!strcmp(name,"FTOB")) {
685 if (copyNumber==2) {
686 module=2;
687 } else {
688 module=4;
689 }
690 } else if(!strcmp(name,"FTOA")) {
691 module=3;
692 }
693 }
694 }
695
696 if(module) {
697 nGeom[1]=module;
698 if(nLevel>=6) {
699 // strip type name: FSTR
700 strncpy(name,(char*) (&gcvolu->names[6]),4);
701 // strip copy:
702 copyNumber=gcvolu->number[6];
703 if(!strcmp(name,"FSTR")) strip=copyNumber;
704 }
705 }
706
707 if(strip) {
708 nGeom[2]=strip;
709 if(nLevel>=8) {
710 // padz type name: FSEZ
711 strncpy(name,(char*) (&gcvolu->names[8]),4);
712 // padz copy:
713 copyNumber=gcvolu->number[8];
714 if(!strcmp(name,"FSEZ")) padz=copyNumber;
715 }
716 }
717 if(padz) {
718 nGeom[3]=padz;
719 if(nLevel>=9) {
720 // padx type name: FSEX
721 strncpy(name,(char*) (&gcvolu->names[9]),4);
722 // padx copy:
723 copyNumber=gcvolu->number[9];
724 if(!strcmp(name,"FSEX")) padx=copyNumber;
725 }
726 }
727
728 if(padx) {
729 nGeom[4]=padx;
730 zPad=gcvolu->glx[2]; // check here
731 xPad=gcvolu->glx[0]; // check here
732 }
733
734 // printf(" nGeom[0,1,2,3,4]=%i,%i,%i,%i,%i\n",nGeom[0],nGeom[1],nGeom[2],nGeom[3],nGeom[4]);
735}
736
737//__________________________________________________________________
738void AliTOFReconstructioner::EpMulScatt(Float_t& px, Float_t& py, Float_t& pz, Float_t& p, Float_t& theta)
739{
740 // Momentum p - before mult.scat.
741 // Momentum p2 - after mult.scat.
742 // THE0 - r.m.s. of deviation angle in plane
743 // (see RPP'96: Phys.Rev.D54 (1996) 134)
744
745 Float_t pt,thex,they,tantx,tanty,p2px,p2py,p2pz,costhe,sinthe,cospsi,sinpsi,p2x,p2y,p2z,p2,g;
746
747 pt=TMath::Sqrt(px*px+py*py);
748 // angles for p in the ' frame with Z'along p
749 if(fMatchingStyle==1) {
750 thex=theta*gRandom->Gaus();
751 they=theta*gRandom->Gaus();
752 } else {
753 thex=3*(-theta+2*theta*gRandom->Rndm());
754 they=3*(-theta+2*theta*gRandom->Rndm());
755 }
756 tantx=TMath::Tan(thex);
757 tanty=TMath::Tan(they);
758
759 // p2p - p2 in the ' frame
760 p2pz=p/TMath::Sqrt(1.+tantx*tantx+tanty*tanty);
761 p2py=p2pz*tanty;
762 p2px=p2pz*tantx;
763 // choose X'so that PHI=0 (see Il'in, Pozdnyak Analiticheskaya geometriya, 1968, c.88
764 // for Euler angles PSI, THETA (PHI=0)
765 costhe=pz/p;
766 sinthe=pt/p;
767 cospsi=-py/pt;
768 sinpsi=px/pt;
769 //
770 g=p2py*costhe-p2pz*sinthe;
771 p2x=p2px*cospsi-g*sinpsi;
772 p2y=p2px*sinpsi+g*cospsi;
773 p2z=p2py*sinthe+p2pz*costhe;
774 p2=TMath::Sqrt(p2x*p2x+p2y*p2y+p2z*p2z);
775
776 // Test angle
777 g=(px*p2x+py*p2y+pz*p2z)/(p*p2);
778 if(g>1) g=1;
779 theta=TMath::ACos(g);
780 px=p2x;
781 py=p2y;
782 pz=p2z;
783 p=p2;
784
785}
786
787// std border effect algorithm
788//__________________________________________________________________
789void AliTOFReconstructioner::BorderEffect(Float_t z0, Float_t x0, Float_t geantTime, Int_t& nActivatedPads, Int_t& nFiredPads, Bool_t* isFired, Int_t* nPlace, Float_t* qInduced, Float_t* tofTime, Float_t& averageTime)
790{
791 // Input: z0, x0 - hit position in the strip system (0,0 - center of the strip), cm
792 // geantTime - time generated by Geant, ns
793 // Output: nActivatedPads - the number of pads activated by the hit (1 || 2 || 4)
794 // nFiredPads - the number of pads fired (really activated) by the hit (nFiredPads <= nActivatedPads)
795 // qInduced[iPad]- charge induced on pad, arb. units
796 // this array is initialized at zero by the caller
797 // tofAfterSimul[iPad] - time calculated with edge effect algorithm, ns
798 // this array is initialized at zero by the caller
799 // averageTime - time given by pad hited by the Geant track taking into account the times (weighted) given by the pads fired for edge effect also.
800 // The weight is given by the qInduced[iPad]/qCenterPad
801 // this variable is initialized at zero by the caller
802 // nPlace[iPad] - the number of the pad place, iPad = 0, 1, 2, 3
803 // this variable is initialized at zero by the caller
804 //
805 // Description of used variables:
806 // eff[iPad] - efficiency of the pad
807 // res[iPad] - resolution of the pad, ns
808 // timeWalk[iPad] - time walk of the pad, ns
809 // timeDelay[iPad] - time delay for neighbouring pad to hited pad, ns
810 // PadId[iPad] - Pad Identifier
811 // E | F --> PadId[iPad] = 5 | 6
812 // A | B --> PadId[iPad] = 1 | 2
813 // C | D --> PadId[iPad] = 3 | 4
814 // nTail[iPad] - the tail number, = 1 for tailA, = 2 for tailB
815 // qCenterPad - charge extimated for each pad, arb. units
816 // weightsSum - sum of weights extimated for each pad fired, arb. units
817
818 const Float_t kSigmaForTail[2] = {AliTOFConstants::fgkSigmaForTail1,AliTOFConstants::fgkSigmaForTail2}; //for tail
819 Int_t iz = 0, ix = 0;
820 Float_t dX = 0., dZ = 0., x = 0., z = 0.;
821 Float_t h = fHparameter, h2 = fH2parameter, k = fKparameter, k2 = fK2parameter;
822 Float_t effX = 0., effZ = 0., resX = 0., resZ = 0., timeWalkX = 0., timeWalkZ = 0.;
823 Float_t logOfqInd = 0.;
824 Float_t weightsSum = 0.;
825 Int_t nTail[4] = {0,0,0,0};
826 Int_t padId[4] = {0,0,0,0};
827 Float_t eff[4] = {0.,0.,0.,0.};
828 Float_t res[4] = {0.,0.,0.,0.};
829 // Float_t qCenterPad = fMinimumCharge * fMinimumCharge;
830 Float_t qCenterPad = 1.;
831 Float_t timeWalk[4] = {0.,0.,0.,0.};
832 Float_t timeDelay[4] = {0.,0.,0.,0.};
833
834 nActivatedPads = 0;
835 nFiredPads = 0;
836
837 (z0 <= 0) ? iz = 0 : iz = 1;
838 dZ = z0 + (0.5 * AliTOFConstants::fgkNpadZ - iz - 0.5) * AliTOFConstants::fgkZPad; // hit position in the pad frame, (0,0) - center of the pad
839 z = 0.5 * AliTOFConstants::fgkZPad - TMath::Abs(dZ); // variable for eff., res. and timeWalk. functions
840 iz++; // z row: 1, ..., AliTOFConstants::fgkNpadZ = 2
841 ix = (Int_t)((x0 + 0.5 * AliTOFConstants::fgkNpadX * AliTOFConstants::fgkXPad) / AliTOFConstants::fgkXPad);
842 dX = x0 + (0.5 * AliTOFConstants::fgkNpadX - ix - 0.5) * AliTOFConstants::fgkXPad; // hit position in the pad frame, (0,0) - center of the pad
843 x = 0.5 * AliTOFConstants::fgkXPad - TMath::Abs(dX); // variable for eff., res. and timeWalk. functions;
844 ix++; // x row: 1, ..., AliTOFConstants::fgkNpadX = 48
845
846 ////// Pad A:
847 nActivatedPads++;
848 nPlace[nActivatedPads-1] = (iz - 1) * AliTOFConstants::fgkNpadX + ix;
849 qInduced[nActivatedPads-1] = qCenterPad;
850 padId[nActivatedPads-1] = 1;
851
852 if (fEdgeEffect == 0) {
853 eff[nActivatedPads-1] = fEffCenter;
854 if (gRandom->Rndm() < eff[nActivatedPads-1]) {
855 nFiredPads = 1;
856 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + fResCenter * fResCenter); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns;
857 isFired[nActivatedPads-1] = kTRUE;
858 tofTime[nActivatedPads-1] = gRandom->Gaus(geantTime + fTimeWalkCenter, res[0]);
859 averageTime = tofTime[nActivatedPads-1];
860 }
861 } else {
862
863 if(z < h) {
864 if(z < h2) {
865 effZ = fEffBoundary + (fEff2Boundary - fEffBoundary) * z / h2;
866 } else {
867 effZ = fEff2Boundary + (fEffCenter - fEff2Boundary) * (z - h2) / (h - h2);
868 }
869 resZ = fResBoundary + (fResCenter - fResBoundary) * z / h;
870 timeWalkZ = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * z / h;
871 nTail[nActivatedPads-1] = 1;
872 } else {
873 effZ = fEffCenter;
874 resZ = fResCenter;
875 timeWalkZ = fTimeWalkCenter;
876 }
877
878 if(x < h) {
879 if(x < h2) {
880 effX = fEffBoundary + (fEff2Boundary - fEffBoundary) * x / h2;
881 } else {
882 effX = fEff2Boundary + (fEffCenter - fEff2Boundary) * (x - h2) / (h - h2);
883 }
884 resX = fResBoundary + (fResCenter - fResBoundary) * x / h;
885 timeWalkX = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * x / h;
886 nTail[nActivatedPads-1] = 1;
887 } else {
888 effX = fEffCenter;
889 resX = fResCenter;
890 timeWalkX = fTimeWalkCenter;
891 }
892
893 (effZ<effX) ? eff[nActivatedPads-1] = effZ : eff[nActivatedPads-1] = effX;
894 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
895 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
896
897
898 ////// Pad B:
899 if(z < k2) {
900 effZ = fEffBoundary - (fEffBoundary - fEff3Boundary) * (z / k2);
901 } else {
902 effZ = fEff3Boundary * (k - z) / (k - k2);
903 }
904 resZ = fResBoundary + fResSlope * z / k;
905 timeWalkZ = fTimeWalkBoundary + fTimeWalkSlope * z / k;
906
907 if(z < k && z > 0) {
908 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
909 nActivatedPads++;
910 nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX;
911 eff[nActivatedPads-1] = effZ;
912 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
913 timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ; // ns
914 nTail[nActivatedPads-1] = 2;
915 if (fTimeDelayFlag) {
916 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
917 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
918 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
919 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
920 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
921 } else {
922 timeDelay[nActivatedPads-1] = 0.;
923 }
924 padId[nActivatedPads-1] = 2;
925 }
926 }
927
928
929 ////// Pad C, D, E, F:
930 if(x < k2) {
931 effX = fEffBoundary - (fEffBoundary - fEff3Boundary) * (x / k2);
932 } else {
933 effX = fEff3Boundary * (k - x) / (k - k2);
934 }
935 resX = fResBoundary + fResSlope*x/k;
936 timeWalkX = fTimeWalkBoundary + fTimeWalkSlope*x/k;
937
938 if(x < k && x > 0) {
939 // C:
940 if(ix > 1 && dX < 0) {
941 nActivatedPads++;
942 nPlace[nActivatedPads-1] = nPlace[0] - 1;
943 eff[nActivatedPads-1] = effX;
944 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
945 timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
946 nTail[nActivatedPads-1] = 2;
947 if (fTimeDelayFlag) {
948 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
949 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
950 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
951 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
952 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
953 } else {
954 timeDelay[nActivatedPads-1] = 0.;
955 }
956 padId[nActivatedPads-1] = 3;
957
958 // D:
959 if(z < k && z > 0) {
960 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
961 nActivatedPads++;
962 nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX - 1;
963 eff[nActivatedPads-1] = effX * effZ;
964 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
965 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
966
967 nTail[nActivatedPads-1] = 2;
968 if (fTimeDelayFlag) {
969 if (TMath::Abs(x) < TMath::Abs(z)) {
970 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
971 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
972 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
973 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
974 } else {
975 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
976 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
977 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
978 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
979 }
980 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
981 } else {
982 timeDelay[nActivatedPads-1] = 0.;
983 }
984 padId[nActivatedPads-1] = 4;
985 }
986 } // end D
987 } // end C
988
989 // E:
990 if(ix < AliTOFConstants::fgkNpadX && dX > 0) {
991 nActivatedPads++;
992 nPlace[nActivatedPads-1] = nPlace[0] + 1;
993 eff[nActivatedPads-1] = effX;
994 res[nActivatedPads-1] = 0.001 * (TMath::Sqrt(10400 + resX * resX)); // ns
995 timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
996 nTail[nActivatedPads-1] = 2;
997 if (fTimeDelayFlag) {
998 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
999 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
1000 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
1001 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
1002 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1003 } else {
1004 timeDelay[nActivatedPads-1] = 0.;
1005 }
1006 padId[nActivatedPads-1] = 5;
1007
1008
1009 // F:
1010 if(z < k && z > 0) {
1011 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
1012 nActivatedPads++;
1013 nPlace[nActivatedPads - 1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX + 1;
1014 eff[nActivatedPads - 1] = effX * effZ;
1015 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1016 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001*timeWalkX; // ns
1017 nTail[nActivatedPads-1] = 2;
1018 if (fTimeDelayFlag) {
1019 if (TMath::Abs(x) < TMath::Abs(z)) {
1020 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
1021 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
1022 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
1023 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
1024 } else {
1025 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
1026 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
1027 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
1028 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
1029 }
1030 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1031 } else {
1032 timeDelay[nActivatedPads-1] = 0.;
1033 }
1034 padId[nActivatedPads-1] = 6;
1035 }
1036 } // end F
1037 } // end E
1038 } // end if(x < k)
1039
1040
1041 for (Int_t iPad = 0; iPad < nActivatedPads; iPad++) {
1042 if (res[iPad] < fTimeResolution) res[iPad] = fTimeResolution;
1043 if(gRandom->Rndm() < eff[iPad]) {
1044 isFired[iPad] = kTRUE;
1045 nFiredPads++;
1046 if(fEdgeTails) {
1047 if(nTail[iPad] == 0) {
1048 tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
1049 } else {
1050 ftail->SetParameters(res[iPad], 2. * res[iPad], kSigmaForTail[nTail[iPad]-1]);
1051 Double_t timeAB = ftail->GetRandom();
1052 tofTime[iPad] = geantTime + timeWalk[iPad] + timeDelay[iPad] + timeAB;
1053 }
1054 } else {
1055 tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
1056 }
1057 if (fAverageTimeFlag) {
1058 averageTime += tofTime[iPad] * qInduced[iPad];
1059 weightsSum += qInduced[iPad];
1060 } else {
1061 averageTime += tofTime[iPad];
1062 weightsSum += 1.;
1063 }
1064 }
1065 }
1066 if (weightsSum!=0) averageTime /= weightsSum;
1067 } // end else (fEdgeEffect != 0)
1068}
1069
1070
1071/* new algorithm (to be checked)
1072//__________________________________________________________________
1073void AliTOFReconstructioner::BorderEffect(Float_t z0, Float_t x0, Float_t geantTime, Int_t& nActivatedPads, Int_t& nFiredPads, Bool_t* isFired, Int_t* nPlace, Float_t* qInduced, Float_t* tofTime, Float_t& averageTime)
1074{
1075 // Input: z0, x0 - hit position in the strip system (0,0 - center of the strip), cm
1076 // geantTime - time generated by Geant, ns
1077 // Output: nActivatedPads - the number of pads activated by the hit (1 || 2 || 4)
1078 // nFiredPads - the number of pads fired (really activated) by the hit (nFiredPads <= nActivatedPads)
1079 // qInduced[iPad]- charge induced on pad, arb. units
1080 // this array is initialized at zero by the caller
1081 // tofAfterSimul[iPad] - time calculated with edge effect algorithm, ns
1082 // this array is initialized at zero by the caller
1083 // averageTime - time given by pad hited by the Geant track taking into account the times (weighted) given by the pads fired for edge effect also.
1084 // The weight is given by the qInduced[iPad]/qCenterPad
1085 // this variable is initialized at zero by the caller
1086 // nPlace[iPad] - the number of the pad place, iPad = 0, 1, 2, 3
1087 // this variable is initialized at zero by the caller
1088 //
1089 // Description of used variables:
1090 // eff[iPad] - efficiency of the pad
1091 // res[iPad] - resolution of the pad, ns
1092 // timeWalk[iPad] - time walk of the pad, ns
1093 // timeDelay[iPad] - time delay for neighbouring pad to hited pad, ns
1094 // PadId[iPad] - Pad Identifier
1095 // E | F --> PadId[iPad] = 5 | 6
1096 // A | B --> PadId[iPad] = 1 | 2
1097 // C | D --> PadId[iPad] = 3 | 4
1098 // nTail[iPad] - the tail number, = 1 for tailA, = 2 for tailB
1099 // qCenterPad - charge extimated for each pad, arb. units
1100 // weightsSum - sum of weights extimated for each pad fired, arb. units
1101
1102 const Float_t kSigmaForTail[2] = {AliTOFConstants::fgkSigmaForTail1,AliTOFConstants::fgkSigmaForTail2}; //for tail
1103 Int_t iz = 0, ix = 0;
1104 Float_t dX = 0., dZ = 0., x = 0., z = 0.;
1105 Float_t h = fHparameter, h2 = fH2parameter, k = fKparameter, k2 = fK2parameter;
1106 Float_t effX = 0., effZ = 0., resX = 0., resZ = 0., timeWalkX = 0., timeWalkZ = 0.;
1107 Float_t logOfqInd = 0.;
1108 Float_t weightsSum = 0.;
1109 Int_t nTail[4] = {0,0,0,0};
1110 Int_t padId[4] = {0,0,0,0};
1111 Float_t eff[4] = {0.,0.,0.,0.};
1112 Float_t res[4] = {0.,0.,0.,0.};
1113 Float_t qCenterPad = fMinimumCharge * fMinimumCharge;
1114 Float_t timeWalk[4] = {0.,0.,0.,0.};
1115 Float_t timeDelay[4] = {0.,0.,0.,0.};
1116
1117 nActivatedPads = 0;
1118 nFiredPads = 0;
1119
1120 (z0 <= 0) ? iz = 0 : iz = 1;
1121 dZ = z0 + (0.5 * AliTOFConstants::fgkNpadZ - iz - 0.5) * AliTOFConstants::fgkZPad; // hit position in the pad frame, (0,0) - center of the pad
1122 z = 0.5 * AliTOFConstants::fgkZPad - TMath::Abs(dZ); // variable for eff., res. and timeWalk. functions
1123 iz++; // z row: 1, ..., AliTOFConstants::fgkNpadZ = 2
1124 ix = (Int_t)((x0 + 0.5 * AliTOFConstants::fgkNpadX * AliTOFConstants::fgkXPad) / AliTOFConstants::fgkXPad);
1125 dX = x0 + (0.5 * AliTOFConstants::fgkNpadX - ix - 0.5) * AliTOFConstants::fgkXPad; // hit position in the pad frame, (0,0) - center of the pad
1126 x = 0.5 * AliTOFConstants::fgkXPad - TMath::Abs(dX); // variable for eff., res. and timeWalk. functions;
1127 ix++; // x row: 1, ..., AliTOFConstants::fgkNpadX = 48
1128
1129 ////// Pad A:
1130 nActivatedPads++;
1131 nPlace[nActivatedPads-1] = (iz - 1) * AliTOFConstants::fgkNpadX + ix;
1132 qInduced[nActivatedPads-1] = qCenterPad;
1133 padId[nActivatedPads-1] = 1;
1134
1135 if (fEdgeEffect == 0) {
1136 eff[nActivatedPads-1] = fEffCenter;
1137 if (gRandom->Rndm() < eff[nActivatedPads-1]) {
1138 nFiredPads = 1;
1139 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + fResCenter * fResCenter); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns;
1140 isFired[nActivatedPads-1] = kTRUE;
1141 tofTime[nActivatedPads-1] = gRandom->Gaus(geantTime + fTimeWalkCenter, res[0]);
1142 averageTime = tofTime[nActivatedPads-1];
1143 }
1144 } else {
1145
1146 if(z < h) {
1147 if(z < h2) {
1148 effZ = fEffBoundary + (fEff2Boundary - fEffBoundary) * z / h2;
1149 } else {
1150 effZ = fEff2Boundary + (fEffCenter - fEff2Boundary) * (z - h2) / (h - h2);
1151 }
1152 resZ = fResBoundary + (fResCenter - fResBoundary) * z / h;
1153 timeWalkZ = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * z / h;
1154 nTail[nActivatedPads-1] = 1;
1155 } else {
1156 effZ = fEffCenter;
1157 resZ = fResCenter;
1158 timeWalkZ = fTimeWalkCenter;
1159 }
1160
1161 if(x < h) {
1162 if(x < h2) {
1163 effX = fEffBoundary + (fEff2Boundary - fEffBoundary) * x / h2;
1164 } else {
1165 effX = fEff2Boundary + (fEffCenter - fEff2Boundary) * (x - h2) / (h - h2);
1166 }
1167 resX = fResBoundary + (fResCenter - fResBoundary) * x / h;
1168 timeWalkX = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * x / h;
1169 nTail[nActivatedPads-1] = 1;
1170 } else {
1171 effX = fEffCenter;
1172 resX = fResCenter;
1173 timeWalkX = fTimeWalkCenter;
1174 }
1175
1176 (effZ<effX) ? eff[nActivatedPads-1] = effZ : eff[nActivatedPads-1] = effX;
1177 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1178 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
1179
1180
1181 ////// Pad B:
1182 if(z < k2) {
1183 effZ = fEffBoundary - (fEffBoundary - fEff3Boundary) * (z / k2);
1184 } else {
1185 effZ = fEff3Boundary * (k - z) / (k - k2);
1186 }
1187 resZ = fResBoundary + fResSlope * z / k;
1188 timeWalkZ = fTimeWalkBoundary + fTimeWalkSlope * z / k;
1189
1190 if(z < k && z > 0) {
1191 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
1192 nActivatedPads++;
1193 nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX;
1194 eff[nActivatedPads-1] = effZ;
1195 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1196 timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ; // ns
1197 nTail[nActivatedPads-1] = 2;
1198 if (fTimeDelayFlag) {
1199 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
1200 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
1201 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
1202 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1203 } else {
1204 timeDelay[nActivatedPads-1] = 0.;
1205 }
1206 padId[nActivatedPads-1] = 2;
1207 }
1208 }
1209
1210
1211 ////// Pad C, D, E, F:
1212 if(x < k2) {
1213 effX = fEffBoundary - (fEffBoundary - fEff3Boundary) * (x / k2);
1214 } else {
1215 effX = fEff3Boundary * (k - x) / (k - k2);
1216 }
1217 resX = fResBoundary + fResSlope*x/k;
1218 timeWalkX = fTimeWalkBoundary + fTimeWalkSlope*x/k;
1219
1220 if(x < k && x > 0) {
1221 // C:
1222 if(ix > 1 && dX < 0) {
1223 nActivatedPads++;
1224 nPlace[nActivatedPads-1] = nPlace[0] - 1;
1225 eff[nActivatedPads-1] = effX;
1226 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1227 timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
1228 nTail[nActivatedPads-1] = 2;
1229 if (fTimeDelayFlag) {
1230 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
1231 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
1232 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
1233 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1234 } else {
1235 timeDelay[nActivatedPads-1] = 0.;
1236 }
1237 padId[nActivatedPads-1] = 3;
1238
1239 // D:
1240 if(z < k && z > 0) {
1241 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
1242 nActivatedPads++;
1243 nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX - 1;
1244 eff[nActivatedPads-1] = effX * effZ;
1245 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1246 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
1247
1248 nTail[nActivatedPads-1] = 2;
1249 if (fTimeDelayFlag) {
1250 if (TMath::Abs(x) < TMath::Abs(z)) {
1251 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
1252 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
1253 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
1254 } else {
1255 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
1256 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
1257 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
1258 }
1259 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1260 } else {
1261 timeDelay[nActivatedPads-1] = 0.;
1262 }
1263 padId[nActivatedPads-1] = 4;
1264 }
1265 } // end D
1266 } // end C
1267
1268 // E:
1269 if(ix < AliTOFConstants::fgkNpadX && dX > 0) {
1270 nActivatedPads++;
1271 nPlace[nActivatedPads-1] = nPlace[0] + 1;
1272 eff[nActivatedPads-1] = effX;
1273 res[nActivatedPads-1] = 0.001 * (TMath::Sqrt(10400 + resX * resX)); // ns
1274 timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
1275 nTail[nActivatedPads-1] = 2;
1276 if (fTimeDelayFlag) {
1277 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
1278 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
1279 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
1280 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1281 } else {
1282 timeDelay[nActivatedPads-1] = 0.;
1283 }
1284 padId[nActivatedPads-1] = 5;
1285
1286
1287 // F:
1288 if(z < k && z > 0) {
1289 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
1290 nActivatedPads++;
1291 nPlace[nActivatedPads - 1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX + 1;
1292 eff[nActivatedPads - 1] = effX * effZ;
1293 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1294 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001*timeWalkX; // ns
1295 nTail[nActivatedPads-1] = 2;
1296 if (fTimeDelayFlag) {
1297 if (TMath::Abs(x) < TMath::Abs(z)) {
1298 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
1299 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
1300 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
1301 } else {
1302 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
1303 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
1304 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
1305 }
1306 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1307 } else {
1308 timeDelay[nActivatedPads-1] = 0.;
1309 }
1310 padId[nActivatedPads-1] = 6;
1311 }
1312 } // end F
1313 } // end E
1314 } // end if(x < k)
1315
1316
1317 for (Int_t iPad = 0; iPad < nActivatedPads; iPad++) {
1318 if (res[iPad] < fTimeResolution) res[iPad] = fTimeResolution;
1319 if(gRandom->Rndm() < eff[iPad]) {
1320 isFired[iPad] = kTRUE;
1321 nFiredPads++;
1322 if(fEdgeTails) {
1323 if(nTail[iPad] == 0) {
1324 tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
1325 } else {
1326 ftail->SetParameters(res[iPad], 2. * res[iPad], kSigmaForTail[nTail[iPad]-1]);
1327 Double_t timeAB = ftail->GetRandom();
1328 tofTime[iPad] = geantTime + timeWalk[iPad] + timeDelay[iPad] + timeAB;
1329 }
1330 } else {
1331 tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
1332 }
1333 if (fAverageTimeFlag) {
1334 averageTime += tofTime[iPad] * qInduced[iPad];
1335 weightsSum += qInduced[iPad];
1336 } else {
1337 averageTime += tofTime[iPad];
1338 weightsSum += 1.;
1339 }
1340 }
1341 }
1342 if (weightsSum!=0) averageTime /= weightsSum;
1343
1344 } // end else (fEdgeEffect != 0)
1345
1346 //cout << "timedelay " << timeDelay[0] << endl;
1347 //cout << "timedelay " << timeDelay[1] << endl;
1348 //cout << "timedelay " << timeDelay[2] << endl;
1349 //cout << "timedelay " << timeDelay[3] << endl;
1350
1351}
1352*/
1353
1354
1355//__________________________________________________________________
1356Int_t AliTOFReconstructioner::PDGtoGeantCode(Int_t pdgcode)
1357{
1358 //
1359 // Gives the GEANT code from KF code of LUND JETSET
1360 //
1361 Int_t geantCode=0; // default value
1362 switch (pdgcode) {
1363 case 22:
1364 geantCode=1; // GAMMA
1365 break ;
1366 case -11:
1367 geantCode=2; // E+
1368 break ;
1369 case 11:
1370 geantCode=3; // E-
1371 break ;
1372 case 12:
1373 geantCode=4; // NUE
1374 break ;
1375 case 14:
1376 geantCode=4; // NUMU
1377 break ;
1378 case -13:
1379 geantCode=5; // MU+
1380 break ;
1381 case 13:
1382 geantCode=6; // MU-
1383 break ;
1384 case 111:
1385 geantCode=7; // PI0
1386 break ;
1387 case 211:
1388 geantCode=8; // PI+
1389 break ;
1390 case -211:
1391 geantCode=9; // PI-
1392 break ;
1393 case 130:
1394 geantCode=10; // K_L0
1395 break ;
1396 case 321:
1397 geantCode=11; // K+
1398 break ;
1399 case -321:
1400 geantCode=12; // K-
1401 break ;
1402 case 2112:
1403 geantCode=13; // N0
1404 break ;
1405 case 2212:
1406 geantCode=14; // P+
1407 break ;
1408 case -2212:
1409 geantCode=15; // P~-
1410 break ;
1411 case 310:
1412 geantCode=16; // K_S0
1413 break ;
1414 case 221:
1415 geantCode=17; // ETA
1416 break ;
1417 case 3122:
1418 geantCode=18; // LAMBDA0
1419 break ;
1420 case 3222:
1421 geantCode=19; // SIGMA+
1422 break ;
1423 case 3212:
1424 geantCode=20; // SIGMA0
1425 break ;
1426 case 3112:
1427 geantCode=21; // SIGMA-
1428 break ;
1429 case 3322:
1430 geantCode=22; // XI0
1431 break ;
1432 case 3312:
1433 geantCode=23; // XI-
1434 break ;
1435 case 3334:
1436 geantCode=24; // OMEGA-
1437 break ;
1438 case -2112:
1439 geantCode=25; // N~0
1440 break ;
1441 case -3122:
1442 geantCode=26; // LAMBDA~0
1443 break ;
1444 case -3112:
1445 geantCode=27; // SIGMA~+
1446 break ;
1447 case -3212:
1448 geantCode=28; // SIGMA~0
1449 break ;
1450 case -3222:
1451 geantCode=29; // SIGMA~-
1452 break ;
1453 case -3322:
1454 geantCode=30; // XI~0
1455 break ;
1456 case -3312:
1457 geantCode=31; // XI~+
1458 break ;
1459 case -3334:
1460 geantCode=32; // OMEGA~+
1461 break ;
1462 case 223:
1463 geantCode=33; // OMEGA(782)
1464 break ;
1465 case 333:
1466 geantCode=34; // PHI(1020)
1467 break ;
1468 case 411:
1469 geantCode=35; // D+
1470 break ;
1471 case -411:
1472 geantCode=36; // D-
1473 break ;
1474 case 421:
1475 geantCode=37; // D0
1476 break ;
1477 case -421:
1478 geantCode=38; // D~0
1479 break ;
1480 case 431:
1481 geantCode=39; // D_S+
1482 break ;
1483 case -431:
1484 geantCode=40; // D_S~-
1485 break ;
1486 case 4122:
1487 geantCode=41; // LAMBDA_C+
1488 break ;
1489 case 213:
1490 geantCode=42; // RHP(770)+
1491 break ;
1492 case -213:
1493 geantCode=43; // RHO(770)-
1494 break ;
1495 case 113:
1496 geantCode=44; // RHO(770)0
1497 break ;
1498 default:
1499 geantCode=45;
1500 break;
1501 }
1502
1503 return geantCode;
1504}
1505
1506//__________________________________________________________________
1507Bool_t AliTOFReconstructioner::operator==( AliTOFReconstructioner const & tofrec)const
1508{
1509 // Equal operator.
1510 // Reconstructioners are equal if their parameters are equal
1511
1512 // split the member variables in analogous categories
1513
1514 // time resolution and edge effect parameters
1515 Bool_t dummy0=(fTimeResolution==tofrec.fTimeResolution)&&(fpadefficiency==tofrec.fpadefficiency)&&(fEdgeEffect==tofrec.fEdgeEffect)&&(fEdgeTails==tofrec.fEdgeTails)&&(fHparameter==tofrec.fHparameter)&&(fH2parameter==tofrec.fH2parameter)&&(fKparameter==tofrec.fKparameter)&&(fK2parameter==tofrec.fK2parameter);
1516
1517 // pad efficiency parameters
1518 Bool_t dummy1=(fEffCenter==tofrec.fEffCenter)&&(fEffBoundary==tofrec.fEffBoundary)&&(fEff2Boundary==tofrec.fEff2Boundary)&&(fEff3Boundary==tofrec.fEff3Boundary)&&(fResCenter==tofrec.fResCenter)&&(fResBoundary==tofrec.fResBoundary)&&(fResSlope==tofrec.fResSlope);
1519
1520 // time walk parameters
1521 Bool_t dummy2=(fTimeWalkCenter==tofrec.fTimeWalkCenter)&&(fTimeWalkBoundary==tofrec.fTimeWalkBoundary)&&(fTimeWalkSlope==tofrec.fTimeWalkSlope)&&(fTimeDelayFlag==tofrec.fTimeDelayFlag)&&(fPulseHeightSlope==tofrec.fPulseHeightSlope)&&(fTimeDelaySlope==tofrec.fTimeDelaySlope);
1522
1523 // ADC-TDC correlation parameters
1524 Bool_t dummy3=(fMinimumCharge==tofrec.fMinimumCharge)&&(fChargeSmearing==tofrec.fChargeSmearing )&&(fLogChargeSmearing==tofrec.fLogChargeSmearing )&&(fTimeSmearing==tofrec.fTimeSmearing )&&(fAverageTimeFlag==tofrec.fAverageTimeFlag)&&(fChargeFactorForMatching==tofrec.fChargeFactorForMatching)&&(fMatchingStyle==tofrec.fMatchingStyle);
1525
1526 Bool_t dummy4=(fTrackingEfficiency==tofrec.fTrackingEfficiency)&&(fSigmavsp==tofrec.fSigmavsp)&&(fSigmaZ==tofrec.fSigmaZ)&&(fSigmarphi==tofrec.fSigmarphi)&&(fSigmap==tofrec.fSigmap)&&(fSigmaPhi==tofrec.fSigmaPhi)&&(fSigmaTheta==tofrec.fSigmaTheta)&&(fNoise==tofrec.fNoise)&&(fNoiseSlope==tofrec.fNoiseSlope)&&(fField==tofrec.fField)&&(fRadLenTPC==tofrec.fRadLenTPC)&&(fCorrectionTRD==tofrec.fCorrectionTRD)&&(fLastTPCRow==tofrec.fLastTPCRow)&&(fRadiusvtxBound==tofrec.fRadiusvtxBound)&&(fMaxTestTracks==tofrec.fMaxTestTracks)&&(fStep==tofrec.fStep)&&(fMaxPixels==tofrec.fMaxPixels)&&(fMaxAllTracks==tofrec.fMaxAllTracks)&&(fMaxTracks==tofrec.fMaxTracks)&&(fMaxTOFHits==tofrec.fMaxTOFHits)&&(fPBound==tofrec.fPBound);
1527
1528 if( dummy0 && dummy1 && dummy2 && dummy3 && dummy4)
1529 return kTRUE ;
1530 else
1531 return kFALSE ;
1532
1533}
1534//____________________________________________________________________________
1535void AliTOFReconstructioner::UseHitsFrom(const char * filename)
1536{
1537 SetTitle(filename) ;
1538}
1539
1540//____________________________________________________________________________
1541void AliTOFReconstructioner::InitArray(Float_t array[], Int_t nlocations)
1542{
1543 //
1544 // Initialize the array of Float_t
1545 //
1546 for (Int_t i = 0; i < nlocations; i++) {
1547 array[i]=0.;
1548 } // end loop
1549
1550}
1551
1552//____________________________________________________________________________
1553void AliTOFReconstructioner::InitArray(Int_t array[], Int_t nlocations)
1554{
1555 //
1556 // Initialize the array of Int_t
1557 //
1558 for (Int_t i = 0; i < nlocations; i++) {
1559 array[i]=0;
1560 } // end loop
1561
1562}
1563
1564
1565//____________________________________________________________________________
1566void AliTOFReconstructioner::ReadTOFHits(Int_t ntracks, TTree* treehits, TClonesArray* tofhits, Int_t ***MapPixels, Int_t* kTOFhitFirst, AliTOFPad* pixelArray , Int_t* iTOFpixel, Float_t* toftime, AliTOFRecHit* hitArray, Int_t& isHitOnFiredPad, Int_t& ipixel)
1567{
1568 //
1569 // Read TOF hits for the current event and fill arrays
1570 //
1571 // Start loop on primary tracks in the hits containers
1572 //
1573 // Noise meaning in ReadTOFHits: we use the word 'noise' in the
1574 // following cases
1575 // - signals produced by secondary particles
1576 // - signals produced by the next hits (out of the first) of a given track
1577 // (both primary and secondary)
1578 // - signals produced by edge effect
1579
1580
1581 TParticle *particle;
1582 Int_t nHitOutofTofVolumes; // number of hits out of TOF GEANT volumes (it happens in very
1583 // few cases)
f9a28264 1584 Int_t * npixel = new Int_t[AliTOFConstants::fgkmaxtoftree]; // array used by TOFRecon for check on TOF geometry
db9ba97f 1585 Int_t npions=0; // number of pions for the current event
1586 Int_t nkaons=0; // number of kaons for the current event
1587 Int_t nprotons=0; // number of protons for the current event
1588 Int_t nelectrons=0;// number of electrons for the current event
1589 Int_t nmuons=0; // number of muons for the current event
1590 Float_t tofpos[3]; // TOF hit position and GEANT time
1591 Float_t zPad,xPad;
1592 Int_t nbytes = 0;
1593 Int_t ipart, nhits=0, nHitsFromPrimaries=0;
1594 Int_t ntotalTOFhits=0; // total number of TOF hits for the current event
1595 Int_t ipartLast=-1; // last track identifier
1596 Int_t iFirstHit; // flag to check if the current hit is the first hit on TOF for the
1597 // current track
1598 Int_t iNoiseHit=0; // flag used to tag noise hits (the noise meaning is reported in the
1599 // header of the ReadTOFHits method)
1600 Int_t nhitWithoutNoise;// number of hits not due to noise
1601 Int_t inoise=0,inoise2=0;
1602 Int_t nMultipleSignOnSamePad=0; // number of cases where a pad is fired more than one time
1603 Int_t nPixEdge=0; // additional pads fired due to edge effect in ReadTOFHits (local var)
1604 // array used for counting different types of primary particles
1605 Int_t particleTypeGEANT[50]={0,4,4,0,5,5,0,3,3,0,
1606 2,2,0,1,1,0,0,0,0,0,
1607 0,0,0,0,0,0,0,0,0,0,
1608 0,0,0,0,0,0,0,0,0,0,
1609 0,0,0,0,0,0,0,0,0,0};
1610 Int_t particleType,particleInTOFtype[6][3];
1611 for (Int_t i=0;i<6;i++) {
1612 for (Int_t j=0;j<3;j++) {
1613 particleInTOFtype[i][j]=0;
1614 }
1615 }
1616
5fff655e 1617 // speed-up the code
1618 treehits->SetBranchStatus("*",0); // switch off all branches
1619 treehits->SetBranchStatus("TOF*",1); // switch on only TOF
db9ba97f 1620
1621 for (Int_t track=0; track<ntracks;track++) { // starting loop on primary tracks for the current event
1622
1623 gAlice->ResetHits();
1624 nbytes += treehits->GetEvent(track);
1625 nhits = tofhits->GetEntriesFast();
1626
1627 ntotalTOFhits+=nhits;
1628
1629 // Start loop on hits connected to the current primary tracked particle
1630 // (including hits produced by secondary particles generaterd by the
1631 // current ptimary tracked particle)
1632 for (Int_t hit=0;hit<nhits;hit++) {
1633 AliTOFhit* tofHit = (AliTOFhit*)tofhits->UncheckedAt(hit);
1634 ipart = tofHit->GetTrack();
1635 if(ipart>=fMaxAllTracks) break;
1636 Float_t geantTime= tofHit->GetTof(); // it is given in [s]
1637 particle = (TParticle*)gAlice->Particle(ipart);
1638
1639 Int_t pdgCode=particle->GetPdgCode();
1640 // Only high momentum tracks (see fPBound value)
1641 // momentum components at vertex
1642 Float_t pxvtx = particle->Px();
1643 Float_t pyvtx = particle->Py();
1644 Float_t pzvtx = particle->Pz();
1645 Float_t pvtx = TMath::Sqrt(pxvtx*pxvtx+pyvtx*pyvtx+pzvtx*pzvtx);
1646 if(pvtx>fPBound) {
1647
1648 if(particle->GetFirstMother() < 0) nHitsFromPrimaries++; // count primaries
1649
1650 // x and y coordinates of the particle production vertex
1651 Float_t vx = particle->Vx();
1652 Float_t vy = particle->Vy();
1653 Float_t vr = TMath::Sqrt(vx*vx+vy*vy); // cylindrical radius of the particle production vertex
1654
1655 Float_t x = tofHit->X(); tofpos[0]=x;
1656 Float_t y = tofHit->Y(); tofpos[1]=y;
1657 Float_t z = tofHit->Z(); tofpos[2]=z;
1658
1659 Float_t tofradius = TMath::Sqrt(x*x+y*y); // radius cilindrical coordinate of the TOF hit
1660 // momentum components (cosine) when striking the TOF
1661 Float_t pxtof = tofHit->GetPx();
1662 Float_t pytof = tofHit->GetPy();
1663 Float_t pztof = tofHit->GetPz();
1664 // scalar product indicating the direction of the particle when striking the TOF
1665 // (>0 for outgoing particles)
1666 Float_t isGoingOut = (x*pxtof+y*pytof+z*pztof)/TMath::Sqrt(x*x+y*y+z*z);
1667 Float_t momtof = tofHit->GetMom();
1668 // now momentum components when striking the TOF
1669 pxtof *= momtof;
1670 pytof *= momtof;
1671 pztof *= momtof;
1672 particleType=particleTypeGEANT[PDGtoGeantCode(pdgCode)-1];
1673 if(particleType) {
1674 particleInTOFtype[5][2]++;
1675 particleInTOFtype[particleType-1][2]++;
1676 }
1677 iFirstHit=0;
1678 // without noise hits
1679
1680 if(ipart!=ipartLast) {
1681 iFirstHit=1;
1682 toftime[ipart]=geantTime; //time [s]
1683 // tofMom[ipart]=momtof;
1684 ipartLast=ipart;
1685 if(particle->GetFirstMother() < 0) {
1686 Int_t abspdgCode=TMath::Abs(pdgCode);
1687 switch (abspdgCode) {
1688 case 211:
1689 npions++;
1690 break ;
1691 case 321:
1692 nkaons++;
1693 break ;
1694 case 2212:
1695 nprotons++;
1696 break ;
1697 case 11:
1698 nelectrons++;
1699 break ;
1700 case 13:
1701 nmuons++;
1702 break ;
1703 }
1704 }
1705 if(vr>fRadiusvtxBound) {
1706 if(particleType) {
1707 particleInTOFtype[5][1]++;
1708 particleInTOFtype[particleType-1][1]++;
1709 }
1710 inoise++;
1711 inoise2++;
1712 } else {
1713 if(particleType) {
1714 particleInTOFtype[5][0]++;
1715 particleInTOFtype[particleType-1][0]++;
1716 }
1717 }
1718 } else {
1719 inoise++;
1720 if(particleType) {
1721 particleInTOFtype[5][1]++;
1722 particleInTOFtype[particleType-1][1]++;
1723 }
1724 } //end if(ipart!=ipartLast)
1725
1726 IsInsideThePad(fg3,x,y,z,npixel,zPad,xPad);
1727
1728 Int_t sec = tofHit->GetSector();
1729 Int_t pla = tofHit->GetPlate();
1730 Int_t str = tofHit->GetStrip();
1731 if(sec!=npixel[0] || pla!=npixel[1] || str!=npixel[2]){// check on volume
1732 cout << "sector" << sec << " npixel[0] " << npixel[0] << endl;
1733 cout << "plate " << pla << " npixel[1] " << npixel[1] << endl;
1734 cout << "strip " << str << " npixel[2] " << npixel[2] << endl;
1735 } // close check on volume
1736
1737 Int_t padz = tofHit->GetPadz();
1738 Int_t padx = tofHit->GetPadx();
1739 Float_t Zpad = tofHit->GetDz();
1740 Float_t Xpad = tofHit->GetDx();
1741
1742
1743 if (npixel[4]==0){
1744 IsInsideThePad(fg3,x,y,z,npixel,zPad,xPad);
1745 if (npixel[4]==0){
1746 nHitOutofTofVolumes++;
1747 }
1748 } else {
1749 Float_t zStrip=AliTOFConstants::fgkZPad*(padz-0.5-0.5*AliTOFConstants::fgkNpadZ)+Zpad;
1750 if(padz!=npixel[3]) printf(" : Zpad=%f, padz=%i, npixel[3]=%i, zStrip=%f\n",Zpad,padz,npixel[3],zStrip);
1751 Float_t xStrip=AliTOFConstants::fgkXPad*(padx-0.5-0.5*AliTOFConstants::fgkNpadX)+Xpad;
1752
1753 Int_t nPlace[4]={0,0,0,0};
1754 nPlace[0]=(padz-1)*AliTOFConstants::fgkNpadX+padx;
1755
1756 Int_t nActivatedPads=0;
1757 Int_t nFiredPads=0;
1758 Bool_t isFired[4]={kFALSE,kFALSE,kFALSE,kFALSE};
1759 Float_t tofAfterSimul[4]={0.,0.,0.,0.};
1760 Float_t qInduced[4]={0.,0.,0.,0.};
1761 Float_t averageTime=0.;
1762
1763
1764 BorderEffect(zStrip,xStrip,geantTime*1.0e+09,nActivatedPads,nFiredPads,isFired,nPlace,qInduced,tofAfterSimul,averageTime); // simulate edge effect
1765
1766
1767 if(nFiredPads) {
1768 for(Int_t indexOfPad=0; indexOfPad<nActivatedPads; indexOfPad++) {
1769 if(isFired[indexOfPad]){// the pad has fired
1770 if(indexOfPad==0) {// the hit belongs to a fired pad
1771 isHitOnFiredPad++;
1772 hitArray[isHitOnFiredPad-1].SetHit(ipart,pdgCode,tofpos,momtof,vr,iFirstHit);
1773 iNoiseHit=0;
1774
1775 if(vr>fRadiusvtxBound || iFirstHit==0) iNoiseHit=1;
1776
1777 hitArray[isHitOnFiredPad-1].SetNoise(iNoiseHit);
1778 if(iFirstHit) kTOFhitFirst[ipart]=isHitOnFiredPad;
1779
1780 }// close - the hit belongs to a fired pad
1781
1782 Int_t iMapFirstIndex=AliTOFConstants::fgkNSectors*(npixel[1]-1)+npixel[0]-1;
1783 Int_t iMapValue=MapPixels[iMapFirstIndex][npixel[2]-1][nPlace[indexOfPad]-1];
1784
1785 if(iMapValue==0) {
1786 ipixel++;
1787 if(indexOfPad) {
1788 iNoiseHit=1;
1789 nPixEdge++;
1790 } else {
1791 iTOFpixel[ipart]=ipixel;
1792 }
1793
1794 if(ipixel>fMaxPixels){ // check on the total number of activated pads
1795 cout << "ipixel=" << ipixel << " > fMaxPixels=" << fMaxPixels << endl;
1796 return;
1797 } // close check on the number of activated pads
1798
1799 MapPixels[iMapFirstIndex][npixel[2]-1][nPlace[indexOfPad]-1]=ipixel;
1800 pixelArray[ipixel-1].SetGeom(npixel[0],npixel[1],npixel[2],nPlace[indexOfPad]);
1801 pixelArray[ipixel-1].SetTrack(ipart);
1802 if(iNoiseHit) {
1803 pixelArray[ipixel-1].AddState(1);
1804 } else {
1805 if(tofAfterSimul[indexOfPad]<0) cout << "Time of Flight after detector simulation is negative" << endl;
1806 pixelArray[ipixel-1].AddState(10);
1807 }
1808
1809 pixelArray[ipixel-1].SetTofChargeHit(tofAfterSimul[indexOfPad],qInduced[indexOfPad],geantTime*1.0e+09,isHitOnFiredPad);
1810 } else { //else if(iMapValue==0)
1811 if(indexOfPad==0) iTOFpixel[ipart]=iMapValue;
1812 nMultipleSignOnSamePad++;
1813
1814 if(tofAfterSimul[indexOfPad] < pixelArray[iMapValue-1].GetRealTime() ) {
1815 pixelArray[iMapValue-1].SetTrack(ipart);
1816 // if(indexOfPad==0) pixelArray[iMapValue-1].SetTrack(ipart);
1817 if(indexOfPad) iNoiseHit=1;
1818 if(iNoiseHit) {
1819 pixelArray[iMapValue-1].AddState(1);
1820 } else {
1821 pixelArray[iMapValue-1].AddState(10);
1822 }
1823 pixelArray[iMapValue-1].SetRealTime(tofAfterSimul[indexOfPad]);
1824 pixelArray[iMapValue-1].SetGeantTime(geantTime*1.0e+09);
1825 pixelArray[iMapValue-1].SetHit(isHitOnFiredPad);
1826 } // close if(tofAfterSimul[indexOfPad] < pixelArray[iMapValue-1].GetTime() )
1827 } //end of Pixel filling
1828 } // close if(isFired[indexOfPad])
1829 } //end loop on activated pads indexOfPad
1830 } // close if(nFiredPads)
1831 } //end of hit with npixel[3]!=0
1832 } //high momentum tracks
1833 } //end on TOF hits
1834 } //end on primary tracks
1835
1836
1837 if(fdbg) {
1838 cout << ntotalTOFhits << " - total number of TOF hits " << nHitsFromPrimaries << " - primary " << endl;
1839 cout << inoise << " - noise hits, " << inoise2<< " - first crossing of a track with Rvtx>" << fRadiusvtxBound << endl;
1840 // cout << inoise << " - noise hits (" << 100.*inoise/ihit << " %), " << inoise2
1841 //<< " - first crossing of a track with Rvtx>" << RVTXBOUND << endl;
1842 nhitWithoutNoise=isHitOnFiredPad;
1843
1844 cout << ipixel << " fired pixels (" << nMultipleSignOnSamePad << " multiple fired pads, " << endl;
1845 //j << " fired by noise, " << j1 << " noise+track)" << endl;
1846 printf(" %i additional pads are fired due to edge effect\n",nPixEdge);
1847 cout << npions << " primary pions reached TOF" << endl;
1848 cout << nkaons << " primary kaons reached TOF" << endl;
1849 cout << nprotons << " primary protons reached TOF" << endl;
1850 cout << nelectrons<<" primary electrons reached TOF" << endl;
1851 cout << nmuons << " primary muons reached TOF" << endl;
1852 cout << "number of TOF hits for different species: 1-p, 2-K, 3-pi, 4-e, 5-mu, 6-all" << endl;
1853 cout << " first number - track hits, second - noise ones, third - all" << endl;
1854 for (Int_t i=0;i<6;i++) cout << i+1 << " " << particleInTOFtype[i][0] << " " << particleInTOFtype[i][1] << " " << particleInTOFtype[i][2] << endl;
1855
1856 Int_t primaryReachedTOF[6];
1857 primaryReachedTOF[0]=npions;
1858 primaryReachedTOF[1]=nkaons;
1859 primaryReachedTOF[2]=nprotons;
1860 primaryReachedTOF[3]=nelectrons;
1861 primaryReachedTOF[4]=nmuons;
1862 primaryReachedTOF[5]=npions+nkaons+nprotons+nelectrons+nmuons;
1863
1864 cout << " Reading TOF hits done" << endl;
1865 }
1866
f9a28264 1867 delete [] npixel;
db9ba97f 1868}
1869
1870//____________________________________________________________________________
1871void AliTOFReconstructioner::AddNoiseFromOuter(Option_t *option, Int_t ***MapPixels, AliTOFPad* pixelArray , AliTOFRecHit* hitArray, Int_t& isHitOnFiredPad, Int_t& ipixel)
1872{
1873 //
1874 // Add noise hits from outer regions (forward and backward) according
1875 // to parameterized fZNoise distribution (to be used with events
1876 // generated in the barrel region)
1877
f9a28264 1878 Float_t * zLen = new Float_t[AliTOFConstants::fgkNPlates+1];
1879 Float_t * zStrips = new Float_t[AliTOFConstants::fgkNPlates];
db9ba97f 1880 zStrips[0]=(Float_t) (AliTOFConstants::fgkNStripC);
1881 zStrips[1]=(Float_t) (AliTOFConstants::fgkNStripB);
1882 zStrips[2]=(Float_t) (AliTOFConstants::fgkNStripA);
1883 zStrips[3]=(Float_t) (AliTOFConstants::fgkNStripB);
1884 zStrips[4]=(Float_t) (AliTOFConstants::fgkNStripC);
1885
1886 zLen[5]=AliTOFConstants::fgkzlenA*0.5+AliTOFConstants::fgkzlenB+AliTOFConstants::fgkzlenC;
1887 zLen[4]=zLen[5]-AliTOFConstants::fgkzlenC;
1888 zLen[3]=zLen[4]-AliTOFConstants::fgkzlenB;
1889 zLen[2]=zLen[3]-AliTOFConstants::fgkzlenA;
1890 zLen[1]=zLen[2]-AliTOFConstants::fgkzlenB;
1891 zLen[0]=zLen[1]-AliTOFConstants::fgkzlenC;
1892
1893
1894 Int_t isector; // random sector number
1895 Int_t iplate; // random plate number
1896 Int_t istrip; // random strip number in the plate
1897 Int_t ipadAlongX; // random pad number along x direction
1898 Int_t ipadAlongZ; // random pad number along z direction
1899 Int_t ipad;
1900 Int_t nPixEdge=0; // additional pads fired due to edge effect when adding noise from outer
1901 // regions
1902
1903 // x -> time of flight given in ns
1904 TF1 *noiseTof = new TF1("noiseTof","exp(-x/20)",0,100);
1905
1906 if(strstr(option,"pp")){
1907 fZnoise = new TF1("fZnoise","257.8-0.178*x-0.000457*x*x",-AliTOFConstants::fgkMaxhZtof,AliTOFConstants::fgkMaxhZtof);
1908 }
1909 if(strstr(option,"Pb-Pb")){
1910 fZnoise = new TF1("fZnoise","182.2-0.09179*x-0.0001931*x*x",-AliTOFConstants::fgkMaxhZtof,AliTOFConstants::fgkMaxhZtof);
1911 }
1912
1913 if(fNoise) {
1914 if(fdbg) cout << " Start adding additional noise hits from outer regions" << endl;
1915
1916 for(Int_t i=0;i<fNoise;i++) {
1917
1918 isector=(Int_t) (AliTOFConstants::fgkNSectors*gRandom->Rndm())+1; //the sector number
1919 // non-flat z-distribution of additional hits
1920 Float_t zNoise=fZnoise->GetRandom();
1921
1922 // holes for PHOS and HMPID
1923 if(((AliTOF *) gAlice->GetDetector("TOF"))->IsVersion()==2) {
1924 // to be checked the holes case
1925 if(isector>12 && isector<16) { // sectors 13,14,15 - RICH
1926 do {
1927 iplate=(Int_t) (AliTOFConstants::fgkNPlates*gRandom->Rndm())+1;
1928 } while (iplate==2 || iplate==3 || iplate==4);
1929 // } else if(isector>11 && isector<17) { // sectors 12,13,14,15,16 - PHOS
1930 } else if(isector>2 && isector<8) { // sectors 3,4,5,6,7 - PHOS
1931 do {
1932 iplate=(Int_t) (AliTOFConstants::fgkNPlates*gRandom->Rndm())+1;
1933 } while (iplate==3);
1934 } else {
1935 iplate=(Int_t) (AliTOFConstants::fgkNPlates*gRandom->Rndm())+1;
1936 }
1937 } else {
1938 iplate=0;
1939 do {
1940 iplate++;
1941 } while(zNoise>zLen[iplate]);
1942 }
1943 // end of holes
1944
1945 if(iplate<1 || iplate>5) {
1946 printf(" iplate<1 or iplate>5, iplate=%i\n",iplate);
1947 return;
1948 }
1949
1950 Float_t nStripes=0;
1951 if(iplate>1) {
1952 for (Int_t i=0;i<iplate-1;i++) {
1953 nStripes += zStrips[i];
1954 }
1955 }
1956
1957 istrip=(Int_t)(zNoise-zLen[iplate-1])/((zLen[iplate]-zLen[iplate-1])/zStrips[iplate-1]); //the strip number in the plate
1958 istrip++;
1959
1960 ipadAlongX = (Int_t)(AliTOFConstants::fgkNpadX*gRandom->Rndm())+1;
1961 ipadAlongZ = (Int_t)(AliTOFConstants::fgkNpadZ*gRandom->Rndm())+1;
1962 ipad=(Int_t)(ipadAlongZ-1)*AliTOFConstants::fgkNpadX+ipadAlongX; //the pad number
1963
1964 Float_t xStrip=(ipadAlongX-1)*AliTOFConstants::fgkXPad+AliTOFConstants::fgkXPad*gRandom->Rndm()-0.5*AliTOFConstants::fgkNpadX*AliTOFConstants::fgkXPad;//x-coor.in the strip frame
1965 Float_t zStrip=(ipadAlongZ-1)*AliTOFConstants::fgkZPad+AliTOFConstants::fgkZPad*gRandom->Rndm()-0.5*AliTOFConstants::fgkNpadZ*AliTOFConstants::fgkZPad;//z-coor.in the strip frame
1966
1967 Int_t nPlace[4]={0,0,0,0};
1968 nPlace[0]=ipad;
1969
1970 Int_t nActivatedPads=0;
1971 Int_t nFiredPads=0;
1972 Bool_t isFired[4]={kFALSE,kFALSE,kFALSE,kFALSE};
1973 Float_t tofAfterSimul[4]={0.,0.,0.,0.};
1974 Float_t qInduced[4]={0.,0.,0.,0.};
1975 Float_t averageTime=0.;
1976 Float_t toffornoise=10.+noiseTof->GetRandom(); // 10 ns offset + parameterization [ns]
1977
1978 BorderEffect(zStrip,xStrip,toffornoise,nActivatedPads,nFiredPads,isFired,nPlace,qInduced,tofAfterSimul,averageTime); // simulate edge effect
1979
1980 if(nFiredPads) {
1981 for(Int_t indexOfPad=0; indexOfPad<nActivatedPads; indexOfPad++) {
1982 if(isFired[indexOfPad]){// the pad has fired
1983
1984 if(indexOfPad==0) {// the hit belongs to a fired pad
1985 isHitOnFiredPad++;
1986 hitArray[isHitOnFiredPad-1].SetX(0.);
1987 hitArray[isHitOnFiredPad-1].SetY(0.);
1988 hitArray[isHitOnFiredPad-1].SetZ(zNoise);
1989 hitArray[isHitOnFiredPad-1].SetNoise(1);
1990 } // close if(indexOfPad==0)
1991
1992 ipad = nPlace[indexOfPad];
1993
1994 Int_t iMapValue=MapPixels[AliTOFConstants::fgkNSectors*(iplate-1)+isector-1][istrip-1][ipad-1];
1995
1996 if(iMapValue==0) {
1997 ipixel++;
1998 if(indexOfPad) nPixEdge++;
1999 MapPixels[AliTOFConstants::fgkNSectors*(iplate-1)+isector-1][istrip-1][ipad-1]=ipixel;
2000 pixelArray[ipixel-1].SetGeom(isector,iplate,istrip,ipad);
2001 pixelArray[ipixel-1].AddState(1);
2002 pixelArray[ipixel-1].SetRealTime(tofAfterSimul[indexOfPad]);
2003 pixelArray[ipixel-1].SetHit(isHitOnFiredPad);
2004 } else if( tofAfterSimul[indexOfPad] < pixelArray[iMapValue-1].GetRealTime() ) {
2005 pixelArray[iMapValue-1].SetTrack(-1);
2006 pixelArray[iMapValue-1].AddState(1);
2007 pixelArray[iMapValue-1].SetRealTime(tofAfterSimul[indexOfPad]);
2008 pixelArray[iMapValue-1].SetHit(isHitOnFiredPad);
2009 } //end of if(iMapValue==0)
2010
2011 }// close if(isFired[indexOfPad])
2012 } //end loop on activated pads indexOfPad
2013 } // close if(nFiredPads)
2014 } //end of NOISE cycle
2015 }
2016
2017 // free used memory
2018 if (fZnoise)
2019 {
2020 delete fZnoise;
2021 fZnoise = 0;
2022 }
2023
2024 if (noiseTof)
2025 {
2026 delete noiseTof;
2027 noiseTof = 0;
2028 }
2029
2030 Int_t nNoiseSignals=0;
2031 Int_t nAll=0;
2032 for(Int_t idummy=1; idummy<ipixel+1; idummy++) {
2033 if(hitArray[pixelArray[idummy-1].GetHit()-1].GetNoise()==1) {
2034 nNoiseSignals++;
2035 if(pixelArray[idummy-1].GetState()>10) nAll++;
2036 }
2037 }
2038
2039 if(fdbg) {
2040 cout << " after adding " << fNoise << " noise hits: " << ipixel << " fired pixels (" << nNoiseSignals << " fired by noise, " << nAll << " noise+track)" << endl;
2041 printf(" %i additional pixels are fired by noise due to edge effect\n",nPixEdge);
2042 cout << " End of adding additional noise hits from outer regions" << endl;
2043 }
2044
2045 Float_t occupancy;
2046 // numberOfPads for AliTOFV4 (Full coverage)
2047 // - to be upgraded checking the used TOF version -
2048 Float_t numberOfPads=AliTOFConstants::fgkPadXSector*AliTOFConstants::fgkNSectors;
2049 occupancy=100.*ipixel/numberOfPads; // percentage of fired pads
2050 printf(" Overall TOF occupancy (percentage of fired pads after adding noise) = %f\n",occupancy);
f9a28264 2051 delete [] zLen;
2052 delete [] zStrips;
db9ba97f 2053
2054}
2055
2056
2057//____________________________________________________________________________
2058void AliTOFReconstructioner::SetMinDistance(AliTOFRecHit* hitArray, Int_t ilastEntry)
2059{
2060 //
2061 // Set the distance to the nearest hit for hitArray
2062 // ilastEntry is the index of the last entry of hitArray
2063
2064 // starting the setting for the distance to the nearest TOFhit (cm)
2065 for(Int_t i=0; i<ilastEntry; i++) {
2066
2067 if(hitArray[i].GetFirst()==1 && hitArray[i].GetNoise()==0) { // select the first hit of the track
2068 // hits are not due to noise
2069 Float_t minDistance=10000.,squareDistance; // current values of the (square) distance
2070 Int_t jAtMin=0; // index of the hit nearest to the i-th hit
2071 Float_t xhit=hitArray[i].X(); // x coordinate for i-th hit
2072 Float_t yhit=hitArray[i].Y(); // y coordinate for i-th hit
2073 Float_t zhit=hitArray[i].Z(); // z coordinate for i-th hit
2074 // was for(Int_t j=0; j<isHitOnFiredPad; j++) {
2075 for(Int_t j=0; j<ilastEntry; j++) {
2076 if(i!=j) {
2077 squareDistance=(hitArray[j].X()-xhit)*(hitArray[j].X()-xhit)+
2078 (hitArray[j].Y()-yhit)*(hitArray[j].Y()-yhit)+
2079 (hitArray[j].Z()-zhit)*(hitArray[j].Z()-zhit);
2080 if(squareDistance<minDistance) {
2081 minDistance=squareDistance;
2082 jAtMin=j;
2083 }
2084 }
2085 }
2086 minDistance=TMath::Sqrt(minDistance);
2087 hitArray[i].SetRmin(minDistance);
2088 if(minDistance==0.) printf(" Rmin=0, i=%i, j=%i, x=%f,y=%f,z=%f\n",i,jAtMin,xhit,yhit,zhit);// it cannot happen
2089 }
2090 }
2091
2092}
2093
2094// these lines has to be commented till TPC will provide fPx fPy fPz
2095// and fL in AliTPChit class
2096//____________________________________________________________________________
2097/*
2098void AliTOFReconstructioner::ReadTPCHits(Int_t ntracks, TTree* treehits, TClonesArray* tpchits, Int_t* iTrackPt, Int_t* iparticle, Float_t* ptTrack, AliTOFTrack* trackArray, Int_t& itrack)
2099{
2100 //
2101 // Read TPC hits for the current event
2102 //
2103 TParticle *particle=0;
2104 Int_t npions=0; // number of pions for the current event
2105 Int_t nkaons=0; // number of kaons for the current event
2106 Int_t nprotons=0; // number of protons for the current event
2107 Int_t nelectrons=0;// number of electrons for the current event
2108 Int_t nmuons=0; // number of muons for the current event
2109 Int_t ntotalTPChits=0; // total number of TPC hits for the current event
2110 Int_t idummy=-1; // dummy var used to count double hit TPC cases
2111 Int_t nTpcDoubleHitsLastRow=0; // number of double TPC hits in the last pad row
2112 Int_t nTpcHitsLastRow=0; // number of TPC hits in the last pad row
2113 Float_t trdpos[2]={0.,0.};
2114 Float_t pos[3]; // TPC hit position
2115 Float_t mom[3]; // momentum components in the last TPC row
2116 Float_t pt=0., tpclen; // pt: transverse momentum in the last TPC row
2117 Int_t nbytes = 0;
2118 Int_t ipart=0, nhits=0, iprim=0;
2119
2120 itrack=0; // itrack: total number of selected TPC tracks
2121
5fff655e 2122 // speed-up the code
2123 treehits->SetBranchStatus("*",0); // switch off all branches
2124 treehits->SetBranchStatus("TPC*",1); // switch on only TPC
2125
db9ba97f 2126 for (Int_t track=0; track<ntracks;track++) {
2127 gAlice->ResetHits();
2128 nbytes += treehits->GetEvent(track);
2129
2130
2131 nhits = tpchits->GetEntriesFast();
2132
2133 for (Int_t hit=0;hit<nhits;hit++) {
2134 ntotalTPChits++;
2135 AliTPChit* tpcHit = (AliTPChit*)tpchits->UncheckedAt(hit);
2136 Int_t row = tpcHit->fPadRow;
2137 ipart = tpcHit->GetTrack();
2138 if(ipart>=fMaxAllTracks) break;
2139 particle = (TParticle*)gAlice->Particle(ipart);
2140 Int_t pdgCode=particle->GetPdgCode();
2141 // only high momentum tracks
2142 // momentum components at production vertex
2143 Float_t pxvtx = particle->Px();
2144 Float_t pyvtx = particle->Py();
2145 Float_t pzvtx = particle->Pz();
2146 Float_t pvtx = TMath::Sqrt(pxvtx*pxvtx+pyvtx*pyvtx+pzvtx*pzvtx);
2147 if(pvtx>fPBound && row == fLastTPCRow) {
2148 Float_t vx = particle->Vx();
2149 Float_t vy = particle->Vy();
2150 Float_t vr = TMath::Sqrt(vx*vx+vy*vy);
2151 Float_t x = tpcHit->X();
2152 Float_t y = tpcHit->Y();
2153 Float_t z = tpcHit->Z();
2154 pos[0]=x; pos[1]=y; pos[2]=z;
2155
2156 Float_t pxtpc = tpcHit->fPx;
2157 Float_t pytpc = tpcHit->fPy;
2158 Float_t pztpc = tpcHit->fPz;
2159 mom[0]=pxtpc; mom[1]=pytpc; mom[2]=pztpc;
2160 Float_t momtpc = TMath::Sqrt(pxtpc*pxtpc+pytpc*pytpc+pztpc*pztpc);
2161
2162 if(x*pxtpc+y*pytpc>0) { // only tracks going out of TPC
2163
2164 Float_t isoutgoing = x*pxtpc+y*pytpc+z*pztpc;
2165 isoutgoing /= (momtpc*TMath::Sqrt(x*x+y*y+z*z));
2166 tpclen = tpcHit->fL;
2167
2168
2169 if(ipart!=idummy) {
2170 if(particle->GetFirstMother() < 0) {
2171 Int_t abspdgCode=TMath::Abs(pdgCode);
2172 switch (abspdgCode) {
2173 case 211:
2174 npions++;
2175 break ;
2176 case 321:
2177 nkaons++;
2178 break ;
2179 case 2212:
2180 nprotons++;
2181 break ;
2182 case 11:
2183 nelectrons++;
2184 break ;
2185 case 13:
2186 nmuons++;
2187 break ;
2188 }
2189 } // close if(particle->GetFirstMother() < 0)
2190 } // close if(ipart!=idummy)
2191
2192 if(gRandom->Rndm()<fTrackingEfficiency && vr<fRadiusvtxBound && ipart!=idummy) {
2193
2194 itrack++;
2195 if(particle->GetFirstMother() < 0) iprim++;
2196
2197 if(itrack>fMaxTracks) {
2198 cout << "itrack=" << itrack << " > MAXTRACKS=" << fMaxTracks << endl;
2199 return;
2200 } // close if(itrack>fMaxTracks)
2201
2202
2203 iparticle[ipart]=itrack;
2204
2205 trackArray[itrack-1].SetTrack(ipart,pvtx,pdgCode,tpclen,pos,mom,trdpos);
2206
2207 pt=TMath::Sqrt(pxtpc*pxtpc+pytpc*pytpc); // pt: transverse momentum at TPC
2208 // Filling iTrackPt[MAXTRACKS] by itrack ordering on Pt
2209 if(itrack==1) {
2210 iTrackPt[itrack-1]=itrack;
2211 ptTrack[itrack-1]=pt;
2212 } else {
2213 for (Int_t i=0; i<itrack-1; i++) {
2214 if(pt>ptTrack[i]) {
2215 for(Int_t j=i; j<itrack-1; j++) {
2216 Int_t k=itrack-1+i-j;
2217 iTrackPt[k]= iTrackPt[k-1];
2218 ptTrack[k] = ptTrack[k-1];
2219 }
2220 iTrackPt[i]=itrack;
2221 ptTrack[i]=pt;
2222 break;
2223 }
2224 if(i==itrack-2) {
2225 iTrackPt[itrack-1]=itrack;
2226 ptTrack[itrack-1]=pt;
2227 }
2228 }
2229 }
2230
2231 } //end of itrack
2232 if(vr>fRadiusvtxBound) nTpcHitsLastRow++;
2233 if(ipart==idummy) nTpcDoubleHitsLastRow++;
2234 idummy=ipart;
2235 } // close if(x*px+y*py>0)
2236 } // close if(pvtx>fPBound && row == fLastTPCRow)
2237 } //end of hits
2238 } // close loop on tracks
2239
2240
2241 if(fdbg) {
2242 cout << ntotalTPChits << " TPC hits in the last TPC row " << fLastTPCRow << endl;
2243 cout << " " << nTpcHitsLastRow << " - hits with Rvtx>fRadiusvtxBound=" << fRadiusvtxBound << endl;
2244 cout << " " << nTpcDoubleHitsLastRow << " double TPC hits" << endl;
2245 cout << itrack << " - extracted TPC tracks " << iprim << " - primary" << endl;
2246 cout << npions << " primary pions reached TPC" << endl;
2247 cout << nkaons << " primary kaons reached TPC" << endl;
2248 cout << nprotons << " primary protons reached TPC" << endl;
2249 cout << nelectrons<< " primary electrons reached TPC" << endl;
2250 cout << nmuons << " primary muons reached TPC" << endl;
2251 } // if(fdbg)
2252
2253 Int_t primaryInTPC[6]={0,0,0,0,0,0};
2254 primaryInTPC[0]=npions;
2255 primaryInTPC[1]=nkaons;
2256 primaryInTPC[2]=nprotons;
2257 primaryInTPC[3]=nelectrons;
2258 primaryInTPC[4]=nmuons;
2259 primaryInTPC[5]=npions+nkaons+nprotons+nelectrons+nmuons;
2260
2261 if(fdbg) {
2262 printf(" contents of iTrackPt[MAXTRACKS],PtTrack[MAXTRACKS]\n");
2263 for (Int_t i=0; i<itrack; i++) {
2264 printf(" %i : iTrackPt=%i, PtTrack=%f\n",i+1,iTrackPt[i],ptTrack[i]);
2265 }
2266 printf(" Check ordered transverse momentum array\n");
2267 for (Int_t i=itrack-1; i>=0; i--) {
2268 printf(" %i : iTrackPt=%i, PtTrack=%f\n",i+1,iTrackPt[i],ptTrack[i]);
2269 }
2270 }// if(fdbg)
2271
2272}
2273*/
2274//____________________________________________________________________________
2275void cylcor(Float_t& x, Float_t& y) {
2276 Float_t rho,phi;
2277
2278 rho=TMath::Sqrt(x*x+y*y);
2279 phi=0.;
2280 if(TMath::Abs(x)>0. || TMath::Abs(y)>0.) phi=TMath::ATan2(y,x);
2281 if(phi<0.) phi=phi+2.*TMath::Pi();
2282 x=rho;
2283 y=phi;
2284
2285}
2286
2287//____________________________________________________________________________
2288void AliTOFReconstructioner::Matching(AliTOFTrack* trackArray, AliTOFRecHit* hitArray, Int_t ***mapPixels, AliTOFPad* pixelArray, Int_t* kTOFhitFirst, Int_t& ipixel, Int_t* iTrackPt, Int_t* iTOFpixel, Int_t ntotTpcTracks)
2289{
f9a28264 2290 Int_t TestTracks,iTestTrack,itest,wPixel=0,itestc;
2291 Int_t * ntest = new Int_t[fMaxTestTracks];
2292 Int_t * testPixel = new Int_t[fMaxTestTracks];
2293 Float_t wLength=0.,wRho=0.,wZ=0.;
2294 Float_t * testLength = new Float_t[fMaxTestTracks];
2295 Float_t * testRho = new Float_t[fMaxTestTracks];
2296 Float_t * testZ = new Float_t[fMaxTestTracks];
2297 Float_t weight;
2298 Float_t * testWeight = new Float_t[fMaxTestTracks];
db9ba97f 2299 Float_t rotationFactor,phi0,coslam,sinlam,helixRadius,xHelixCenter,yHelixCenter,zHelixCenter,helixFactor;
2300 Int_t npixel[5],iMapValue,iwork1,iwork2,iwork3,iwork4,ihit=0;
2301 Int_t charge[48]={ 0, 1,-1, 0, 1,-1, 0, 1,-1, 0,
2302 1,-1, 0, 1,-1, 0, 0, 0, 1, 0,
2303 -1, 0,-1,-1, 0, 0,-1, 0, 1, 0,
2304 1, 1, 0, 0, 1,-1, 0, 0, 1,-1,
2305 1, 1,-1, 0, 1, 1, 2, 0};
2306 Float_t theta0,gpx,gpy,gpz,gp,gpt,gtheta,gx,gy,gz,gr,gxLast,gyLast,gzLast,chargeField;
2307 Float_t sumOfTheta=0.,weightTestTracksOutTof[4];
2308 Float_t s,ds,xRespectToHelixCenter,yRespectToHelixCenter,deltaRadius,fp,xp,yp,grho;
2309 Float_t mass,energy,g;
2310 Int_t itrack=0,itr,particleCharge,istep,iplate=0,iPadAlongX=0;
2311 Int_t itra,t34=0,t32=0,t44=0,t43=0,t42=0;
2312 Int_t wstate=0,m2state=0,wPix;
2313 Int_t idelR=0,idelR1=0,idelR2=0,iRmin=0,iRmin1=0,iRmin2=0;
2314 Float_t massArray[50] = {0.0,0.00051,0.00051,0.0,0.1057,0.1057,0.135,0.1396,0.1396,0.4977,
2315 0.4936,0.4936,0.9396,0.9383,0.9383,0.4977,0.5488,1.1156,1.1894,1.1926,1.1926,
2316 1.3149,1.3213,1.6724,0.9396,1.1156,1.1894,1.1926,1.1974,1.3149,
2317 0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.};
2318 Float_t delR;
2319 Float_t radius,area,normR,normS,cosAngl;
2320 Int_t iPlateFirst,iTestGmax=0;
2321 Int_t fstate,iPrintM1=0,iPrintM2=0;
2322 Float_t gxExtrap=0.,gyExtrap=0.,gzExtrap=0.;
2323 Float_t avSigZ=0,avSigRPHI=0,avSigP=0,avSigPHI=0,avSigTHETA=0;
2324
2325 Float_t gxW,gyW,gzW;
2326 Float_t length0;
2327 Float_t snr=0;
2328 Int_t indexOfTestTrack;
2329 Float_t zPad,xPad;
2330 Int_t istate=0,imax=0,match,iMaxTestTracksOutTof=0,matchw;
2331 Float_t w,wmax=0.,inverseOfParticleSpeed,w2,smat[9],largestWeightTracksOutTof,sw;
2332 Float_t sumWeightTracksOutTof,sGeomWeigth;
2333 Int_t imatched;
2334 Int_t m10=0,m20=0,m22=0,m23=0;
2335 Int_t PRINT=0;
2336 TParticle *particle;
2337
2338 Float_t time=0.;
2339 itr=ntotTpcTracks;
2340 printf(" itr=%i\n",itr);
2341 for (itra=1; itra<itr+1; itra++) {
2342
2343 Int_t itrack=iTrackPt[itra-1];
2344 if(itrack==0) printf(" iTrackPt[itra-1]=0 for itra=%i\n",itra);
2345 Int_t ipart=trackArray[itrack-1].GetTrack();
2346 Float_t pvtx=trackArray[itrack-1].GetP();
2347 Int_t pdgCode=trackArray[itrack-1].GetPdgCode();
2348 Float_t tpclength=trackArray[itrack-1].GetlTPC();
2349 Float_t x=trackArray[itrack-1].GetRxTPC();
2350 Float_t y=trackArray[itrack-1].GetRyTPC();
2351 Float_t z=trackArray[itrack-1].GetRzTPC();
2352 Float_t RxTPC=x;
2353 Float_t RyTPC=y;
2354 Float_t RzTPC=z;
2355 Float_t Wx=x;
2356 Float_t Wy=y;
2357 Float_t Wz=z;
2358 Float_t px=trackArray[itrack-1].GetPxTPC();
2359 Float_t py=trackArray[itrack-1].GetPyTPC();
2360 Float_t pz=trackArray[itrack-1].GetPzTPC();
2361 Float_t pxTPC=px;
2362 Float_t pyTPC=py;
2363 Float_t pzTPC=pz;
2364
2365 Float_t p = TMath::Sqrt(px*px+py*py+pz*pz);
2366 Float_t pTPC=p;
2367
2368 Float_t rho = TMath::Sqrt(x*x+y*y);
2369 Float_t phi=0.;
2370 if(TMath::Abs(x)>0. || TMath::Abs(y)>0.) phi=TMath::ATan2(y,x);
2371 if(phi<0.) phi=phi+2.*TMath::Pi();
2372 Float_t phiTPC=phi*kRaddeg;
2373 if(fSigmavsp) {
2374 if(p==0) printf(" p=%f in g=0.022/p\n",p);
2375 g=0.022/p;
2376 avSigRPHI += g; // (cm)
2377 if(rho==0) printf(" rho=%f in phi += g*gRandom->Gaus()/rho\n",rho);
2378 phi += g*gRandom->Gaus()/rho;
2379 } else {
2380 if(rho==0) printf(" rho=%f in phi += (SIGMARPHI*gRandom->Gaus()/rho\n",rho);
2381 phi += (fSigmarphi*gRandom->Gaus()/rho);
2382 }
2383 x=rho*TMath::Cos(phi);
2384 y=rho*TMath::Sin(phi);
2385 Float_t zTPC=z;
2386 if(fSigmavsp) {
2387 if(p==0) printf(" p=%f in g=0.0275/p\n",p);
2388 g=0.0275/p;
2389 avSigZ += g; // (cm)
2390 z += g*gRandom->Gaus();
2391 } else {
2392 z += fSigmaZ*gRandom->Gaus();
2393 }
2394
2395 // smearing on TPC momentum
2396
2397 {
2398 Float_t pmom,phi,theta,arg;
2399
2400 pmom=TMath::Sqrt(px*px+py*py+pz*pz);
2401 phi=0.;
2402 if(TMath::Abs(px)>0. || TMath::Abs(py)>0.) phi=TMath::ATan2(py,px);
2403 if(phi<0.) phi=phi+2*TMath::Pi();
2404 arg=1.;
2405 if(pmom>0.) arg=pz/pmom;
2406 theta=0.;
2407 if(TMath::Abs(arg)<=1.) theta=TMath::ACos(arg);
2408
2409 if(fSigmavsp) {
2410 if(pmom<=0) printf(" pmom=%f in g = TMath::Abs(TMath::Log(pmom)/TMath::Log(10)+0.5)/0.7\n",pmom);
2411 g = TMath::Abs(TMath::Log(pmom)/TMath::Log(10)+0.5)/0.7;
2412 g = 0.01*(g*g*g+1.5)*1.24;
2413 avSigP += g;
2414 pmom *= (1+g*gRandom->Gaus());
2415
2416 if(p<10) {
2417 if(pmom<=0) printf(" pmom=%f in g = 1-TMath::Log(pmom)/TMath::Log(10)\n",pmom);
2418 g = 1-TMath::Log(pmom)/TMath::Log(10);
2419 g = 0.001*(g*g*g+0.3)*0.65; // (radian)
2420 } else {
2421 g = 0.001*0.3*0.65;
2422 }
2423 avSigPHI += g;
2424 phi += g*gRandom->Gaus();
2425 avSigTHETA += g;
2426 theta += g*gRandom->Gaus();
2427
2428 } else {
2429 pmom *= (1+fSigmap*gRandom->Gaus());
2430 phi += fSigmaPhi*gRandom->Gaus();
2431 theta += fSigmaTheta*gRandom->Gaus();
2432 }
2433 gxW=px;
2434 gyW=py;
2435 gzW=pz;
2436
2437 px=pmom*TMath::Sin(theta)*TMath::Cos(phi);
2438 py=pmom*TMath::Sin(theta)*TMath::Sin(phi);
2439 pz=pmom*TMath::Cos(theta);
2440
2441
2442 if(x*px+y*py<=0) {
2443 x=Wx;
2444 y=Wy;
2445 z=Wz;
2446 px=gxW;
2447 py=gyW;
2448 pz=gzW;
2449 }// if(x*px+y*py<=0)
2450 }
2451
2452 p = TMath::Sqrt(px*px+py*py+pz*pz);
2453
2454 particleCharge=charge[PDGtoGeantCode(pdgCode)-1];
2455 mass=massArray[PDGtoGeantCode(pdgCode)-1];
2456 mass=massArray[8-1]; //we take pion mass for all tracks
2457 // mass=massArray[14-1]; //here we take proton mass for all tracks
2458 energy=TMath::Sqrt(p*p+mass*mass);
2459 chargeField=particleCharge*fField;
2460
2461 g=fRadLenTPC/( (x*px+y*py)/(rho*p) );
2462
2463 if(g<=0) printf(" error, g<=0: g=%f, itra=%i, x,y,px,py=%f, %f, %f, %f\n",g,itra,x,y,px,py);
2464
2465 theta0=13.6*0.001*TMath::Sqrt(g)*(1.+0.038*TMath::Log(g))*energy/(p*p);
2466
2467
2468 // start Loop on test tracks
2469 sumOfTheta=0.;
2470 for(Int_t i=0;i<4;i++) {
2471 weightTestTracksOutTof[i]=0.;
2472 }
2473
2474 itest=0;
2475 for(Int_t i=0;i<fMaxTestTracks;i++) {
2476 ntest[i]=0;
2477 testPixel[i]=0;
2478 testLength[i]=0.;
2479 testRho[i]=0.;
2480 testZ[i]=0.;
2481 testWeight[i]=0.;
2482 }
2483
2484 iPlateFirst=0;
2485 TestTracks=0;
2486 iTestTrack=0;
2487 iTestGmax=0;
2488
2489 length0=0;
2490
2491 for (indexOfTestTrack=0; indexOfTestTrack<fMaxTestTracks; indexOfTestTrack++) {
2492
2493 iTestTrack++;
2494 gpx=px;
2495 gpy=py;
2496 gpz=pz;
2497 gp=p;
2498 if(indexOfTestTrack) {
2499 gtheta=theta0;
2500 EpMulScatt(gpx,gpy,gpz,gp,gtheta);
2501
2502 } else {
2503 gtheta=0;
2504 }
2505
2506 weight=TMath::Exp(-gtheta*gtheta/(2*theta0*theta0));
2507 sumOfTheta += gtheta;
2508
2509 // ==========================================================
2510 // Calculate crossing of the track in magnetic field with cylidrical surface
2511 // of radius RTOFINNER
2512 // chargeField = qB, where q is a charge of a particle in units of e,
2513 // B is magnetic field in tesla
2514 // see 3.3.1.1. in the book "Data analysis techniques for
2515 // high-energy physics experiments", edited by M.Regler
2516 // in Russian: "Metody analiza dannykh v fizicheskom eksperimente"
2517 // Moskva, "Mir", 1993. ctr.306
2518
2519 // Initial constants
2520 rotationFactor=1.;
2521 if(chargeField<0.) rotationFactor=-1.;
2522 rotationFactor=-rotationFactor;
2523 gpt=gpx;
2524 phi0=gpy;
2525 cylcor(gpt,phi0);
2526 phi0 -= rotationFactor*TMath::Pi()*0.5;
2527 // phi0 -= h*PID2;
2528 coslam=gpt/gp;
2529 sinlam=gpz/gp;
2530 // helixRadius=100.*gpt/TMath::Abs(0.299792458*chargeField);
2531 helixRadius=100.*gpt/TMath::Abs(AliTOFConstants::fgkSpeedOfLight*chargeField);
2532 xHelixCenter=x-helixRadius*TMath::Cos(phi0);
2533 yHelixCenter=y-helixRadius*TMath::Sin(phi0);
2534 zHelixCenter=z;
2535 helixFactor=rotationFactor*coslam/helixRadius;
2536
2537 // Solves the equation f(s)=r(s)-RTOFINNER=0 by the Newton's method:
2538 // snew=s-f/f'
2539 istep=0;
2540 s=AliTOFConstants::fgkrmin-TMath::Sqrt(x*x+y*y);;
2541 do {
2542 istep++;
2543 xRespectToHelixCenter=helixRadius*TMath::Cos(phi0+s*helixFactor);
2544 yRespectToHelixCenter=helixRadius*TMath::Sin(phi0+s*helixFactor);
2545 gx=xHelixCenter+xRespectToHelixCenter;
2546 gy=yHelixCenter+yRespectToHelixCenter;
2547 gr=TMath::Sqrt(gx*gx+gy*gy);
2548 deltaRadius=gr-AliTOFConstants::fgkrmin;
2549 xp=-helixFactor*yRespectToHelixCenter;
2550 yp= helixFactor*xRespectToHelixCenter;
2551 fp=(gx*xp+gy*yp)/gr;
2552 ds=deltaRadius/fp;
2553 s -= ds;
2554 if(istep==20) {
2555 istep=0;
2556 break;
2557 }
2558 } while (TMath::Abs(ds)>0.01);
2559
2560
2561 if(istep==0) goto end;
2562
2563 // Steps along the circle till a pad
2564 wPixel=0;
2565 wLength=0.;
2566 iplate=0;
2567 iPadAlongX=0;
2568 grho=0.;
2569 ds=fStep;
2570 gxLast=xHelixCenter+helixRadius*TMath::Cos(phi0+s*helixFactor);
2571 gyLast=yHelixCenter+helixRadius*TMath::Sin(phi0+s*helixFactor);
2572 gzLast=zHelixCenter+s*sinlam;
2573
2574
2575 do {
2576 istep++;
2577 s += ds;
2578 gx=xHelixCenter+helixRadius*TMath::Cos(phi0+s*helixFactor);
2579 gy=yHelixCenter+helixRadius*TMath::Sin(phi0+s*helixFactor);
2580 gz=zHelixCenter+s*sinlam;
2581 rho=TMath::Sqrt(gx*gx+gy*gy);
2582
2583 IsInsideThePad(fg3,gx,gy,gz,npixel,zPad,xPad);
2584
2585 iplate += npixel[1];
2586 iPadAlongX += npixel[4];
2587
2588 if(indexOfTestTrack==0 && iplate && iPlateFirst==0) {
2589 iPlateFirst=1;
2590 length0=s;
2591
2592 radius=s*3*theta0;
2593 area=TMath::Pi()*radius*radius;
2594 normR=TMath::Sqrt(gx*gx+gy*gy);
2595 normS=TMath::Sqrt((gx-gxLast)*(gx-gxLast)+
2596 (gy-gyLast)*(gy-gyLast)+
2597 (gz-gzLast)*(gz-gzLast));
2598
2599 cosAngl=(gx*(gx-gxLast)+gy*(gy-gyLast))/(normR*normS);
2600 if(cosAngl<0) printf(" cosAngl<0: gx=%f,gy=%f, gxLast=%f,gyLast=%f,gzLast=%f\n",gx,gy,gxLast,gyLast,gzLast);
2601
2602 area /= cosAngl;
2603 TestTracks=(Int_t) (2*area/(AliTOFConstants::fgkXPad * AliTOFConstants::fgkZPad));
2604
2605 if(TestTracks<12) TestTracks=12;
2606
2607 // Angles of entering into the TOF plate
2608
2609 Int_t iZ=0;
2610 if(TMath::Abs(gz)>300) {
2611 iZ=4;
2612 } else if(TMath::Abs(gz)>200) {
2613 iZ=3;
2614 } else if(TMath::Abs(gz)>100) {
2615 iZ=2;
2616 } else if(TMath::Abs(gz)>0) {
2617 iZ=1;
2618 }
2619
2620
2621 } // end of if(indexOfTestTrack==0 && iplate && iPlateFirst==0)
2622
2623
2624 if(npixel[4]>0) {
2625
2626 iwork1=npixel[0];
2627 iwork2=npixel[1];
2628 iwork3=npixel[2];
2629 // iwork4=npixel[3];
2630 iwork4=(npixel[3]-1)*AliTOFConstants::fgkNpadX+npixel[4];
2631
2632 Int_t ifirstindex=AliTOFConstants::fgkNSectors*(npixel[1]-1)+npixel[0];
2633 iMapValue=mapPixels[ifirstindex-1][iwork3-1][iwork4-1];
2634 if(iMapValue==0) {
2635 ipixel++;
2636 if(ipixel>fMaxPixels) {
2637 cout << "ipixel=" << ipixel << " > MAXPIXELS=" << fMaxPixels << endl;
2638 break;
2639 }
2640 mapPixels[ifirstindex-1][iwork3-1][iwork4-1]=ipixel;
2641 pixelArray[ipixel-1].SetGeom(iwork1,iwork2,iwork3,iwork4);
2642 iMapValue=ipixel;
2643 }
2644
2645 wPixel=iMapValue;
2646 wLength=tpclength+s;
2647 wRho=rho;
2648 wZ=gz;
2649
2650 ihit=kTOFhitFirst[ipart];
2651
2652 if(ihit) {
2653 if(indexOfTestTrack==0) {
2654 {
2655 idelR++;
2656 delR=TMath::Sqrt((gx-hitArray[ihit-1].X())*(gx-hitArray[ihit-1].X())+
2657 (gy-hitArray[ihit-1].Y())*(gy-hitArray[ihit-1].Y())+
2658 (gz-hitArray[ihit-1].Z())*(gz-hitArray[ihit-1].Z()));
2659
2660 }
2661
2662 if(delR>hitArray[ihit-1].GetRmin()) iRmin++;
2663 gxExtrap=gx;
2664 gyExtrap=gy;
2665 gzExtrap=gz;
2666 } else {
2667 delR=TMath::Sqrt((gx-gxExtrap)*(gx-gxExtrap)+
2668 (gy-gyExtrap)*(gy-gyExtrap)+
2669 (gz-gzExtrap)*(gz-gzExtrap));
2670 }
2671 } //end of if(ihit)
2672
2673 break;
2674
2675 } //end of npixel[4]
2676
2677 if(rho<grho) {
2678 istep=0;
2679 break;
2680 }
2681 grho=rho;
2682
2683 gxLast=gx;
2684 gyLast=gy;
2685 gzLast=gz;
2686
2687 } while(rho<AliTOFConstants::fgkrmax); //end of do
2688
2689
2690 if(istep>0) {
2691 if(iplate) {
2692 if(iPadAlongX==0) {
2693 istep=-3; // holes in TOF
2694 }
2695 } else {
2696 if(TMath::Abs(gz)<AliTOFConstants::fgkMaxhZtof) {
2697 // if(TMath::Abs(gz)<MAXZTOF2) {
2698 istep=-2; // PHOS and RICH holes or holes in between TOF plates
2699 } else {
2700 istep=-1; // out of TOF on z-size
2701 }
2702 }
2703 }
2704
2705 if(iPadAlongX>0) {
2706 if(itest==0) {
2707 itest=1;
2708 ntest[itest-1]=1;
2709 testPixel[itest-1]=wPixel;
2710 testLength[itest-1]=wLength;
2711 testRho[itest-1]=wRho;
2712 testZ[itest-1]=wZ;
2713 testWeight[itest-1]=weight;
2714 } else {
2715 Int_t k;
2716 for(Int_t i=0;i<itest;i++) {
2717 k=0;
2718 if(testPixel[i]==wPixel) {
2719 k=1;
2720 ntest[i]++;
2721 testLength[i] += wLength;
2722 testRho[i] += wRho;
2723 testZ[i] += wZ;
2724 testWeight[i] += weight;
2725 break;
2726 }
2727 } //end for i
2728 if(k==0) {
2729 itest++;
2730 ntest[itest-1]=1;
2731 testPixel[itest-1]=wPixel;
2732 testLength[itest-1]=wLength;
2733 testRho[itest-1]=wRho;
2734 testZ[itest-1]=wZ;
2735 testWeight[itest-1]=weight;
2736 }
2737 }
2738 }
2739
2740 end: ;
2741 // Statistics
2742 if(fMatchingStyle==1) {
2743 if(istep>-4 && istep<1) weightTestTracksOutTof[-istep] ++;
2744 } else {
2745 if(istep>-4 && istep<1) weightTestTracksOutTof[-istep] += weight;
2746 }
2747
2748 if(fMatchingStyle==2) {
2749 if(indexOfTestTrack==0 && istep==0) break;
2750 if(indexOfTestTrack+1==TestTracks) break;
2751 }
2752
2753 } //end of indexOfTestTrack
2754
2755 snr += (Float_t) (indexOfTestTrack+1);
2756
2757 // Search for the "hole" with the largest weigth
2758 largestWeightTracksOutTof=0.;
2759 sumWeightTracksOutTof=0.;
2760 for(Int_t i=0;i<4;i++) {
2761 w=weightTestTracksOutTof[i];
2762 sumWeightTracksOutTof += w;
2763 if(w>largestWeightTracksOutTof) {
2764 largestWeightTracksOutTof=w;
2765 iMaxTestTracksOutTof=i;
2766 }
2767 }
2768
2769 itestc=itest;
2770 if(itest>0) {
2771 for(Int_t i=0;i<itest;i++) {
2772 testLength[i] /= ntest[i];
2773 testRho[i] /= ntest[i];
2774 testZ[i] /= ntest[i];
2775 }
2776 // Search for the pixel with the largest weigth
2777 wmax=0.;
2778 wstate=0;
2779 sw=0;
2780 sGeomWeigth=0;
2781 for(Int_t i=0;i<itest;i++) {
2782 istate=pixelArray[testPixel[i]-1].GetState();
2783 fstate=0;
2784 if(istate>0) {
2785 fstate=1;
2786 wstate++;
2787 }
2788 if(fMatchingStyle==1) {
2789 sGeomWeigth += ntest[i];
2790 w=(fpadefficiency*fstate+(1.-fpadefficiency)*(1-fstate))*ntest[i];
2791 if(pixelArray[testPixel[i]-1].GetTrackMatched()>0) w *= 0.1;
2792 } else {
2793 sGeomWeigth += testWeight[i];
2794 w=(fpadefficiency*fstate+(1.-fpadefficiency)*(1-fstate))*testWeight[i];
2795 if(pixelArray[testPixel[i]-1].GetTrackMatched()>0) w *= 0.1;
2796 }
2797
2798 // weighting according to the Pulse Height (we use the square of weight)
2799 // if (fChargeFactorForMatching) w *= (pixelArray[testPixel[i]-1].GetCharge())*(pixelArray[testPixel[i]-1].GetCharge());
2800 if (fChargeFactorForMatching && fstate==1) w *= (pixelArray[testPixel[i]-1].GetCharge())*(pixelArray[testPixel[i]-1].GetCharge());
2801
2802 if(w>wmax) {
2803 wmax=w;
2804 imax=i;
2805 }
2806 sw += w;
2807 }
2808 wPixel=testPixel[imax];
2809 wLength=testLength[imax];
2810 istate=pixelArray[wPixel-1].GetState();
2811
2812 //Choose the TOF dead space
2813 // if(istate==0 && largestWeightTracksOutTof>wmax) {
2814 // if(istate==0 && largestWeightTracksOutTof>=sw) {
2815 if(istate==0 && sumWeightTracksOutTof>sGeomWeigth) {
2816 itestc=itest;
2817 itest=0;
2818 }
2819 }
2820
2821 if(itest>0) {
2822
2823 // Set for MyTrack: Pixel
2824 trackArray[itrack-1].SetPixel(wPixel);
2825
2826 istate=pixelArray[wPixel-1].GetState();
2827
2828 if(istate) {
2829
2830 // Set for MyTrack: Pixel, Length, TOF, MassTOF
2831 //fp
2832 //time=pixelArray[wPixel-1].GetTime();
2833 time=pixelArray[wPixel-1].GetRealTime();
2834 trackArray[itrack-1].SetLength(wLength);
2835 trackArray[itrack-1].SetTof(time);
2836
2837 inverseOfParticleSpeed=time/wLength;
2838 //w=900.*inverseOfParticleSpeed*inverseOfParticleSpeed-1.;
2839 w=(100.*AliTOFConstants::fgkSpeedOfLight)*(100.*AliTOFConstants::fgkSpeedOfLight)*inverseOfParticleSpeed*inverseOfParticleSpeed-1.;
2840 w2=pvtx*pvtx;
2841 Float_t squareMass=w2*w;
2842 mass=TMath::Sqrt(TMath::Abs(squareMass));
2843 if(w<0.) mass=-mass;
2844
2845 trackArray[itrack-1].SetMassTOF(mass);
2846
2847 // Set for MyTrack: Matching
2848 match=4;
2849 // if(ipart==pixelArray[wPixel-1].GetTrack()) match=3;
2850 if( (ipart==pixelArray[wPixel-1].GetTrack()) && hitArray[pixelArray[wPixel-1].GetHit()-1].GetNoise()==0)match=3;
2851 imatched=pixelArray[wPixel-1].GetTrackMatched();
2852 // Set for TOFPixel the number of matched track
2853 pixelArray[wPixel-1].SetTrackMatched(itrack);
2854
2855 if(imatched>0) {
2856 matchw=trackArray[imatched-1].GetMatching();
2857 if(match==3 && matchw==4) t34++;
2858 if(match==3 && matchw==2) t32++;
2859 if(match==4 && matchw==4) t44++;
2860 if(match==4 && matchw==3) t43++;
2861 if(match==4 && matchw==2) t42++;
2862 if(iTOFpixel[ipart]==0 || iTOFpixel[trackArray[imatched-1].GetTrack()]==0) {
2863 m20++;
2864 } else if(iTOFpixel[ipart]==iTOFpixel[trackArray[imatched-1].GetTrack()]) {
2865 m22++;
2866 } else {
2867 m23++;
2868 wPix=iTOFpixel[ipart];
2869 if(PRINT && iPrintM1==10 && iPrintM2<10) {
2870 if(iPrintM2==0) {
2871 printf("*** test print for tracks matched with the pixel for with we had matched track\n");
2872 }
2873 iPrintM2++;
2874 printf(" m=2: ipart=%i, pdgCode=%i, p=%f, theta0=%f, %i Pixel(LP=%i,SP=%i,P=%i) \n",
2875 ipart,pdgCode,p,theta0,wPix,
2876 pixelArray[wPix-1].GetSector(),pixelArray[wPix-1].GetPlate(),pixelArray[wPix-1].GetPixel());
2877 printf(" mat=%i, %i Pixel(LP=%i,SP=%i,P=%i), Test(n=%i,i=%i,w=%f,z=%f), wst=%i \n",
2878 match,wPixel,
2879 pixelArray[wPixel-1].GetSector(),pixelArray[wPixel-1].GetPlate(),pixelArray[wPixel-1].GetPixel(),
2880 itest,imax,wmax,testZ[imax],wstate);
2881 Int_t fstat,istat;
2882 for(Int_t i=0;i<itest;i++) {
2883 wPix=testPixel[i];
2884 istat=pixelArray[wPix-1].GetState();
2885 fstat=0;
2886 if(istat>0) fstat=1;
2887 w=(fpadefficiency*fstat+(1.-fpadefficiency)*(1-fstat))*ntest[i];
2888 if(istat>0)
2889 printf(" %i: %i Pixel(LP=%i,SP=%i,P=%i), istat=%i, ntest=%i, w=%f\n",i+1,
2890 wPix,pixelArray[wPix-1].GetSector(),pixelArray[wPix-1].GetPlate(),pixelArray[wPix-1].GetPixel(),
2891 istat,ntest[i],w);
2892 }
2893 printf(" mat=%i, %i Pixel \n",matchw,trackArray[imatched-1].GetPad());
2894 }
2895 }
2896 if(wstate>1) m2state++;
2897 smat[matchw+4]--;
2898 match=2;
2899 trackArray[imatched-1].SetMatching(match);
2900 smat[match+4]++;
2901
2902 } // if(imatched>0)
2903
2904 } else { //else if(istate)
2905
2906 match=1;
2907 if(iTOFpixel[ipart]==0) m10++;
2908 if(PRINT && iPrintM1<10) {
2909 Int_t wPix;
2910 wPix=iTOFpixel[ipart];
2911 if(wPix) {
2912 if(iPrintM1==0) {
2913 printf("*** test print for tracks fired a pixel but matched with non-fired pixel\n");
2914 }
2915 iPrintM1++;
2916 printf(" m=1: itra=%i,ipart=%i, pdgCode=%i, p=%f, theta0=%f, %i Pixel(LP=%i,SP=%i,P=%i) \n",
2917 itra,ipart,pdgCode,p,theta0,wPix,
2918 pixelArray[wPix-1].GetSector(),pixelArray[wPix-1].GetPlate(),pixelArray[wPix-1].GetPixel());
2919 printf(" mat=%i, %i Pixel(LP=%i,SP=%i,P=%i), Test(n=%i,i=%i,w=%f,z=%f), wst=%i \n",
2920 match,wPixel,
2921 pixelArray[wPixel-1].GetSector(),pixelArray[wPixel-1].GetPlate(),pixelArray[wPixel-1].GetPixel(),
2922 itest,imax,wmax,testZ[imax],wstate);
2923
2924 }
2925 } //end if(PRINT && iPrintM1<10)
2926
2927 } //end if(istate)
2928
2929 } else {
2930 match=-1-iMaxTestTracksOutTof;
2931
2932 } //end itest
2933
2934 trackArray[itrack-1].SetMatching(match);
2935 // if(iTestGmax==1) hMTT->Fill(match);
2936 smat[match+4]++;
2937
2938 sumOfTheta /= iTestTrack;
2939
2940 itest=itestc;
2941
2942 //Test
2943 if(PRINT) {
2944 if(iTOFpixel[ipart] && match!=3) {
2945 particle = (TParticle*)gAlice->Particle(ipart); //for V3.05
2946
2947 printf(" ipixel=%i (Sector=%i, Plate=%i, Strip=%i, Pixel=%i), fired by %i track\n",iTOFpixel[ipart],pixelArray[iTOFpixel[ipart]-1].GetSector(),pixelArray[iTOFpixel[ipart]-1].GetPlate(),pixelArray[iTOFpixel[ipart]-1].GetStrip(),pixelArray[iTOFpixel[ipart]-1].GetPixel(),pixelArray[iTOFpixel[ipart]-1].GetTrack());
2948 printf(" indexOfTestTrack=%i itest=%i weightTestTracksOutTof[4]=%f weightTestTracksOutTof[2]=%f weightTestTracksOutTof[1]=%f weightTestTracksOutTof[0]=%f\n",indexOfTestTrack,itest,weightTestTracksOutTof[3],weightTestTracksOutTof[2],weightTestTracksOutTof[1],weightTestTracksOutTof[0]);
2949 if(itest) {
2950
2951 printf(" take ipixel=%i (Sector=%i, Plate=%i, Strip=%i, Pixel=%i), (fired by %i track), match=%i\n",wPixel,pixelArray[wPixel-1].GetSector(),pixelArray[wPixel-1].GetPlate(),pixelArray[wPixel-1].GetStrip(),pixelArray[wPixel-1].GetPixel(),pixelArray[wPixel-1].GetTrack(),match);
2952 }
2953 }
2954 }
2955 if(PRINT && itra<10 ) {
2956
2957 if(itest) {
2958 cout << " number of pixels with test tracks=" << itest << endl;
2959 for(Int_t i=0;i<itest;i++) {
2960 cout << " " << i+1 << " tr.=" << ntest[i] << " w=" << testWeight[i] << " pix.= " << testPixel[i] << " (" <<
2961 pixelArray[testPixel[i]-1].GetSector() << " " << " " << pixelArray[testPixel[i]-1].GetPlate() << " " <<
2962 pixelArray[testPixel[i]-1].GetPixel() << " )" << " l= " << testLength[i] << " sig=" <<
2963 theta0*(testLength[i]-tpclength) << " rho= " << testRho[i] << " z= " << testZ[i] << endl;
2964 }
2965 cout << " pixel=" << wPixel << " state=" << istate << " l=" << wLength << " TOF=" << time << " m=" << mass << " match=" << match << endl;
2966 if(istate>0) cout << " fired by track " << pixelArray[wPixel-1].GetTrack() << endl;
2967 }
2968 }
2969 } //end of track
2970
2971
2972 if(itr) {
2973 printf(" %f probe tracks per 1 real track\n",snr/itr);
2974 itrack=itr;
2975 }
2976
2977
2978 cout << ipixel << " - total number of TOF pixels after matching" << endl;
2979 w=iRmin;
2980 if(idelR!=0) {
2981 w /= idelR;
2982 printf(" %i tracks with delR, %f of them have delR>Rmin \n",idelR,w);
2983 }
2984 w=iRmin1;
2985 if(idelR1!=0) {
2986 w /= idelR1;
2987 printf(" %i tracks with delR1 (|z|<175), %f of them have delR>Rmin \n",idelR1,w);
2988 }
2989 w=iRmin2;
2990 if(idelR2!=0) {
2991 w /= idelR2;
2992 printf(" %i tracks with delR2 (|z|>175), %f of them have delR>Rmin \n",idelR2,w);
2993 }
2994
2995 cout << " ******************** End of matching **********" << endl;
f9a28264 2996 delete [] ntest;
2997 delete [] testPixel;
2998 delete [] testLength;
2999 delete [] testRho;
3000 delete [] testZ;
3001 delete [] testWeight;
db9ba97f 3002}
3003
3004//____________________________________________________________________________
3005void AliTOFReconstructioner::FillNtuple(Int_t ntracks, AliTOFTrack* trackArray, AliTOFRecHit* hitArray, AliTOFPad* pixelArray, Int_t* iTOFpixel, Int_t* iparticle, Float_t* toftime, Int_t& ipixelLastEntry, Int_t itrack){
3006
3007 // itrack : total number of TPC selected tracks
3008 // for the caller is ntotTPCtracks
3009
3010 cout << " ******************** Start of searching non-matched fired pixels **********" << endl;
3011 const Int_t charge[48]={ 0, 1,-1, 0, 1,-1, 0, 1,-1, 0,
3012 1,-1, 0, 1,-1, 0, 0, 0, 1, 0,
3013 -1, 0,-1,-1, 0, 0,-1, 0, 1, 0,
3014 1, 1, 0, 0, 1,-1, 0, 0, 1,-1,
3015 1, 1,-1, 0, 1, 1, 2, 0};
3016
3017 Int_t macthm1=0;
3018 Int_t macthm2=0;
3019 Int_t macthm3=0;
3020 Int_t macthm4=0;
3021 Int_t macth0=0;
3022 Int_t macth1=0;
3023 Int_t macth2=0;
3024 Int_t macth3=0;
3025 Int_t macth4=0;
3026
3027
3028 Float_t smat[9],smat0[9],smat1[9];
3029 for(Int_t i=0;i<9;i++) {
3030 smat[i]=0.;
3031 smat0[i]=0.;
3032 smat1[i]=0.;
3033 }
3034
3035 Int_t nFiredPixelsNotMatchedWithTracks=0;
3036 Int_t istate;
3037 for (Int_t i=0; i<ipixelLastEntry; i++) {
3038 istate=pixelArray[i].GetState();
3039 if(istate==0) break;
3040 if(pixelArray[i].GetTrackMatched()==-1) nFiredPixelsNotMatchedWithTracks++;
3041 }
3042 printf(" %i fired pixels have not matched tracks\n",nFiredPixelsNotMatchedWithTracks);
3043 cout << " ******************** End of searching non-matched fired pixels **********" << endl;
3044
3045 Int_t nTPCHitMissing=0;
3046 for(Int_t i=0; i<ipixelLastEntry; i++) {
3047 if(pixelArray[i].GetHit()>0) {
3048 if(hitArray[pixelArray[i].GetHit()-1].GetNoise()==0) {
3049 if(iparticle[pixelArray[i].GetTrack()]==0) nTPCHitMissing++;
3050 }
3051 }
3052 }
3053 printf(" %i pixels fired by track hit without a hit on the last layer of TPC\n",nTPCHitMissing);
3054
3055
3056 Int_t icharge=0; // total number of charged particles
3057 Int_t iprim=0; // number of primaries
3058 Int_t ipions=0; // number of primary pions
3059 Int_t ikaons=0; // number of primary kaons
3060 Int_t iprotons=0; // number of primary protons
3061 Int_t ielectrons=0;// number of primary electrons
3062 Int_t imuons=0; // number of primary muons
3063 Float_t particleTypeArray[6][5][2];
3064
3065 for (Int_t index1=0;index1<6;index1++) {
3066 for (Int_t index2=0;index2<5;index2++) {
3067 for (Int_t index3=0;index3<2;index3++) {
3068 particleTypeArray[index1][index2][index3]=0.;
3069 }
3070 }
3071 }
3072
3073 Int_t nTOFhitsWithNoTPCTracks=0; // to be moved later when used
3074
3075 /*
3076 TObjArray *Particles = gAlice->Particles();
3077 Int_t numberOfParticles=Particles->GetEntries();
3078 cout << "numberOfParticles " << numberOfParticles << endl;
3079 // fpdbg
3080 if(numberOfParticles>fMaxAllTracks) numberOfParticles=fMaxAllTracks;
3081 */
3082
3083 for (Int_t i=0; i<ntracks; i++) { // starting loop on all primaries charged particles for current event)
3084
3085 /*
3086 cout << "particle " << i << endl;
3087 cout << "total " << numberOfParticles << endl;
3088 */
3089 TParticle *part = (TParticle *) gAlice->Particle(i);
3090 if(charge[PDGtoGeantCode(part->GetPdgCode())-1]) {
3091 icharge++;
3092 /*
3093 cout << "charged particles " << icharge << endl;
3094 */
3095 Int_t particleType=0;
3096 Int_t absPdgCode = TMath::Abs(part->GetPdgCode());
3097 switch (absPdgCode) {
3098 case 211:
3099 particleType=3;
3100 break ;
3101 case 321:
3102 particleType=2;
3103 break ;
3104 case 2212:
3105 particleType=1;
3106 break ;
3107 case 11:
3108 particleType=4;
3109 break ;
3110 case 13:
3111 particleType=5;
3112 break ;
3113 }
3114
3115 if(part->GetFirstMother() < 0) {
3116 iprim++;
3117 switch (particleType) {
3118 case 1:
3119 iprotons++;
3120 break ;
3121 case 2:
3122 ikaons++;
3123 break ;
3124 case 3:
3125 ipions++;
3126 break ;
3127 case 4:
3128 ielectrons++;
3129 break ;
3130 case 5:
3131 imuons++;
3132 break ;
3133 }
3134 }
3135
3136 Int_t match=0;
3137 Float_t wLength=-1.;
3138 Float_t time=-1.;
3139 Float_t mass=-1.;
3140
3141 Int_t itr=iparticle[i]; // get the track number for the current charged particle
3142
3143 if(iTOFpixel[i]>0 && itr==0) nTOFhitsWithNoTPCTracks++;
3144
3145 if(itr) {
3146 match=trackArray[itr-1].GetMatching();
3147 //cout << "match " << match << endl;
3148 wLength=trackArray[itr-1].GetLength();
3149 //cout << "wLength " << wLength << endl;
3150 time=trackArray[itr-1].GetTof();
3151 mass=trackArray[itr-1].GetMassTOF();
3152 //cout << "mext " << mass << endl;
3153 // if(PRINT && (i>789 && i<800) ) cout << i << " track: l=" << wLength << " TOF=" << time << " m=" << mass << " match=" << match << endl;
3154 if(iTOFpixel[i]==0) {
3155 smat0[match+4]++;
3156 wLength=-wLength;
3157 }
3158 }
3159 Int_t ikparen=part->GetFirstMother();
3160 Int_t imam;
3161 if(ikparen<0) {
3162 imam=0;
3163 } else {
3164 imam=part->GetPdgCode();
3165 }
3166
3167 Int_t evnumber=gAlice->GetEvNumber();
3168 if(match==-1) macthm1++;
3169 if(match==-2) macthm2++;
3170 if(match==-3) macthm3++;
3171 if(match==-4) macthm4++;
3172 if(match==0) macth0++;
3173 if(match==1) macth1++;
3174 if(match==2) macth2++;
3175 if(match==3) macth3++;
3176 if(match==4) macth4++;
3177 foutputntuple->Fill(evnumber,part->GetPdgCode(),imam,part->Vx(),part->Vy(),part->Vz(),part->Px(),part->Py(),part->Pz(),toftime[i],wLength,match,time,mass);
3178
3179
3180
3181 // -----------------------------------------------------------
3182 // Filling 2 dimensional Histograms true time vs matched time
3183 // Filling 1 dimensional Histogram true time - matched time
3184 //
3185 // time = time associated to the matched pad [ns]
3186 // it could be the average time of the cluster fired
3187 //
3188 // toftime[i] = real time (including pulse height delays) [s]
3189 //
3190 //
3191 // if (time>=0) {
3192 // if (imam==0) TimeTrueMatched->Fill(time, toftime[i]*1E+09);
3193 // if (imam==0) DeltaTrueTimeMatched->Fill(time-toftime[i]*1E+09);
3194 // }
3195 //
3196 //---------------------------------------------------------------
3197
3198 if(match==-4 || match>0) {
3199 Int_t matchW;
3200 matchW=match;
3201 if(match==-4) matchW=1;
3202 if(particleType) {
3203 particleTypeArray[particleType-1][matchW-1][1]++;
3204 particleTypeArray[5][matchW-1][1]++;
3205 particleTypeArray[particleType-1][4][1]++;
3206 particleTypeArray[5][4][1]++;
3207 if(part->GetFirstMother() < 0) {
3208 particleTypeArray[particleType-1][matchW-1][0]++;
3209 particleTypeArray[5][matchW-1][0]++;
3210 particleTypeArray[particleType-1][4][0]++;
3211 particleTypeArray[5][4][0]++;
3212
3213 // fill histos for QA
3214 //if(particleType==3 && matchW==3) hPiWithTrueTime->Fill(sqrt((part->Px())*(part->Px())+(part->Py())*(part->Py())+(part->Pz())*(part->Pz())));
3215 //if(particleType==2 && matchW==3) hKWithTrueTime->Fill(sqrt((part->Px())*(part->Px())+(part->Py())*(part->Py())+(part->Pz())*(part->Pz())));
3216 //if(particleType==1 && matchW==3) hPWithTrueTime->Fill(sqrt((part->Px())*(part->Px())+(part->Py())*(part->Py())+(part->Pz())*(part->Pz())));
3217 //
3218
3219 } // close if(part->GetFirstMother() < 0)
3220 } // close if(particleType)
3221 } // close if(match==-4 || match>0)
3222 } // close if(charge[PDGtoGeantCode(part->GetPdgCode())-1])
3223 } // close for (Int_t i=0; i<ntracks; i++) {
3224
3225 cout << " macthm1 " << macthm1 << endl;
3226 cout << " macthm2 " << macthm2 << endl;
3227 cout << " macthm3 " << macthm3 << endl;
3228 cout << " macthm4 " << macthm4 << endl;
3229 cout << " macth0 " << macth0 << endl;
3230 cout << " macth1 " << macth1 << endl;
3231 cout << " macth2 " << macth2 << endl;
3232 cout << " macth3 " << macth3 << endl;
3233 cout << " macth4 " << macth4 << endl;
3234
3235
3236 printf(" %i TOF hits have not TPC track\n",nTOFhitsWithNoTPCTracks);
3237 Int_t imatch=0;
3238 for(Int_t i=0;i<9;i++) {
3239 if(itrack) cout << " " << smat[i]*100./itrack << " % of them (="<<smat[i]<<") have match=" << i-4 << " " << smat0[i] << " have not TOF hits" << endl;
3240 if(i==0 || i>4) imatch += (Int_t) (smat[i]);
3241
3242 // cout << " " << smat[i]*100./itrack << " % of them (="<<smat[i]<<") have match=" << i-4 << " " << smat0[i] << " have not TOF hits" << " " << smat1[i] << " have (r.p)<0 for first hit" << endl;
3243 }
3244
3245 if(fdbg){
3246 /*
3247 cout << " nparticles = " << numberOfParticles << " charged = " << icharge << " prim.=" << iprim << endl;
3248 */
3249 cout << " nparticles = " << ntracks << " charged = " << icharge << " prim.=" << iprim << endl;
3250 cout << ipions << " - primary pions" << endl;
3251 cout << ikaons << " - primary kaons" << endl;
3252 cout << iprotons << " - primary protons" << endl;
3253 cout << ielectrons << " - primary electrons" << endl;
3254 cout << imuons << " - primary muons reached TPC" << endl;
3255 cout << " ********** " << imatch << " TPC tracks are matched with TOF pixels (incl.match=-4) **********" << endl;
3256 }
3257
3258 /*
3259 Float_t PrimaryInBarrel[6],Acceptance[6];
3260 PrimaryInBarrel[0]=ipions;
3261 PrimaryInBarrel[1]=ikaons;
3262 PrimaryInBarrel[2]=iprotons;
3263 PrimaryInBarrel[3]=ielectrons;
3264 PrimaryInBarrel[4]=imuons;
3265 PrimaryInBarrel[5]=ipions+ikaons+iprotons+ielectrons+imuons;
3266
3267 // cout << " TPC acceptance for the primary species: 1-p, 2-K, 3-pi, 4-e, 5-mu, 6-all" << endl;
3268 for(Int_t i=0; i<6; i++) {
3269 Acceptance[i]=0.;
3270 if(PrimaryInBarrel[i]) Acceptance[i]=100.*PrimaryReachedTPC[i]/PrimaryInBarrel[i];
3271 //hTPCacceptance[i]->Fill(Acceptance[i]);
3272 // printf(" species: %i %f\n",i+1,Acceptance[i]);
3273 }
3274
3275 // cout << " TOF acceptance for the primary species: 1-p, 2-K, 3-pi, 4-e, 5-mu, 6-all" << endl;
3276 for(Int_t i=0; i<6; i++) {
3277 Acceptance[i]=0.;
3278 if(PrimaryInBarrel[i]) Acceptance[i]=100.*PrimaryReachedTOF[i]/PrimaryInBarrel[i];
3279 //hTOFacceptance[i]->Fill(Acceptance[i]);
3280 // printf(" species: %i %f\n",i+1,Acceptance[i]);
3281 }
3282
3283 for (Int_t index1=0;index1<6;index1++) {
3284 for (Int_t index2=0;index2<4;index2++) {
3285 for (Int_t index3=0;index3<2;index3++) {
3286 if(particleTypeArray[index1][4][index3]) particleTypeArray[index1][index2][index3]=
3287 100.*particleTypeArray[index1][index2][index3]/particleTypeArray[index1][4][index3];
3288 }
3289 }
3290 }
3291
3292 cout << "species: 1-p, 2-K, 3-pi, 4-e, 5-mu, 6-all" << endl;
3293 cout << " matched pixels(%): 1-unfired 2-double 3-true 4-wrong 5-total number of tracks" << endl;
3294
3295 cout << " primary tracks:" << endl;
3296 for (Int_t i=0;i<6;i++) {
3297 cout << i+1 << " " << particleTypeArray[i][0][0] << " " << particleTypeArray[i][1][0] << " " << particleTypeArray[i][2][0] << " " << particleTypeArray[i][3][0] << " " << particleTypeArray[i][4][0] << endl;
3298 }
3299
3300 // cout<<" contam.for all prim.(%)="<<100*particleTypeArray[5][3][0]/(particleTypeArray[5][3][0]+particleTypeArray[5][2][0])<<endl;
3301
3302 cout << " all tracks:" << endl;
3303 for (Int_t i=0;i<6;i++) {
3304 cout << i+1 << " " << particleTypeArray[i][0][1] << " " << particleTypeArray[i][1][1] << " " << particleTypeArray[i][2][1] << " " << particleTypeArray[i][3][1] << " " << particleTypeArray[i][4][1] << endl;
3305 }
3306
3307 // cout<<" contam.for all (%)="<<100*particleTypeArray[5][3][1]/(particleTypeArray[5][3][1]+particleTypeArray[5][2][1])<<endl;
3308 // printf(" t34=%i, t32=%i, t44=%i, t43=%i, t42=%i\n",t34,t32,t44,t43,t42);
3309 // printf(" m10=%f, m20=%f, m22=%f, m23=%f, m2state=%i\n",m10,m20,m22,m23,m2state);
3310 */
3311}