]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TOF/AliTOFReconstructioner.cxx
Changed parameters of WriteRootFile
[u/mrichter/AliRoot.git] / TOF / AliTOFReconstructioner.cxx
CommitLineData
db9ba97f 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16//_________________________________________________________________________
17// Manager class for TOF reconstruction.
18//
19//
20//-- Authors: Bologna-ITEP-Salerno Group
21//
22// Description: Manager class for TOF reconstruction (derived from TTask)
23// Summary of the main methods:
24// - extraction of the TPC (assumed to be) reconstructed tracks
25// comment: it has to me moved as soon as possible into a separate
26// class AliTOFTrackReader (K. Safarik suggestion)
27// - geometrical propagation of the above tracks till TOF detector
28// - matching of the tracks with the TOF signals
29//
30// Remark: the GEANT3.21 geometry is used during the geometrical propagation
31// of the tracks in order to know the current volume reached by the track.
32//
33//////////////////////////////////////////////////////////////////////////////
34
35
db9ba97f 36#include "AliConst.h"
37#include "AliRun.h"
38#include "AliTOFConstants.h"
39#include "AliTOFHitMap.h"
40#include "AliTOFSDigit.h"
41#include "AliTOFhit.h"
42#include "AliTOFRecHit.h"
43#include "AliTOFPad.h"
44#include "AliTOFTrack.h"
45#include "AliTOF.h"
46#include "AliTOFv1.h"
47#include "AliTOFv2.h"
48#include "AliTOFv2FHoles.h"
49#include "AliTOFv3.h"
50#include "AliTOFv4.h"
51#include "AliTOFv4T0.h"
52#include "AliTOFReconstructioner.h"
53// this line has to be commented till TPC will provide fPx fPy fPz and fL in
54// AliTPChit class or somewhere
55// #include "../TPC/AliTPC.h"
56#include "AliRun.h"
57#include "AliDetector.h"
58#include "AliMC.h"
59
b213b8bd 60#include "TTask.h"
61#include "TBenchmark.h"
62#include "TTree.h"
63#include "TSystem.h"
64#include "TFile.h"
65#include "TParticle.h"
db9ba97f 66#include <TClonesArray.h>
b9d0a01d 67#include "TGeant3.h"
68#include "TVirtualMC.h"
db9ba97f 69#include <TF1.h>
70#include <TF2.h>
db9ba97f 71#include "TROOT.h"
72#include "TFolder.h"
73#include "TNtuple.h"
74#include <stdlib.h>
75#include <iostream.h>
76#include <fstream.h>
77
78ClassImp(AliTOFReconstructioner)
79
80//____________________________________________________________________________
81 AliTOFReconstructioner::AliTOFReconstructioner():TTask("AliTOFReconstructioner","")
82{
83 // default ctor
84 fNevents = 0 ;
db9ba97f 85 foutputfile = 0;
86 foutputntuple= 0;
87 fZnoise = 0;
88 ftail = 0;
89}
90
91//____________________________________________________________________________
92 AliTOFReconstructioner::AliTOFReconstructioner(char* headerFile, Option_t* opt, char *RecFile ):TTask("AliTOFReconstructioner","")
93{
94 //
95 // ctor
96 //
97 fNevents = 0 ; // Number of events to reconstruct, 0 means all evens in current file
db9ba97f 98 foutputfile = 0;
99 foutputntuple= 0;
100 fZnoise = 0;
101 ftail = 0;
102
103 Init(opt);
104
105 // create output file
106 if (RecFile){
107 foutputfile= new TFile(RecFile,"RECREATE","root file for matching");
108 } else {
109 char outFileName[100];
110 strcpy(outFileName,"match");
111 strcat(outFileName,headerFile);
112 foutputfile= new TFile(outFileName,"RECREATE","root file for matching");
113 }
114
115 // initialize the ALIROOT geometry
116 gAlice->Init();
117 gAlice->Print();
118
db9ba97f 119 CreateNTuple();
120
121 // add Task to //root/Tasks folder
122 TTask * roottasks = (TTask*)gROOT->GetRootFolder()->FindObject("Tasks") ;
123 roottasks->Add(this) ;
124}
125//____________________________________________________________________________
126void AliTOFReconstructioner::Init(Option_t* opt)
127{
128 // Initialize the AliTOFReconstructioner setting parameters for
129 // reconstruction.
130 // Option values: Pb-Pb for Pb-Pb events
131 // pp for pp events
132
133 // set common parameters
134 fdbg=1;
135 fNevents = 1;
136 fFirstEvent = 1;
137 fLastEvent = 1;
138 fTimeResolution =0.120;
139 fpadefficiency =0.99 ;
140 fEdgeEffect = 2 ;
141 fEdgeTails = 0 ;
142 fHparameter = 0.4 ;
143 fH2parameter = 0.15;
144 fKparameter = 0.5 ;
145 fK2parameter = 0.35;
146 fEffCenter = fpadefficiency;
147 fEffBoundary = 0.65;
148 fEff2Boundary = 0.90;
149 fEff3Boundary = 0.08;
150 fResCenter = 50. ;
151 fResBoundary = 70. ;
152 fResSlope = 40. ;
153 fTimeWalkCenter = 0. ;
154 fTimeWalkBoundary=0. ;
155 fTimeWalkSlope = 0. ;
156 fTimeDelayFlag = 1 ;
157 fPulseHeightSlope=2.0 ;
158 fTimeDelaySlope =0.060;
159 // was fMinimumCharge = TMath::Exp(fPulseHeightSlope*fKparameter/2.);
160 fMinimumCharge = TMath::Exp(-fPulseHeightSlope*fHparameter);
161 fChargeSmearing=0.0 ;
162 fLogChargeSmearing=0.13;
163 fTimeSmearing =0.022;
164 fAverageTimeFlag=0 ;
165 fChargeFactorForMatching=1;
166 fTrackingEfficiency=1.0; // 100% TPC tracking efficiency assumed
167 fSigmavsp = 1. ;
168 fSigmaZ = 0. ;
169 fSigmarphi= 0. ;
170 fSigmap = 0. ;
171 fSigmaPhi = 0. ;
172 fSigmaTheta=0. ;
173 fField = 0.2 ;
174 // fRadLenTPC : 0.2 includes TRD / 0.03 TPC only
175 fRadLenTPC=0.06 ; // last value
176 fCorrectionTRD=0. ;
177 fLastTPCRow=111 ;
178 fRadiusvtxBound=50. ; // expressed in [cm]
179 fStep = 0.1 ; // expressed in [cm] step during propagation of the
180 // track inside TOF volumes
181 fMatchingStyle=2 ;
182 /* previous values default
183 fMaxPixels=70000 ;
184 fMaxAllTracks=70000 ;
185 fMaxTracks=15000 ;
186 */
187 fMaxPixels=165000 ;
188 fMaxAllTracks=500000 ;
189 fMaxTracks=15000 ;
190
191 fMaxTOFHits=35000 ;
192 fPBound =0.0 ; // bending effect: P_t=0.3*z*B*R , z particle charge
193 fNoiseSlope=20. ;
194 // set parameters as specified in opt
195 //pp case
196 if(strstr(opt,"pp")){
197 fMaxTestTracks=500 ;
198 fNoise = 26. ;
199 fNoiseMeanTof= 26.4 ; // to check
200 }
201 //Pb-Pb case
202 if(strstr(opt,"Pb-Pb")){
203 fMaxTestTracks=20 ;
204 fNoise = 9400. ;
205 fNoiseMeanTof= 26.4 ;
206 }
207}
208
209//____________________________________________________________________________
210 AliTOFReconstructioner::~AliTOFReconstructioner()
211{
212 //
213 // dtor
214 //
b9d0a01d 215
db9ba97f 216 if (foutputfile)
217 {
218 delete foutputfile;
219 foutputfile = 0;
220 }
221 if (foutputntuple)
222 {
223 delete foutputntuple;
224 foutputntuple = 0;
225 }
226
227 if (fZnoise)
228 {
229 delete fZnoise;
230 fZnoise = 0;
231 }
232
233 if (ftail)
234 {
235 delete ftail;
236 ftail = 0;
237 }
238}
239
240//____________________________________________________________________________
241void AliTOFReconstructioner::CreateNTuple()
242{
243 //
244 // Create a Ntuple where information about reconstructed charged particles
245 // (both primaries and secondaries) are stored
246 // Variables: event ipart imam xvtx yvtx zvtx pxvtx pyvtx pzvtx time leng matc text mext
247 // Meaning:
248 // event - event number (0, 1, ...)
249 // ipart - PDG code of particles
250 // imam - PDG code for the parent
251 // =0 for primary particle
252 // xvtx - x-coordinate of the vertex (cm)
253 // yvtx - y-coordinate of the vertex (cm)
254 // zvtx - z-coordinate of the vertex (cm)
255 // pxvtx - x-coordinate of the momentum in the vertex (GeV)
256 // pyvtx - y-coordinate of the momentum in the vertex (GeV)
257 // pzvtx - z-coordinate of the momentum in the vertex (GeV)
258 // time - time of flight from TOF for given track (ps) - TOF time for the
259 // first TOF hit of the track
260 // leng - track length to the TOF pixel (cm), evaluate as a sum of the
261 // track length from the track vertex to TPC and the average
262 // length of the extrapolated track from TPC to TOF.
263 // for the track without TOF hits leng=-abs(leng)
264 // matc - index of the (TPC track) - (TOF pixel) matching
265 // =0 for tracks which are not tracks for matching, i.e.
266 // there is not hit on the TPC or Rvxt>200 cm
267 // >0 for tracks with positive matching procedure:
268 // =1 or 2 for non-identified tracks:
269 // =1, if the corresponding pixel is not fired,
270 // =2, if the corresponding pixel is also matched to the
271 // other track,
272 // =3 or 4 for identified tracks:
273 // =3, if identified with true time,
274 // =4, if identified with wrong time.
275 // <0 for tracks with negative mathing procedure:
276 // =-1, if track do not reach the pixel plate (curved in the
277 // magnetic field),
278 // =-2, if track is out of z-size of the TOF,
279 // =-3, if track is or into the RICH hole, or into the PHOS hole, or in the space between the plates,
280 // =-4, if track is into the dead space of the TOF.
281 // text - time of fligth from the matching procedure = time of the
282 // pixel corresponding to the track (ps)
283 // =0 for the tracks with matc<=1
284 // mext - mass of the track from the matching procedure
285 // =p*sqrt(900*(text/leng)**2-1), if 900*(text/leng)**2-1>=0
286 // =-p*sqrt(abs(900*(text/leng)**2-1)), if 900*(text/leng)**2-1<0
287
288 foutputntuple= new TNtuple("Ntuple","matching","event:ipart:imam:xvtx:yvtx:zvtx:pxvtx:pyvtx:pzvtx:time:leng:matc:text:mext",2000000); // buffersize set for 25 Pb-Pb events
289}
290
291//__________________________________________________________________
292Double_t TimeWithTailR(Double_t* x, Double_t* par)
293{
294 // sigma - par[0], alpha - par[1], part - par[2]
295 // at x<part*sigma - gauss
296 // at x>part*sigma - TMath::Exp(-x/alpha)
297 Float_t xx =x[0];
298 Double_t f;
299 if(xx<par[0]*par[2]) {
300 f = TMath::Exp(-xx*xx/(2*par[0]*par[0]));
301 } else {
302 f = TMath::Exp(-(xx-par[0]*par[2])/par[1]-0.5*par[2]*par[2]);
303 }
304 return f;
305}
306
307//____________________________________________________________________________
308void AliTOFReconstructioner::Exec(const char* datafile, Option_t *option)
309{
310 //
311 // Performs reconstruction for TOF detector
312 //
313 gBenchmark->Start("TOFReconstruction");
314
315 TFile *file = TFile::Open(datafile);
316
317 // Get AliRun object from file or create it if not on file
318 gAlice = (AliRun*)file->Get("gAlice");
319
320 AliTOF* TOF = (AliTOF *) gAlice->GetDetector ("TOF");
321 AliDetector* TPC = gAlice->GetDetector("TPC");
322
323 if (!TOF) {
324 Error("AliTOFReconstructioner","TOF not found");
325 return;
326 }
327 if (!TPC) {
328 Error("AliTOFReconstructioner","TPC Detector not found");
329 return;
330 }
331
332 if (fEdgeTails) ftail = new TF1("tail",TimeWithTailR,-2,2,3);
333
334 if (fNevents == 0) fNevents = (Int_t) gAlice->TreeE()->GetEntries();
335 // You have to set the number of event with the ad hoc setter
336 // see testrecon.C
337
338 for (Int_t ievent = 0; ievent < fNevents; ievent++) { // start loop on events
339
340 Int_t nparticles=gAlice->GetEvent(ievent);
341 if (nparticles <= 0) return;
342
343 TClonesArray* tofhits=0;
344 TClonesArray* tpchits=0;
345
346 if (TOF) tofhits = TOF->Hits();
347 if (TPC) tpchits = TPC->Hits();
348
349 TTree *TH = gAlice->TreeH();
350 if (!TH) return;
351 Int_t ntracks = (Int_t) (TH->GetEntries()); // primary tracks
352 cout << "number of primary tracked tracks in current event " << ntracks << endl; // number of primary tracked tracks
353 // array declaration and initialization
354 // TOF arrays
355 // Int_t mapPixels[AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates][AliTOFConstants::fgkNStripC][AliTOFConstants::fgkNpadZ*AliTOFConstants::fgkNpadX];
356
357 Int_t *** mapPixels = new Int_t**[AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates];
358 for (Int_t i=0; i<AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates; i++) mapPixels[i] = new Int_t*[AliTOFConstants::fgkNStripC];
359 for (Int_t i=0; i<AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates; i++) {
360 for (Int_t j=0; j<AliTOFConstants::fgkNStripC; j++) {
361 mapPixels[i][j]= new Int_t[AliTOFConstants::fgkNpadZ*AliTOFConstants::fgkNpadX];
362 }
363 }
364
365
366 // initializing the previous array
367 for (Int_t i=0;i<AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates;i++) {
368 for (Int_t j=0;j<AliTOFConstants::fgkNStripC;j++) {
369 for (Int_t l=0;l<AliTOFConstants::fgkNpadZ*AliTOFConstants::fgkNpadX;l++) {
370 mapPixels[i][j][l]=0;
371 }
372 }
373 }
374
a020d84f 375 Float_t * toftime = new Float_t[fMaxAllTracks];
f9a28264 376 InitArray(toftime, fMaxAllTracks);
db9ba97f 377 AliTOFPad* pixelArray = new AliTOFPad[fMaxPixels];
f9a28264 378 Int_t* iTOFpixel = new Int_t[fMaxAllTracks];
379 InitArray(iTOFpixel , fMaxAllTracks);
380 Int_t* kTOFhitFirst = new Int_t[fMaxAllTracks];
381 InitArray(kTOFhitFirst, fMaxAllTracks);
db9ba97f 382 AliTOFRecHit* hitArray = new AliTOFRecHit[fMaxTOFHits];
383 Int_t isHitOnFiredPad=0; // index used to fill hitArray (array used to store informations
384 // about pads that contains an hit)
385 Int_t ntotFiredPads=0; // index used to fill array -> total number of fired pads (at least one time)
386
387 // TPC arrays
388 AliTOFTrack* trackArray = new AliTOFTrack[fMaxTracks];
f9a28264 389 Int_t * iparticle = new Int_t[fMaxAllTracks];
390 InitArray(iparticle,fMaxAllTracks);
391 Int_t * iTrackPt = new Int_t[fMaxTracks];
392 InitArray(iTrackPt, fMaxTracks); // array
393 Float_t * ptTrack = new Float_t[fMaxTracks];
394 InitArray( ptTrack, fMaxTracks); // array for selected track pt
db9ba97f 395 Int_t ntotTPCtracks=0; // total number of selected TPC tracks
396
397
398 // reading TOF hits
399 if(TOF) ReadTOFHits(ntracks, TH, tofhits, mapPixels, kTOFhitFirst, pixelArray, iTOFpixel, toftime, hitArray,isHitOnFiredPad,ntotFiredPads);
400 cout << "isHitOnFiredPad " << isHitOnFiredPad << " for event " << ievent << endl;
401
402 // start debug for adding noise
403 // adding noise
404 Int_t nHitsNoNoise=isHitOnFiredPad;
405
406
407 if(fNoise) AddNoiseFromOuter(option,mapPixels,pixelArray,hitArray,isHitOnFiredPad,ntotFiredPads);
408 cout << "ntotFiredPads after adding noise " << ntotFiredPads << " for event " << ievent << endl;
409 // set the hitArray distance to nearest hit
410 SetMinDistance(hitArray,nHitsNoNoise);
411
412 // these lines has to be commented till TPC will provide fPx fPy fPz
413 // and fL in AliTPChit class
414 // reading TPC hits
415 /*
416 if(TPC) ReadTPCHits(ntracks, TH, tpchits, iTrackPt, iparticle, ptTrack, trackArray,ntotTPCtracks);
417 */
418
419 // geometrical matching
420 if(TOF && TPC) Matching(trackArray,hitArray,mapPixels,pixelArray,kTOFhitFirst,ntotFiredPads,iTrackPt,iTOFpixel,ntotTPCtracks);
421
422 // fill ntuple with reconstructed particles from current event
423 FillNtuple(ntracks,trackArray,hitArray,pixelArray,iTOFpixel,iparticle,toftime,ntotFiredPads,ntotTPCtracks);
424
425
426 // free used memory
f9a28264 427 delete [] toftime;
428 delete [] pixelArray;
429 delete [] iTOFpixel;
430 delete [] kTOFhitFirst;
431 delete [] hitArray;
432 delete [] trackArray;
433 delete [] iparticle;
434 delete [] iTrackPt;
435 delete [] ptTrack;
db9ba97f 436
437 for (Int_t i=0; i<AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates; i++) {
438 for (Int_t j=0; j<AliTOFConstants::fgkNStripC; j++) {
439 delete [] mapPixels[i][j];
440 }
441 }
442 for (Int_t i=0; i<AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates; i++) delete [] mapPixels[i];
443
444 delete [] mapPixels;
445
446 }//event loop
447
5fff655e 448 // free used memory for ftail
449 if (ftail)
450 {
451 delete ftail;
452 ftail = 0;
453 }
db9ba97f 454
455 // writing ntuple on output file
456 foutputfile->cd();
457 //foutputntuple->Write(0,TObject::kOverwrite);
458 foutputntuple->Write();
459 foutputfile->Write();
460 foutputfile->Close();
461
462 gBenchmark->Stop("TOFReconstruction");
463 cout << "AliTOFReconstructioner:" << endl ;
464 cout << " took " << gBenchmark->GetCpuTime("TOFReconstruction") << " seconds in order to make the reconstruction for " << fNevents << " events " << endl;
465 cout << gBenchmark->GetCpuTime("TOFReconstruction")/fNevents << " seconds per event " << endl ;
466 cout << endl ;
467
468}
469
470//__________________________________________________________________
471void AliTOFReconstructioner::SetRecFile(char * file )
472{
473 //
474 // Set the file name for reconstruction output
475 //
476 if(!fRecFile.IsNull())
477 cout << "Changing destination file for TOF reconstruction from " <<(char *)fRecFile.Data() << " to " << file << endl ;
478 fRecFile=file ;
479}
480//__________________________________________________________________
481void AliTOFReconstructioner::Print(Option_t* option)const
482{
483 //
484 // Print reconstruction output file name
485 //
486 cout << "------------------- "<< GetName() << " -------------" << endl ;
487 if(fRecFile.IsNull())
488 cout << " Writing reconstructed particles to file galice.root "<< endl ;
489 else
490 cout << " Writing reconstructed particle to file " << (char*) fRecFile.Data() << endl ;
491
492}
493
494//__________________________________________________________________
495void AliTOFReconstructioner::PrintParameters()const
496{
497 //
498 // Print parameters used for reconstruction
499 //
500 cout << " ------------------- "<< GetName() << " -------------" << endl ;
501 cout << " Parameters used for TOF reconstruction " << endl ;
502 // Printing the parameters
503
504 cout << " Number of events: " << fNevents << endl;
505 cout << " Recostruction from event "<< fFirstEvent << " to event "<< fLastEvent << endl;
506 cout << " TOF geometry parameters " << endl;
507 cout << " Min. radius of the TOF (cm) "<< AliTOFConstants::fgkrmin << endl;
508 cout << " Max. radius of the TOF (cm) "<< AliTOFConstants::fgkrmax << endl;
509 cout << " Number of TOF geom. levels "<< AliTOFConstants::fgkmaxtoftree<< endl;
510 cout << " Number of TOF sectors "<< AliTOFConstants::fgkNSectors << endl;
511 cout << " Number of TOF modules "<< AliTOFConstants::fgkNPlates << endl;
512 cout << " Max. Number of strips in a module "<< AliTOFConstants::fgkNStripC << endl;
513 cout << " Number of pads per strip "<< AliTOFConstants::fgkNpadX*AliTOFConstants::fgkNpadZ << endl;
514 cout << " Number of strips in central module "<< AliTOFConstants::fgkNStripA << endl;
515 cout << " Number of strips in intermediate modules "<< AliTOFConstants::fgkNStripB << endl;
516 cout << " Number of strips in outer modules "<< AliTOFConstants::fgkNStripC << endl;
517 cout << " Number of MRPC in x strip direction "<< AliTOFConstants::fgkNpadX<< endl;
518 cout << " Size of MRPC (cm) along X "<< AliTOFConstants::fgkXPad<< endl;
519 cout << " Number of MRPC in z strip direction "<< AliTOFConstants::fgkNpadZ<<endl;
520 cout << " Size of MRPC (cm) along Z "<< AliTOFConstants::fgkZPad<<endl;
521 cout << " Module Lengths (cm)" << endl;
522 cout << " A Module: "<< AliTOFConstants::fgkzlenA<< " B Modules: "<< AliTOFConstants::fgkzlenB<< " C Modules: "<< AliTOFConstants::fgkzlenC<< endl;
523 cout << " Inner radius of the TOF detector (cm): "<<AliTOFConstants::fgkrmin << endl;
524 cout << " Outer radius of the TOF detector (cm): "<<AliTOFConstants::fgkrmax << endl;
525 cout << " Max. half z-size of TOF (cm) : "<<AliTOFConstants::fgkMaxhZtof << endl;
526 cout << " TOF Pad parameters " << endl;
527 cout << " Time Resolution (ns) "<< fTimeResolution <<" Pad Efficiency: "<< fpadefficiency << endl;
528 cout << " Edge Effect option: "<< fEdgeEffect<< endl;
529
530 cout << " Boundary Effect Simulation Parameters " << endl;
531 cout << " Hparameter: "<< fHparameter<<" H2parameter:"<< fH2parameter <<" Kparameter:"<< fKparameter<<" K2parameter: "<< fK2parameter << endl;
532 cout << " Efficiency in the central region of the pad: "<< fEffCenter << endl;
533 cout << " Efficiency at the boundary region of the pad: "<< fEffBoundary << endl;
534 cout << " Efficiency value at H2parameter "<< fEff2Boundary << endl;
535 cout << " Efficiency value at K2parameter "<< fEff3Boundary << endl;
536 cout << " Resolution (ps) in the central region of the pad: "<< fResCenter << endl;
537 cout << " Resolution (ps) at the boundary of the pad : "<< fResBoundary << endl;
538 cout << " Slope (ps/K) for neighbouring pad : "<< fResSlope <<endl;
539 cout << " Time walk (ps) in the central region of the pad : "<< fTimeWalkCenter << endl;
540 cout << " Time walk (ps) at the boundary of the pad : "<< fTimeWalkBoundary<< endl;
541 cout << " Slope (ps/K) for neighbouring pad : "<< fTimeWalkSlope<<endl;
542 cout << " Pulse Heigth Simulation Parameters " << endl;
543 cout << " Flag for delay due to the PulseHeightEffect: "<< fTimeDelayFlag <<endl;
544 cout << " Pulse Height Slope : "<< fPulseHeightSlope<<endl;
545 cout << " Time Delay Slope : "<< fTimeDelaySlope<<endl;
546 cout << " Minimum charge amount which could be induced : "<< fMinimumCharge<<endl;
547 cout << " Smearing in charge in (q1/q2) vs x plot : "<< fChargeSmearing<<endl;
548 cout << " Smearing in log of charge ratio : "<< fLogChargeSmearing<<endl;
549 cout << " Smearing in time in time vs log(q1/q2) plot : "<< fTimeSmearing<<endl;
550 cout << " Flag for average time : "<< fAverageTimeFlag<<endl;
551 cout << " Charge factor flag for matching : "<< fChargeFactorForMatching<<endl;
552 cout << " Edge tails option : "<< fEdgeTails << endl;
553 cout << " TPC tracking parameters " << endl;
554 cout << " TPC tracking efficiency : "<< fTrackingEfficiency<< endl;
555 cout << " Sigma vs momentum dependency flag : "<< fSigmavsp << endl;
556 cout << " Space uncertainties (cm). sigma(z) (cm): "<< fSigmaZ << " sigma(R(phi)) (cm): "<< fSigmarphi << endl;
557 cout << " Momentum uncertainties. sigma(delta(P)/P): "<< fSigmap <<" sigma(phi) (rad): "<< fSigmaPhi <<" sigma(theta) (rad): "<< fSigmaTheta << endl;
558 cout << " Parameters for additional noise hits " << endl;
559 cout << " Number of noise hits : " << fNoise <<" Slope parameter (ns) in the time distribution: " << fNoiseSlope << endl;
560 cout << " Mean TOF for noise from outer regions (ns)" << fNoiseMeanTof << endl;
561 cout << " Physical parameters " << endl;
562 cout << " Magnetic Field (tesla) : "<< fField <<endl;
563 cout << " Radiation length of the outer wall of TPC: "<< fRadLenTPC << endl;
564 cout << " (TPC tracks)-(TOF pads) matching parameters " << endl;
565 cout << " TRD Correction flag : "<< fCorrectionTRD <<endl;
566 cout << " Number of the last TPC row: "<< fLastTPCRow <<" Vertex radius (cm) for selected tracks: "<<fRadiusvtxBound<<endl;
567 cout << " Max. number of test tracks: "<<fMaxTestTracks << endl;
568 cout << " Space step (cm) : "<< fStep <<endl;
569 cout << " Matching style option : "<< fMatchingStyle <<endl;
570 cout << " Array parameters " << endl;
571 cout << " Max.number of pads involved in the matching procedure: "<< fMaxPixels << endl;
572 cout << " Max.number of TOF hits per event : "<< fMaxTOFHits<< endl;
573 cout << " Max.number of tracks selected for matching : "<< fMaxTracks << endl;
574 cout << " Max.number of all tracks including the neutral ones : "<< fMaxAllTracks<< endl;
575 cout << " Debug Flag : "<< fdbg << endl;
576 cout << " Cut on momentum for selecting tracks : "<< fPBound << endl;
577
578}
579
580//__________________________________________________________________
b9d0a01d 581void AliTOFReconstructioner::IsInsideThePad(TVirtualMC *vmc, Float_t x, Float_t y, Float_t z, Int_t *nGeom, Float_t& zPad, Float_t& xPad)
db9ba97f 582{
583 // input: x,y,z - coordinates of a hit
584 // output: array nGeom[]
585 // nGeom[0] - the TOF sector number, 1,2,...,18 along azimuthal direction starting from -90 deg.!!!
586 // nGeom[1] - the TOF module number, 1,2,3,4,5=C,B,A,B,C along z-direction
587 // nGeom[2] - the TOF strip number, 1,2,... along z-direction
588 // nGeom[3] - the TOF padz number, 1,2=NPZ across a strip
589 // nGeom[4] - the TOF padx number, 1,2,...,48=NPX along a strip
590 // zPad, xPad - coordinates of the hit in the pad frame
591 // numbering is adopted for the version 3.05 of AliRoot
592 // example:
593 // from Hits: sec,pla,str,padz,padx=4,2,14,2,35
594 // Vol. n.0: ALIC, copy number 1
595 // Vol. n.1: B077, copy number 1
596 // Vol. n.2: B074, copy number 5
597 // Vol. n.3: BTO2, copy number 1
598 // Vol. n.4: FTOB, copy number 2
599 // Vol. n.5: FLTB, copy number 0
600 // Vol. n.6: FSTR, copy number 14
601 // Vol. n.7: FSEN, copy number 0
602 // Vol. n.8: FSEZ, copy number 2
603 // Vol. n.9: FSEX, copy number 35
604 // Vol. n.10: FPAD, copy number 0
605
606
607 Float_t xTOF[3];
608 Int_t sector=0,module=0,strip=0,padz=0,padx=0;
609 Int_t i,numed,nLevel,copyNumber;
610 Gcvolu_t* gcvolu;
611 char name[5];
612 name[4]=0;
613
614 for (i=0; i<AliTOFConstants::fgkmaxtoftree; i++) nGeom[i]=0;
615 zPad=100.;
616 xPad=100.;
617
618 xTOF[0]=x;
619 xTOF[1]=y;
620 xTOF[2]=z;
621
b9d0a01d 622 TGeant3 * g3 = (TGeant3*) vmc;
623
db9ba97f 624 g3->Gmedia(xTOF, numed);
625 gcvolu=g3->Gcvolu();
626 nLevel=gcvolu->nlevel;
627 if(fdbg) {
628 for (Int_t i=0; i<nLevel; i++) {
629 strncpy(name,(char*) (&gcvolu->names[i]),4);
630 cout<<"Vol. n."<<i<<": "<<name<<", copy number "<<gcvolu->number[i]<<endl;
631 }
632 }
633 if(nLevel>=2) {
634 // sector type name: B071(1,2,...,10),B074(1,2,3,4,5-PHOS),B075(1,2,3-RICH)
635 strncpy(name,(char*) (&gcvolu->names[2]),4);
636 // volume copy: 1,2,...,10 for B071, 1,2,3,4,5 for B074, 1,2,3 for B075
637 copyNumber=gcvolu->number[2];
638 if(!strcmp(name,"B071")) {
639 if (copyNumber>=6 && copyNumber<=8) {
640 sector=copyNumber+10;
641 } else if (copyNumber>=1 && copyNumber<=5){
642 sector=copyNumber+7;
643 } else {
644 sector=copyNumber-8;
645 }
646 } else if(!strcmp(name,"B075")) {
647 sector=copyNumber+12;
648 } else if(!strcmp(name,"B074")) {
649 if (copyNumber>=1 && copyNumber<=3){
650 sector=copyNumber+4;
651 } else {
652 sector=copyNumber-1;
653 }
654 }
655 }
656 if(sector) {
657 nGeom[0]=sector;
658 if(nLevel>=4) {
659 // we'll use the module value in z-direction:
660 // 1 2 3 4 5
661 // the module order in z-direction: FTOC,FTOB,FTOA,FTOB,FTOC
662 // the module copy: 2 2 0 1 1
663 // module type name: FTOA, FTOB, FTOC
664 strncpy(name,(char*) (&gcvolu->names[4]),4);
665 // module copy:
666 copyNumber=gcvolu->number[4];
667 if(!strcmp(name,"FTOC")) {
668 if (copyNumber==2) {
669 module=1;
670 } else {
671 module=5;
672 }
673 } else if(!strcmp(name,"FTOB")) {
674 if (copyNumber==2) {
675 module=2;
676 } else {
677 module=4;
678 }
679 } else if(!strcmp(name,"FTOA")) {
680 module=3;
681 }
682 }
683 }
684
685 if(module) {
686 nGeom[1]=module;
687 if(nLevel>=6) {
688 // strip type name: FSTR
689 strncpy(name,(char*) (&gcvolu->names[6]),4);
690 // strip copy:
691 copyNumber=gcvolu->number[6];
692 if(!strcmp(name,"FSTR")) strip=copyNumber;
693 }
694 }
695
696 if(strip) {
697 nGeom[2]=strip;
698 if(nLevel>=8) {
699 // padz type name: FSEZ
700 strncpy(name,(char*) (&gcvolu->names[8]),4);
701 // padz copy:
702 copyNumber=gcvolu->number[8];
703 if(!strcmp(name,"FSEZ")) padz=copyNumber;
704 }
705 }
706 if(padz) {
707 nGeom[3]=padz;
708 if(nLevel>=9) {
709 // padx type name: FSEX
710 strncpy(name,(char*) (&gcvolu->names[9]),4);
711 // padx copy:
712 copyNumber=gcvolu->number[9];
713 if(!strcmp(name,"FSEX")) padx=copyNumber;
714 }
715 }
716
717 if(padx) {
718 nGeom[4]=padx;
719 zPad=gcvolu->glx[2]; // check here
720 xPad=gcvolu->glx[0]; // check here
721 }
722
723 // printf(" nGeom[0,1,2,3,4]=%i,%i,%i,%i,%i\n",nGeom[0],nGeom[1],nGeom[2],nGeom[3],nGeom[4]);
724}
725
726//__________________________________________________________________
727void AliTOFReconstructioner::EpMulScatt(Float_t& px, Float_t& py, Float_t& pz, Float_t& p, Float_t& theta)
728{
729 // Momentum p - before mult.scat.
730 // Momentum p2 - after mult.scat.
731 // THE0 - r.m.s. of deviation angle in plane
732 // (see RPP'96: Phys.Rev.D54 (1996) 134)
733
734 Float_t pt,thex,they,tantx,tanty,p2px,p2py,p2pz,costhe,sinthe,cospsi,sinpsi,p2x,p2y,p2z,p2,g;
735
736 pt=TMath::Sqrt(px*px+py*py);
737 // angles for p in the ' frame with Z'along p
738 if(fMatchingStyle==1) {
739 thex=theta*gRandom->Gaus();
740 they=theta*gRandom->Gaus();
741 } else {
742 thex=3*(-theta+2*theta*gRandom->Rndm());
743 they=3*(-theta+2*theta*gRandom->Rndm());
744 }
745 tantx=TMath::Tan(thex);
746 tanty=TMath::Tan(they);
747
748 // p2p - p2 in the ' frame
749 p2pz=p/TMath::Sqrt(1.+tantx*tantx+tanty*tanty);
750 p2py=p2pz*tanty;
751 p2px=p2pz*tantx;
752 // choose X'so that PHI=0 (see Il'in, Pozdnyak Analiticheskaya geometriya, 1968, c.88
753 // for Euler angles PSI, THETA (PHI=0)
754 costhe=pz/p;
755 sinthe=pt/p;
756 cospsi=-py/pt;
757 sinpsi=px/pt;
758 //
759 g=p2py*costhe-p2pz*sinthe;
760 p2x=p2px*cospsi-g*sinpsi;
761 p2y=p2px*sinpsi+g*cospsi;
762 p2z=p2py*sinthe+p2pz*costhe;
763 p2=TMath::Sqrt(p2x*p2x+p2y*p2y+p2z*p2z);
764
765 // Test angle
766 g=(px*p2x+py*p2y+pz*p2z)/(p*p2);
767 if(g>1) g=1;
768 theta=TMath::ACos(g);
769 px=p2x;
770 py=p2y;
771 pz=p2z;
772 p=p2;
773
774}
775
776// std border effect algorithm
777//__________________________________________________________________
778void AliTOFReconstructioner::BorderEffect(Float_t z0, Float_t x0, Float_t geantTime, Int_t& nActivatedPads, Int_t& nFiredPads, Bool_t* isFired, Int_t* nPlace, Float_t* qInduced, Float_t* tofTime, Float_t& averageTime)
779{
780 // Input: z0, x0 - hit position in the strip system (0,0 - center of the strip), cm
781 // geantTime - time generated by Geant, ns
782 // Output: nActivatedPads - the number of pads activated by the hit (1 || 2 || 4)
783 // nFiredPads - the number of pads fired (really activated) by the hit (nFiredPads <= nActivatedPads)
784 // qInduced[iPad]- charge induced on pad, arb. units
785 // this array is initialized at zero by the caller
786 // tofAfterSimul[iPad] - time calculated with edge effect algorithm, ns
787 // this array is initialized at zero by the caller
788 // averageTime - time given by pad hited by the Geant track taking into account the times (weighted) given by the pads fired for edge effect also.
789 // The weight is given by the qInduced[iPad]/qCenterPad
790 // this variable is initialized at zero by the caller
791 // nPlace[iPad] - the number of the pad place, iPad = 0, 1, 2, 3
792 // this variable is initialized at zero by the caller
793 //
794 // Description of used variables:
795 // eff[iPad] - efficiency of the pad
796 // res[iPad] - resolution of the pad, ns
797 // timeWalk[iPad] - time walk of the pad, ns
798 // timeDelay[iPad] - time delay for neighbouring pad to hited pad, ns
799 // PadId[iPad] - Pad Identifier
800 // E | F --> PadId[iPad] = 5 | 6
801 // A | B --> PadId[iPad] = 1 | 2
802 // C | D --> PadId[iPad] = 3 | 4
803 // nTail[iPad] - the tail number, = 1 for tailA, = 2 for tailB
804 // qCenterPad - charge extimated for each pad, arb. units
805 // weightsSum - sum of weights extimated for each pad fired, arb. units
806
807 const Float_t kSigmaForTail[2] = {AliTOFConstants::fgkSigmaForTail1,AliTOFConstants::fgkSigmaForTail2}; //for tail
808 Int_t iz = 0, ix = 0;
809 Float_t dX = 0., dZ = 0., x = 0., z = 0.;
810 Float_t h = fHparameter, h2 = fH2parameter, k = fKparameter, k2 = fK2parameter;
811 Float_t effX = 0., effZ = 0., resX = 0., resZ = 0., timeWalkX = 0., timeWalkZ = 0.;
812 Float_t logOfqInd = 0.;
813 Float_t weightsSum = 0.;
814 Int_t nTail[4] = {0,0,0,0};
815 Int_t padId[4] = {0,0,0,0};
816 Float_t eff[4] = {0.,0.,0.,0.};
817 Float_t res[4] = {0.,0.,0.,0.};
818 // Float_t qCenterPad = fMinimumCharge * fMinimumCharge;
819 Float_t qCenterPad = 1.;
820 Float_t timeWalk[4] = {0.,0.,0.,0.};
821 Float_t timeDelay[4] = {0.,0.,0.,0.};
822
823 nActivatedPads = 0;
824 nFiredPads = 0;
825
826 (z0 <= 0) ? iz = 0 : iz = 1;
827 dZ = z0 + (0.5 * AliTOFConstants::fgkNpadZ - iz - 0.5) * AliTOFConstants::fgkZPad; // hit position in the pad frame, (0,0) - center of the pad
828 z = 0.5 * AliTOFConstants::fgkZPad - TMath::Abs(dZ); // variable for eff., res. and timeWalk. functions
829 iz++; // z row: 1, ..., AliTOFConstants::fgkNpadZ = 2
830 ix = (Int_t)((x0 + 0.5 * AliTOFConstants::fgkNpadX * AliTOFConstants::fgkXPad) / AliTOFConstants::fgkXPad);
831 dX = x0 + (0.5 * AliTOFConstants::fgkNpadX - ix - 0.5) * AliTOFConstants::fgkXPad; // hit position in the pad frame, (0,0) - center of the pad
832 x = 0.5 * AliTOFConstants::fgkXPad - TMath::Abs(dX); // variable for eff., res. and timeWalk. functions;
833 ix++; // x row: 1, ..., AliTOFConstants::fgkNpadX = 48
834
835 ////// Pad A:
836 nActivatedPads++;
837 nPlace[nActivatedPads-1] = (iz - 1) * AliTOFConstants::fgkNpadX + ix;
838 qInduced[nActivatedPads-1] = qCenterPad;
839 padId[nActivatedPads-1] = 1;
840
841 if (fEdgeEffect == 0) {
842 eff[nActivatedPads-1] = fEffCenter;
843 if (gRandom->Rndm() < eff[nActivatedPads-1]) {
844 nFiredPads = 1;
845 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + fResCenter * fResCenter); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns;
846 isFired[nActivatedPads-1] = kTRUE;
847 tofTime[nActivatedPads-1] = gRandom->Gaus(geantTime + fTimeWalkCenter, res[0]);
848 averageTime = tofTime[nActivatedPads-1];
849 }
850 } else {
851
852 if(z < h) {
853 if(z < h2) {
854 effZ = fEffBoundary + (fEff2Boundary - fEffBoundary) * z / h2;
855 } else {
856 effZ = fEff2Boundary + (fEffCenter - fEff2Boundary) * (z - h2) / (h - h2);
857 }
858 resZ = fResBoundary + (fResCenter - fResBoundary) * z / h;
859 timeWalkZ = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * z / h;
860 nTail[nActivatedPads-1] = 1;
861 } else {
862 effZ = fEffCenter;
863 resZ = fResCenter;
864 timeWalkZ = fTimeWalkCenter;
865 }
866
867 if(x < h) {
868 if(x < h2) {
869 effX = fEffBoundary + (fEff2Boundary - fEffBoundary) * x / h2;
870 } else {
871 effX = fEff2Boundary + (fEffCenter - fEff2Boundary) * (x - h2) / (h - h2);
872 }
873 resX = fResBoundary + (fResCenter - fResBoundary) * x / h;
874 timeWalkX = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * x / h;
875 nTail[nActivatedPads-1] = 1;
876 } else {
877 effX = fEffCenter;
878 resX = fResCenter;
879 timeWalkX = fTimeWalkCenter;
880 }
881
882 (effZ<effX) ? eff[nActivatedPads-1] = effZ : eff[nActivatedPads-1] = effX;
883 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
884 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
885
886
887 ////// Pad B:
888 if(z < k2) {
889 effZ = fEffBoundary - (fEffBoundary - fEff3Boundary) * (z / k2);
890 } else {
891 effZ = fEff3Boundary * (k - z) / (k - k2);
892 }
893 resZ = fResBoundary + fResSlope * z / k;
894 timeWalkZ = fTimeWalkBoundary + fTimeWalkSlope * z / k;
895
896 if(z < k && z > 0) {
897 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
898 nActivatedPads++;
899 nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX;
900 eff[nActivatedPads-1] = effZ;
901 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
902 timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ; // ns
903 nTail[nActivatedPads-1] = 2;
904 if (fTimeDelayFlag) {
905 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
906 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
907 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
908 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
909 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
910 } else {
911 timeDelay[nActivatedPads-1] = 0.;
912 }
913 padId[nActivatedPads-1] = 2;
914 }
915 }
916
917
918 ////// Pad C, D, E, F:
919 if(x < k2) {
920 effX = fEffBoundary - (fEffBoundary - fEff3Boundary) * (x / k2);
921 } else {
922 effX = fEff3Boundary * (k - x) / (k - k2);
923 }
924 resX = fResBoundary + fResSlope*x/k;
925 timeWalkX = fTimeWalkBoundary + fTimeWalkSlope*x/k;
926
927 if(x < k && x > 0) {
928 // C:
929 if(ix > 1 && dX < 0) {
930 nActivatedPads++;
931 nPlace[nActivatedPads-1] = nPlace[0] - 1;
932 eff[nActivatedPads-1] = effX;
933 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
934 timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
935 nTail[nActivatedPads-1] = 2;
936 if (fTimeDelayFlag) {
937 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
938 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
939 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
940 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
941 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
942 } else {
943 timeDelay[nActivatedPads-1] = 0.;
944 }
945 padId[nActivatedPads-1] = 3;
946
947 // D:
948 if(z < k && z > 0) {
949 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
950 nActivatedPads++;
951 nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX - 1;
952 eff[nActivatedPads-1] = effX * effZ;
953 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
954 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
955
956 nTail[nActivatedPads-1] = 2;
957 if (fTimeDelayFlag) {
958 if (TMath::Abs(x) < TMath::Abs(z)) {
959 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
960 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
961 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
962 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
963 } else {
964 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
965 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
966 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
967 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
968 }
969 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
970 } else {
971 timeDelay[nActivatedPads-1] = 0.;
972 }
973 padId[nActivatedPads-1] = 4;
974 }
975 } // end D
976 } // end C
977
978 // E:
979 if(ix < AliTOFConstants::fgkNpadX && dX > 0) {
980 nActivatedPads++;
981 nPlace[nActivatedPads-1] = nPlace[0] + 1;
982 eff[nActivatedPads-1] = effX;
983 res[nActivatedPads-1] = 0.001 * (TMath::Sqrt(10400 + resX * resX)); // ns
984 timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
985 nTail[nActivatedPads-1] = 2;
986 if (fTimeDelayFlag) {
987 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
988 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
989 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
990 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
991 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
992 } else {
993 timeDelay[nActivatedPads-1] = 0.;
994 }
995 padId[nActivatedPads-1] = 5;
996
997
998 // F:
999 if(z < k && z > 0) {
1000 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
1001 nActivatedPads++;
1002 nPlace[nActivatedPads - 1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX + 1;
1003 eff[nActivatedPads - 1] = effX * effZ;
1004 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1005 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001*timeWalkX; // ns
1006 nTail[nActivatedPads-1] = 2;
1007 if (fTimeDelayFlag) {
1008 if (TMath::Abs(x) < TMath::Abs(z)) {
1009 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
1010 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
1011 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
1012 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
1013 } else {
1014 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
1015 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
1016 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
1017 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
1018 }
1019 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1020 } else {
1021 timeDelay[nActivatedPads-1] = 0.;
1022 }
1023 padId[nActivatedPads-1] = 6;
1024 }
1025 } // end F
1026 } // end E
1027 } // end if(x < k)
1028
1029
1030 for (Int_t iPad = 0; iPad < nActivatedPads; iPad++) {
1031 if (res[iPad] < fTimeResolution) res[iPad] = fTimeResolution;
1032 if(gRandom->Rndm() < eff[iPad]) {
1033 isFired[iPad] = kTRUE;
1034 nFiredPads++;
1035 if(fEdgeTails) {
1036 if(nTail[iPad] == 0) {
1037 tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
1038 } else {
1039 ftail->SetParameters(res[iPad], 2. * res[iPad], kSigmaForTail[nTail[iPad]-1]);
1040 Double_t timeAB = ftail->GetRandom();
1041 tofTime[iPad] = geantTime + timeWalk[iPad] + timeDelay[iPad] + timeAB;
1042 }
1043 } else {
1044 tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
1045 }
1046 if (fAverageTimeFlag) {
1047 averageTime += tofTime[iPad] * qInduced[iPad];
1048 weightsSum += qInduced[iPad];
1049 } else {
1050 averageTime += tofTime[iPad];
1051 weightsSum += 1.;
1052 }
1053 }
1054 }
1055 if (weightsSum!=0) averageTime /= weightsSum;
1056 } // end else (fEdgeEffect != 0)
1057}
1058
1059
1060/* new algorithm (to be checked)
1061//__________________________________________________________________
1062void AliTOFReconstructioner::BorderEffect(Float_t z0, Float_t x0, Float_t geantTime, Int_t& nActivatedPads, Int_t& nFiredPads, Bool_t* isFired, Int_t* nPlace, Float_t* qInduced, Float_t* tofTime, Float_t& averageTime)
1063{
1064 // Input: z0, x0 - hit position in the strip system (0,0 - center of the strip), cm
1065 // geantTime - time generated by Geant, ns
1066 // Output: nActivatedPads - the number of pads activated by the hit (1 || 2 || 4)
1067 // nFiredPads - the number of pads fired (really activated) by the hit (nFiredPads <= nActivatedPads)
1068 // qInduced[iPad]- charge induced on pad, arb. units
1069 // this array is initialized at zero by the caller
1070 // tofAfterSimul[iPad] - time calculated with edge effect algorithm, ns
1071 // this array is initialized at zero by the caller
1072 // averageTime - time given by pad hited by the Geant track taking into account the times (weighted) given by the pads fired for edge effect also.
1073 // The weight is given by the qInduced[iPad]/qCenterPad
1074 // this variable is initialized at zero by the caller
1075 // nPlace[iPad] - the number of the pad place, iPad = 0, 1, 2, 3
1076 // this variable is initialized at zero by the caller
1077 //
1078 // Description of used variables:
1079 // eff[iPad] - efficiency of the pad
1080 // res[iPad] - resolution of the pad, ns
1081 // timeWalk[iPad] - time walk of the pad, ns
1082 // timeDelay[iPad] - time delay for neighbouring pad to hited pad, ns
1083 // PadId[iPad] - Pad Identifier
1084 // E | F --> PadId[iPad] = 5 | 6
1085 // A | B --> PadId[iPad] = 1 | 2
1086 // C | D --> PadId[iPad] = 3 | 4
1087 // nTail[iPad] - the tail number, = 1 for tailA, = 2 for tailB
1088 // qCenterPad - charge extimated for each pad, arb. units
1089 // weightsSum - sum of weights extimated for each pad fired, arb. units
1090
1091 const Float_t kSigmaForTail[2] = {AliTOFConstants::fgkSigmaForTail1,AliTOFConstants::fgkSigmaForTail2}; //for tail
1092 Int_t iz = 0, ix = 0;
1093 Float_t dX = 0., dZ = 0., x = 0., z = 0.;
1094 Float_t h = fHparameter, h2 = fH2parameter, k = fKparameter, k2 = fK2parameter;
1095 Float_t effX = 0., effZ = 0., resX = 0., resZ = 0., timeWalkX = 0., timeWalkZ = 0.;
1096 Float_t logOfqInd = 0.;
1097 Float_t weightsSum = 0.;
1098 Int_t nTail[4] = {0,0,0,0};
1099 Int_t padId[4] = {0,0,0,0};
1100 Float_t eff[4] = {0.,0.,0.,0.};
1101 Float_t res[4] = {0.,0.,0.,0.};
1102 Float_t qCenterPad = fMinimumCharge * fMinimumCharge;
1103 Float_t timeWalk[4] = {0.,0.,0.,0.};
1104 Float_t timeDelay[4] = {0.,0.,0.,0.};
1105
1106 nActivatedPads = 0;
1107 nFiredPads = 0;
1108
1109 (z0 <= 0) ? iz = 0 : iz = 1;
1110 dZ = z0 + (0.5 * AliTOFConstants::fgkNpadZ - iz - 0.5) * AliTOFConstants::fgkZPad; // hit position in the pad frame, (0,0) - center of the pad
1111 z = 0.5 * AliTOFConstants::fgkZPad - TMath::Abs(dZ); // variable for eff., res. and timeWalk. functions
1112 iz++; // z row: 1, ..., AliTOFConstants::fgkNpadZ = 2
1113 ix = (Int_t)((x0 + 0.5 * AliTOFConstants::fgkNpadX * AliTOFConstants::fgkXPad) / AliTOFConstants::fgkXPad);
1114 dX = x0 + (0.5 * AliTOFConstants::fgkNpadX - ix - 0.5) * AliTOFConstants::fgkXPad; // hit position in the pad frame, (0,0) - center of the pad
1115 x = 0.5 * AliTOFConstants::fgkXPad - TMath::Abs(dX); // variable for eff., res. and timeWalk. functions;
1116 ix++; // x row: 1, ..., AliTOFConstants::fgkNpadX = 48
1117
1118 ////// Pad A:
1119 nActivatedPads++;
1120 nPlace[nActivatedPads-1] = (iz - 1) * AliTOFConstants::fgkNpadX + ix;
1121 qInduced[nActivatedPads-1] = qCenterPad;
1122 padId[nActivatedPads-1] = 1;
1123
1124 if (fEdgeEffect == 0) {
1125 eff[nActivatedPads-1] = fEffCenter;
1126 if (gRandom->Rndm() < eff[nActivatedPads-1]) {
1127 nFiredPads = 1;
1128 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + fResCenter * fResCenter); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns;
1129 isFired[nActivatedPads-1] = kTRUE;
1130 tofTime[nActivatedPads-1] = gRandom->Gaus(geantTime + fTimeWalkCenter, res[0]);
1131 averageTime = tofTime[nActivatedPads-1];
1132 }
1133 } else {
1134
1135 if(z < h) {
1136 if(z < h2) {
1137 effZ = fEffBoundary + (fEff2Boundary - fEffBoundary) * z / h2;
1138 } else {
1139 effZ = fEff2Boundary + (fEffCenter - fEff2Boundary) * (z - h2) / (h - h2);
1140 }
1141 resZ = fResBoundary + (fResCenter - fResBoundary) * z / h;
1142 timeWalkZ = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * z / h;
1143 nTail[nActivatedPads-1] = 1;
1144 } else {
1145 effZ = fEffCenter;
1146 resZ = fResCenter;
1147 timeWalkZ = fTimeWalkCenter;
1148 }
1149
1150 if(x < h) {
1151 if(x < h2) {
1152 effX = fEffBoundary + (fEff2Boundary - fEffBoundary) * x / h2;
1153 } else {
1154 effX = fEff2Boundary + (fEffCenter - fEff2Boundary) * (x - h2) / (h - h2);
1155 }
1156 resX = fResBoundary + (fResCenter - fResBoundary) * x / h;
1157 timeWalkX = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * x / h;
1158 nTail[nActivatedPads-1] = 1;
1159 } else {
1160 effX = fEffCenter;
1161 resX = fResCenter;
1162 timeWalkX = fTimeWalkCenter;
1163 }
1164
1165 (effZ<effX) ? eff[nActivatedPads-1] = effZ : eff[nActivatedPads-1] = effX;
1166 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1167 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
1168
1169
1170 ////// Pad B:
1171 if(z < k2) {
1172 effZ = fEffBoundary - (fEffBoundary - fEff3Boundary) * (z / k2);
1173 } else {
1174 effZ = fEff3Boundary * (k - z) / (k - k2);
1175 }
1176 resZ = fResBoundary + fResSlope * z / k;
1177 timeWalkZ = fTimeWalkBoundary + fTimeWalkSlope * z / k;
1178
1179 if(z < k && z > 0) {
1180 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
1181 nActivatedPads++;
1182 nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX;
1183 eff[nActivatedPads-1] = effZ;
1184 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1185 timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ; // ns
1186 nTail[nActivatedPads-1] = 2;
1187 if (fTimeDelayFlag) {
1188 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
1189 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
1190 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
1191 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1192 } else {
1193 timeDelay[nActivatedPads-1] = 0.;
1194 }
1195 padId[nActivatedPads-1] = 2;
1196 }
1197 }
1198
1199
1200 ////// Pad C, D, E, F:
1201 if(x < k2) {
1202 effX = fEffBoundary - (fEffBoundary - fEff3Boundary) * (x / k2);
1203 } else {
1204 effX = fEff3Boundary * (k - x) / (k - k2);
1205 }
1206 resX = fResBoundary + fResSlope*x/k;
1207 timeWalkX = fTimeWalkBoundary + fTimeWalkSlope*x/k;
1208
1209 if(x < k && x > 0) {
1210 // C:
1211 if(ix > 1 && dX < 0) {
1212 nActivatedPads++;
1213 nPlace[nActivatedPads-1] = nPlace[0] - 1;
1214 eff[nActivatedPads-1] = effX;
1215 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1216 timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
1217 nTail[nActivatedPads-1] = 2;
1218 if (fTimeDelayFlag) {
1219 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
1220 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
1221 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
1222 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1223 } else {
1224 timeDelay[nActivatedPads-1] = 0.;
1225 }
1226 padId[nActivatedPads-1] = 3;
1227
1228 // D:
1229 if(z < k && z > 0) {
1230 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
1231 nActivatedPads++;
1232 nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX - 1;
1233 eff[nActivatedPads-1] = effX * effZ;
1234 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1235 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
1236
1237 nTail[nActivatedPads-1] = 2;
1238 if (fTimeDelayFlag) {
1239 if (TMath::Abs(x) < TMath::Abs(z)) {
1240 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
1241 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
1242 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
1243 } else {
1244 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
1245 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
1246 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
1247 }
1248 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1249 } else {
1250 timeDelay[nActivatedPads-1] = 0.;
1251 }
1252 padId[nActivatedPads-1] = 4;
1253 }
1254 } // end D
1255 } // end C
1256
1257 // E:
1258 if(ix < AliTOFConstants::fgkNpadX && dX > 0) {
1259 nActivatedPads++;
1260 nPlace[nActivatedPads-1] = nPlace[0] + 1;
1261 eff[nActivatedPads-1] = effX;
1262 res[nActivatedPads-1] = 0.001 * (TMath::Sqrt(10400 + resX * resX)); // ns
1263 timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
1264 nTail[nActivatedPads-1] = 2;
1265 if (fTimeDelayFlag) {
1266 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
1267 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
1268 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
1269 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1270 } else {
1271 timeDelay[nActivatedPads-1] = 0.;
1272 }
1273 padId[nActivatedPads-1] = 5;
1274
1275
1276 // F:
1277 if(z < k && z > 0) {
1278 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
1279 nActivatedPads++;
1280 nPlace[nActivatedPads - 1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX + 1;
1281 eff[nActivatedPads - 1] = effX * effZ;
1282 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1283 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001*timeWalkX; // ns
1284 nTail[nActivatedPads-1] = 2;
1285 if (fTimeDelayFlag) {
1286 if (TMath::Abs(x) < TMath::Abs(z)) {
1287 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
1288 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
1289 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
1290 } else {
1291 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
1292 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
1293 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
1294 }
1295 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1296 } else {
1297 timeDelay[nActivatedPads-1] = 0.;
1298 }
1299 padId[nActivatedPads-1] = 6;
1300 }
1301 } // end F
1302 } // end E
1303 } // end if(x < k)
1304
1305
1306 for (Int_t iPad = 0; iPad < nActivatedPads; iPad++) {
1307 if (res[iPad] < fTimeResolution) res[iPad] = fTimeResolution;
1308 if(gRandom->Rndm() < eff[iPad]) {
1309 isFired[iPad] = kTRUE;
1310 nFiredPads++;
1311 if(fEdgeTails) {
1312 if(nTail[iPad] == 0) {
1313 tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
1314 } else {
1315 ftail->SetParameters(res[iPad], 2. * res[iPad], kSigmaForTail[nTail[iPad]-1]);
1316 Double_t timeAB = ftail->GetRandom();
1317 tofTime[iPad] = geantTime + timeWalk[iPad] + timeDelay[iPad] + timeAB;
1318 }
1319 } else {
1320 tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
1321 }
1322 if (fAverageTimeFlag) {
1323 averageTime += tofTime[iPad] * qInduced[iPad];
1324 weightsSum += qInduced[iPad];
1325 } else {
1326 averageTime += tofTime[iPad];
1327 weightsSum += 1.;
1328 }
1329 }
1330 }
1331 if (weightsSum!=0) averageTime /= weightsSum;
1332
1333 } // end else (fEdgeEffect != 0)
1334
1335 //cout << "timedelay " << timeDelay[0] << endl;
1336 //cout << "timedelay " << timeDelay[1] << endl;
1337 //cout << "timedelay " << timeDelay[2] << endl;
1338 //cout << "timedelay " << timeDelay[3] << endl;
1339
1340}
1341*/
1342
1343
1344//__________________________________________________________________
1345Int_t AliTOFReconstructioner::PDGtoGeantCode(Int_t pdgcode)
1346{
1347 //
1348 // Gives the GEANT code from KF code of LUND JETSET
1349 //
1350 Int_t geantCode=0; // default value
1351 switch (pdgcode) {
1352 case 22:
1353 geantCode=1; // GAMMA
1354 break ;
1355 case -11:
1356 geantCode=2; // E+
1357 break ;
1358 case 11:
1359 geantCode=3; // E-
1360 break ;
1361 case 12:
1362 geantCode=4; // NUE
1363 break ;
1364 case 14:
1365 geantCode=4; // NUMU
1366 break ;
1367 case -13:
1368 geantCode=5; // MU+
1369 break ;
1370 case 13:
1371 geantCode=6; // MU-
1372 break ;
1373 case 111:
1374 geantCode=7; // PI0
1375 break ;
1376 case 211:
1377 geantCode=8; // PI+
1378 break ;
1379 case -211:
1380 geantCode=9; // PI-
1381 break ;
1382 case 130:
1383 geantCode=10; // K_L0
1384 break ;
1385 case 321:
1386 geantCode=11; // K+
1387 break ;
1388 case -321:
1389 geantCode=12; // K-
1390 break ;
1391 case 2112:
1392 geantCode=13; // N0
1393 break ;
1394 case 2212:
1395 geantCode=14; // P+
1396 break ;
1397 case -2212:
1398 geantCode=15; // P~-
1399 break ;
1400 case 310:
1401 geantCode=16; // K_S0
1402 break ;
1403 case 221:
1404 geantCode=17; // ETA
1405 break ;
1406 case 3122:
1407 geantCode=18; // LAMBDA0
1408 break ;
1409 case 3222:
1410 geantCode=19; // SIGMA+
1411 break ;
1412 case 3212:
1413 geantCode=20; // SIGMA0
1414 break ;
1415 case 3112:
1416 geantCode=21; // SIGMA-
1417 break ;
1418 case 3322:
1419 geantCode=22; // XI0
1420 break ;
1421 case 3312:
1422 geantCode=23; // XI-
1423 break ;
1424 case 3334:
1425 geantCode=24; // OMEGA-
1426 break ;
1427 case -2112:
1428 geantCode=25; // N~0
1429 break ;
1430 case -3122:
1431 geantCode=26; // LAMBDA~0
1432 break ;
1433 case -3112:
1434 geantCode=27; // SIGMA~+
1435 break ;
1436 case -3212:
1437 geantCode=28; // SIGMA~0
1438 break ;
1439 case -3222:
1440 geantCode=29; // SIGMA~-
1441 break ;
1442 case -3322:
1443 geantCode=30; // XI~0
1444 break ;
1445 case -3312:
1446 geantCode=31; // XI~+
1447 break ;
1448 case -3334:
1449 geantCode=32; // OMEGA~+
1450 break ;
1451 case 223:
1452 geantCode=33; // OMEGA(782)
1453 break ;
1454 case 333:
1455 geantCode=34; // PHI(1020)
1456 break ;
1457 case 411:
1458 geantCode=35; // D+
1459 break ;
1460 case -411:
1461 geantCode=36; // D-
1462 break ;
1463 case 421:
1464 geantCode=37; // D0
1465 break ;
1466 case -421:
1467 geantCode=38; // D~0
1468 break ;
1469 case 431:
1470 geantCode=39; // D_S+
1471 break ;
1472 case -431:
1473 geantCode=40; // D_S~-
1474 break ;
1475 case 4122:
1476 geantCode=41; // LAMBDA_C+
1477 break ;
1478 case 213:
1479 geantCode=42; // RHP(770)+
1480 break ;
1481 case -213:
1482 geantCode=43; // RHO(770)-
1483 break ;
1484 case 113:
1485 geantCode=44; // RHO(770)0
1486 break ;
1487 default:
1488 geantCode=45;
1489 break;
1490 }
1491
1492 return geantCode;
1493}
1494
1495//__________________________________________________________________
1496Bool_t AliTOFReconstructioner::operator==( AliTOFReconstructioner const & tofrec)const
1497{
1498 // Equal operator.
1499 // Reconstructioners are equal if their parameters are equal
1500
1501 // split the member variables in analogous categories
1502
1503 // time resolution and edge effect parameters
1504 Bool_t dummy0=(fTimeResolution==tofrec.fTimeResolution)&&(fpadefficiency==tofrec.fpadefficiency)&&(fEdgeEffect==tofrec.fEdgeEffect)&&(fEdgeTails==tofrec.fEdgeTails)&&(fHparameter==tofrec.fHparameter)&&(fH2parameter==tofrec.fH2parameter)&&(fKparameter==tofrec.fKparameter)&&(fK2parameter==tofrec.fK2parameter);
1505
1506 // pad efficiency parameters
1507 Bool_t dummy1=(fEffCenter==tofrec.fEffCenter)&&(fEffBoundary==tofrec.fEffBoundary)&&(fEff2Boundary==tofrec.fEff2Boundary)&&(fEff3Boundary==tofrec.fEff3Boundary)&&(fResCenter==tofrec.fResCenter)&&(fResBoundary==tofrec.fResBoundary)&&(fResSlope==tofrec.fResSlope);
1508
1509 // time walk parameters
1510 Bool_t dummy2=(fTimeWalkCenter==tofrec.fTimeWalkCenter)&&(fTimeWalkBoundary==tofrec.fTimeWalkBoundary)&&(fTimeWalkSlope==tofrec.fTimeWalkSlope)&&(fTimeDelayFlag==tofrec.fTimeDelayFlag)&&(fPulseHeightSlope==tofrec.fPulseHeightSlope)&&(fTimeDelaySlope==tofrec.fTimeDelaySlope);
1511
1512 // ADC-TDC correlation parameters
1513 Bool_t dummy3=(fMinimumCharge==tofrec.fMinimumCharge)&&(fChargeSmearing==tofrec.fChargeSmearing )&&(fLogChargeSmearing==tofrec.fLogChargeSmearing )&&(fTimeSmearing==tofrec.fTimeSmearing )&&(fAverageTimeFlag==tofrec.fAverageTimeFlag)&&(fChargeFactorForMatching==tofrec.fChargeFactorForMatching)&&(fMatchingStyle==tofrec.fMatchingStyle);
1514
1515 Bool_t dummy4=(fTrackingEfficiency==tofrec.fTrackingEfficiency)&&(fSigmavsp==tofrec.fSigmavsp)&&(fSigmaZ==tofrec.fSigmaZ)&&(fSigmarphi==tofrec.fSigmarphi)&&(fSigmap==tofrec.fSigmap)&&(fSigmaPhi==tofrec.fSigmaPhi)&&(fSigmaTheta==tofrec.fSigmaTheta)&&(fNoise==tofrec.fNoise)&&(fNoiseSlope==tofrec.fNoiseSlope)&&(fField==tofrec.fField)&&(fRadLenTPC==tofrec.fRadLenTPC)&&(fCorrectionTRD==tofrec.fCorrectionTRD)&&(fLastTPCRow==tofrec.fLastTPCRow)&&(fRadiusvtxBound==tofrec.fRadiusvtxBound)&&(fMaxTestTracks==tofrec.fMaxTestTracks)&&(fStep==tofrec.fStep)&&(fMaxPixels==tofrec.fMaxPixels)&&(fMaxAllTracks==tofrec.fMaxAllTracks)&&(fMaxTracks==tofrec.fMaxTracks)&&(fMaxTOFHits==tofrec.fMaxTOFHits)&&(fPBound==tofrec.fPBound);
1516
1517 if( dummy0 && dummy1 && dummy2 && dummy3 && dummy4)
1518 return kTRUE ;
1519 else
1520 return kFALSE ;
1521
1522}
1523//____________________________________________________________________________
1524void AliTOFReconstructioner::UseHitsFrom(const char * filename)
1525{
1526 SetTitle(filename) ;
1527}
1528
1529//____________________________________________________________________________
1530void AliTOFReconstructioner::InitArray(Float_t array[], Int_t nlocations)
1531{
1532 //
1533 // Initialize the array of Float_t
1534 //
1535 for (Int_t i = 0; i < nlocations; i++) {
1536 array[i]=0.;
1537 } // end loop
1538
1539}
1540
1541//____________________________________________________________________________
1542void AliTOFReconstructioner::InitArray(Int_t array[], Int_t nlocations)
1543{
1544 //
1545 // Initialize the array of Int_t
1546 //
1547 for (Int_t i = 0; i < nlocations; i++) {
1548 array[i]=0;
1549 } // end loop
1550
1551}
1552
1553
1554//____________________________________________________________________________
1555void AliTOFReconstructioner::ReadTOFHits(Int_t ntracks, TTree* treehits, TClonesArray* tofhits, Int_t ***MapPixels, Int_t* kTOFhitFirst, AliTOFPad* pixelArray , Int_t* iTOFpixel, Float_t* toftime, AliTOFRecHit* hitArray, Int_t& isHitOnFiredPad, Int_t& ipixel)
1556{
1557 //
1558 // Read TOF hits for the current event and fill arrays
1559 //
1560 // Start loop on primary tracks in the hits containers
1561 //
1562 // Noise meaning in ReadTOFHits: we use the word 'noise' in the
1563 // following cases
1564 // - signals produced by secondary particles
1565 // - signals produced by the next hits (out of the first) of a given track
1566 // (both primary and secondary)
1567 // - signals produced by edge effect
1568
1569
1570 TParticle *particle;
1571 Int_t nHitOutofTofVolumes; // number of hits out of TOF GEANT volumes (it happens in very
1572 // few cases)
f9a28264 1573 Int_t * npixel = new Int_t[AliTOFConstants::fgkmaxtoftree]; // array used by TOFRecon for check on TOF geometry
db9ba97f 1574 Int_t npions=0; // number of pions for the current event
1575 Int_t nkaons=0; // number of kaons for the current event
1576 Int_t nprotons=0; // number of protons for the current event
1577 Int_t nelectrons=0;// number of electrons for the current event
1578 Int_t nmuons=0; // number of muons for the current event
1579 Float_t tofpos[3]; // TOF hit position and GEANT time
1580 Float_t zPad,xPad;
1581 Int_t nbytes = 0;
1582 Int_t ipart, nhits=0, nHitsFromPrimaries=0;
1583 Int_t ntotalTOFhits=0; // total number of TOF hits for the current event
1584 Int_t ipartLast=-1; // last track identifier
1585 Int_t iFirstHit; // flag to check if the current hit is the first hit on TOF for the
1586 // current track
1587 Int_t iNoiseHit=0; // flag used to tag noise hits (the noise meaning is reported in the
1588 // header of the ReadTOFHits method)
1589 Int_t nhitWithoutNoise;// number of hits not due to noise
1590 Int_t inoise=0,inoise2=0;
1591 Int_t nMultipleSignOnSamePad=0; // number of cases where a pad is fired more than one time
1592 Int_t nPixEdge=0; // additional pads fired due to edge effect in ReadTOFHits (local var)
1593 // array used for counting different types of primary particles
1594 Int_t particleTypeGEANT[50]={0,4,4,0,5,5,0,3,3,0,
1595 2,2,0,1,1,0,0,0,0,0,
1596 0,0,0,0,0,0,0,0,0,0,
1597 0,0,0,0,0,0,0,0,0,0,
1598 0,0,0,0,0,0,0,0,0,0};
1599 Int_t particleType,particleInTOFtype[6][3];
1600 for (Int_t i=0;i<6;i++) {
1601 for (Int_t j=0;j<3;j++) {
1602 particleInTOFtype[i][j]=0;
1603 }
1604 }
1605
5fff655e 1606 // speed-up the code
1607 treehits->SetBranchStatus("*",0); // switch off all branches
1608 treehits->SetBranchStatus("TOF*",1); // switch on only TOF
db9ba97f 1609
1610 for (Int_t track=0; track<ntracks;track++) { // starting loop on primary tracks for the current event
1611
1612 gAlice->ResetHits();
1613 nbytes += treehits->GetEvent(track);
1614 nhits = tofhits->GetEntriesFast();
1615
1616 ntotalTOFhits+=nhits;
1617
1618 // Start loop on hits connected to the current primary tracked particle
1619 // (including hits produced by secondary particles generaterd by the
1620 // current ptimary tracked particle)
1621 for (Int_t hit=0;hit<nhits;hit++) {
1622 AliTOFhit* tofHit = (AliTOFhit*)tofhits->UncheckedAt(hit);
1623 ipart = tofHit->GetTrack();
1624 if(ipart>=fMaxAllTracks) break;
1625 Float_t geantTime= tofHit->GetTof(); // it is given in [s]
1626 particle = (TParticle*)gAlice->Particle(ipart);
1627
1628 Int_t pdgCode=particle->GetPdgCode();
1629 // Only high momentum tracks (see fPBound value)
1630 // momentum components at vertex
1631 Float_t pxvtx = particle->Px();
1632 Float_t pyvtx = particle->Py();
1633 Float_t pzvtx = particle->Pz();
1634 Float_t pvtx = TMath::Sqrt(pxvtx*pxvtx+pyvtx*pyvtx+pzvtx*pzvtx);
1635 if(pvtx>fPBound) {
1636
1637 if(particle->GetFirstMother() < 0) nHitsFromPrimaries++; // count primaries
1638
1639 // x and y coordinates of the particle production vertex
1640 Float_t vx = particle->Vx();
1641 Float_t vy = particle->Vy();
1642 Float_t vr = TMath::Sqrt(vx*vx+vy*vy); // cylindrical radius of the particle production vertex
1643
1644 Float_t x = tofHit->X(); tofpos[0]=x;
1645 Float_t y = tofHit->Y(); tofpos[1]=y;
1646 Float_t z = tofHit->Z(); tofpos[2]=z;
b213b8bd 1647 /* var used for QA
db9ba97f 1648 Float_t tofradius = TMath::Sqrt(x*x+y*y); // radius cilindrical coordinate of the TOF hit
b213b8bd 1649 */
db9ba97f 1650 // momentum components (cosine) when striking the TOF
1651 Float_t pxtof = tofHit->GetPx();
1652 Float_t pytof = tofHit->GetPy();
1653 Float_t pztof = tofHit->GetPz();
1654 // scalar product indicating the direction of the particle when striking the TOF
b213b8bd 1655 /* var used for QA
db9ba97f 1656 // (>0 for outgoing particles)
1657 Float_t isGoingOut = (x*pxtof+y*pytof+z*pztof)/TMath::Sqrt(x*x+y*y+z*z);
b213b8bd 1658 */
db9ba97f 1659 Float_t momtof = tofHit->GetMom();
1660 // now momentum components when striking the TOF
1661 pxtof *= momtof;
1662 pytof *= momtof;
1663 pztof *= momtof;
1664 particleType=particleTypeGEANT[PDGtoGeantCode(pdgCode)-1];
1665 if(particleType) {
1666 particleInTOFtype[5][2]++;
1667 particleInTOFtype[particleType-1][2]++;
1668 }
1669 iFirstHit=0;
1670 // without noise hits
1671
1672 if(ipart!=ipartLast) {
1673 iFirstHit=1;
1674 toftime[ipart]=geantTime; //time [s]
1675 // tofMom[ipart]=momtof;
1676 ipartLast=ipart;
1677 if(particle->GetFirstMother() < 0) {
1678 Int_t abspdgCode=TMath::Abs(pdgCode);
1679 switch (abspdgCode) {
1680 case 211:
1681 npions++;
1682 break ;
1683 case 321:
1684 nkaons++;
1685 break ;
1686 case 2212:
1687 nprotons++;
1688 break ;
1689 case 11:
1690 nelectrons++;
1691 break ;
1692 case 13:
1693 nmuons++;
1694 break ;
1695 }
1696 }
1697 if(vr>fRadiusvtxBound) {
1698 if(particleType) {
1699 particleInTOFtype[5][1]++;
1700 particleInTOFtype[particleType-1][1]++;
1701 }
1702 inoise++;
1703 inoise2++;
1704 } else {
1705 if(particleType) {
1706 particleInTOFtype[5][0]++;
1707 particleInTOFtype[particleType-1][0]++;
1708 }
1709 }
1710 } else {
1711 inoise++;
1712 if(particleType) {
1713 particleInTOFtype[5][1]++;
1714 particleInTOFtype[particleType-1][1]++;
1715 }
1716 } //end if(ipart!=ipartLast)
1717
b9d0a01d 1718 IsInsideThePad(gMC,x,y,z,npixel,zPad,xPad);
db9ba97f 1719
1720 Int_t sec = tofHit->GetSector();
1721 Int_t pla = tofHit->GetPlate();
1722 Int_t str = tofHit->GetStrip();
1723 if(sec!=npixel[0] || pla!=npixel[1] || str!=npixel[2]){// check on volume
1724 cout << "sector" << sec << " npixel[0] " << npixel[0] << endl;
1725 cout << "plate " << pla << " npixel[1] " << npixel[1] << endl;
1726 cout << "strip " << str << " npixel[2] " << npixel[2] << endl;
1727 } // close check on volume
1728
1729 Int_t padz = tofHit->GetPadz();
1730 Int_t padx = tofHit->GetPadx();
1731 Float_t Zpad = tofHit->GetDz();
1732 Float_t Xpad = tofHit->GetDx();
1733
1734
1735 if (npixel[4]==0){
b9d0a01d 1736 IsInsideThePad(gMC,x,y,z,npixel,zPad,xPad);
db9ba97f 1737 if (npixel[4]==0){
1738 nHitOutofTofVolumes++;
1739 }
1740 } else {
1741 Float_t zStrip=AliTOFConstants::fgkZPad*(padz-0.5-0.5*AliTOFConstants::fgkNpadZ)+Zpad;
1742 if(padz!=npixel[3]) printf(" : Zpad=%f, padz=%i, npixel[3]=%i, zStrip=%f\n",Zpad,padz,npixel[3],zStrip);
1743 Float_t xStrip=AliTOFConstants::fgkXPad*(padx-0.5-0.5*AliTOFConstants::fgkNpadX)+Xpad;
1744
1745 Int_t nPlace[4]={0,0,0,0};
1746 nPlace[0]=(padz-1)*AliTOFConstants::fgkNpadX+padx;
1747
1748 Int_t nActivatedPads=0;
1749 Int_t nFiredPads=0;
1750 Bool_t isFired[4]={kFALSE,kFALSE,kFALSE,kFALSE};
1751 Float_t tofAfterSimul[4]={0.,0.,0.,0.};
1752 Float_t qInduced[4]={0.,0.,0.,0.};
1753 Float_t averageTime=0.;
1754
1755
1756 BorderEffect(zStrip,xStrip,geantTime*1.0e+09,nActivatedPads,nFiredPads,isFired,nPlace,qInduced,tofAfterSimul,averageTime); // simulate edge effect
1757
1758
1759 if(nFiredPads) {
1760 for(Int_t indexOfPad=0; indexOfPad<nActivatedPads; indexOfPad++) {
1761 if(isFired[indexOfPad]){// the pad has fired
1762 if(indexOfPad==0) {// the hit belongs to a fired pad
1763 isHitOnFiredPad++;
1764 hitArray[isHitOnFiredPad-1].SetHit(ipart,pdgCode,tofpos,momtof,vr,iFirstHit);
1765 iNoiseHit=0;
1766
1767 if(vr>fRadiusvtxBound || iFirstHit==0) iNoiseHit=1;
1768
1769 hitArray[isHitOnFiredPad-1].SetNoise(iNoiseHit);
1770 if(iFirstHit) kTOFhitFirst[ipart]=isHitOnFiredPad;
1771
1772 }// close - the hit belongs to a fired pad
1773
1774 Int_t iMapFirstIndex=AliTOFConstants::fgkNSectors*(npixel[1]-1)+npixel[0]-1;
1775 Int_t iMapValue=MapPixels[iMapFirstIndex][npixel[2]-1][nPlace[indexOfPad]-1];
1776
1777 if(iMapValue==0) {
1778 ipixel++;
1779 if(indexOfPad) {
1780 iNoiseHit=1;
1781 nPixEdge++;
1782 } else {
1783 iTOFpixel[ipart]=ipixel;
1784 }
1785
1786 if(ipixel>fMaxPixels){ // check on the total number of activated pads
1787 cout << "ipixel=" << ipixel << " > fMaxPixels=" << fMaxPixels << endl;
1788 return;
1789 } // close check on the number of activated pads
1790
1791 MapPixels[iMapFirstIndex][npixel[2]-1][nPlace[indexOfPad]-1]=ipixel;
1792 pixelArray[ipixel-1].SetGeom(npixel[0],npixel[1],npixel[2],nPlace[indexOfPad]);
1793 pixelArray[ipixel-1].SetTrack(ipart);
1794 if(iNoiseHit) {
1795 pixelArray[ipixel-1].AddState(1);
1796 } else {
1797 if(tofAfterSimul[indexOfPad]<0) cout << "Time of Flight after detector simulation is negative" << endl;
1798 pixelArray[ipixel-1].AddState(10);
1799 }
1800
1801 pixelArray[ipixel-1].SetTofChargeHit(tofAfterSimul[indexOfPad],qInduced[indexOfPad],geantTime*1.0e+09,isHitOnFiredPad);
1802 } else { //else if(iMapValue==0)
1803 if(indexOfPad==0) iTOFpixel[ipart]=iMapValue;
1804 nMultipleSignOnSamePad++;
1805
1806 if(tofAfterSimul[indexOfPad] < pixelArray[iMapValue-1].GetRealTime() ) {
1807 pixelArray[iMapValue-1].SetTrack(ipart);
1808 // if(indexOfPad==0) pixelArray[iMapValue-1].SetTrack(ipart);
1809 if(indexOfPad) iNoiseHit=1;
1810 if(iNoiseHit) {
1811 pixelArray[iMapValue-1].AddState(1);
1812 } else {
1813 pixelArray[iMapValue-1].AddState(10);
1814 }
1815 pixelArray[iMapValue-1].SetRealTime(tofAfterSimul[indexOfPad]);
1816 pixelArray[iMapValue-1].SetGeantTime(geantTime*1.0e+09);
1817 pixelArray[iMapValue-1].SetHit(isHitOnFiredPad);
1818 } // close if(tofAfterSimul[indexOfPad] < pixelArray[iMapValue-1].GetTime() )
1819 } //end of Pixel filling
1820 } // close if(isFired[indexOfPad])
1821 } //end loop on activated pads indexOfPad
1822 } // close if(nFiredPads)
1823 } //end of hit with npixel[3]!=0
1824 } //high momentum tracks
1825 } //end on TOF hits
1826 } //end on primary tracks
1827
1828
1829 if(fdbg) {
1830 cout << ntotalTOFhits << " - total number of TOF hits " << nHitsFromPrimaries << " - primary " << endl;
1831 cout << inoise << " - noise hits, " << inoise2<< " - first crossing of a track with Rvtx>" << fRadiusvtxBound << endl;
1832 // cout << inoise << " - noise hits (" << 100.*inoise/ihit << " %), " << inoise2
1833 //<< " - first crossing of a track with Rvtx>" << RVTXBOUND << endl;
1834 nhitWithoutNoise=isHitOnFiredPad;
1835
1836 cout << ipixel << " fired pixels (" << nMultipleSignOnSamePad << " multiple fired pads, " << endl;
1837 //j << " fired by noise, " << j1 << " noise+track)" << endl;
1838 printf(" %i additional pads are fired due to edge effect\n",nPixEdge);
1839 cout << npions << " primary pions reached TOF" << endl;
1840 cout << nkaons << " primary kaons reached TOF" << endl;
1841 cout << nprotons << " primary protons reached TOF" << endl;
1842 cout << nelectrons<<" primary electrons reached TOF" << endl;
1843 cout << nmuons << " primary muons reached TOF" << endl;
1844 cout << "number of TOF hits for different species: 1-p, 2-K, 3-pi, 4-e, 5-mu, 6-all" << endl;
1845 cout << " first number - track hits, second - noise ones, third - all" << endl;
1846 for (Int_t i=0;i<6;i++) cout << i+1 << " " << particleInTOFtype[i][0] << " " << particleInTOFtype[i][1] << " " << particleInTOFtype[i][2] << endl;
1847
1848 Int_t primaryReachedTOF[6];
1849 primaryReachedTOF[0]=npions;
1850 primaryReachedTOF[1]=nkaons;
1851 primaryReachedTOF[2]=nprotons;
1852 primaryReachedTOF[3]=nelectrons;
1853 primaryReachedTOF[4]=nmuons;
1854 primaryReachedTOF[5]=npions+nkaons+nprotons+nelectrons+nmuons;
1855
1856 cout << " Reading TOF hits done" << endl;
1857 }
1858
f9a28264 1859 delete [] npixel;
db9ba97f 1860}
1861
1862//____________________________________________________________________________
1863void AliTOFReconstructioner::AddNoiseFromOuter(Option_t *option, Int_t ***MapPixels, AliTOFPad* pixelArray , AliTOFRecHit* hitArray, Int_t& isHitOnFiredPad, Int_t& ipixel)
1864{
1865 //
1866 // Add noise hits from outer regions (forward and backward) according
1867 // to parameterized fZNoise distribution (to be used with events
1868 // generated in the barrel region)
1869
f9a28264 1870 Float_t * zLen = new Float_t[AliTOFConstants::fgkNPlates+1];
1871 Float_t * zStrips = new Float_t[AliTOFConstants::fgkNPlates];
db9ba97f 1872 zStrips[0]=(Float_t) (AliTOFConstants::fgkNStripC);
1873 zStrips[1]=(Float_t) (AliTOFConstants::fgkNStripB);
1874 zStrips[2]=(Float_t) (AliTOFConstants::fgkNStripA);
1875 zStrips[3]=(Float_t) (AliTOFConstants::fgkNStripB);
1876 zStrips[4]=(Float_t) (AliTOFConstants::fgkNStripC);
1877
1878 zLen[5]=AliTOFConstants::fgkzlenA*0.5+AliTOFConstants::fgkzlenB+AliTOFConstants::fgkzlenC;
1879 zLen[4]=zLen[5]-AliTOFConstants::fgkzlenC;
1880 zLen[3]=zLen[4]-AliTOFConstants::fgkzlenB;
1881 zLen[2]=zLen[3]-AliTOFConstants::fgkzlenA;
1882 zLen[1]=zLen[2]-AliTOFConstants::fgkzlenB;
1883 zLen[0]=zLen[1]-AliTOFConstants::fgkzlenC;
1884
1885
1886 Int_t isector; // random sector number
1887 Int_t iplate; // random plate number
1888 Int_t istrip; // random strip number in the plate
1889 Int_t ipadAlongX; // random pad number along x direction
1890 Int_t ipadAlongZ; // random pad number along z direction
1891 Int_t ipad;
1892 Int_t nPixEdge=0; // additional pads fired due to edge effect when adding noise from outer
1893 // regions
1894
1895 // x -> time of flight given in ns
1896 TF1 *noiseTof = new TF1("noiseTof","exp(-x/20)",0,100);
1897
1898 if(strstr(option,"pp")){
1899 fZnoise = new TF1("fZnoise","257.8-0.178*x-0.000457*x*x",-AliTOFConstants::fgkMaxhZtof,AliTOFConstants::fgkMaxhZtof);
1900 }
1901 if(strstr(option,"Pb-Pb")){
1902 fZnoise = new TF1("fZnoise","182.2-0.09179*x-0.0001931*x*x",-AliTOFConstants::fgkMaxhZtof,AliTOFConstants::fgkMaxhZtof);
1903 }
1904
1905 if(fNoise) {
1906 if(fdbg) cout << " Start adding additional noise hits from outer regions" << endl;
1907
1908 for(Int_t i=0;i<fNoise;i++) {
1909
1910 isector=(Int_t) (AliTOFConstants::fgkNSectors*gRandom->Rndm())+1; //the sector number
1911 // non-flat z-distribution of additional hits
1912 Float_t zNoise=fZnoise->GetRandom();
1913
1914 // holes for PHOS and HMPID
1915 if(((AliTOF *) gAlice->GetDetector("TOF"))->IsVersion()==2) {
1916 // to be checked the holes case
1917 if(isector>12 && isector<16) { // sectors 13,14,15 - RICH
1918 do {
1919 iplate=(Int_t) (AliTOFConstants::fgkNPlates*gRandom->Rndm())+1;
1920 } while (iplate==2 || iplate==3 || iplate==4);
1921 // } else if(isector>11 && isector<17) { // sectors 12,13,14,15,16 - PHOS
1922 } else if(isector>2 && isector<8) { // sectors 3,4,5,6,7 - PHOS
1923 do {
1924 iplate=(Int_t) (AliTOFConstants::fgkNPlates*gRandom->Rndm())+1;
1925 } while (iplate==3);
1926 } else {
1927 iplate=(Int_t) (AliTOFConstants::fgkNPlates*gRandom->Rndm())+1;
1928 }
1929 } else {
1930 iplate=0;
1931 do {
1932 iplate++;
1933 } while(zNoise>zLen[iplate]);
1934 }
1935 // end of holes
1936
1937 if(iplate<1 || iplate>5) {
1938 printf(" iplate<1 or iplate>5, iplate=%i\n",iplate);
1939 return;
1940 }
1941
1942 Float_t nStripes=0;
1943 if(iplate>1) {
1944 for (Int_t i=0;i<iplate-1;i++) {
1945 nStripes += zStrips[i];
1946 }
1947 }
1948
b213b8bd 1949 istrip=(Int_t)((zNoise-zLen[iplate-1])/((zLen[iplate]-zLen[iplate-1])/zStrips[iplate-1])); //the strip number in the plate
db9ba97f 1950 istrip++;
1951
1952 ipadAlongX = (Int_t)(AliTOFConstants::fgkNpadX*gRandom->Rndm())+1;
1953 ipadAlongZ = (Int_t)(AliTOFConstants::fgkNpadZ*gRandom->Rndm())+1;
1954 ipad=(Int_t)(ipadAlongZ-1)*AliTOFConstants::fgkNpadX+ipadAlongX; //the pad number
1955
1956 Float_t xStrip=(ipadAlongX-1)*AliTOFConstants::fgkXPad+AliTOFConstants::fgkXPad*gRandom->Rndm()-0.5*AliTOFConstants::fgkNpadX*AliTOFConstants::fgkXPad;//x-coor.in the strip frame
1957 Float_t zStrip=(ipadAlongZ-1)*AliTOFConstants::fgkZPad+AliTOFConstants::fgkZPad*gRandom->Rndm()-0.5*AliTOFConstants::fgkNpadZ*AliTOFConstants::fgkZPad;//z-coor.in the strip frame
1958
1959 Int_t nPlace[4]={0,0,0,0};
1960 nPlace[0]=ipad;
1961
1962 Int_t nActivatedPads=0;
1963 Int_t nFiredPads=0;
1964 Bool_t isFired[4]={kFALSE,kFALSE,kFALSE,kFALSE};
1965 Float_t tofAfterSimul[4]={0.,0.,0.,0.};
1966 Float_t qInduced[4]={0.,0.,0.,0.};
1967 Float_t averageTime=0.;
1968 Float_t toffornoise=10.+noiseTof->GetRandom(); // 10 ns offset + parameterization [ns]
1969
1970 BorderEffect(zStrip,xStrip,toffornoise,nActivatedPads,nFiredPads,isFired,nPlace,qInduced,tofAfterSimul,averageTime); // simulate edge effect
1971
1972 if(nFiredPads) {
1973 for(Int_t indexOfPad=0; indexOfPad<nActivatedPads; indexOfPad++) {
1974 if(isFired[indexOfPad]){// the pad has fired
1975
1976 if(indexOfPad==0) {// the hit belongs to a fired pad
1977 isHitOnFiredPad++;
1978 hitArray[isHitOnFiredPad-1].SetX(0.);
1979 hitArray[isHitOnFiredPad-1].SetY(0.);
1980 hitArray[isHitOnFiredPad-1].SetZ(zNoise);
1981 hitArray[isHitOnFiredPad-1].SetNoise(1);
1982 } // close if(indexOfPad==0)
1983
1984 ipad = nPlace[indexOfPad];
1985
1986 Int_t iMapValue=MapPixels[AliTOFConstants::fgkNSectors*(iplate-1)+isector-1][istrip-1][ipad-1];
1987
1988 if(iMapValue==0) {
1989 ipixel++;
1990 if(indexOfPad) nPixEdge++;
1991 MapPixels[AliTOFConstants::fgkNSectors*(iplate-1)+isector-1][istrip-1][ipad-1]=ipixel;
1992 pixelArray[ipixel-1].SetGeom(isector,iplate,istrip,ipad);
1993 pixelArray[ipixel-1].AddState(1);
1994 pixelArray[ipixel-1].SetRealTime(tofAfterSimul[indexOfPad]);
1995 pixelArray[ipixel-1].SetHit(isHitOnFiredPad);
1996 } else if( tofAfterSimul[indexOfPad] < pixelArray[iMapValue-1].GetRealTime() ) {
1997 pixelArray[iMapValue-1].SetTrack(-1);
1998 pixelArray[iMapValue-1].AddState(1);
1999 pixelArray[iMapValue-1].SetRealTime(tofAfterSimul[indexOfPad]);
2000 pixelArray[iMapValue-1].SetHit(isHitOnFiredPad);
2001 } //end of if(iMapValue==0)
2002
2003 }// close if(isFired[indexOfPad])
2004 } //end loop on activated pads indexOfPad
2005 } // close if(nFiredPads)
2006 } //end of NOISE cycle
2007 }
2008
2009 // free used memory
2010 if (fZnoise)
2011 {
2012 delete fZnoise;
2013 fZnoise = 0;
2014 }
2015
2016 if (noiseTof)
2017 {
2018 delete noiseTof;
2019 noiseTof = 0;
2020 }
2021
2022 Int_t nNoiseSignals=0;
2023 Int_t nAll=0;
2024 for(Int_t idummy=1; idummy<ipixel+1; idummy++) {
2025 if(hitArray[pixelArray[idummy-1].GetHit()-1].GetNoise()==1) {
2026 nNoiseSignals++;
2027 if(pixelArray[idummy-1].GetState()>10) nAll++;
2028 }
2029 }
2030
2031 if(fdbg) {
2032 cout << " after adding " << fNoise << " noise hits: " << ipixel << " fired pixels (" << nNoiseSignals << " fired by noise, " << nAll << " noise+track)" << endl;
2033 printf(" %i additional pixels are fired by noise due to edge effect\n",nPixEdge);
2034 cout << " End of adding additional noise hits from outer regions" << endl;
2035 }
2036
2037 Float_t occupancy;
2038 // numberOfPads for AliTOFV4 (Full coverage)
2039 // - to be upgraded checking the used TOF version -
2040 Float_t numberOfPads=AliTOFConstants::fgkPadXSector*AliTOFConstants::fgkNSectors;
2041 occupancy=100.*ipixel/numberOfPads; // percentage of fired pads
2042 printf(" Overall TOF occupancy (percentage of fired pads after adding noise) = %f\n",occupancy);
f9a28264 2043 delete [] zLen;
2044 delete [] zStrips;
db9ba97f 2045
2046}
2047
2048
2049//____________________________________________________________________________
2050void AliTOFReconstructioner::SetMinDistance(AliTOFRecHit* hitArray, Int_t ilastEntry)
2051{
2052 //
2053 // Set the distance to the nearest hit for hitArray
2054 // ilastEntry is the index of the last entry of hitArray
2055
2056 // starting the setting for the distance to the nearest TOFhit (cm)
2057 for(Int_t i=0; i<ilastEntry; i++) {
2058
2059 if(hitArray[i].GetFirst()==1 && hitArray[i].GetNoise()==0) { // select the first hit of the track
2060 // hits are not due to noise
2061 Float_t minDistance=10000.,squareDistance; // current values of the (square) distance
2062 Int_t jAtMin=0; // index of the hit nearest to the i-th hit
2063 Float_t xhit=hitArray[i].X(); // x coordinate for i-th hit
2064 Float_t yhit=hitArray[i].Y(); // y coordinate for i-th hit
2065 Float_t zhit=hitArray[i].Z(); // z coordinate for i-th hit
2066 // was for(Int_t j=0; j<isHitOnFiredPad; j++) {
2067 for(Int_t j=0; j<ilastEntry; j++) {
2068 if(i!=j) {
2069 squareDistance=(hitArray[j].X()-xhit)*(hitArray[j].X()-xhit)+
2070 (hitArray[j].Y()-yhit)*(hitArray[j].Y()-yhit)+
2071 (hitArray[j].Z()-zhit)*(hitArray[j].Z()-zhit);
2072 if(squareDistance<minDistance) {
2073 minDistance=squareDistance;
2074 jAtMin=j;
2075 }
2076 }
2077 }
2078 minDistance=TMath::Sqrt(minDistance);
2079 hitArray[i].SetRmin(minDistance);
2080 if(minDistance==0.) printf(" Rmin=0, i=%i, j=%i, x=%f,y=%f,z=%f\n",i,jAtMin,xhit,yhit,zhit);// it cannot happen
2081 }
2082 }
2083
2084}
2085
2086// these lines has to be commented till TPC will provide fPx fPy fPz
2087// and fL in AliTPChit class
2088//____________________________________________________________________________
2089/*
2090void AliTOFReconstructioner::ReadTPCHits(Int_t ntracks, TTree* treehits, TClonesArray* tpchits, Int_t* iTrackPt, Int_t* iparticle, Float_t* ptTrack, AliTOFTrack* trackArray, Int_t& itrack)
2091{
2092 //
2093 // Read TPC hits for the current event
2094 //
2095 TParticle *particle=0;
2096 Int_t npions=0; // number of pions for the current event
2097 Int_t nkaons=0; // number of kaons for the current event
2098 Int_t nprotons=0; // number of protons for the current event
2099 Int_t nelectrons=0;// number of electrons for the current event
2100 Int_t nmuons=0; // number of muons for the current event
2101 Int_t ntotalTPChits=0; // total number of TPC hits for the current event
2102 Int_t idummy=-1; // dummy var used to count double hit TPC cases
2103 Int_t nTpcDoubleHitsLastRow=0; // number of double TPC hits in the last pad row
2104 Int_t nTpcHitsLastRow=0; // number of TPC hits in the last pad row
2105 Float_t trdpos[2]={0.,0.};
2106 Float_t pos[3]; // TPC hit position
2107 Float_t mom[3]; // momentum components in the last TPC row
2108 Float_t pt=0., tpclen; // pt: transverse momentum in the last TPC row
2109 Int_t nbytes = 0;
2110 Int_t ipart=0, nhits=0, iprim=0;
2111
2112 itrack=0; // itrack: total number of selected TPC tracks
2113
5fff655e 2114 // speed-up the code
2115 treehits->SetBranchStatus("*",0); // switch off all branches
2116 treehits->SetBranchStatus("TPC*",1); // switch on only TPC
2117
db9ba97f 2118 for (Int_t track=0; track<ntracks;track++) {
2119 gAlice->ResetHits();
2120 nbytes += treehits->GetEvent(track);
2121
2122
2123 nhits = tpchits->GetEntriesFast();
2124
2125 for (Int_t hit=0;hit<nhits;hit++) {
2126 ntotalTPChits++;
2127 AliTPChit* tpcHit = (AliTPChit*)tpchits->UncheckedAt(hit);
2128 Int_t row = tpcHit->fPadRow;
2129 ipart = tpcHit->GetTrack();
2130 if(ipart>=fMaxAllTracks) break;
2131 particle = (TParticle*)gAlice->Particle(ipart);
2132 Int_t pdgCode=particle->GetPdgCode();
2133 // only high momentum tracks
2134 // momentum components at production vertex
2135 Float_t pxvtx = particle->Px();
2136 Float_t pyvtx = particle->Py();
2137 Float_t pzvtx = particle->Pz();
2138 Float_t pvtx = TMath::Sqrt(pxvtx*pxvtx+pyvtx*pyvtx+pzvtx*pzvtx);
2139 if(pvtx>fPBound && row == fLastTPCRow) {
2140 Float_t vx = particle->Vx();
2141 Float_t vy = particle->Vy();
2142 Float_t vr = TMath::Sqrt(vx*vx+vy*vy);
2143 Float_t x = tpcHit->X();
2144 Float_t y = tpcHit->Y();
2145 Float_t z = tpcHit->Z();
2146 pos[0]=x; pos[1]=y; pos[2]=z;
2147
2148 Float_t pxtpc = tpcHit->fPx;
2149 Float_t pytpc = tpcHit->fPy;
2150 Float_t pztpc = tpcHit->fPz;
2151 mom[0]=pxtpc; mom[1]=pytpc; mom[2]=pztpc;
2152 Float_t momtpc = TMath::Sqrt(pxtpc*pxtpc+pytpc*pytpc+pztpc*pztpc);
2153
2154 if(x*pxtpc+y*pytpc>0) { // only tracks going out of TPC
2155
2156 Float_t isoutgoing = x*pxtpc+y*pytpc+z*pztpc;
2157 isoutgoing /= (momtpc*TMath::Sqrt(x*x+y*y+z*z));
2158 tpclen = tpcHit->fL;
2159
2160
2161 if(ipart!=idummy) {
2162 if(particle->GetFirstMother() < 0) {
2163 Int_t abspdgCode=TMath::Abs(pdgCode);
2164 switch (abspdgCode) {
2165 case 211:
2166 npions++;
2167 break ;
2168 case 321:
2169 nkaons++;
2170 break ;
2171 case 2212:
2172 nprotons++;
2173 break ;
2174 case 11:
2175 nelectrons++;
2176 break ;
2177 case 13:
2178 nmuons++;
2179 break ;
2180 }
2181 } // close if(particle->GetFirstMother() < 0)
2182 } // close if(ipart!=idummy)
2183
2184 if(gRandom->Rndm()<fTrackingEfficiency && vr<fRadiusvtxBound && ipart!=idummy) {
2185
2186 itrack++;
2187 if(particle->GetFirstMother() < 0) iprim++;
2188
2189 if(itrack>fMaxTracks) {
2190 cout << "itrack=" << itrack << " > MAXTRACKS=" << fMaxTracks << endl;
2191 return;
2192 } // close if(itrack>fMaxTracks)
2193
2194
2195 iparticle[ipart]=itrack;
2196
2197 trackArray[itrack-1].SetTrack(ipart,pvtx,pdgCode,tpclen,pos,mom,trdpos);
2198
2199 pt=TMath::Sqrt(pxtpc*pxtpc+pytpc*pytpc); // pt: transverse momentum at TPC
2200 // Filling iTrackPt[MAXTRACKS] by itrack ordering on Pt
2201 if(itrack==1) {
2202 iTrackPt[itrack-1]=itrack;
2203 ptTrack[itrack-1]=pt;
2204 } else {
2205 for (Int_t i=0; i<itrack-1; i++) {
2206 if(pt>ptTrack[i]) {
2207 for(Int_t j=i; j<itrack-1; j++) {
2208 Int_t k=itrack-1+i-j;
2209 iTrackPt[k]= iTrackPt[k-1];
2210 ptTrack[k] = ptTrack[k-1];
2211 }
2212 iTrackPt[i]=itrack;
2213 ptTrack[i]=pt;
2214 break;
2215 }
2216 if(i==itrack-2) {
2217 iTrackPt[itrack-1]=itrack;
2218 ptTrack[itrack-1]=pt;
2219 }
2220 }
2221 }
2222
2223 } //end of itrack
2224 if(vr>fRadiusvtxBound) nTpcHitsLastRow++;
2225 if(ipart==idummy) nTpcDoubleHitsLastRow++;
2226 idummy=ipart;
2227 } // close if(x*px+y*py>0)
2228 } // close if(pvtx>fPBound && row == fLastTPCRow)
2229 } //end of hits
2230 } // close loop on tracks
2231
2232
2233 if(fdbg) {
2234 cout << ntotalTPChits << " TPC hits in the last TPC row " << fLastTPCRow << endl;
2235 cout << " " << nTpcHitsLastRow << " - hits with Rvtx>fRadiusvtxBound=" << fRadiusvtxBound << endl;
2236 cout << " " << nTpcDoubleHitsLastRow << " double TPC hits" << endl;
2237 cout << itrack << " - extracted TPC tracks " << iprim << " - primary" << endl;
2238 cout << npions << " primary pions reached TPC" << endl;
2239 cout << nkaons << " primary kaons reached TPC" << endl;
2240 cout << nprotons << " primary protons reached TPC" << endl;
2241 cout << nelectrons<< " primary electrons reached TPC" << endl;
2242 cout << nmuons << " primary muons reached TPC" << endl;
2243 } // if(fdbg)
2244
2245 Int_t primaryInTPC[6]={0,0,0,0,0,0};
2246 primaryInTPC[0]=npions;
2247 primaryInTPC[1]=nkaons;
2248 primaryInTPC[2]=nprotons;
2249 primaryInTPC[3]=nelectrons;
2250 primaryInTPC[4]=nmuons;
2251 primaryInTPC[5]=npions+nkaons+nprotons+nelectrons+nmuons;
2252
2253 if(fdbg) {
2254 printf(" contents of iTrackPt[MAXTRACKS],PtTrack[MAXTRACKS]\n");
2255 for (Int_t i=0; i<itrack; i++) {
2256 printf(" %i : iTrackPt=%i, PtTrack=%f\n",i+1,iTrackPt[i],ptTrack[i]);
2257 }
2258 printf(" Check ordered transverse momentum array\n");
2259 for (Int_t i=itrack-1; i>=0; i--) {
2260 printf(" %i : iTrackPt=%i, PtTrack=%f\n",i+1,iTrackPt[i],ptTrack[i]);
2261 }
2262 }// if(fdbg)
2263
2264}
2265*/
2266//____________________________________________________________________________
2267void cylcor(Float_t& x, Float_t& y) {
2268 Float_t rho,phi;
2269
2270 rho=TMath::Sqrt(x*x+y*y);
2271 phi=0.;
2272 if(TMath::Abs(x)>0. || TMath::Abs(y)>0.) phi=TMath::ATan2(y,x);
2273 if(phi<0.) phi=phi+2.*TMath::Pi();
2274 x=rho;
2275 y=phi;
2276
2277}
2278
2279//____________________________________________________________________________
2280void AliTOFReconstructioner::Matching(AliTOFTrack* trackArray, AliTOFRecHit* hitArray, Int_t ***mapPixels, AliTOFPad* pixelArray, Int_t* kTOFhitFirst, Int_t& ipixel, Int_t* iTrackPt, Int_t* iTOFpixel, Int_t ntotTpcTracks)
2281{
f9a28264 2282 Int_t TestTracks,iTestTrack,itest,wPixel=0,itestc;
2283 Int_t * ntest = new Int_t[fMaxTestTracks];
2284 Int_t * testPixel = new Int_t[fMaxTestTracks];
2285 Float_t wLength=0.,wRho=0.,wZ=0.;
2286 Float_t * testLength = new Float_t[fMaxTestTracks];
2287 Float_t * testRho = new Float_t[fMaxTestTracks];
2288 Float_t * testZ = new Float_t[fMaxTestTracks];
2289 Float_t weight;
2290 Float_t * testWeight = new Float_t[fMaxTestTracks];
db9ba97f 2291 Float_t rotationFactor,phi0,coslam,sinlam,helixRadius,xHelixCenter,yHelixCenter,zHelixCenter,helixFactor;
2292 Int_t npixel[5],iMapValue,iwork1,iwork2,iwork3,iwork4,ihit=0;
2293 Int_t charge[48]={ 0, 1,-1, 0, 1,-1, 0, 1,-1, 0,
2294 1,-1, 0, 1,-1, 0, 0, 0, 1, 0,
2295 -1, 0,-1,-1, 0, 0,-1, 0, 1, 0,
2296 1, 1, 0, 0, 1,-1, 0, 0, 1,-1,
2297 1, 1,-1, 0, 1, 1, 2, 0};
2298 Float_t theta0,gpx,gpy,gpz,gp,gpt,gtheta,gx,gy,gz,gr,gxLast,gyLast,gzLast,chargeField;
2299 Float_t sumOfTheta=0.,weightTestTracksOutTof[4];
2300 Float_t s,ds,xRespectToHelixCenter,yRespectToHelixCenter,deltaRadius,fp,xp,yp,grho;
2301 Float_t mass,energy,g;
2302 Int_t itrack=0,itr,particleCharge,istep,iplate=0,iPadAlongX=0;
2303 Int_t itra,t34=0,t32=0,t44=0,t43=0,t42=0;
2304 Int_t wstate=0,m2state=0,wPix;
2305 Int_t idelR=0,idelR1=0,idelR2=0,iRmin=0,iRmin1=0,iRmin2=0;
2306 Float_t massArray[50] = {0.0,0.00051,0.00051,0.0,0.1057,0.1057,0.135,0.1396,0.1396,0.4977,
2307 0.4936,0.4936,0.9396,0.9383,0.9383,0.4977,0.5488,1.1156,1.1894,1.1926,1.1926,
2308 1.3149,1.3213,1.6724,0.9396,1.1156,1.1894,1.1926,1.1974,1.3149,
2309 0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.};
2310 Float_t delR;
2311 Float_t radius,area,normR,normS,cosAngl;
2312 Int_t iPlateFirst,iTestGmax=0;
2313 Int_t fstate,iPrintM1=0,iPrintM2=0;
2314 Float_t gxExtrap=0.,gyExtrap=0.,gzExtrap=0.;
2315 Float_t avSigZ=0,avSigRPHI=0,avSigP=0,avSigPHI=0,avSigTHETA=0;
2316
2317 Float_t gxW,gyW,gzW;
2318 Float_t length0;
2319 Float_t snr=0;
2320 Int_t indexOfTestTrack;
2321 Float_t zPad,xPad;
2322 Int_t istate=0,imax=0,match,iMaxTestTracksOutTof=0,matchw;
2323 Float_t w,wmax=0.,inverseOfParticleSpeed,w2,smat[9],largestWeightTracksOutTof,sw;
2324 Float_t sumWeightTracksOutTof,sGeomWeigth;
2325 Int_t imatched;
2326 Int_t m10=0,m20=0,m22=0,m23=0;
2327 Int_t PRINT=0;
2328 TParticle *particle;
2329
2330 Float_t time=0.;
2331 itr=ntotTpcTracks;
2332 printf(" itr=%i\n",itr);
2333 for (itra=1; itra<itr+1; itra++) {
2334
2335 Int_t itrack=iTrackPt[itra-1];
2336 if(itrack==0) printf(" iTrackPt[itra-1]=0 for itra=%i\n",itra);
2337 Int_t ipart=trackArray[itrack-1].GetTrack();
2338 Float_t pvtx=trackArray[itrack-1].GetP();
2339 Int_t pdgCode=trackArray[itrack-1].GetPdgCode();
2340 Float_t tpclength=trackArray[itrack-1].GetlTPC();
2341 Float_t x=trackArray[itrack-1].GetRxTPC();
2342 Float_t y=trackArray[itrack-1].GetRyTPC();
2343 Float_t z=trackArray[itrack-1].GetRzTPC();
b213b8bd 2344 /* vars used for QA
db9ba97f 2345 Float_t RxTPC=x;
2346 Float_t RyTPC=y;
2347 Float_t RzTPC=z;
b213b8bd 2348 */
db9ba97f 2349 Float_t Wx=x;
2350 Float_t Wy=y;
2351 Float_t Wz=z;
2352 Float_t px=trackArray[itrack-1].GetPxTPC();
2353 Float_t py=trackArray[itrack-1].GetPyTPC();
2354 Float_t pz=trackArray[itrack-1].GetPzTPC();
b213b8bd 2355 /* vars used for QA
db9ba97f 2356 Float_t pxTPC=px;
2357 Float_t pyTPC=py;
2358 Float_t pzTPC=pz;
b213b8bd 2359 */
db9ba97f 2360 Float_t p = TMath::Sqrt(px*px+py*py+pz*pz);
b213b8bd 2361 /* var used for QA
db9ba97f 2362 Float_t pTPC=p;
b213b8bd 2363 */
db9ba97f 2364 Float_t rho = TMath::Sqrt(x*x+y*y);
2365 Float_t phi=0.;
2366 if(TMath::Abs(x)>0. || TMath::Abs(y)>0.) phi=TMath::ATan2(y,x);
2367 if(phi<0.) phi=phi+2.*TMath::Pi();
b213b8bd 2368 /* var used for QA
db9ba97f 2369 Float_t phiTPC=phi*kRaddeg;
b213b8bd 2370 */
db9ba97f 2371 if(fSigmavsp) {
2372 if(p==0) printf(" p=%f in g=0.022/p\n",p);
2373 g=0.022/p;
2374 avSigRPHI += g; // (cm)
2375 if(rho==0) printf(" rho=%f in phi += g*gRandom->Gaus()/rho\n",rho);
2376 phi += g*gRandom->Gaus()/rho;
2377 } else {
2378 if(rho==0) printf(" rho=%f in phi += (SIGMARPHI*gRandom->Gaus()/rho\n",rho);
2379 phi += (fSigmarphi*gRandom->Gaus()/rho);
2380 }
2381 x=rho*TMath::Cos(phi);
2382 y=rho*TMath::Sin(phi);
b213b8bd 2383 /* var used for QA
db9ba97f 2384 Float_t zTPC=z;
b213b8bd 2385 */
db9ba97f 2386 if(fSigmavsp) {
2387 if(p==0) printf(" p=%f in g=0.0275/p\n",p);
2388 g=0.0275/p;
2389 avSigZ += g; // (cm)
2390 z += g*gRandom->Gaus();
2391 } else {
2392 z += fSigmaZ*gRandom->Gaus();
2393 }
2394
2395 // smearing on TPC momentum
2396
2397 {
2398 Float_t pmom,phi,theta,arg;
2399
2400 pmom=TMath::Sqrt(px*px+py*py+pz*pz);
2401 phi=0.;
2402 if(TMath::Abs(px)>0. || TMath::Abs(py)>0.) phi=TMath::ATan2(py,px);
2403 if(phi<0.) phi=phi+2*TMath::Pi();
2404 arg=1.;
2405 if(pmom>0.) arg=pz/pmom;
2406 theta=0.;
2407 if(TMath::Abs(arg)<=1.) theta=TMath::ACos(arg);
2408
2409 if(fSigmavsp) {
2410 if(pmom<=0) printf(" pmom=%f in g = TMath::Abs(TMath::Log(pmom)/TMath::Log(10)+0.5)/0.7\n",pmom);
2411 g = TMath::Abs(TMath::Log(pmom)/TMath::Log(10)+0.5)/0.7;
2412 g = 0.01*(g*g*g+1.5)*1.24;
2413 avSigP += g;
2414 pmom *= (1+g*gRandom->Gaus());
2415
2416 if(p<10) {
2417 if(pmom<=0) printf(" pmom=%f in g = 1-TMath::Log(pmom)/TMath::Log(10)\n",pmom);
2418 g = 1-TMath::Log(pmom)/TMath::Log(10);
2419 g = 0.001*(g*g*g+0.3)*0.65; // (radian)
2420 } else {
2421 g = 0.001*0.3*0.65;
2422 }
2423 avSigPHI += g;
2424 phi += g*gRandom->Gaus();
2425 avSigTHETA += g;
2426 theta += g*gRandom->Gaus();
2427
2428 } else {
2429 pmom *= (1+fSigmap*gRandom->Gaus());
2430 phi += fSigmaPhi*gRandom->Gaus();
2431 theta += fSigmaTheta*gRandom->Gaus();
2432 }
2433 gxW=px;
2434 gyW=py;
2435 gzW=pz;
2436
2437 px=pmom*TMath::Sin(theta)*TMath::Cos(phi);
2438 py=pmom*TMath::Sin(theta)*TMath::Sin(phi);
2439 pz=pmom*TMath::Cos(theta);
2440
2441
2442 if(x*px+y*py<=0) {
2443 x=Wx;
2444 y=Wy;
2445 z=Wz;
2446 px=gxW;
2447 py=gyW;
2448 pz=gzW;
2449 }// if(x*px+y*py<=0)
2450 }
2451
2452 p = TMath::Sqrt(px*px+py*py+pz*pz);
2453
2454 particleCharge=charge[PDGtoGeantCode(pdgCode)-1];
2455 mass=massArray[PDGtoGeantCode(pdgCode)-1];
2456 mass=massArray[8-1]; //we take pion mass for all tracks
2457 // mass=massArray[14-1]; //here we take proton mass for all tracks
2458 energy=TMath::Sqrt(p*p+mass*mass);
2459 chargeField=particleCharge*fField;
2460
2461 g=fRadLenTPC/( (x*px+y*py)/(rho*p) );
2462
2463 if(g<=0) printf(" error, g<=0: g=%f, itra=%i, x,y,px,py=%f, %f, %f, %f\n",g,itra,x,y,px,py);
2464
2465 theta0=13.6*0.001*TMath::Sqrt(g)*(1.+0.038*TMath::Log(g))*energy/(p*p);
2466
2467
2468 // start Loop on test tracks
2469 sumOfTheta=0.;
2470 for(Int_t i=0;i<4;i++) {
2471 weightTestTracksOutTof[i]=0.;
2472 }
2473
2474 itest=0;
2475 for(Int_t i=0;i<fMaxTestTracks;i++) {
2476 ntest[i]=0;
2477 testPixel[i]=0;
2478 testLength[i]=0.;
2479 testRho[i]=0.;
2480 testZ[i]=0.;
2481 testWeight[i]=0.;
2482 }
2483
2484 iPlateFirst=0;
2485 TestTracks=0;
2486 iTestTrack=0;
2487 iTestGmax=0;
2488
2489 length0=0;
2490
2491 for (indexOfTestTrack=0; indexOfTestTrack<fMaxTestTracks; indexOfTestTrack++) {
2492
2493 iTestTrack++;
2494 gpx=px;
2495 gpy=py;
2496 gpz=pz;
2497 gp=p;
2498 if(indexOfTestTrack) {
2499 gtheta=theta0;
2500 EpMulScatt(gpx,gpy,gpz,gp,gtheta);
2501
2502 } else {
2503 gtheta=0;
2504 }
2505
2506 weight=TMath::Exp(-gtheta*gtheta/(2*theta0*theta0));
2507 sumOfTheta += gtheta;
2508
2509 // ==========================================================
2510 // Calculate crossing of the track in magnetic field with cylidrical surface
2511 // of radius RTOFINNER
2512 // chargeField = qB, where q is a charge of a particle in units of e,
2513 // B is magnetic field in tesla
2514 // see 3.3.1.1. in the book "Data analysis techniques for
2515 // high-energy physics experiments", edited by M.Regler
2516 // in Russian: "Metody analiza dannykh v fizicheskom eksperimente"
2517 // Moskva, "Mir", 1993. ctr.306
2518
2519 // Initial constants
2520 rotationFactor=1.;
2521 if(chargeField<0.) rotationFactor=-1.;
2522 rotationFactor=-rotationFactor;
2523 gpt=gpx;
2524 phi0=gpy;
2525 cylcor(gpt,phi0);
2526 phi0 -= rotationFactor*TMath::Pi()*0.5;
2527 // phi0 -= h*PID2;
2528 coslam=gpt/gp;
2529 sinlam=gpz/gp;
2530 // helixRadius=100.*gpt/TMath::Abs(0.299792458*chargeField);
2531 helixRadius=100.*gpt/TMath::Abs(AliTOFConstants::fgkSpeedOfLight*chargeField);
2532 xHelixCenter=x-helixRadius*TMath::Cos(phi0);
2533 yHelixCenter=y-helixRadius*TMath::Sin(phi0);
2534 zHelixCenter=z;
2535 helixFactor=rotationFactor*coslam/helixRadius;
2536
2537 // Solves the equation f(s)=r(s)-RTOFINNER=0 by the Newton's method:
2538 // snew=s-f/f'
2539 istep=0;
2540 s=AliTOFConstants::fgkrmin-TMath::Sqrt(x*x+y*y);;
2541 do {
2542 istep++;
2543 xRespectToHelixCenter=helixRadius*TMath::Cos(phi0+s*helixFactor);
2544 yRespectToHelixCenter=helixRadius*TMath::Sin(phi0+s*helixFactor);
2545 gx=xHelixCenter+xRespectToHelixCenter;
2546 gy=yHelixCenter+yRespectToHelixCenter;
2547 gr=TMath::Sqrt(gx*gx+gy*gy);
2548 deltaRadius=gr-AliTOFConstants::fgkrmin;
2549 xp=-helixFactor*yRespectToHelixCenter;
2550 yp= helixFactor*xRespectToHelixCenter;
2551 fp=(gx*xp+gy*yp)/gr;
2552 ds=deltaRadius/fp;
2553 s -= ds;
2554 if(istep==20) {
2555 istep=0;
2556 break;
2557 }
2558 } while (TMath::Abs(ds)>0.01);
2559
2560
2561 if(istep==0) goto end;
2562
2563 // Steps along the circle till a pad
2564 wPixel=0;
2565 wLength=0.;
2566 iplate=0;
2567 iPadAlongX=0;
2568 grho=0.;
2569 ds=fStep;
2570 gxLast=xHelixCenter+helixRadius*TMath::Cos(phi0+s*helixFactor);
2571 gyLast=yHelixCenter+helixRadius*TMath::Sin(phi0+s*helixFactor);
2572 gzLast=zHelixCenter+s*sinlam;
2573
2574
2575 do {
2576 istep++;
2577 s += ds;
2578 gx=xHelixCenter+helixRadius*TMath::Cos(phi0+s*helixFactor);
2579 gy=yHelixCenter+helixRadius*TMath::Sin(phi0+s*helixFactor);
2580 gz=zHelixCenter+s*sinlam;
2581 rho=TMath::Sqrt(gx*gx+gy*gy);
2582
b9d0a01d 2583 IsInsideThePad(gMC,gx,gy,gz,npixel,zPad,xPad);
db9ba97f 2584
2585 iplate += npixel[1];
2586 iPadAlongX += npixel[4];
2587
2588 if(indexOfTestTrack==0 && iplate && iPlateFirst==0) {
2589 iPlateFirst=1;
2590 length0=s;
2591
2592 radius=s*3*theta0;
2593 area=TMath::Pi()*radius*radius;
2594 normR=TMath::Sqrt(gx*gx+gy*gy);
2595 normS=TMath::Sqrt((gx-gxLast)*(gx-gxLast)+
2596 (gy-gyLast)*(gy-gyLast)+
2597 (gz-gzLast)*(gz-gzLast));
2598
2599 cosAngl=(gx*(gx-gxLast)+gy*(gy-gyLast))/(normR*normS);
2600 if(cosAngl<0) printf(" cosAngl<0: gx=%f,gy=%f, gxLast=%f,gyLast=%f,gzLast=%f\n",gx,gy,gxLast,gyLast,gzLast);
2601
2602 area /= cosAngl;
2603 TestTracks=(Int_t) (2*area/(AliTOFConstants::fgkXPad * AliTOFConstants::fgkZPad));
2604
2605 if(TestTracks<12) TestTracks=12;
2606
2607 // Angles of entering into the TOF plate
2608
2609 Int_t iZ=0;
2610 if(TMath::Abs(gz)>300) {
2611 iZ=4;
2612 } else if(TMath::Abs(gz)>200) {
2613 iZ=3;
2614 } else if(TMath::Abs(gz)>100) {
2615 iZ=2;
2616 } else if(TMath::Abs(gz)>0) {
2617 iZ=1;
2618 }
2619
2620
2621 } // end of if(indexOfTestTrack==0 && iplate && iPlateFirst==0)
2622
2623
2624 if(npixel[4]>0) {
2625
2626 iwork1=npixel[0];
2627 iwork2=npixel[1];
2628 iwork3=npixel[2];
2629 // iwork4=npixel[3];
2630 iwork4=(npixel[3]-1)*AliTOFConstants::fgkNpadX+npixel[4];
2631
2632 Int_t ifirstindex=AliTOFConstants::fgkNSectors*(npixel[1]-1)+npixel[0];
2633 iMapValue=mapPixels[ifirstindex-1][iwork3-1][iwork4-1];
2634 if(iMapValue==0) {
2635 ipixel++;
2636 if(ipixel>fMaxPixels) {
2637 cout << "ipixel=" << ipixel << " > MAXPIXELS=" << fMaxPixels << endl;
2638 break;
2639 }
2640 mapPixels[ifirstindex-1][iwork3-1][iwork4-1]=ipixel;
2641 pixelArray[ipixel-1].SetGeom(iwork1,iwork2,iwork3,iwork4);
2642 iMapValue=ipixel;
2643 }
2644
2645 wPixel=iMapValue;
2646 wLength=tpclength+s;
2647 wRho=rho;
2648 wZ=gz;
2649
2650 ihit=kTOFhitFirst[ipart];
2651
2652 if(ihit) {
2653 if(indexOfTestTrack==0) {
2654 {
2655 idelR++;
2656 delR=TMath::Sqrt((gx-hitArray[ihit-1].X())*(gx-hitArray[ihit-1].X())+
2657 (gy-hitArray[ihit-1].Y())*(gy-hitArray[ihit-1].Y())+
2658 (gz-hitArray[ihit-1].Z())*(gz-hitArray[ihit-1].Z()));
2659
2660 }
2661
2662 if(delR>hitArray[ihit-1].GetRmin()) iRmin++;
2663 gxExtrap=gx;
2664 gyExtrap=gy;
2665 gzExtrap=gz;
2666 } else {
2667 delR=TMath::Sqrt((gx-gxExtrap)*(gx-gxExtrap)+
2668 (gy-gyExtrap)*(gy-gyExtrap)+
2669 (gz-gzExtrap)*(gz-gzExtrap));
2670 }
2671 } //end of if(ihit)
2672
2673 break;
2674
2675 } //end of npixel[4]
2676
2677 if(rho<grho) {
2678 istep=0;
2679 break;
2680 }
2681 grho=rho;
2682
2683 gxLast=gx;
2684 gyLast=gy;
2685 gzLast=gz;
2686
2687 } while(rho<AliTOFConstants::fgkrmax); //end of do
2688
2689
2690 if(istep>0) {
2691 if(iplate) {
2692 if(iPadAlongX==0) {
2693 istep=-3; // holes in TOF
2694 }
2695 } else {
2696 if(TMath::Abs(gz)<AliTOFConstants::fgkMaxhZtof) {
2697 // if(TMath::Abs(gz)<MAXZTOF2) {
2698 istep=-2; // PHOS and RICH holes or holes in between TOF plates
2699 } else {
2700 istep=-1; // out of TOF on z-size
2701 }
2702 }
2703 }
2704
2705 if(iPadAlongX>0) {
2706 if(itest==0) {
2707 itest=1;
2708 ntest[itest-1]=1;
2709 testPixel[itest-1]=wPixel;
2710 testLength[itest-1]=wLength;
2711 testRho[itest-1]=wRho;
2712 testZ[itest-1]=wZ;
2713 testWeight[itest-1]=weight;
2714 } else {
2715 Int_t k;
2716 for(Int_t i=0;i<itest;i++) {
2717 k=0;
2718 if(testPixel[i]==wPixel) {
2719 k=1;
2720 ntest[i]++;
2721 testLength[i] += wLength;
2722 testRho[i] += wRho;
2723 testZ[i] += wZ;
2724 testWeight[i] += weight;
2725 break;
2726 }
2727 } //end for i
2728 if(k==0) {
2729 itest++;
2730 ntest[itest-1]=1;
2731 testPixel[itest-1]=wPixel;
2732 testLength[itest-1]=wLength;
2733 testRho[itest-1]=wRho;
2734 testZ[itest-1]=wZ;
2735 testWeight[itest-1]=weight;
2736 }
2737 }
2738 }
2739
2740 end: ;
2741 // Statistics
2742 if(fMatchingStyle==1) {
2743 if(istep>-4 && istep<1) weightTestTracksOutTof[-istep] ++;
2744 } else {
2745 if(istep>-4 && istep<1) weightTestTracksOutTof[-istep] += weight;
2746 }
2747
2748 if(fMatchingStyle==2) {
2749 if(indexOfTestTrack==0 && istep==0) break;
2750 if(indexOfTestTrack+1==TestTracks) break;
2751 }
2752
2753 } //end of indexOfTestTrack
2754
2755 snr += (Float_t) (indexOfTestTrack+1);
2756
2757 // Search for the "hole" with the largest weigth
2758 largestWeightTracksOutTof=0.;
2759 sumWeightTracksOutTof=0.;
2760 for(Int_t i=0;i<4;i++) {
2761 w=weightTestTracksOutTof[i];
2762 sumWeightTracksOutTof += w;
2763 if(w>largestWeightTracksOutTof) {
2764 largestWeightTracksOutTof=w;
2765 iMaxTestTracksOutTof=i;
2766 }
2767 }
2768
2769 itestc=itest;
2770 if(itest>0) {
2771 for(Int_t i=0;i<itest;i++) {
2772 testLength[i] /= ntest[i];
2773 testRho[i] /= ntest[i];
2774 testZ[i] /= ntest[i];
2775 }
2776 // Search for the pixel with the largest weigth
2777 wmax=0.;
2778 wstate=0;
2779 sw=0;
2780 sGeomWeigth=0;
2781 for(Int_t i=0;i<itest;i++) {
2782 istate=pixelArray[testPixel[i]-1].GetState();
2783 fstate=0;
2784 if(istate>0) {
2785 fstate=1;
2786 wstate++;
2787 }
2788 if(fMatchingStyle==1) {
2789 sGeomWeigth += ntest[i];
2790 w=(fpadefficiency*fstate+(1.-fpadefficiency)*(1-fstate))*ntest[i];
2791 if(pixelArray[testPixel[i]-1].GetTrackMatched()>0) w *= 0.1;
2792 } else {
2793 sGeomWeigth += testWeight[i];
2794 w=(fpadefficiency*fstate+(1.-fpadefficiency)*(1-fstate))*testWeight[i];
2795 if(pixelArray[testPixel[i]-1].GetTrackMatched()>0) w *= 0.1;
2796 }
2797
2798 // weighting according to the Pulse Height (we use the square of weight)
2799 // if (fChargeFactorForMatching) w *= (pixelArray[testPixel[i]-1].GetCharge())*(pixelArray[testPixel[i]-1].GetCharge());
2800 if (fChargeFactorForMatching && fstate==1) w *= (pixelArray[testPixel[i]-1].GetCharge())*(pixelArray[testPixel[i]-1].GetCharge());
2801
2802 if(w>wmax) {
2803 wmax=w;
2804 imax=i;
2805 }
2806 sw += w;
2807 }
2808 wPixel=testPixel[imax];
2809 wLength=testLength[imax];
2810 istate=pixelArray[wPixel-1].GetState();
2811
2812 //Choose the TOF dead space
2813 // if(istate==0 && largestWeightTracksOutTof>wmax) {
2814 // if(istate==0 && largestWeightTracksOutTof>=sw) {
2815 if(istate==0 && sumWeightTracksOutTof>sGeomWeigth) {
2816 itestc=itest;
2817 itest=0;
2818 }
2819 }
2820
2821 if(itest>0) {
2822
2823 // Set for MyTrack: Pixel
2824 trackArray[itrack-1].SetPixel(wPixel);
2825
2826 istate=pixelArray[wPixel-1].GetState();
2827
2828 if(istate) {
2829
2830 // Set for MyTrack: Pixel, Length, TOF, MassTOF
2831 //fp
2832 //time=pixelArray[wPixel-1].GetTime();
2833 time=pixelArray[wPixel-1].GetRealTime();
2834 trackArray[itrack-1].SetLength(wLength);
2835 trackArray[itrack-1].SetTof(time);
2836
2837 inverseOfParticleSpeed=time/wLength;
2838 //w=900.*inverseOfParticleSpeed*inverseOfParticleSpeed-1.;
2839 w=(100.*AliTOFConstants::fgkSpeedOfLight)*(100.*AliTOFConstants::fgkSpeedOfLight)*inverseOfParticleSpeed*inverseOfParticleSpeed-1.;
2840 w2=pvtx*pvtx;
2841 Float_t squareMass=w2*w;
2842 mass=TMath::Sqrt(TMath::Abs(squareMass));
2843 if(w<0.) mass=-mass;
2844
2845 trackArray[itrack-1].SetMassTOF(mass);
2846
2847 // Set for MyTrack: Matching
2848 match=4;
2849 // if(ipart==pixelArray[wPixel-1].GetTrack()) match=3;
2850 if( (ipart==pixelArray[wPixel-1].GetTrack()) && hitArray[pixelArray[wPixel-1].GetHit()-1].GetNoise()==0)match=3;
2851 imatched=pixelArray[wPixel-1].GetTrackMatched();
2852 // Set for TOFPixel the number of matched track
2853 pixelArray[wPixel-1].SetTrackMatched(itrack);
2854
2855 if(imatched>0) {
2856 matchw=trackArray[imatched-1].GetMatching();
2857 if(match==3 && matchw==4) t34++;
2858 if(match==3 && matchw==2) t32++;
2859 if(match==4 && matchw==4) t44++;
2860 if(match==4 && matchw==3) t43++;
2861 if(match==4 && matchw==2) t42++;
2862 if(iTOFpixel[ipart]==0 || iTOFpixel[trackArray[imatched-1].GetTrack()]==0) {
2863 m20++;
2864 } else if(iTOFpixel[ipart]==iTOFpixel[trackArray[imatched-1].GetTrack()]) {
2865 m22++;
2866 } else {
2867 m23++;
2868 wPix=iTOFpixel[ipart];
2869 if(PRINT && iPrintM1==10 && iPrintM2<10) {
2870 if(iPrintM2==0) {
2871 printf("*** test print for tracks matched with the pixel for with we had matched track\n");
2872 }
2873 iPrintM2++;
2874 printf(" m=2: ipart=%i, pdgCode=%i, p=%f, theta0=%f, %i Pixel(LP=%i,SP=%i,P=%i) \n",
2875 ipart,pdgCode,p,theta0,wPix,
2876 pixelArray[wPix-1].GetSector(),pixelArray[wPix-1].GetPlate(),pixelArray[wPix-1].GetPixel());
2877 printf(" mat=%i, %i Pixel(LP=%i,SP=%i,P=%i), Test(n=%i,i=%i,w=%f,z=%f), wst=%i \n",
2878 match,wPixel,
2879 pixelArray[wPixel-1].GetSector(),pixelArray[wPixel-1].GetPlate(),pixelArray[wPixel-1].GetPixel(),
2880 itest,imax,wmax,testZ[imax],wstate);
2881 Int_t fstat,istat;
2882 for(Int_t i=0;i<itest;i++) {
2883 wPix=testPixel[i];
2884 istat=pixelArray[wPix-1].GetState();
2885 fstat=0;
2886 if(istat>0) fstat=1;
2887 w=(fpadefficiency*fstat+(1.-fpadefficiency)*(1-fstat))*ntest[i];
2888 if(istat>0)
2889 printf(" %i: %i Pixel(LP=%i,SP=%i,P=%i), istat=%i, ntest=%i, w=%f\n",i+1,
2890 wPix,pixelArray[wPix-1].GetSector(),pixelArray[wPix-1].GetPlate(),pixelArray[wPix-1].GetPixel(),
2891 istat,ntest[i],w);
2892 }
2893 printf(" mat=%i, %i Pixel \n",matchw,trackArray[imatched-1].GetPad());
2894 }
2895 }
2896 if(wstate>1) m2state++;
2897 smat[matchw+4]--;
2898 match=2;
2899 trackArray[imatched-1].SetMatching(match);
2900 smat[match+4]++;
2901
2902 } // if(imatched>0)
2903
2904 } else { //else if(istate)
2905
2906 match=1;
2907 if(iTOFpixel[ipart]==0) m10++;
2908 if(PRINT && iPrintM1<10) {
2909 Int_t wPix;
2910 wPix=iTOFpixel[ipart];
2911 if(wPix) {
2912 if(iPrintM1==0) {
2913 printf("*** test print for tracks fired a pixel but matched with non-fired pixel\n");
2914 }
2915 iPrintM1++;
2916 printf(" m=1: itra=%i,ipart=%i, pdgCode=%i, p=%f, theta0=%f, %i Pixel(LP=%i,SP=%i,P=%i) \n",
2917 itra,ipart,pdgCode,p,theta0,wPix,
2918 pixelArray[wPix-1].GetSector(),pixelArray[wPix-1].GetPlate(),pixelArray[wPix-1].GetPixel());
2919 printf(" mat=%i, %i Pixel(LP=%i,SP=%i,P=%i), Test(n=%i,i=%i,w=%f,z=%f), wst=%i \n",
2920 match,wPixel,
2921 pixelArray[wPixel-1].GetSector(),pixelArray[wPixel-1].GetPlate(),pixelArray[wPixel-1].GetPixel(),
2922 itest,imax,wmax,testZ[imax],wstate);
2923
2924 }
2925 } //end if(PRINT && iPrintM1<10)
2926
2927 } //end if(istate)
2928
2929 } else {
2930 match=-1-iMaxTestTracksOutTof;
2931
2932 } //end itest
2933
2934 trackArray[itrack-1].SetMatching(match);
2935 // if(iTestGmax==1) hMTT->Fill(match);
2936 smat[match+4]++;
2937
2938 sumOfTheta /= iTestTrack;
2939
2940 itest=itestc;
2941
2942 //Test
2943 if(PRINT) {
2944 if(iTOFpixel[ipart] && match!=3) {
2945 particle = (TParticle*)gAlice->Particle(ipart); //for V3.05
2946
2947 printf(" ipixel=%i (Sector=%i, Plate=%i, Strip=%i, Pixel=%i), fired by %i track\n",iTOFpixel[ipart],pixelArray[iTOFpixel[ipart]-1].GetSector(),pixelArray[iTOFpixel[ipart]-1].GetPlate(),pixelArray[iTOFpixel[ipart]-1].GetStrip(),pixelArray[iTOFpixel[ipart]-1].GetPixel(),pixelArray[iTOFpixel[ipart]-1].GetTrack());
2948 printf(" indexOfTestTrack=%i itest=%i weightTestTracksOutTof[4]=%f weightTestTracksOutTof[2]=%f weightTestTracksOutTof[1]=%f weightTestTracksOutTof[0]=%f\n",indexOfTestTrack,itest,weightTestTracksOutTof[3],weightTestTracksOutTof[2],weightTestTracksOutTof[1],weightTestTracksOutTof[0]);
2949 if(itest) {
2950
2951 printf(" take ipixel=%i (Sector=%i, Plate=%i, Strip=%i, Pixel=%i), (fired by %i track), match=%i\n",wPixel,pixelArray[wPixel-1].GetSector(),pixelArray[wPixel-1].GetPlate(),pixelArray[wPixel-1].GetStrip(),pixelArray[wPixel-1].GetPixel(),pixelArray[wPixel-1].GetTrack(),match);
2952 }
2953 }
2954 }
2955 if(PRINT && itra<10 ) {
2956
2957 if(itest) {
2958 cout << " number of pixels with test tracks=" << itest << endl;
2959 for(Int_t i=0;i<itest;i++) {
2960 cout << " " << i+1 << " tr.=" << ntest[i] << " w=" << testWeight[i] << " pix.= " << testPixel[i] << " (" <<
2961 pixelArray[testPixel[i]-1].GetSector() << " " << " " << pixelArray[testPixel[i]-1].GetPlate() << " " <<
2962 pixelArray[testPixel[i]-1].GetPixel() << " )" << " l= " << testLength[i] << " sig=" <<
2963 theta0*(testLength[i]-tpclength) << " rho= " << testRho[i] << " z= " << testZ[i] << endl;
2964 }
2965 cout << " pixel=" << wPixel << " state=" << istate << " l=" << wLength << " TOF=" << time << " m=" << mass << " match=" << match << endl;
2966 if(istate>0) cout << " fired by track " << pixelArray[wPixel-1].GetTrack() << endl;
2967 }
2968 }
2969 } //end of track
2970
2971
2972 if(itr) {
2973 printf(" %f probe tracks per 1 real track\n",snr/itr);
2974 itrack=itr;
2975 }
2976
2977
2978 cout << ipixel << " - total number of TOF pixels after matching" << endl;
2979 w=iRmin;
2980 if(idelR!=0) {
2981 w /= idelR;
2982 printf(" %i tracks with delR, %f of them have delR>Rmin \n",idelR,w);
2983 }
2984 w=iRmin1;
2985 if(idelR1!=0) {
2986 w /= idelR1;
2987 printf(" %i tracks with delR1 (|z|<175), %f of them have delR>Rmin \n",idelR1,w);
2988 }
2989 w=iRmin2;
2990 if(idelR2!=0) {
2991 w /= idelR2;
2992 printf(" %i tracks with delR2 (|z|>175), %f of them have delR>Rmin \n",idelR2,w);
2993 }
2994
2995 cout << " ******************** End of matching **********" << endl;
f9a28264 2996 delete [] ntest;
2997 delete [] testPixel;
2998 delete [] testLength;
2999 delete [] testRho;
3000 delete [] testZ;
3001 delete [] testWeight;
db9ba97f 3002}
3003
3004//____________________________________________________________________________
3005void AliTOFReconstructioner::FillNtuple(Int_t ntracks, AliTOFTrack* trackArray, AliTOFRecHit* hitArray, AliTOFPad* pixelArray, Int_t* iTOFpixel, Int_t* iparticle, Float_t* toftime, Int_t& ipixelLastEntry, Int_t itrack){
3006
3007 // itrack : total number of TPC selected tracks
3008 // for the caller is ntotTPCtracks
3009
3010 cout << " ******************** Start of searching non-matched fired pixels **********" << endl;
3011 const Int_t charge[48]={ 0, 1,-1, 0, 1,-1, 0, 1,-1, 0,
3012 1,-1, 0, 1,-1, 0, 0, 0, 1, 0,
3013 -1, 0,-1,-1, 0, 0,-1, 0, 1, 0,
3014 1, 1, 0, 0, 1,-1, 0, 0, 1,-1,
3015 1, 1,-1, 0, 1, 1, 2, 0};
3016
3017 Int_t macthm1=0;
3018 Int_t macthm2=0;
3019 Int_t macthm3=0;
3020 Int_t macthm4=0;
3021 Int_t macth0=0;
3022 Int_t macth1=0;
3023 Int_t macth2=0;
3024 Int_t macth3=0;
3025 Int_t macth4=0;
3026
3027
3028 Float_t smat[9],smat0[9],smat1[9];
3029 for(Int_t i=0;i<9;i++) {
3030 smat[i]=0.;
3031 smat0[i]=0.;
3032 smat1[i]=0.;
3033 }
3034
3035 Int_t nFiredPixelsNotMatchedWithTracks=0;
3036 Int_t istate;
3037 for (Int_t i=0; i<ipixelLastEntry; i++) {
3038 istate=pixelArray[i].GetState();
3039 if(istate==0) break;
3040 if(pixelArray[i].GetTrackMatched()==-1) nFiredPixelsNotMatchedWithTracks++;
3041 }
3042 printf(" %i fired pixels have not matched tracks\n",nFiredPixelsNotMatchedWithTracks);
3043 cout << " ******************** End of searching non-matched fired pixels **********" << endl;
3044
3045 Int_t nTPCHitMissing=0;
3046 for(Int_t i=0; i<ipixelLastEntry; i++) {
3047 if(pixelArray[i].GetHit()>0) {
3048 if(hitArray[pixelArray[i].GetHit()-1].GetNoise()==0) {
3049 if(iparticle[pixelArray[i].GetTrack()]==0) nTPCHitMissing++;
3050 }
3051 }
3052 }
3053 printf(" %i pixels fired by track hit without a hit on the last layer of TPC\n",nTPCHitMissing);
3054
3055
3056 Int_t icharge=0; // total number of charged particles
3057 Int_t iprim=0; // number of primaries
3058 Int_t ipions=0; // number of primary pions
3059 Int_t ikaons=0; // number of primary kaons
3060 Int_t iprotons=0; // number of primary protons
3061 Int_t ielectrons=0;// number of primary electrons
3062 Int_t imuons=0; // number of primary muons
3063 Float_t particleTypeArray[6][5][2];
3064
3065 for (Int_t index1=0;index1<6;index1++) {
3066 for (Int_t index2=0;index2<5;index2++) {
3067 for (Int_t index3=0;index3<2;index3++) {
3068 particleTypeArray[index1][index2][index3]=0.;
3069 }
3070 }
3071 }
3072
3073 Int_t nTOFhitsWithNoTPCTracks=0; // to be moved later when used
3074
3075 /*
3076 TObjArray *Particles = gAlice->Particles();
3077 Int_t numberOfParticles=Particles->GetEntries();
3078 cout << "numberOfParticles " << numberOfParticles << endl;
3079 // fpdbg
3080 if(numberOfParticles>fMaxAllTracks) numberOfParticles=fMaxAllTracks;
3081 */
3082
3083 for (Int_t i=0; i<ntracks; i++) { // starting loop on all primaries charged particles for current event)
3084
3085 /*
3086 cout << "particle " << i << endl;
3087 cout << "total " << numberOfParticles << endl;
3088 */
3089 TParticle *part = (TParticle *) gAlice->Particle(i);
3090 if(charge[PDGtoGeantCode(part->GetPdgCode())-1]) {
3091 icharge++;
3092 /*
3093 cout << "charged particles " << icharge << endl;
3094 */
3095 Int_t particleType=0;
3096 Int_t absPdgCode = TMath::Abs(part->GetPdgCode());
3097 switch (absPdgCode) {
3098 case 211:
3099 particleType=3;
3100 break ;
3101 case 321:
3102 particleType=2;
3103 break ;
3104 case 2212:
3105 particleType=1;
3106 break ;
3107 case 11:
3108 particleType=4;
3109 break ;
3110 case 13:
3111 particleType=5;
3112 break ;
3113 }
3114
3115 if(part->GetFirstMother() < 0) {
3116 iprim++;
3117 switch (particleType) {
3118 case 1:
3119 iprotons++;
3120 break ;
3121 case 2:
3122 ikaons++;
3123 break ;
3124 case 3:
3125 ipions++;
3126 break ;
3127 case 4:
3128 ielectrons++;
3129 break ;
3130 case 5:
3131 imuons++;
3132 break ;
3133 }
3134 }
3135
3136 Int_t match=0;
3137 Float_t wLength=-1.;
3138 Float_t time=-1.;
3139 Float_t mass=-1.;
3140
3141 Int_t itr=iparticle[i]; // get the track number for the current charged particle
3142
3143 if(iTOFpixel[i]>0 && itr==0) nTOFhitsWithNoTPCTracks++;
3144
3145 if(itr) {
3146 match=trackArray[itr-1].GetMatching();
3147 //cout << "match " << match << endl;
3148 wLength=trackArray[itr-1].GetLength();
3149 //cout << "wLength " << wLength << endl;
3150 time=trackArray[itr-1].GetTof();
3151 mass=trackArray[itr-1].GetMassTOF();
3152 //cout << "mext " << mass << endl;
3153 // if(PRINT && (i>789 && i<800) ) cout << i << " track: l=" << wLength << " TOF=" << time << " m=" << mass << " match=" << match << endl;
3154 if(iTOFpixel[i]==0) {
3155 smat0[match+4]++;
3156 wLength=-wLength;
3157 }
3158 }
3159 Int_t ikparen=part->GetFirstMother();
3160 Int_t imam;
3161 if(ikparen<0) {
3162 imam=0;
3163 } else {
3164 imam=part->GetPdgCode();
3165 }
3166
3167 Int_t evnumber=gAlice->GetEvNumber();
3168 if(match==-1) macthm1++;
3169 if(match==-2) macthm2++;
3170 if(match==-3) macthm3++;
3171 if(match==-4) macthm4++;
3172 if(match==0) macth0++;
3173 if(match==1) macth1++;
3174 if(match==2) macth2++;
3175 if(match==3) macth3++;
3176 if(match==4) macth4++;
3177 foutputntuple->Fill(evnumber,part->GetPdgCode(),imam,part->Vx(),part->Vy(),part->Vz(),part->Px(),part->Py(),part->Pz(),toftime[i],wLength,match,time,mass);
3178
3179
3180
3181 // -----------------------------------------------------------
3182 // Filling 2 dimensional Histograms true time vs matched time
3183 // Filling 1 dimensional Histogram true time - matched time
3184 //
3185 // time = time associated to the matched pad [ns]
3186 // it could be the average time of the cluster fired
3187 //
3188 // toftime[i] = real time (including pulse height delays) [s]
3189 //
3190 //
3191 // if (time>=0) {
3192 // if (imam==0) TimeTrueMatched->Fill(time, toftime[i]*1E+09);
3193 // if (imam==0) DeltaTrueTimeMatched->Fill(time-toftime[i]*1E+09);
3194 // }
3195 //
3196 //---------------------------------------------------------------
3197
3198 if(match==-4 || match>0) {
3199 Int_t matchW;
3200 matchW=match;
3201 if(match==-4) matchW=1;
3202 if(particleType) {
3203 particleTypeArray[particleType-1][matchW-1][1]++;
3204 particleTypeArray[5][matchW-1][1]++;
3205 particleTypeArray[particleType-1][4][1]++;
3206 particleTypeArray[5][4][1]++;
3207 if(part->GetFirstMother() < 0) {
3208 particleTypeArray[particleType-1][matchW-1][0]++;
3209 particleTypeArray[5][matchW-1][0]++;
3210 particleTypeArray[particleType-1][4][0]++;
3211 particleTypeArray[5][4][0]++;
3212
3213 // fill histos for QA
3214 //if(particleType==3 && matchW==3) hPiWithTrueTime->Fill(sqrt((part->Px())*(part->Px())+(part->Py())*(part->Py())+(part->Pz())*(part->Pz())));
3215 //if(particleType==2 && matchW==3) hKWithTrueTime->Fill(sqrt((part->Px())*(part->Px())+(part->Py())*(part->Py())+(part->Pz())*(part->Pz())));
3216 //if(particleType==1 && matchW==3) hPWithTrueTime->Fill(sqrt((part->Px())*(part->Px())+(part->Py())*(part->Py())+(part->Pz())*(part->Pz())));
3217 //
3218
3219 } // close if(part->GetFirstMother() < 0)
3220 } // close if(particleType)
3221 } // close if(match==-4 || match>0)
3222 } // close if(charge[PDGtoGeantCode(part->GetPdgCode())-1])
3223 } // close for (Int_t i=0; i<ntracks; i++) {
3224
3225 cout << " macthm1 " << macthm1 << endl;
3226 cout << " macthm2 " << macthm2 << endl;
3227 cout << " macthm3 " << macthm3 << endl;
3228 cout << " macthm4 " << macthm4 << endl;
3229 cout << " macth0 " << macth0 << endl;
3230 cout << " macth1 " << macth1 << endl;
3231 cout << " macth2 " << macth2 << endl;
3232 cout << " macth3 " << macth3 << endl;
3233 cout << " macth4 " << macth4 << endl;
3234
3235
3236 printf(" %i TOF hits have not TPC track\n",nTOFhitsWithNoTPCTracks);
3237 Int_t imatch=0;
3238 for(Int_t i=0;i<9;i++) {
3239 if(itrack) cout << " " << smat[i]*100./itrack << " % of them (="<<smat[i]<<") have match=" << i-4 << " " << smat0[i] << " have not TOF hits" << endl;
3240 if(i==0 || i>4) imatch += (Int_t) (smat[i]);
3241
3242 // cout << " " << smat[i]*100./itrack << " % of them (="<<smat[i]<<") have match=" << i-4 << " " << smat0[i] << " have not TOF hits" << " " << smat1[i] << " have (r.p)<0 for first hit" << endl;
3243 }
3244
3245 if(fdbg){
3246 /*
3247 cout << " nparticles = " << numberOfParticles << " charged = " << icharge << " prim.=" << iprim << endl;
3248 */
3249 cout << " nparticles = " << ntracks << " charged = " << icharge << " prim.=" << iprim << endl;
3250 cout << ipions << " - primary pions" << endl;
3251 cout << ikaons << " - primary kaons" << endl;
3252 cout << iprotons << " - primary protons" << endl;
3253 cout << ielectrons << " - primary electrons" << endl;
3254 cout << imuons << " - primary muons reached TPC" << endl;
3255 cout << " ********** " << imatch << " TPC tracks are matched with TOF pixels (incl.match=-4) **********" << endl;
3256 }
3257
3258 /*
3259 Float_t PrimaryInBarrel[6],Acceptance[6];
3260 PrimaryInBarrel[0]=ipions;
3261 PrimaryInBarrel[1]=ikaons;
3262 PrimaryInBarrel[2]=iprotons;
3263 PrimaryInBarrel[3]=ielectrons;
3264 PrimaryInBarrel[4]=imuons;
3265 PrimaryInBarrel[5]=ipions+ikaons+iprotons+ielectrons+imuons;
3266
3267 // cout << " TPC acceptance for the primary species: 1-p, 2-K, 3-pi, 4-e, 5-mu, 6-all" << endl;
3268 for(Int_t i=0; i<6; i++) {
3269 Acceptance[i]=0.;
3270 if(PrimaryInBarrel[i]) Acceptance[i]=100.*PrimaryReachedTPC[i]/PrimaryInBarrel[i];
3271 //hTPCacceptance[i]->Fill(Acceptance[i]);
3272 // printf(" species: %i %f\n",i+1,Acceptance[i]);
3273 }
3274
3275 // cout << " TOF acceptance for the primary species: 1-p, 2-K, 3-pi, 4-e, 5-mu, 6-all" << endl;
3276 for(Int_t i=0; i<6; i++) {
3277 Acceptance[i]=0.;
3278 if(PrimaryInBarrel[i]) Acceptance[i]=100.*PrimaryReachedTOF[i]/PrimaryInBarrel[i];
3279 //hTOFacceptance[i]->Fill(Acceptance[i]);
3280 // printf(" species: %i %f\n",i+1,Acceptance[i]);
3281 }
3282
3283 for (Int_t index1=0;index1<6;index1++) {
3284 for (Int_t index2=0;index2<4;index2++) {
3285 for (Int_t index3=0;index3<2;index3++) {
3286 if(particleTypeArray[index1][4][index3]) particleTypeArray[index1][index2][index3]=
3287 100.*particleTypeArray[index1][index2][index3]/particleTypeArray[index1][4][index3];
3288 }
3289 }
3290 }
3291
3292 cout << "species: 1-p, 2-K, 3-pi, 4-e, 5-mu, 6-all" << endl;
3293 cout << " matched pixels(%): 1-unfired 2-double 3-true 4-wrong 5-total number of tracks" << endl;
3294
3295 cout << " primary tracks:" << endl;
3296 for (Int_t i=0;i<6;i++) {
3297 cout << i+1 << " " << particleTypeArray[i][0][0] << " " << particleTypeArray[i][1][0] << " " << particleTypeArray[i][2][0] << " " << particleTypeArray[i][3][0] << " " << particleTypeArray[i][4][0] << endl;
3298 }
3299
3300 // cout<<" contam.for all prim.(%)="<<100*particleTypeArray[5][3][0]/(particleTypeArray[5][3][0]+particleTypeArray[5][2][0])<<endl;
3301
3302 cout << " all tracks:" << endl;
3303 for (Int_t i=0;i<6;i++) {
3304 cout << i+1 << " " << particleTypeArray[i][0][1] << " " << particleTypeArray[i][1][1] << " " << particleTypeArray[i][2][1] << " " << particleTypeArray[i][3][1] << " " << particleTypeArray[i][4][1] << endl;
3305 }
3306
3307 // cout<<" contam.for all (%)="<<100*particleTypeArray[5][3][1]/(particleTypeArray[5][3][1]+particleTypeArray[5][2][1])<<endl;
3308 // printf(" t34=%i, t32=%i, t44=%i, t43=%i, t42=%i\n",t34,t32,t44,t43,t42);
3309 // printf(" m10=%f, m20=%f, m22=%f, m23=%f, m2state=%i\n",m10,m20,m22,m23,m2state);
3310 */
3311}