]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TOF/AliTOFReconstructioner.cxx
Review on transient/persistent data members
[u/mrichter/AliRoot.git] / TOF / AliTOFReconstructioner.cxx
CommitLineData
db9ba97f 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16//_________________________________________________________________________
17// Manager class for TOF reconstruction.
18//
19//
20//-- Authors: Bologna-ITEP-Salerno Group
21//
22// Description: Manager class for TOF reconstruction (derived from TTask)
23// Summary of the main methods:
24// - extraction of the TPC (assumed to be) reconstructed tracks
25// comment: it has to me moved as soon as possible into a separate
26// class AliTOFTrackReader (K. Safarik suggestion)
27// - geometrical propagation of the above tracks till TOF detector
28// - matching of the tracks with the TOF signals
29//
30// Remark: the GEANT3.21 geometry is used during the geometrical propagation
31// of the tracks in order to know the current volume reached by the track.
32//
33//////////////////////////////////////////////////////////////////////////////
34
35
36#include "TTask.h"
37#include "TBenchmark.h"
38#include "TTree.h"
39#include "TSystem.h"
40#include "TFile.h"
41#include "TParticle.h"
42
43#include "AliConst.h"
44#include "AliRun.h"
45#include "AliTOFConstants.h"
46#include "AliTOFHitMap.h"
47#include "AliTOFSDigit.h"
48#include "AliTOFhit.h"
49#include "AliTOFRecHit.h"
50#include "AliTOFPad.h"
51#include "AliTOFTrack.h"
52#include "AliTOF.h"
53#include "AliTOFv1.h"
54#include "AliTOFv2.h"
55#include "AliTOFv2FHoles.h"
56#include "AliTOFv3.h"
57#include "AliTOFv4.h"
58#include "AliTOFv4T0.h"
59#include "AliTOFReconstructioner.h"
60// this line has to be commented till TPC will provide fPx fPy fPz and fL in
61// AliTPChit class or somewhere
62// #include "../TPC/AliTPC.h"
63#include "AliRun.h"
64#include "AliDetector.h"
65#include "AliMC.h"
66
67#include <TClonesArray.h>
68#include "../TGeant3/TGeant3.h"
69#include "TFile.h"
70#include <TF1.h>
71#include <TF2.h>
72#include "TTask.h"
73#include "TTree.h"
74#include "TSystem.h"
75#include "TROOT.h"
76#include "TFolder.h"
77#include "TNtuple.h"
78#include <stdlib.h>
79#include <iostream.h>
80#include <fstream.h>
81
82ClassImp(AliTOFReconstructioner)
83
84//____________________________________________________________________________
85 AliTOFReconstructioner::AliTOFReconstructioner():TTask("AliTOFReconstructioner","")
86{
87 // default ctor
88 fNevents = 0 ;
89 fg3 = 0;
90 foutputfile = 0;
91 foutputntuple= 0;
92 fZnoise = 0;
93 ftail = 0;
94}
95
96//____________________________________________________________________________
97 AliTOFReconstructioner::AliTOFReconstructioner(char* headerFile, Option_t* opt, char *RecFile ):TTask("AliTOFReconstructioner","")
98{
99 //
100 // ctor
101 //
102 fNevents = 0 ; // Number of events to reconstruct, 0 means all evens in current file
103 fg3 = 0;
104 foutputfile = 0;
105 foutputntuple= 0;
106 fZnoise = 0;
107 ftail = 0;
108
109 Init(opt);
110
111 // create output file
112 if (RecFile){
113 foutputfile= new TFile(RecFile,"RECREATE","root file for matching");
114 } else {
115 char outFileName[100];
116 strcpy(outFileName,"match");
117 strcat(outFileName,headerFile);
118 foutputfile= new TFile(outFileName,"RECREATE","root file for matching");
119 }
120
121 // initialize the ALIROOT geometry
122 gAlice->Init();
123 gAlice->Print();
124
125 // set the fg3 pointer to geometry used by IsInsideThePad method
126 fg3 = (TGeant3*) gMC;
127
128 CreateNTuple();
129
130 // add Task to //root/Tasks folder
131 TTask * roottasks = (TTask*)gROOT->GetRootFolder()->FindObject("Tasks") ;
132 roottasks->Add(this) ;
133}
134//____________________________________________________________________________
135void AliTOFReconstructioner::Init(Option_t* opt)
136{
137 // Initialize the AliTOFReconstructioner setting parameters for
138 // reconstruction.
139 // Option values: Pb-Pb for Pb-Pb events
140 // pp for pp events
141
142 // set common parameters
143 fdbg=1;
144 fNevents = 1;
145 fFirstEvent = 1;
146 fLastEvent = 1;
147 fTimeResolution =0.120;
148 fpadefficiency =0.99 ;
149 fEdgeEffect = 2 ;
150 fEdgeTails = 0 ;
151 fHparameter = 0.4 ;
152 fH2parameter = 0.15;
153 fKparameter = 0.5 ;
154 fK2parameter = 0.35;
155 fEffCenter = fpadefficiency;
156 fEffBoundary = 0.65;
157 fEff2Boundary = 0.90;
158 fEff3Boundary = 0.08;
159 fResCenter = 50. ;
160 fResBoundary = 70. ;
161 fResSlope = 40. ;
162 fTimeWalkCenter = 0. ;
163 fTimeWalkBoundary=0. ;
164 fTimeWalkSlope = 0. ;
165 fTimeDelayFlag = 1 ;
166 fPulseHeightSlope=2.0 ;
167 fTimeDelaySlope =0.060;
168 // was fMinimumCharge = TMath::Exp(fPulseHeightSlope*fKparameter/2.);
169 fMinimumCharge = TMath::Exp(-fPulseHeightSlope*fHparameter);
170 fChargeSmearing=0.0 ;
171 fLogChargeSmearing=0.13;
172 fTimeSmearing =0.022;
173 fAverageTimeFlag=0 ;
174 fChargeFactorForMatching=1;
175 fTrackingEfficiency=1.0; // 100% TPC tracking efficiency assumed
176 fSigmavsp = 1. ;
177 fSigmaZ = 0. ;
178 fSigmarphi= 0. ;
179 fSigmap = 0. ;
180 fSigmaPhi = 0. ;
181 fSigmaTheta=0. ;
182 fField = 0.2 ;
183 // fRadLenTPC : 0.2 includes TRD / 0.03 TPC only
184 fRadLenTPC=0.06 ; // last value
185 fCorrectionTRD=0. ;
186 fLastTPCRow=111 ;
187 fRadiusvtxBound=50. ; // expressed in [cm]
188 fStep = 0.1 ; // expressed in [cm] step during propagation of the
189 // track inside TOF volumes
190 fMatchingStyle=2 ;
191 /* previous values default
192 fMaxPixels=70000 ;
193 fMaxAllTracks=70000 ;
194 fMaxTracks=15000 ;
195 */
196 fMaxPixels=165000 ;
197 fMaxAllTracks=500000 ;
198 fMaxTracks=15000 ;
199
200 fMaxTOFHits=35000 ;
201 fPBound =0.0 ; // bending effect: P_t=0.3*z*B*R , z particle charge
202 fNoiseSlope=20. ;
203 // set parameters as specified in opt
204 //pp case
205 if(strstr(opt,"pp")){
206 fMaxTestTracks=500 ;
207 fNoise = 26. ;
208 fNoiseMeanTof= 26.4 ; // to check
209 }
210 //Pb-Pb case
211 if(strstr(opt,"Pb-Pb")){
212 fMaxTestTracks=20 ;
213 fNoise = 9400. ;
214 fNoiseMeanTof= 26.4 ;
215 }
216}
217
218//____________________________________________________________________________
219 AliTOFReconstructioner::~AliTOFReconstructioner()
220{
221 //
222 // dtor
223 //
224 if (fg3)
225 {
226 delete fg3;
227 fg3 = 0;
228 }
229 if (foutputfile)
230 {
231 delete foutputfile;
232 foutputfile = 0;
233 }
234 if (foutputntuple)
235 {
236 delete foutputntuple;
237 foutputntuple = 0;
238 }
239
240 if (fZnoise)
241 {
242 delete fZnoise;
243 fZnoise = 0;
244 }
245
246 if (ftail)
247 {
248 delete ftail;
249 ftail = 0;
250 }
251}
252
253//____________________________________________________________________________
254void AliTOFReconstructioner::CreateNTuple()
255{
256 //
257 // Create a Ntuple where information about reconstructed charged particles
258 // (both primaries and secondaries) are stored
259 // Variables: event ipart imam xvtx yvtx zvtx pxvtx pyvtx pzvtx time leng matc text mext
260 // Meaning:
261 // event - event number (0, 1, ...)
262 // ipart - PDG code of particles
263 // imam - PDG code for the parent
264 // =0 for primary particle
265 // xvtx - x-coordinate of the vertex (cm)
266 // yvtx - y-coordinate of the vertex (cm)
267 // zvtx - z-coordinate of the vertex (cm)
268 // pxvtx - x-coordinate of the momentum in the vertex (GeV)
269 // pyvtx - y-coordinate of the momentum in the vertex (GeV)
270 // pzvtx - z-coordinate of the momentum in the vertex (GeV)
271 // time - time of flight from TOF for given track (ps) - TOF time for the
272 // first TOF hit of the track
273 // leng - track length to the TOF pixel (cm), evaluate as a sum of the
274 // track length from the track vertex to TPC and the average
275 // length of the extrapolated track from TPC to TOF.
276 // for the track without TOF hits leng=-abs(leng)
277 // matc - index of the (TPC track) - (TOF pixel) matching
278 // =0 for tracks which are not tracks for matching, i.e.
279 // there is not hit on the TPC or Rvxt>200 cm
280 // >0 for tracks with positive matching procedure:
281 // =1 or 2 for non-identified tracks:
282 // =1, if the corresponding pixel is not fired,
283 // =2, if the corresponding pixel is also matched to the
284 // other track,
285 // =3 or 4 for identified tracks:
286 // =3, if identified with true time,
287 // =4, if identified with wrong time.
288 // <0 for tracks with negative mathing procedure:
289 // =-1, if track do not reach the pixel plate (curved in the
290 // magnetic field),
291 // =-2, if track is out of z-size of the TOF,
292 // =-3, if track is or into the RICH hole, or into the PHOS hole, or in the space between the plates,
293 // =-4, if track is into the dead space of the TOF.
294 // text - time of fligth from the matching procedure = time of the
295 // pixel corresponding to the track (ps)
296 // =0 for the tracks with matc<=1
297 // mext - mass of the track from the matching procedure
298 // =p*sqrt(900*(text/leng)**2-1), if 900*(text/leng)**2-1>=0
299 // =-p*sqrt(abs(900*(text/leng)**2-1)), if 900*(text/leng)**2-1<0
300
301 foutputntuple= new TNtuple("Ntuple","matching","event:ipart:imam:xvtx:yvtx:zvtx:pxvtx:pyvtx:pzvtx:time:leng:matc:text:mext",2000000); // buffersize set for 25 Pb-Pb events
302}
303
304//__________________________________________________________________
305Double_t TimeWithTailR(Double_t* x, Double_t* par)
306{
307 // sigma - par[0], alpha - par[1], part - par[2]
308 // at x<part*sigma - gauss
309 // at x>part*sigma - TMath::Exp(-x/alpha)
310 Float_t xx =x[0];
311 Double_t f;
312 if(xx<par[0]*par[2]) {
313 f = TMath::Exp(-xx*xx/(2*par[0]*par[0]));
314 } else {
315 f = TMath::Exp(-(xx-par[0]*par[2])/par[1]-0.5*par[2]*par[2]);
316 }
317 return f;
318}
319
320//____________________________________________________________________________
321void AliTOFReconstructioner::Exec(const char* datafile, Option_t *option)
322{
323 //
324 // Performs reconstruction for TOF detector
325 //
326 gBenchmark->Start("TOFReconstruction");
327
328 TFile *file = TFile::Open(datafile);
329
330 // Get AliRun object from file or create it if not on file
331 gAlice = (AliRun*)file->Get("gAlice");
332
333 AliTOF* TOF = (AliTOF *) gAlice->GetDetector ("TOF");
334 AliDetector* TPC = gAlice->GetDetector("TPC");
335
336 if (!TOF) {
337 Error("AliTOFReconstructioner","TOF not found");
338 return;
339 }
340 if (!TPC) {
341 Error("AliTOFReconstructioner","TPC Detector not found");
342 return;
343 }
344
345 if (fEdgeTails) ftail = new TF1("tail",TimeWithTailR,-2,2,3);
346
347 if (fNevents == 0) fNevents = (Int_t) gAlice->TreeE()->GetEntries();
348 // You have to set the number of event with the ad hoc setter
349 // see testrecon.C
350
351 for (Int_t ievent = 0; ievent < fNevents; ievent++) { // start loop on events
352
353 Int_t nparticles=gAlice->GetEvent(ievent);
354 if (nparticles <= 0) return;
355
356 TClonesArray* tofhits=0;
357 TClonesArray* tpchits=0;
358
359 if (TOF) tofhits = TOF->Hits();
360 if (TPC) tpchits = TPC->Hits();
361
362 TTree *TH = gAlice->TreeH();
363 if (!TH) return;
364 Int_t ntracks = (Int_t) (TH->GetEntries()); // primary tracks
365 cout << "number of primary tracked tracks in current event " << ntracks << endl; // number of primary tracked tracks
366 // array declaration and initialization
367 // TOF arrays
368 // Int_t mapPixels[AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates][AliTOFConstants::fgkNStripC][AliTOFConstants::fgkNpadZ*AliTOFConstants::fgkNpadX];
369
370 Int_t *** mapPixels = new Int_t**[AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates];
371 for (Int_t i=0; i<AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates; i++) mapPixels[i] = new Int_t*[AliTOFConstants::fgkNStripC];
372 for (Int_t i=0; i<AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates; i++) {
373 for (Int_t j=0; j<AliTOFConstants::fgkNStripC; j++) {
374 mapPixels[i][j]= new Int_t[AliTOFConstants::fgkNpadZ*AliTOFConstants::fgkNpadX];
375 }
376 }
377
378
379 // initializing the previous array
380 for (Int_t i=0;i<AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates;i++) {
381 for (Int_t j=0;j<AliTOFConstants::fgkNStripC;j++) {
382 for (Int_t l=0;l<AliTOFConstants::fgkNpadZ*AliTOFConstants::fgkNpadX;l++) {
383 mapPixels[i][j][l]=0;
384 }
385 }
386 }
387
388 Float_t toftime[fMaxAllTracks]; InitArray(toftime, fMaxAllTracks);
389 //Float_t tofMom[fMaxAllTracks]; InitArray(tofMom, fMaxAllTracks);
390 AliTOFPad* pixelArray = new AliTOFPad[fMaxPixels];
391 Int_t* iTOFpixel = new Int_t[fMaxAllTracks]; InitArray(iTOFpixel , fMaxAllTracks);
392 Int_t* kTOFhitFirst = new Int_t[fMaxAllTracks]; InitArray(kTOFhitFirst, fMaxAllTracks);
393 AliTOFRecHit* hitArray = new AliTOFRecHit[fMaxTOFHits];
394 Int_t isHitOnFiredPad=0; // index used to fill hitArray (array used to store informations
395 // about pads that contains an hit)
396 Int_t ntotFiredPads=0; // index used to fill array -> total number of fired pads (at least one time)
397
398 // TPC arrays
399 AliTOFTrack* trackArray = new AliTOFTrack[fMaxTracks];
400 Int_t iparticle[fMaxAllTracks]; InitArray(iparticle,fMaxAllTracks);
401 Int_t iTrackPt[fMaxTracks]; InitArray(iTrackPt, fMaxTracks); // array
402 Float_t ptTrack[fMaxTracks]; InitArray( ptTrack, fMaxTracks); // array for selected track pt
403 Int_t ntotTPCtracks=0; // total number of selected TPC tracks
404
405
406 // reading TOF hits
407 if(TOF) ReadTOFHits(ntracks, TH, tofhits, mapPixels, kTOFhitFirst, pixelArray, iTOFpixel, toftime, hitArray,isHitOnFiredPad,ntotFiredPads);
408 cout << "isHitOnFiredPad " << isHitOnFiredPad << " for event " << ievent << endl;
409
410 // start debug for adding noise
411 // adding noise
412 Int_t nHitsNoNoise=isHitOnFiredPad;
413
414
415 if(fNoise) AddNoiseFromOuter(option,mapPixels,pixelArray,hitArray,isHitOnFiredPad,ntotFiredPads);
416 cout << "ntotFiredPads after adding noise " << ntotFiredPads << " for event " << ievent << endl;
417 // set the hitArray distance to nearest hit
418 SetMinDistance(hitArray,nHitsNoNoise);
419
420 // these lines has to be commented till TPC will provide fPx fPy fPz
421 // and fL in AliTPChit class
422 // reading TPC hits
423 /*
424 if(TPC) ReadTPCHits(ntracks, TH, tpchits, iTrackPt, iparticle, ptTrack, trackArray,ntotTPCtracks);
425 */
426
427 // geometrical matching
428 if(TOF && TPC) Matching(trackArray,hitArray,mapPixels,pixelArray,kTOFhitFirst,ntotFiredPads,iTrackPt,iTOFpixel,ntotTPCtracks);
429
430 // fill ntuple with reconstructed particles from current event
431 FillNtuple(ntracks,trackArray,hitArray,pixelArray,iTOFpixel,iparticle,toftime,ntotFiredPads,ntotTPCtracks);
432
433
434 // free used memory
435 delete [] pixelArray; pixelArray=0;
436 delete [] iTOFpixel; iTOFpixel=0;
437 delete [] kTOFhitFirst; kTOFhitFirst=0;
438 delete [] hitArray; hitArray=0;
439 delete [] trackArray; trackArray=0;
440
441
442 for (Int_t i=0; i<AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates; i++) {
443 for (Int_t j=0; j<AliTOFConstants::fgkNStripC; j++) {
444 delete [] mapPixels[i][j];
445 }
446 }
447 for (Int_t i=0; i<AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates; i++) delete [] mapPixels[i];
448
449 delete [] mapPixels;
450
451 }//event loop
452
5fff655e 453 // free used memory for ftail
454 if (ftail)
455 {
456 delete ftail;
457 ftail = 0;
458 }
db9ba97f 459
460 // writing ntuple on output file
461 foutputfile->cd();
462 //foutputntuple->Write(0,TObject::kOverwrite);
463 foutputntuple->Write();
464 foutputfile->Write();
465 foutputfile->Close();
466
467 gBenchmark->Stop("TOFReconstruction");
468 cout << "AliTOFReconstructioner:" << endl ;
469 cout << " took " << gBenchmark->GetCpuTime("TOFReconstruction") << " seconds in order to make the reconstruction for " << fNevents << " events " << endl;
470 cout << gBenchmark->GetCpuTime("TOFReconstruction")/fNevents << " seconds per event " << endl ;
471 cout << endl ;
472
473}
474
475//__________________________________________________________________
476void AliTOFReconstructioner::SetRecFile(char * file )
477{
478 //
479 // Set the file name for reconstruction output
480 //
481 if(!fRecFile.IsNull())
482 cout << "Changing destination file for TOF reconstruction from " <<(char *)fRecFile.Data() << " to " << file << endl ;
483 fRecFile=file ;
484}
485//__________________________________________________________________
486void AliTOFReconstructioner::Print(Option_t* option)const
487{
488 //
489 // Print reconstruction output file name
490 //
491 cout << "------------------- "<< GetName() << " -------------" << endl ;
492 if(fRecFile.IsNull())
493 cout << " Writing reconstructed particles to file galice.root "<< endl ;
494 else
495 cout << " Writing reconstructed particle to file " << (char*) fRecFile.Data() << endl ;
496
497}
498
499//__________________________________________________________________
500void AliTOFReconstructioner::PrintParameters()const
501{
502 //
503 // Print parameters used for reconstruction
504 //
505 cout << " ------------------- "<< GetName() << " -------------" << endl ;
506 cout << " Parameters used for TOF reconstruction " << endl ;
507 // Printing the parameters
508
509 cout << " Number of events: " << fNevents << endl;
510 cout << " Recostruction from event "<< fFirstEvent << " to event "<< fLastEvent << endl;
511 cout << " TOF geometry parameters " << endl;
512 cout << " Min. radius of the TOF (cm) "<< AliTOFConstants::fgkrmin << endl;
513 cout << " Max. radius of the TOF (cm) "<< AliTOFConstants::fgkrmax << endl;
514 cout << " Number of TOF geom. levels "<< AliTOFConstants::fgkmaxtoftree<< endl;
515 cout << " Number of TOF sectors "<< AliTOFConstants::fgkNSectors << endl;
516 cout << " Number of TOF modules "<< AliTOFConstants::fgkNPlates << endl;
517 cout << " Max. Number of strips in a module "<< AliTOFConstants::fgkNStripC << endl;
518 cout << " Number of pads per strip "<< AliTOFConstants::fgkNpadX*AliTOFConstants::fgkNpadZ << endl;
519 cout << " Number of strips in central module "<< AliTOFConstants::fgkNStripA << endl;
520 cout << " Number of strips in intermediate modules "<< AliTOFConstants::fgkNStripB << endl;
521 cout << " Number of strips in outer modules "<< AliTOFConstants::fgkNStripC << endl;
522 cout << " Number of MRPC in x strip direction "<< AliTOFConstants::fgkNpadX<< endl;
523 cout << " Size of MRPC (cm) along X "<< AliTOFConstants::fgkXPad<< endl;
524 cout << " Number of MRPC in z strip direction "<< AliTOFConstants::fgkNpadZ<<endl;
525 cout << " Size of MRPC (cm) along Z "<< AliTOFConstants::fgkZPad<<endl;
526 cout << " Module Lengths (cm)" << endl;
527 cout << " A Module: "<< AliTOFConstants::fgkzlenA<< " B Modules: "<< AliTOFConstants::fgkzlenB<< " C Modules: "<< AliTOFConstants::fgkzlenC<< endl;
528 cout << " Inner radius of the TOF detector (cm): "<<AliTOFConstants::fgkrmin << endl;
529 cout << " Outer radius of the TOF detector (cm): "<<AliTOFConstants::fgkrmax << endl;
530 cout << " Max. half z-size of TOF (cm) : "<<AliTOFConstants::fgkMaxhZtof << endl;
531 cout << " TOF Pad parameters " << endl;
532 cout << " Time Resolution (ns) "<< fTimeResolution <<" Pad Efficiency: "<< fpadefficiency << endl;
533 cout << " Edge Effect option: "<< fEdgeEffect<< endl;
534
535 cout << " Boundary Effect Simulation Parameters " << endl;
536 cout << " Hparameter: "<< fHparameter<<" H2parameter:"<< fH2parameter <<" Kparameter:"<< fKparameter<<" K2parameter: "<< fK2parameter << endl;
537 cout << " Efficiency in the central region of the pad: "<< fEffCenter << endl;
538 cout << " Efficiency at the boundary region of the pad: "<< fEffBoundary << endl;
539 cout << " Efficiency value at H2parameter "<< fEff2Boundary << endl;
540 cout << " Efficiency value at K2parameter "<< fEff3Boundary << endl;
541 cout << " Resolution (ps) in the central region of the pad: "<< fResCenter << endl;
542 cout << " Resolution (ps) at the boundary of the pad : "<< fResBoundary << endl;
543 cout << " Slope (ps/K) for neighbouring pad : "<< fResSlope <<endl;
544 cout << " Time walk (ps) in the central region of the pad : "<< fTimeWalkCenter << endl;
545 cout << " Time walk (ps) at the boundary of the pad : "<< fTimeWalkBoundary<< endl;
546 cout << " Slope (ps/K) for neighbouring pad : "<< fTimeWalkSlope<<endl;
547 cout << " Pulse Heigth Simulation Parameters " << endl;
548 cout << " Flag for delay due to the PulseHeightEffect: "<< fTimeDelayFlag <<endl;
549 cout << " Pulse Height Slope : "<< fPulseHeightSlope<<endl;
550 cout << " Time Delay Slope : "<< fTimeDelaySlope<<endl;
551 cout << " Minimum charge amount which could be induced : "<< fMinimumCharge<<endl;
552 cout << " Smearing in charge in (q1/q2) vs x plot : "<< fChargeSmearing<<endl;
553 cout << " Smearing in log of charge ratio : "<< fLogChargeSmearing<<endl;
554 cout << " Smearing in time in time vs log(q1/q2) plot : "<< fTimeSmearing<<endl;
555 cout << " Flag for average time : "<< fAverageTimeFlag<<endl;
556 cout << " Charge factor flag for matching : "<< fChargeFactorForMatching<<endl;
557 cout << " Edge tails option : "<< fEdgeTails << endl;
558 cout << " TPC tracking parameters " << endl;
559 cout << " TPC tracking efficiency : "<< fTrackingEfficiency<< endl;
560 cout << " Sigma vs momentum dependency flag : "<< fSigmavsp << endl;
561 cout << " Space uncertainties (cm). sigma(z) (cm): "<< fSigmaZ << " sigma(R(phi)) (cm): "<< fSigmarphi << endl;
562 cout << " Momentum uncertainties. sigma(delta(P)/P): "<< fSigmap <<" sigma(phi) (rad): "<< fSigmaPhi <<" sigma(theta) (rad): "<< fSigmaTheta << endl;
563 cout << " Parameters for additional noise hits " << endl;
564 cout << " Number of noise hits : " << fNoise <<" Slope parameter (ns) in the time distribution: " << fNoiseSlope << endl;
565 cout << " Mean TOF for noise from outer regions (ns)" << fNoiseMeanTof << endl;
566 cout << " Physical parameters " << endl;
567 cout << " Magnetic Field (tesla) : "<< fField <<endl;
568 cout << " Radiation length of the outer wall of TPC: "<< fRadLenTPC << endl;
569 cout << " (TPC tracks)-(TOF pads) matching parameters " << endl;
570 cout << " TRD Correction flag : "<< fCorrectionTRD <<endl;
571 cout << " Number of the last TPC row: "<< fLastTPCRow <<" Vertex radius (cm) for selected tracks: "<<fRadiusvtxBound<<endl;
572 cout << " Max. number of test tracks: "<<fMaxTestTracks << endl;
573 cout << " Space step (cm) : "<< fStep <<endl;
574 cout << " Matching style option : "<< fMatchingStyle <<endl;
575 cout << " Array parameters " << endl;
576 cout << " Max.number of pads involved in the matching procedure: "<< fMaxPixels << endl;
577 cout << " Max.number of TOF hits per event : "<< fMaxTOFHits<< endl;
578 cout << " Max.number of tracks selected for matching : "<< fMaxTracks << endl;
579 cout << " Max.number of all tracks including the neutral ones : "<< fMaxAllTracks<< endl;
580 cout << " Debug Flag : "<< fdbg << endl;
581 cout << " Cut on momentum for selecting tracks : "<< fPBound << endl;
582
583}
584
585//__________________________________________________________________
586void AliTOFReconstructioner::IsInsideThePad(TGeant3 *g3, Float_t x, Float_t y, Float_t z, Int_t *nGeom, Float_t& zPad, Float_t& xPad)
587{
588 // input: x,y,z - coordinates of a hit
589 // output: array nGeom[]
590 // nGeom[0] - the TOF sector number, 1,2,...,18 along azimuthal direction starting from -90 deg.!!!
591 // nGeom[1] - the TOF module number, 1,2,3,4,5=C,B,A,B,C along z-direction
592 // nGeom[2] - the TOF strip number, 1,2,... along z-direction
593 // nGeom[3] - the TOF padz number, 1,2=NPZ across a strip
594 // nGeom[4] - the TOF padx number, 1,2,...,48=NPX along a strip
595 // zPad, xPad - coordinates of the hit in the pad frame
596 // numbering is adopted for the version 3.05 of AliRoot
597 // example:
598 // from Hits: sec,pla,str,padz,padx=4,2,14,2,35
599 // Vol. n.0: ALIC, copy number 1
600 // Vol. n.1: B077, copy number 1
601 // Vol. n.2: B074, copy number 5
602 // Vol. n.3: BTO2, copy number 1
603 // Vol. n.4: FTOB, copy number 2
604 // Vol. n.5: FLTB, copy number 0
605 // Vol. n.6: FSTR, copy number 14
606 // Vol. n.7: FSEN, copy number 0
607 // Vol. n.8: FSEZ, copy number 2
608 // Vol. n.9: FSEX, copy number 35
609 // Vol. n.10: FPAD, copy number 0
610
611
612 Float_t xTOF[3];
613 Int_t sector=0,module=0,strip=0,padz=0,padx=0;
614 Int_t i,numed,nLevel,copyNumber;
615 Gcvolu_t* gcvolu;
616 char name[5];
617 name[4]=0;
618
619 for (i=0; i<AliTOFConstants::fgkmaxtoftree; i++) nGeom[i]=0;
620 zPad=100.;
621 xPad=100.;
622
623 xTOF[0]=x;
624 xTOF[1]=y;
625 xTOF[2]=z;
626
627 g3->Gmedia(xTOF, numed);
628 gcvolu=g3->Gcvolu();
629 nLevel=gcvolu->nlevel;
630 if(fdbg) {
631 for (Int_t i=0; i<nLevel; i++) {
632 strncpy(name,(char*) (&gcvolu->names[i]),4);
633 cout<<"Vol. n."<<i<<": "<<name<<", copy number "<<gcvolu->number[i]<<endl;
634 }
635 }
636 if(nLevel>=2) {
637 // sector type name: B071(1,2,...,10),B074(1,2,3,4,5-PHOS),B075(1,2,3-RICH)
638 strncpy(name,(char*) (&gcvolu->names[2]),4);
639 // volume copy: 1,2,...,10 for B071, 1,2,3,4,5 for B074, 1,2,3 for B075
640 copyNumber=gcvolu->number[2];
641 if(!strcmp(name,"B071")) {
642 if (copyNumber>=6 && copyNumber<=8) {
643 sector=copyNumber+10;
644 } else if (copyNumber>=1 && copyNumber<=5){
645 sector=copyNumber+7;
646 } else {
647 sector=copyNumber-8;
648 }
649 } else if(!strcmp(name,"B075")) {
650 sector=copyNumber+12;
651 } else if(!strcmp(name,"B074")) {
652 if (copyNumber>=1 && copyNumber<=3){
653 sector=copyNumber+4;
654 } else {
655 sector=copyNumber-1;
656 }
657 }
658 }
659 if(sector) {
660 nGeom[0]=sector;
661 if(nLevel>=4) {
662 // we'll use the module value in z-direction:
663 // 1 2 3 4 5
664 // the module order in z-direction: FTOC,FTOB,FTOA,FTOB,FTOC
665 // the module copy: 2 2 0 1 1
666 // module type name: FTOA, FTOB, FTOC
667 strncpy(name,(char*) (&gcvolu->names[4]),4);
668 // module copy:
669 copyNumber=gcvolu->number[4];
670 if(!strcmp(name,"FTOC")) {
671 if (copyNumber==2) {
672 module=1;
673 } else {
674 module=5;
675 }
676 } else if(!strcmp(name,"FTOB")) {
677 if (copyNumber==2) {
678 module=2;
679 } else {
680 module=4;
681 }
682 } else if(!strcmp(name,"FTOA")) {
683 module=3;
684 }
685 }
686 }
687
688 if(module) {
689 nGeom[1]=module;
690 if(nLevel>=6) {
691 // strip type name: FSTR
692 strncpy(name,(char*) (&gcvolu->names[6]),4);
693 // strip copy:
694 copyNumber=gcvolu->number[6];
695 if(!strcmp(name,"FSTR")) strip=copyNumber;
696 }
697 }
698
699 if(strip) {
700 nGeom[2]=strip;
701 if(nLevel>=8) {
702 // padz type name: FSEZ
703 strncpy(name,(char*) (&gcvolu->names[8]),4);
704 // padz copy:
705 copyNumber=gcvolu->number[8];
706 if(!strcmp(name,"FSEZ")) padz=copyNumber;
707 }
708 }
709 if(padz) {
710 nGeom[3]=padz;
711 if(nLevel>=9) {
712 // padx type name: FSEX
713 strncpy(name,(char*) (&gcvolu->names[9]),4);
714 // padx copy:
715 copyNumber=gcvolu->number[9];
716 if(!strcmp(name,"FSEX")) padx=copyNumber;
717 }
718 }
719
720 if(padx) {
721 nGeom[4]=padx;
722 zPad=gcvolu->glx[2]; // check here
723 xPad=gcvolu->glx[0]; // check here
724 }
725
726 // printf(" nGeom[0,1,2,3,4]=%i,%i,%i,%i,%i\n",nGeom[0],nGeom[1],nGeom[2],nGeom[3],nGeom[4]);
727}
728
729//__________________________________________________________________
730void AliTOFReconstructioner::EpMulScatt(Float_t& px, Float_t& py, Float_t& pz, Float_t& p, Float_t& theta)
731{
732 // Momentum p - before mult.scat.
733 // Momentum p2 - after mult.scat.
734 // THE0 - r.m.s. of deviation angle in plane
735 // (see RPP'96: Phys.Rev.D54 (1996) 134)
736
737 Float_t pt,thex,they,tantx,tanty,p2px,p2py,p2pz,costhe,sinthe,cospsi,sinpsi,p2x,p2y,p2z,p2,g;
738
739 pt=TMath::Sqrt(px*px+py*py);
740 // angles for p in the ' frame with Z'along p
741 if(fMatchingStyle==1) {
742 thex=theta*gRandom->Gaus();
743 they=theta*gRandom->Gaus();
744 } else {
745 thex=3*(-theta+2*theta*gRandom->Rndm());
746 they=3*(-theta+2*theta*gRandom->Rndm());
747 }
748 tantx=TMath::Tan(thex);
749 tanty=TMath::Tan(they);
750
751 // p2p - p2 in the ' frame
752 p2pz=p/TMath::Sqrt(1.+tantx*tantx+tanty*tanty);
753 p2py=p2pz*tanty;
754 p2px=p2pz*tantx;
755 // choose X'so that PHI=0 (see Il'in, Pozdnyak Analiticheskaya geometriya, 1968, c.88
756 // for Euler angles PSI, THETA (PHI=0)
757 costhe=pz/p;
758 sinthe=pt/p;
759 cospsi=-py/pt;
760 sinpsi=px/pt;
761 //
762 g=p2py*costhe-p2pz*sinthe;
763 p2x=p2px*cospsi-g*sinpsi;
764 p2y=p2px*sinpsi+g*cospsi;
765 p2z=p2py*sinthe+p2pz*costhe;
766 p2=TMath::Sqrt(p2x*p2x+p2y*p2y+p2z*p2z);
767
768 // Test angle
769 g=(px*p2x+py*p2y+pz*p2z)/(p*p2);
770 if(g>1) g=1;
771 theta=TMath::ACos(g);
772 px=p2x;
773 py=p2y;
774 pz=p2z;
775 p=p2;
776
777}
778
779// std border effect algorithm
780//__________________________________________________________________
781void AliTOFReconstructioner::BorderEffect(Float_t z0, Float_t x0, Float_t geantTime, Int_t& nActivatedPads, Int_t& nFiredPads, Bool_t* isFired, Int_t* nPlace, Float_t* qInduced, Float_t* tofTime, Float_t& averageTime)
782{
783 // Input: z0, x0 - hit position in the strip system (0,0 - center of the strip), cm
784 // geantTime - time generated by Geant, ns
785 // Output: nActivatedPads - the number of pads activated by the hit (1 || 2 || 4)
786 // nFiredPads - the number of pads fired (really activated) by the hit (nFiredPads <= nActivatedPads)
787 // qInduced[iPad]- charge induced on pad, arb. units
788 // this array is initialized at zero by the caller
789 // tofAfterSimul[iPad] - time calculated with edge effect algorithm, ns
790 // this array is initialized at zero by the caller
791 // averageTime - time given by pad hited by the Geant track taking into account the times (weighted) given by the pads fired for edge effect also.
792 // The weight is given by the qInduced[iPad]/qCenterPad
793 // this variable is initialized at zero by the caller
794 // nPlace[iPad] - the number of the pad place, iPad = 0, 1, 2, 3
795 // this variable is initialized at zero by the caller
796 //
797 // Description of used variables:
798 // eff[iPad] - efficiency of the pad
799 // res[iPad] - resolution of the pad, ns
800 // timeWalk[iPad] - time walk of the pad, ns
801 // timeDelay[iPad] - time delay for neighbouring pad to hited pad, ns
802 // PadId[iPad] - Pad Identifier
803 // E | F --> PadId[iPad] = 5 | 6
804 // A | B --> PadId[iPad] = 1 | 2
805 // C | D --> PadId[iPad] = 3 | 4
806 // nTail[iPad] - the tail number, = 1 for tailA, = 2 for tailB
807 // qCenterPad - charge extimated for each pad, arb. units
808 // weightsSum - sum of weights extimated for each pad fired, arb. units
809
810 const Float_t kSigmaForTail[2] = {AliTOFConstants::fgkSigmaForTail1,AliTOFConstants::fgkSigmaForTail2}; //for tail
811 Int_t iz = 0, ix = 0;
812 Float_t dX = 0., dZ = 0., x = 0., z = 0.;
813 Float_t h = fHparameter, h2 = fH2parameter, k = fKparameter, k2 = fK2parameter;
814 Float_t effX = 0., effZ = 0., resX = 0., resZ = 0., timeWalkX = 0., timeWalkZ = 0.;
815 Float_t logOfqInd = 0.;
816 Float_t weightsSum = 0.;
817 Int_t nTail[4] = {0,0,0,0};
818 Int_t padId[4] = {0,0,0,0};
819 Float_t eff[4] = {0.,0.,0.,0.};
820 Float_t res[4] = {0.,0.,0.,0.};
821 // Float_t qCenterPad = fMinimumCharge * fMinimumCharge;
822 Float_t qCenterPad = 1.;
823 Float_t timeWalk[4] = {0.,0.,0.,0.};
824 Float_t timeDelay[4] = {0.,0.,0.,0.};
825
826 nActivatedPads = 0;
827 nFiredPads = 0;
828
829 (z0 <= 0) ? iz = 0 : iz = 1;
830 dZ = z0 + (0.5 * AliTOFConstants::fgkNpadZ - iz - 0.5) * AliTOFConstants::fgkZPad; // hit position in the pad frame, (0,0) - center of the pad
831 z = 0.5 * AliTOFConstants::fgkZPad - TMath::Abs(dZ); // variable for eff., res. and timeWalk. functions
832 iz++; // z row: 1, ..., AliTOFConstants::fgkNpadZ = 2
833 ix = (Int_t)((x0 + 0.5 * AliTOFConstants::fgkNpadX * AliTOFConstants::fgkXPad) / AliTOFConstants::fgkXPad);
834 dX = x0 + (0.5 * AliTOFConstants::fgkNpadX - ix - 0.5) * AliTOFConstants::fgkXPad; // hit position in the pad frame, (0,0) - center of the pad
835 x = 0.5 * AliTOFConstants::fgkXPad - TMath::Abs(dX); // variable for eff., res. and timeWalk. functions;
836 ix++; // x row: 1, ..., AliTOFConstants::fgkNpadX = 48
837
838 ////// Pad A:
839 nActivatedPads++;
840 nPlace[nActivatedPads-1] = (iz - 1) * AliTOFConstants::fgkNpadX + ix;
841 qInduced[nActivatedPads-1] = qCenterPad;
842 padId[nActivatedPads-1] = 1;
843
844 if (fEdgeEffect == 0) {
845 eff[nActivatedPads-1] = fEffCenter;
846 if (gRandom->Rndm() < eff[nActivatedPads-1]) {
847 nFiredPads = 1;
848 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + fResCenter * fResCenter); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns;
849 isFired[nActivatedPads-1] = kTRUE;
850 tofTime[nActivatedPads-1] = gRandom->Gaus(geantTime + fTimeWalkCenter, res[0]);
851 averageTime = tofTime[nActivatedPads-1];
852 }
853 } else {
854
855 if(z < h) {
856 if(z < h2) {
857 effZ = fEffBoundary + (fEff2Boundary - fEffBoundary) * z / h2;
858 } else {
859 effZ = fEff2Boundary + (fEffCenter - fEff2Boundary) * (z - h2) / (h - h2);
860 }
861 resZ = fResBoundary + (fResCenter - fResBoundary) * z / h;
862 timeWalkZ = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * z / h;
863 nTail[nActivatedPads-1] = 1;
864 } else {
865 effZ = fEffCenter;
866 resZ = fResCenter;
867 timeWalkZ = fTimeWalkCenter;
868 }
869
870 if(x < h) {
871 if(x < h2) {
872 effX = fEffBoundary + (fEff2Boundary - fEffBoundary) * x / h2;
873 } else {
874 effX = fEff2Boundary + (fEffCenter - fEff2Boundary) * (x - h2) / (h - h2);
875 }
876 resX = fResBoundary + (fResCenter - fResBoundary) * x / h;
877 timeWalkX = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * x / h;
878 nTail[nActivatedPads-1] = 1;
879 } else {
880 effX = fEffCenter;
881 resX = fResCenter;
882 timeWalkX = fTimeWalkCenter;
883 }
884
885 (effZ<effX) ? eff[nActivatedPads-1] = effZ : eff[nActivatedPads-1] = effX;
886 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
887 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
888
889
890 ////// Pad B:
891 if(z < k2) {
892 effZ = fEffBoundary - (fEffBoundary - fEff3Boundary) * (z / k2);
893 } else {
894 effZ = fEff3Boundary * (k - z) / (k - k2);
895 }
896 resZ = fResBoundary + fResSlope * z / k;
897 timeWalkZ = fTimeWalkBoundary + fTimeWalkSlope * z / k;
898
899 if(z < k && z > 0) {
900 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
901 nActivatedPads++;
902 nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX;
903 eff[nActivatedPads-1] = effZ;
904 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
905 timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ; // ns
906 nTail[nActivatedPads-1] = 2;
907 if (fTimeDelayFlag) {
908 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
909 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
910 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
911 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
912 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
913 } else {
914 timeDelay[nActivatedPads-1] = 0.;
915 }
916 padId[nActivatedPads-1] = 2;
917 }
918 }
919
920
921 ////// Pad C, D, E, F:
922 if(x < k2) {
923 effX = fEffBoundary - (fEffBoundary - fEff3Boundary) * (x / k2);
924 } else {
925 effX = fEff3Boundary * (k - x) / (k - k2);
926 }
927 resX = fResBoundary + fResSlope*x/k;
928 timeWalkX = fTimeWalkBoundary + fTimeWalkSlope*x/k;
929
930 if(x < k && x > 0) {
931 // C:
932 if(ix > 1 && dX < 0) {
933 nActivatedPads++;
934 nPlace[nActivatedPads-1] = nPlace[0] - 1;
935 eff[nActivatedPads-1] = effX;
936 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
937 timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
938 nTail[nActivatedPads-1] = 2;
939 if (fTimeDelayFlag) {
940 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
941 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
942 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
943 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
944 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
945 } else {
946 timeDelay[nActivatedPads-1] = 0.;
947 }
948 padId[nActivatedPads-1] = 3;
949
950 // D:
951 if(z < k && z > 0) {
952 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
953 nActivatedPads++;
954 nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX - 1;
955 eff[nActivatedPads-1] = effX * effZ;
956 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
957 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
958
959 nTail[nActivatedPads-1] = 2;
960 if (fTimeDelayFlag) {
961 if (TMath::Abs(x) < TMath::Abs(z)) {
962 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
963 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
964 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
965 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
966 } else {
967 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
968 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
969 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
970 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
971 }
972 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
973 } else {
974 timeDelay[nActivatedPads-1] = 0.;
975 }
976 padId[nActivatedPads-1] = 4;
977 }
978 } // end D
979 } // end C
980
981 // E:
982 if(ix < AliTOFConstants::fgkNpadX && dX > 0) {
983 nActivatedPads++;
984 nPlace[nActivatedPads-1] = nPlace[0] + 1;
985 eff[nActivatedPads-1] = effX;
986 res[nActivatedPads-1] = 0.001 * (TMath::Sqrt(10400 + resX * resX)); // ns
987 timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
988 nTail[nActivatedPads-1] = 2;
989 if (fTimeDelayFlag) {
990 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
991 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
992 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
993 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
994 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
995 } else {
996 timeDelay[nActivatedPads-1] = 0.;
997 }
998 padId[nActivatedPads-1] = 5;
999
1000
1001 // F:
1002 if(z < k && z > 0) {
1003 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
1004 nActivatedPads++;
1005 nPlace[nActivatedPads - 1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX + 1;
1006 eff[nActivatedPads - 1] = effX * effZ;
1007 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1008 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001*timeWalkX; // ns
1009 nTail[nActivatedPads-1] = 2;
1010 if (fTimeDelayFlag) {
1011 if (TMath::Abs(x) < TMath::Abs(z)) {
1012 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
1013 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
1014 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
1015 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
1016 } else {
1017 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
1018 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
1019 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
1020 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
1021 }
1022 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1023 } else {
1024 timeDelay[nActivatedPads-1] = 0.;
1025 }
1026 padId[nActivatedPads-1] = 6;
1027 }
1028 } // end F
1029 } // end E
1030 } // end if(x < k)
1031
1032
1033 for (Int_t iPad = 0; iPad < nActivatedPads; iPad++) {
1034 if (res[iPad] < fTimeResolution) res[iPad] = fTimeResolution;
1035 if(gRandom->Rndm() < eff[iPad]) {
1036 isFired[iPad] = kTRUE;
1037 nFiredPads++;
1038 if(fEdgeTails) {
1039 if(nTail[iPad] == 0) {
1040 tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
1041 } else {
1042 ftail->SetParameters(res[iPad], 2. * res[iPad], kSigmaForTail[nTail[iPad]-1]);
1043 Double_t timeAB = ftail->GetRandom();
1044 tofTime[iPad] = geantTime + timeWalk[iPad] + timeDelay[iPad] + timeAB;
1045 }
1046 } else {
1047 tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
1048 }
1049 if (fAverageTimeFlag) {
1050 averageTime += tofTime[iPad] * qInduced[iPad];
1051 weightsSum += qInduced[iPad];
1052 } else {
1053 averageTime += tofTime[iPad];
1054 weightsSum += 1.;
1055 }
1056 }
1057 }
1058 if (weightsSum!=0) averageTime /= weightsSum;
1059 } // end else (fEdgeEffect != 0)
1060}
1061
1062
1063/* new algorithm (to be checked)
1064//__________________________________________________________________
1065void AliTOFReconstructioner::BorderEffect(Float_t z0, Float_t x0, Float_t geantTime, Int_t& nActivatedPads, Int_t& nFiredPads, Bool_t* isFired, Int_t* nPlace, Float_t* qInduced, Float_t* tofTime, Float_t& averageTime)
1066{
1067 // Input: z0, x0 - hit position in the strip system (0,0 - center of the strip), cm
1068 // geantTime - time generated by Geant, ns
1069 // Output: nActivatedPads - the number of pads activated by the hit (1 || 2 || 4)
1070 // nFiredPads - the number of pads fired (really activated) by the hit (nFiredPads <= nActivatedPads)
1071 // qInduced[iPad]- charge induced on pad, arb. units
1072 // this array is initialized at zero by the caller
1073 // tofAfterSimul[iPad] - time calculated with edge effect algorithm, ns
1074 // this array is initialized at zero by the caller
1075 // averageTime - time given by pad hited by the Geant track taking into account the times (weighted) given by the pads fired for edge effect also.
1076 // The weight is given by the qInduced[iPad]/qCenterPad
1077 // this variable is initialized at zero by the caller
1078 // nPlace[iPad] - the number of the pad place, iPad = 0, 1, 2, 3
1079 // this variable is initialized at zero by the caller
1080 //
1081 // Description of used variables:
1082 // eff[iPad] - efficiency of the pad
1083 // res[iPad] - resolution of the pad, ns
1084 // timeWalk[iPad] - time walk of the pad, ns
1085 // timeDelay[iPad] - time delay for neighbouring pad to hited pad, ns
1086 // PadId[iPad] - Pad Identifier
1087 // E | F --> PadId[iPad] = 5 | 6
1088 // A | B --> PadId[iPad] = 1 | 2
1089 // C | D --> PadId[iPad] = 3 | 4
1090 // nTail[iPad] - the tail number, = 1 for tailA, = 2 for tailB
1091 // qCenterPad - charge extimated for each pad, arb. units
1092 // weightsSum - sum of weights extimated for each pad fired, arb. units
1093
1094 const Float_t kSigmaForTail[2] = {AliTOFConstants::fgkSigmaForTail1,AliTOFConstants::fgkSigmaForTail2}; //for tail
1095 Int_t iz = 0, ix = 0;
1096 Float_t dX = 0., dZ = 0., x = 0., z = 0.;
1097 Float_t h = fHparameter, h2 = fH2parameter, k = fKparameter, k2 = fK2parameter;
1098 Float_t effX = 0., effZ = 0., resX = 0., resZ = 0., timeWalkX = 0., timeWalkZ = 0.;
1099 Float_t logOfqInd = 0.;
1100 Float_t weightsSum = 0.;
1101 Int_t nTail[4] = {0,0,0,0};
1102 Int_t padId[4] = {0,0,0,0};
1103 Float_t eff[4] = {0.,0.,0.,0.};
1104 Float_t res[4] = {0.,0.,0.,0.};
1105 Float_t qCenterPad = fMinimumCharge * fMinimumCharge;
1106 Float_t timeWalk[4] = {0.,0.,0.,0.};
1107 Float_t timeDelay[4] = {0.,0.,0.,0.};
1108
1109 nActivatedPads = 0;
1110 nFiredPads = 0;
1111
1112 (z0 <= 0) ? iz = 0 : iz = 1;
1113 dZ = z0 + (0.5 * AliTOFConstants::fgkNpadZ - iz - 0.5) * AliTOFConstants::fgkZPad; // hit position in the pad frame, (0,0) - center of the pad
1114 z = 0.5 * AliTOFConstants::fgkZPad - TMath::Abs(dZ); // variable for eff., res. and timeWalk. functions
1115 iz++; // z row: 1, ..., AliTOFConstants::fgkNpadZ = 2
1116 ix = (Int_t)((x0 + 0.5 * AliTOFConstants::fgkNpadX * AliTOFConstants::fgkXPad) / AliTOFConstants::fgkXPad);
1117 dX = x0 + (0.5 * AliTOFConstants::fgkNpadX - ix - 0.5) * AliTOFConstants::fgkXPad; // hit position in the pad frame, (0,0) - center of the pad
1118 x = 0.5 * AliTOFConstants::fgkXPad - TMath::Abs(dX); // variable for eff., res. and timeWalk. functions;
1119 ix++; // x row: 1, ..., AliTOFConstants::fgkNpadX = 48
1120
1121 ////// Pad A:
1122 nActivatedPads++;
1123 nPlace[nActivatedPads-1] = (iz - 1) * AliTOFConstants::fgkNpadX + ix;
1124 qInduced[nActivatedPads-1] = qCenterPad;
1125 padId[nActivatedPads-1] = 1;
1126
1127 if (fEdgeEffect == 0) {
1128 eff[nActivatedPads-1] = fEffCenter;
1129 if (gRandom->Rndm() < eff[nActivatedPads-1]) {
1130 nFiredPads = 1;
1131 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + fResCenter * fResCenter); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns;
1132 isFired[nActivatedPads-1] = kTRUE;
1133 tofTime[nActivatedPads-1] = gRandom->Gaus(geantTime + fTimeWalkCenter, res[0]);
1134 averageTime = tofTime[nActivatedPads-1];
1135 }
1136 } else {
1137
1138 if(z < h) {
1139 if(z < h2) {
1140 effZ = fEffBoundary + (fEff2Boundary - fEffBoundary) * z / h2;
1141 } else {
1142 effZ = fEff2Boundary + (fEffCenter - fEff2Boundary) * (z - h2) / (h - h2);
1143 }
1144 resZ = fResBoundary + (fResCenter - fResBoundary) * z / h;
1145 timeWalkZ = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * z / h;
1146 nTail[nActivatedPads-1] = 1;
1147 } else {
1148 effZ = fEffCenter;
1149 resZ = fResCenter;
1150 timeWalkZ = fTimeWalkCenter;
1151 }
1152
1153 if(x < h) {
1154 if(x < h2) {
1155 effX = fEffBoundary + (fEff2Boundary - fEffBoundary) * x / h2;
1156 } else {
1157 effX = fEff2Boundary + (fEffCenter - fEff2Boundary) * (x - h2) / (h - h2);
1158 }
1159 resX = fResBoundary + (fResCenter - fResBoundary) * x / h;
1160 timeWalkX = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * x / h;
1161 nTail[nActivatedPads-1] = 1;
1162 } else {
1163 effX = fEffCenter;
1164 resX = fResCenter;
1165 timeWalkX = fTimeWalkCenter;
1166 }
1167
1168 (effZ<effX) ? eff[nActivatedPads-1] = effZ : eff[nActivatedPads-1] = effX;
1169 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1170 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
1171
1172
1173 ////// Pad B:
1174 if(z < k2) {
1175 effZ = fEffBoundary - (fEffBoundary - fEff3Boundary) * (z / k2);
1176 } else {
1177 effZ = fEff3Boundary * (k - z) / (k - k2);
1178 }
1179 resZ = fResBoundary + fResSlope * z / k;
1180 timeWalkZ = fTimeWalkBoundary + fTimeWalkSlope * z / k;
1181
1182 if(z < k && z > 0) {
1183 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
1184 nActivatedPads++;
1185 nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX;
1186 eff[nActivatedPads-1] = effZ;
1187 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1188 timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ; // ns
1189 nTail[nActivatedPads-1] = 2;
1190 if (fTimeDelayFlag) {
1191 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
1192 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
1193 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
1194 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1195 } else {
1196 timeDelay[nActivatedPads-1] = 0.;
1197 }
1198 padId[nActivatedPads-1] = 2;
1199 }
1200 }
1201
1202
1203 ////// Pad C, D, E, F:
1204 if(x < k2) {
1205 effX = fEffBoundary - (fEffBoundary - fEff3Boundary) * (x / k2);
1206 } else {
1207 effX = fEff3Boundary * (k - x) / (k - k2);
1208 }
1209 resX = fResBoundary + fResSlope*x/k;
1210 timeWalkX = fTimeWalkBoundary + fTimeWalkSlope*x/k;
1211
1212 if(x < k && x > 0) {
1213 // C:
1214 if(ix > 1 && dX < 0) {
1215 nActivatedPads++;
1216 nPlace[nActivatedPads-1] = nPlace[0] - 1;
1217 eff[nActivatedPads-1] = effX;
1218 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1219 timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
1220 nTail[nActivatedPads-1] = 2;
1221 if (fTimeDelayFlag) {
1222 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
1223 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
1224 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
1225 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1226 } else {
1227 timeDelay[nActivatedPads-1] = 0.;
1228 }
1229 padId[nActivatedPads-1] = 3;
1230
1231 // D:
1232 if(z < k && z > 0) {
1233 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
1234 nActivatedPads++;
1235 nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX - 1;
1236 eff[nActivatedPads-1] = effX * effZ;
1237 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1238 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
1239
1240 nTail[nActivatedPads-1] = 2;
1241 if (fTimeDelayFlag) {
1242 if (TMath::Abs(x) < TMath::Abs(z)) {
1243 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
1244 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
1245 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
1246 } else {
1247 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
1248 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
1249 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
1250 }
1251 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1252 } else {
1253 timeDelay[nActivatedPads-1] = 0.;
1254 }
1255 padId[nActivatedPads-1] = 4;
1256 }
1257 } // end D
1258 } // end C
1259
1260 // E:
1261 if(ix < AliTOFConstants::fgkNpadX && dX > 0) {
1262 nActivatedPads++;
1263 nPlace[nActivatedPads-1] = nPlace[0] + 1;
1264 eff[nActivatedPads-1] = effX;
1265 res[nActivatedPads-1] = 0.001 * (TMath::Sqrt(10400 + resX * resX)); // ns
1266 timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
1267 nTail[nActivatedPads-1] = 2;
1268 if (fTimeDelayFlag) {
1269 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
1270 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
1271 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
1272 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1273 } else {
1274 timeDelay[nActivatedPads-1] = 0.;
1275 }
1276 padId[nActivatedPads-1] = 5;
1277
1278
1279 // F:
1280 if(z < k && z > 0) {
1281 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
1282 nActivatedPads++;
1283 nPlace[nActivatedPads - 1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX + 1;
1284 eff[nActivatedPads - 1] = effX * effZ;
1285 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1286 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001*timeWalkX; // ns
1287 nTail[nActivatedPads-1] = 2;
1288 if (fTimeDelayFlag) {
1289 if (TMath::Abs(x) < TMath::Abs(z)) {
1290 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
1291 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
1292 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
1293 } else {
1294 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
1295 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
1296 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
1297 }
1298 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1299 } else {
1300 timeDelay[nActivatedPads-1] = 0.;
1301 }
1302 padId[nActivatedPads-1] = 6;
1303 }
1304 } // end F
1305 } // end E
1306 } // end if(x < k)
1307
1308
1309 for (Int_t iPad = 0; iPad < nActivatedPads; iPad++) {
1310 if (res[iPad] < fTimeResolution) res[iPad] = fTimeResolution;
1311 if(gRandom->Rndm() < eff[iPad]) {
1312 isFired[iPad] = kTRUE;
1313 nFiredPads++;
1314 if(fEdgeTails) {
1315 if(nTail[iPad] == 0) {
1316 tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
1317 } else {
1318 ftail->SetParameters(res[iPad], 2. * res[iPad], kSigmaForTail[nTail[iPad]-1]);
1319 Double_t timeAB = ftail->GetRandom();
1320 tofTime[iPad] = geantTime + timeWalk[iPad] + timeDelay[iPad] + timeAB;
1321 }
1322 } else {
1323 tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
1324 }
1325 if (fAverageTimeFlag) {
1326 averageTime += tofTime[iPad] * qInduced[iPad];
1327 weightsSum += qInduced[iPad];
1328 } else {
1329 averageTime += tofTime[iPad];
1330 weightsSum += 1.;
1331 }
1332 }
1333 }
1334 if (weightsSum!=0) averageTime /= weightsSum;
1335
1336 } // end else (fEdgeEffect != 0)
1337
1338 //cout << "timedelay " << timeDelay[0] << endl;
1339 //cout << "timedelay " << timeDelay[1] << endl;
1340 //cout << "timedelay " << timeDelay[2] << endl;
1341 //cout << "timedelay " << timeDelay[3] << endl;
1342
1343}
1344*/
1345
1346
1347//__________________________________________________________________
1348Int_t AliTOFReconstructioner::PDGtoGeantCode(Int_t pdgcode)
1349{
1350 //
1351 // Gives the GEANT code from KF code of LUND JETSET
1352 //
1353 Int_t geantCode=0; // default value
1354 switch (pdgcode) {
1355 case 22:
1356 geantCode=1; // GAMMA
1357 break ;
1358 case -11:
1359 geantCode=2; // E+
1360 break ;
1361 case 11:
1362 geantCode=3; // E-
1363 break ;
1364 case 12:
1365 geantCode=4; // NUE
1366 break ;
1367 case 14:
1368 geantCode=4; // NUMU
1369 break ;
1370 case -13:
1371 geantCode=5; // MU+
1372 break ;
1373 case 13:
1374 geantCode=6; // MU-
1375 break ;
1376 case 111:
1377 geantCode=7; // PI0
1378 break ;
1379 case 211:
1380 geantCode=8; // PI+
1381 break ;
1382 case -211:
1383 geantCode=9; // PI-
1384 break ;
1385 case 130:
1386 geantCode=10; // K_L0
1387 break ;
1388 case 321:
1389 geantCode=11; // K+
1390 break ;
1391 case -321:
1392 geantCode=12; // K-
1393 break ;
1394 case 2112:
1395 geantCode=13; // N0
1396 break ;
1397 case 2212:
1398 geantCode=14; // P+
1399 break ;
1400 case -2212:
1401 geantCode=15; // P~-
1402 break ;
1403 case 310:
1404 geantCode=16; // K_S0
1405 break ;
1406 case 221:
1407 geantCode=17; // ETA
1408 break ;
1409 case 3122:
1410 geantCode=18; // LAMBDA0
1411 break ;
1412 case 3222:
1413 geantCode=19; // SIGMA+
1414 break ;
1415 case 3212:
1416 geantCode=20; // SIGMA0
1417 break ;
1418 case 3112:
1419 geantCode=21; // SIGMA-
1420 break ;
1421 case 3322:
1422 geantCode=22; // XI0
1423 break ;
1424 case 3312:
1425 geantCode=23; // XI-
1426 break ;
1427 case 3334:
1428 geantCode=24; // OMEGA-
1429 break ;
1430 case -2112:
1431 geantCode=25; // N~0
1432 break ;
1433 case -3122:
1434 geantCode=26; // LAMBDA~0
1435 break ;
1436 case -3112:
1437 geantCode=27; // SIGMA~+
1438 break ;
1439 case -3212:
1440 geantCode=28; // SIGMA~0
1441 break ;
1442 case -3222:
1443 geantCode=29; // SIGMA~-
1444 break ;
1445 case -3322:
1446 geantCode=30; // XI~0
1447 break ;
1448 case -3312:
1449 geantCode=31; // XI~+
1450 break ;
1451 case -3334:
1452 geantCode=32; // OMEGA~+
1453 break ;
1454 case 223:
1455 geantCode=33; // OMEGA(782)
1456 break ;
1457 case 333:
1458 geantCode=34; // PHI(1020)
1459 break ;
1460 case 411:
1461 geantCode=35; // D+
1462 break ;
1463 case -411:
1464 geantCode=36; // D-
1465 break ;
1466 case 421:
1467 geantCode=37; // D0
1468 break ;
1469 case -421:
1470 geantCode=38; // D~0
1471 break ;
1472 case 431:
1473 geantCode=39; // D_S+
1474 break ;
1475 case -431:
1476 geantCode=40; // D_S~-
1477 break ;
1478 case 4122:
1479 geantCode=41; // LAMBDA_C+
1480 break ;
1481 case 213:
1482 geantCode=42; // RHP(770)+
1483 break ;
1484 case -213:
1485 geantCode=43; // RHO(770)-
1486 break ;
1487 case 113:
1488 geantCode=44; // RHO(770)0
1489 break ;
1490 default:
1491 geantCode=45;
1492 break;
1493 }
1494
1495 return geantCode;
1496}
1497
1498//__________________________________________________________________
1499Bool_t AliTOFReconstructioner::operator==( AliTOFReconstructioner const & tofrec)const
1500{
1501 // Equal operator.
1502 // Reconstructioners are equal if their parameters are equal
1503
1504 // split the member variables in analogous categories
1505
1506 // time resolution and edge effect parameters
1507 Bool_t dummy0=(fTimeResolution==tofrec.fTimeResolution)&&(fpadefficiency==tofrec.fpadefficiency)&&(fEdgeEffect==tofrec.fEdgeEffect)&&(fEdgeTails==tofrec.fEdgeTails)&&(fHparameter==tofrec.fHparameter)&&(fH2parameter==tofrec.fH2parameter)&&(fKparameter==tofrec.fKparameter)&&(fK2parameter==tofrec.fK2parameter);
1508
1509 // pad efficiency parameters
1510 Bool_t dummy1=(fEffCenter==tofrec.fEffCenter)&&(fEffBoundary==tofrec.fEffBoundary)&&(fEff2Boundary==tofrec.fEff2Boundary)&&(fEff3Boundary==tofrec.fEff3Boundary)&&(fResCenter==tofrec.fResCenter)&&(fResBoundary==tofrec.fResBoundary)&&(fResSlope==tofrec.fResSlope);
1511
1512 // time walk parameters
1513 Bool_t dummy2=(fTimeWalkCenter==tofrec.fTimeWalkCenter)&&(fTimeWalkBoundary==tofrec.fTimeWalkBoundary)&&(fTimeWalkSlope==tofrec.fTimeWalkSlope)&&(fTimeDelayFlag==tofrec.fTimeDelayFlag)&&(fPulseHeightSlope==tofrec.fPulseHeightSlope)&&(fTimeDelaySlope==tofrec.fTimeDelaySlope);
1514
1515 // ADC-TDC correlation parameters
1516 Bool_t dummy3=(fMinimumCharge==tofrec.fMinimumCharge)&&(fChargeSmearing==tofrec.fChargeSmearing )&&(fLogChargeSmearing==tofrec.fLogChargeSmearing )&&(fTimeSmearing==tofrec.fTimeSmearing )&&(fAverageTimeFlag==tofrec.fAverageTimeFlag)&&(fChargeFactorForMatching==tofrec.fChargeFactorForMatching)&&(fMatchingStyle==tofrec.fMatchingStyle);
1517
1518 Bool_t dummy4=(fTrackingEfficiency==tofrec.fTrackingEfficiency)&&(fSigmavsp==tofrec.fSigmavsp)&&(fSigmaZ==tofrec.fSigmaZ)&&(fSigmarphi==tofrec.fSigmarphi)&&(fSigmap==tofrec.fSigmap)&&(fSigmaPhi==tofrec.fSigmaPhi)&&(fSigmaTheta==tofrec.fSigmaTheta)&&(fNoise==tofrec.fNoise)&&(fNoiseSlope==tofrec.fNoiseSlope)&&(fField==tofrec.fField)&&(fRadLenTPC==tofrec.fRadLenTPC)&&(fCorrectionTRD==tofrec.fCorrectionTRD)&&(fLastTPCRow==tofrec.fLastTPCRow)&&(fRadiusvtxBound==tofrec.fRadiusvtxBound)&&(fMaxTestTracks==tofrec.fMaxTestTracks)&&(fStep==tofrec.fStep)&&(fMaxPixels==tofrec.fMaxPixels)&&(fMaxAllTracks==tofrec.fMaxAllTracks)&&(fMaxTracks==tofrec.fMaxTracks)&&(fMaxTOFHits==tofrec.fMaxTOFHits)&&(fPBound==tofrec.fPBound);
1519
1520 if( dummy0 && dummy1 && dummy2 && dummy3 && dummy4)
1521 return kTRUE ;
1522 else
1523 return kFALSE ;
1524
1525}
1526//____________________________________________________________________________
1527void AliTOFReconstructioner::UseHitsFrom(const char * filename)
1528{
1529 SetTitle(filename) ;
1530}
1531
1532//____________________________________________________________________________
1533void AliTOFReconstructioner::InitArray(Float_t array[], Int_t nlocations)
1534{
1535 //
1536 // Initialize the array of Float_t
1537 //
1538 for (Int_t i = 0; i < nlocations; i++) {
1539 array[i]=0.;
1540 } // end loop
1541
1542}
1543
1544//____________________________________________________________________________
1545void AliTOFReconstructioner::InitArray(Int_t array[], Int_t nlocations)
1546{
1547 //
1548 // Initialize the array of Int_t
1549 //
1550 for (Int_t i = 0; i < nlocations; i++) {
1551 array[i]=0;
1552 } // end loop
1553
1554}
1555
1556
1557//____________________________________________________________________________
1558void AliTOFReconstructioner::ReadTOFHits(Int_t ntracks, TTree* treehits, TClonesArray* tofhits, Int_t ***MapPixels, Int_t* kTOFhitFirst, AliTOFPad* pixelArray , Int_t* iTOFpixel, Float_t* toftime, AliTOFRecHit* hitArray, Int_t& isHitOnFiredPad, Int_t& ipixel)
1559{
1560 //
1561 // Read TOF hits for the current event and fill arrays
1562 //
1563 // Start loop on primary tracks in the hits containers
1564 //
1565 // Noise meaning in ReadTOFHits: we use the word 'noise' in the
1566 // following cases
1567 // - signals produced by secondary particles
1568 // - signals produced by the next hits (out of the first) of a given track
1569 // (both primary and secondary)
1570 // - signals produced by edge effect
1571
1572
1573 TParticle *particle;
1574 Int_t nHitOutofTofVolumes; // number of hits out of TOF GEANT volumes (it happens in very
1575 // few cases)
1576 Int_t npixel[AliTOFConstants::fgkmaxtoftree]; // array used by TOFRecon for check on TOF geometry
1577 Int_t npions=0; // number of pions for the current event
1578 Int_t nkaons=0; // number of kaons for the current event
1579 Int_t nprotons=0; // number of protons for the current event
1580 Int_t nelectrons=0;// number of electrons for the current event
1581 Int_t nmuons=0; // number of muons for the current event
1582 Float_t tofpos[3]; // TOF hit position and GEANT time
1583 Float_t zPad,xPad;
1584 Int_t nbytes = 0;
1585 Int_t ipart, nhits=0, nHitsFromPrimaries=0;
1586 Int_t ntotalTOFhits=0; // total number of TOF hits for the current event
1587 Int_t ipartLast=-1; // last track identifier
1588 Int_t iFirstHit; // flag to check if the current hit is the first hit on TOF for the
1589 // current track
1590 Int_t iNoiseHit=0; // flag used to tag noise hits (the noise meaning is reported in the
1591 // header of the ReadTOFHits method)
1592 Int_t nhitWithoutNoise;// number of hits not due to noise
1593 Int_t inoise=0,inoise2=0;
1594 Int_t nMultipleSignOnSamePad=0; // number of cases where a pad is fired more than one time
1595 Int_t nPixEdge=0; // additional pads fired due to edge effect in ReadTOFHits (local var)
1596 // array used for counting different types of primary particles
1597 Int_t particleTypeGEANT[50]={0,4,4,0,5,5,0,3,3,0,
1598 2,2,0,1,1,0,0,0,0,0,
1599 0,0,0,0,0,0,0,0,0,0,
1600 0,0,0,0,0,0,0,0,0,0,
1601 0,0,0,0,0,0,0,0,0,0};
1602 Int_t particleType,particleInTOFtype[6][3];
1603 for (Int_t i=0;i<6;i++) {
1604 for (Int_t j=0;j<3;j++) {
1605 particleInTOFtype[i][j]=0;
1606 }
1607 }
1608
5fff655e 1609 // speed-up the code
1610 treehits->SetBranchStatus("*",0); // switch off all branches
1611 treehits->SetBranchStatus("TOF*",1); // switch on only TOF
db9ba97f 1612
1613 for (Int_t track=0; track<ntracks;track++) { // starting loop on primary tracks for the current event
1614
1615 gAlice->ResetHits();
1616 nbytes += treehits->GetEvent(track);
1617 nhits = tofhits->GetEntriesFast();
1618
1619 ntotalTOFhits+=nhits;
1620
1621 // Start loop on hits connected to the current primary tracked particle
1622 // (including hits produced by secondary particles generaterd by the
1623 // current ptimary tracked particle)
1624 for (Int_t hit=0;hit<nhits;hit++) {
1625 AliTOFhit* tofHit = (AliTOFhit*)tofhits->UncheckedAt(hit);
1626 ipart = tofHit->GetTrack();
1627 if(ipart>=fMaxAllTracks) break;
1628 Float_t geantTime= tofHit->GetTof(); // it is given in [s]
1629 particle = (TParticle*)gAlice->Particle(ipart);
1630
1631 Int_t pdgCode=particle->GetPdgCode();
1632 // Only high momentum tracks (see fPBound value)
1633 // momentum components at vertex
1634 Float_t pxvtx = particle->Px();
1635 Float_t pyvtx = particle->Py();
1636 Float_t pzvtx = particle->Pz();
1637 Float_t pvtx = TMath::Sqrt(pxvtx*pxvtx+pyvtx*pyvtx+pzvtx*pzvtx);
1638 if(pvtx>fPBound) {
1639
1640 if(particle->GetFirstMother() < 0) nHitsFromPrimaries++; // count primaries
1641
1642 // x and y coordinates of the particle production vertex
1643 Float_t vx = particle->Vx();
1644 Float_t vy = particle->Vy();
1645 Float_t vr = TMath::Sqrt(vx*vx+vy*vy); // cylindrical radius of the particle production vertex
1646
1647 Float_t x = tofHit->X(); tofpos[0]=x;
1648 Float_t y = tofHit->Y(); tofpos[1]=y;
1649 Float_t z = tofHit->Z(); tofpos[2]=z;
1650
1651 Float_t tofradius = TMath::Sqrt(x*x+y*y); // radius cilindrical coordinate of the TOF hit
1652 // momentum components (cosine) when striking the TOF
1653 Float_t pxtof = tofHit->GetPx();
1654 Float_t pytof = tofHit->GetPy();
1655 Float_t pztof = tofHit->GetPz();
1656 // scalar product indicating the direction of the particle when striking the TOF
1657 // (>0 for outgoing particles)
1658 Float_t isGoingOut = (x*pxtof+y*pytof+z*pztof)/TMath::Sqrt(x*x+y*y+z*z);
1659 Float_t momtof = tofHit->GetMom();
1660 // now momentum components when striking the TOF
1661 pxtof *= momtof;
1662 pytof *= momtof;
1663 pztof *= momtof;
1664 particleType=particleTypeGEANT[PDGtoGeantCode(pdgCode)-1];
1665 if(particleType) {
1666 particleInTOFtype[5][2]++;
1667 particleInTOFtype[particleType-1][2]++;
1668 }
1669 iFirstHit=0;
1670 // without noise hits
1671
1672 if(ipart!=ipartLast) {
1673 iFirstHit=1;
1674 toftime[ipart]=geantTime; //time [s]
1675 // tofMom[ipart]=momtof;
1676 ipartLast=ipart;
1677 if(particle->GetFirstMother() < 0) {
1678 Int_t abspdgCode=TMath::Abs(pdgCode);
1679 switch (abspdgCode) {
1680 case 211:
1681 npions++;
1682 break ;
1683 case 321:
1684 nkaons++;
1685 break ;
1686 case 2212:
1687 nprotons++;
1688 break ;
1689 case 11:
1690 nelectrons++;
1691 break ;
1692 case 13:
1693 nmuons++;
1694 break ;
1695 }
1696 }
1697 if(vr>fRadiusvtxBound) {
1698 if(particleType) {
1699 particleInTOFtype[5][1]++;
1700 particleInTOFtype[particleType-1][1]++;
1701 }
1702 inoise++;
1703 inoise2++;
1704 } else {
1705 if(particleType) {
1706 particleInTOFtype[5][0]++;
1707 particleInTOFtype[particleType-1][0]++;
1708 }
1709 }
1710 } else {
1711 inoise++;
1712 if(particleType) {
1713 particleInTOFtype[5][1]++;
1714 particleInTOFtype[particleType-1][1]++;
1715 }
1716 } //end if(ipart!=ipartLast)
1717
1718 IsInsideThePad(fg3,x,y,z,npixel,zPad,xPad);
1719
1720 Int_t sec = tofHit->GetSector();
1721 Int_t pla = tofHit->GetPlate();
1722 Int_t str = tofHit->GetStrip();
1723 if(sec!=npixel[0] || pla!=npixel[1] || str!=npixel[2]){// check on volume
1724 cout << "sector" << sec << " npixel[0] " << npixel[0] << endl;
1725 cout << "plate " << pla << " npixel[1] " << npixel[1] << endl;
1726 cout << "strip " << str << " npixel[2] " << npixel[2] << endl;
1727 } // close check on volume
1728
1729 Int_t padz = tofHit->GetPadz();
1730 Int_t padx = tofHit->GetPadx();
1731 Float_t Zpad = tofHit->GetDz();
1732 Float_t Xpad = tofHit->GetDx();
1733
1734
1735 if (npixel[4]==0){
1736 IsInsideThePad(fg3,x,y,z,npixel,zPad,xPad);
1737 if (npixel[4]==0){
1738 nHitOutofTofVolumes++;
1739 }
1740 } else {
1741 Float_t zStrip=AliTOFConstants::fgkZPad*(padz-0.5-0.5*AliTOFConstants::fgkNpadZ)+Zpad;
1742 if(padz!=npixel[3]) printf(" : Zpad=%f, padz=%i, npixel[3]=%i, zStrip=%f\n",Zpad,padz,npixel[3],zStrip);
1743 Float_t xStrip=AliTOFConstants::fgkXPad*(padx-0.5-0.5*AliTOFConstants::fgkNpadX)+Xpad;
1744
1745 Int_t nPlace[4]={0,0,0,0};
1746 nPlace[0]=(padz-1)*AliTOFConstants::fgkNpadX+padx;
1747
1748 Int_t nActivatedPads=0;
1749 Int_t nFiredPads=0;
1750 Bool_t isFired[4]={kFALSE,kFALSE,kFALSE,kFALSE};
1751 Float_t tofAfterSimul[4]={0.,0.,0.,0.};
1752 Float_t qInduced[4]={0.,0.,0.,0.};
1753 Float_t averageTime=0.;
1754
1755
1756 BorderEffect(zStrip,xStrip,geantTime*1.0e+09,nActivatedPads,nFiredPads,isFired,nPlace,qInduced,tofAfterSimul,averageTime); // simulate edge effect
1757
1758
1759 if(nFiredPads) {
1760 for(Int_t indexOfPad=0; indexOfPad<nActivatedPads; indexOfPad++) {
1761 if(isFired[indexOfPad]){// the pad has fired
1762 if(indexOfPad==0) {// the hit belongs to a fired pad
1763 isHitOnFiredPad++;
1764 hitArray[isHitOnFiredPad-1].SetHit(ipart,pdgCode,tofpos,momtof,vr,iFirstHit);
1765 iNoiseHit=0;
1766
1767 if(vr>fRadiusvtxBound || iFirstHit==0) iNoiseHit=1;
1768
1769 hitArray[isHitOnFiredPad-1].SetNoise(iNoiseHit);
1770 if(iFirstHit) kTOFhitFirst[ipart]=isHitOnFiredPad;
1771
1772 }// close - the hit belongs to a fired pad
1773
1774 Int_t iMapFirstIndex=AliTOFConstants::fgkNSectors*(npixel[1]-1)+npixel[0]-1;
1775 Int_t iMapValue=MapPixels[iMapFirstIndex][npixel[2]-1][nPlace[indexOfPad]-1];
1776
1777 if(iMapValue==0) {
1778 ipixel++;
1779 if(indexOfPad) {
1780 iNoiseHit=1;
1781 nPixEdge++;
1782 } else {
1783 iTOFpixel[ipart]=ipixel;
1784 }
1785
1786 if(ipixel>fMaxPixels){ // check on the total number of activated pads
1787 cout << "ipixel=" << ipixel << " > fMaxPixels=" << fMaxPixels << endl;
1788 return;
1789 } // close check on the number of activated pads
1790
1791 MapPixels[iMapFirstIndex][npixel[2]-1][nPlace[indexOfPad]-1]=ipixel;
1792 pixelArray[ipixel-1].SetGeom(npixel[0],npixel[1],npixel[2],nPlace[indexOfPad]);
1793 pixelArray[ipixel-1].SetTrack(ipart);
1794 if(iNoiseHit) {
1795 pixelArray[ipixel-1].AddState(1);
1796 } else {
1797 if(tofAfterSimul[indexOfPad]<0) cout << "Time of Flight after detector simulation is negative" << endl;
1798 pixelArray[ipixel-1].AddState(10);
1799 }
1800
1801 pixelArray[ipixel-1].SetTofChargeHit(tofAfterSimul[indexOfPad],qInduced[indexOfPad],geantTime*1.0e+09,isHitOnFiredPad);
1802 } else { //else if(iMapValue==0)
1803 if(indexOfPad==0) iTOFpixel[ipart]=iMapValue;
1804 nMultipleSignOnSamePad++;
1805
1806 if(tofAfterSimul[indexOfPad] < pixelArray[iMapValue-1].GetRealTime() ) {
1807 pixelArray[iMapValue-1].SetTrack(ipart);
1808 // if(indexOfPad==0) pixelArray[iMapValue-1].SetTrack(ipart);
1809 if(indexOfPad) iNoiseHit=1;
1810 if(iNoiseHit) {
1811 pixelArray[iMapValue-1].AddState(1);
1812 } else {
1813 pixelArray[iMapValue-1].AddState(10);
1814 }
1815 pixelArray[iMapValue-1].SetRealTime(tofAfterSimul[indexOfPad]);
1816 pixelArray[iMapValue-1].SetGeantTime(geantTime*1.0e+09);
1817 pixelArray[iMapValue-1].SetHit(isHitOnFiredPad);
1818 } // close if(tofAfterSimul[indexOfPad] < pixelArray[iMapValue-1].GetTime() )
1819 } //end of Pixel filling
1820 } // close if(isFired[indexOfPad])
1821 } //end loop on activated pads indexOfPad
1822 } // close if(nFiredPads)
1823 } //end of hit with npixel[3]!=0
1824 } //high momentum tracks
1825 } //end on TOF hits
1826 } //end on primary tracks
1827
1828
1829 if(fdbg) {
1830 cout << ntotalTOFhits << " - total number of TOF hits " << nHitsFromPrimaries << " - primary " << endl;
1831 cout << inoise << " - noise hits, " << inoise2<< " - first crossing of a track with Rvtx>" << fRadiusvtxBound << endl;
1832 // cout << inoise << " - noise hits (" << 100.*inoise/ihit << " %), " << inoise2
1833 //<< " - first crossing of a track with Rvtx>" << RVTXBOUND << endl;
1834 nhitWithoutNoise=isHitOnFiredPad;
1835
1836 cout << ipixel << " fired pixels (" << nMultipleSignOnSamePad << " multiple fired pads, " << endl;
1837 //j << " fired by noise, " << j1 << " noise+track)" << endl;
1838 printf(" %i additional pads are fired due to edge effect\n",nPixEdge);
1839 cout << npions << " primary pions reached TOF" << endl;
1840 cout << nkaons << " primary kaons reached TOF" << endl;
1841 cout << nprotons << " primary protons reached TOF" << endl;
1842 cout << nelectrons<<" primary electrons reached TOF" << endl;
1843 cout << nmuons << " primary muons reached TOF" << endl;
1844 cout << "number of TOF hits for different species: 1-p, 2-K, 3-pi, 4-e, 5-mu, 6-all" << endl;
1845 cout << " first number - track hits, second - noise ones, third - all" << endl;
1846 for (Int_t i=0;i<6;i++) cout << i+1 << " " << particleInTOFtype[i][0] << " " << particleInTOFtype[i][1] << " " << particleInTOFtype[i][2] << endl;
1847
1848 Int_t primaryReachedTOF[6];
1849 primaryReachedTOF[0]=npions;
1850 primaryReachedTOF[1]=nkaons;
1851 primaryReachedTOF[2]=nprotons;
1852 primaryReachedTOF[3]=nelectrons;
1853 primaryReachedTOF[4]=nmuons;
1854 primaryReachedTOF[5]=npions+nkaons+nprotons+nelectrons+nmuons;
1855
1856 cout << " Reading TOF hits done" << endl;
1857 }
1858
1859}
1860
1861//____________________________________________________________________________
1862void AliTOFReconstructioner::AddNoiseFromOuter(Option_t *option, Int_t ***MapPixels, AliTOFPad* pixelArray , AliTOFRecHit* hitArray, Int_t& isHitOnFiredPad, Int_t& ipixel)
1863{
1864 //
1865 // Add noise hits from outer regions (forward and backward) according
1866 // to parameterized fZNoise distribution (to be used with events
1867 // generated in the barrel region)
1868
1869 Float_t zLen[AliTOFConstants::fgkNPlates+1],zStrips[AliTOFConstants::fgkNPlates];
1870 zStrips[0]=(Float_t) (AliTOFConstants::fgkNStripC);
1871 zStrips[1]=(Float_t) (AliTOFConstants::fgkNStripB);
1872 zStrips[2]=(Float_t) (AliTOFConstants::fgkNStripA);
1873 zStrips[3]=(Float_t) (AliTOFConstants::fgkNStripB);
1874 zStrips[4]=(Float_t) (AliTOFConstants::fgkNStripC);
1875
1876 zLen[5]=AliTOFConstants::fgkzlenA*0.5+AliTOFConstants::fgkzlenB+AliTOFConstants::fgkzlenC;
1877 zLen[4]=zLen[5]-AliTOFConstants::fgkzlenC;
1878 zLen[3]=zLen[4]-AliTOFConstants::fgkzlenB;
1879 zLen[2]=zLen[3]-AliTOFConstants::fgkzlenA;
1880 zLen[1]=zLen[2]-AliTOFConstants::fgkzlenB;
1881 zLen[0]=zLen[1]-AliTOFConstants::fgkzlenC;
1882
1883
1884 Int_t isector; // random sector number
1885 Int_t iplate; // random plate number
1886 Int_t istrip; // random strip number in the plate
1887 Int_t ipadAlongX; // random pad number along x direction
1888 Int_t ipadAlongZ; // random pad number along z direction
1889 Int_t ipad;
1890 Int_t nPixEdge=0; // additional pads fired due to edge effect when adding noise from outer
1891 // regions
1892
1893 // x -> time of flight given in ns
1894 TF1 *noiseTof = new TF1("noiseTof","exp(-x/20)",0,100);
1895
1896 if(strstr(option,"pp")){
1897 fZnoise = new TF1("fZnoise","257.8-0.178*x-0.000457*x*x",-AliTOFConstants::fgkMaxhZtof,AliTOFConstants::fgkMaxhZtof);
1898 }
1899 if(strstr(option,"Pb-Pb")){
1900 fZnoise = new TF1("fZnoise","182.2-0.09179*x-0.0001931*x*x",-AliTOFConstants::fgkMaxhZtof,AliTOFConstants::fgkMaxhZtof);
1901 }
1902
1903 if(fNoise) {
1904 if(fdbg) cout << " Start adding additional noise hits from outer regions" << endl;
1905
1906 for(Int_t i=0;i<fNoise;i++) {
1907
1908 isector=(Int_t) (AliTOFConstants::fgkNSectors*gRandom->Rndm())+1; //the sector number
1909 // non-flat z-distribution of additional hits
1910 Float_t zNoise=fZnoise->GetRandom();
1911
1912 // holes for PHOS and HMPID
1913 if(((AliTOF *) gAlice->GetDetector("TOF"))->IsVersion()==2) {
1914 // to be checked the holes case
1915 if(isector>12 && isector<16) { // sectors 13,14,15 - RICH
1916 do {
1917 iplate=(Int_t) (AliTOFConstants::fgkNPlates*gRandom->Rndm())+1;
1918 } while (iplate==2 || iplate==3 || iplate==4);
1919 // } else if(isector>11 && isector<17) { // sectors 12,13,14,15,16 - PHOS
1920 } else if(isector>2 && isector<8) { // sectors 3,4,5,6,7 - PHOS
1921 do {
1922 iplate=(Int_t) (AliTOFConstants::fgkNPlates*gRandom->Rndm())+1;
1923 } while (iplate==3);
1924 } else {
1925 iplate=(Int_t) (AliTOFConstants::fgkNPlates*gRandom->Rndm())+1;
1926 }
1927 } else {
1928 iplate=0;
1929 do {
1930 iplate++;
1931 } while(zNoise>zLen[iplate]);
1932 }
1933 // end of holes
1934
1935 if(iplate<1 || iplate>5) {
1936 printf(" iplate<1 or iplate>5, iplate=%i\n",iplate);
1937 return;
1938 }
1939
1940 Float_t nStripes=0;
1941 if(iplate>1) {
1942 for (Int_t i=0;i<iplate-1;i++) {
1943 nStripes += zStrips[i];
1944 }
1945 }
1946
1947 istrip=(Int_t)(zNoise-zLen[iplate-1])/((zLen[iplate]-zLen[iplate-1])/zStrips[iplate-1]); //the strip number in the plate
1948 istrip++;
1949
1950 ipadAlongX = (Int_t)(AliTOFConstants::fgkNpadX*gRandom->Rndm())+1;
1951 ipadAlongZ = (Int_t)(AliTOFConstants::fgkNpadZ*gRandom->Rndm())+1;
1952 ipad=(Int_t)(ipadAlongZ-1)*AliTOFConstants::fgkNpadX+ipadAlongX; //the pad number
1953
1954 Float_t xStrip=(ipadAlongX-1)*AliTOFConstants::fgkXPad+AliTOFConstants::fgkXPad*gRandom->Rndm()-0.5*AliTOFConstants::fgkNpadX*AliTOFConstants::fgkXPad;//x-coor.in the strip frame
1955 Float_t zStrip=(ipadAlongZ-1)*AliTOFConstants::fgkZPad+AliTOFConstants::fgkZPad*gRandom->Rndm()-0.5*AliTOFConstants::fgkNpadZ*AliTOFConstants::fgkZPad;//z-coor.in the strip frame
1956
1957 Int_t nPlace[4]={0,0,0,0};
1958 nPlace[0]=ipad;
1959
1960 Int_t nActivatedPads=0;
1961 Int_t nFiredPads=0;
1962 Bool_t isFired[4]={kFALSE,kFALSE,kFALSE,kFALSE};
1963 Float_t tofAfterSimul[4]={0.,0.,0.,0.};
1964 Float_t qInduced[4]={0.,0.,0.,0.};
1965 Float_t averageTime=0.;
1966 Float_t toffornoise=10.+noiseTof->GetRandom(); // 10 ns offset + parameterization [ns]
1967
1968 BorderEffect(zStrip,xStrip,toffornoise,nActivatedPads,nFiredPads,isFired,nPlace,qInduced,tofAfterSimul,averageTime); // simulate edge effect
1969
1970 if(nFiredPads) {
1971 for(Int_t indexOfPad=0; indexOfPad<nActivatedPads; indexOfPad++) {
1972 if(isFired[indexOfPad]){// the pad has fired
1973
1974 if(indexOfPad==0) {// the hit belongs to a fired pad
1975 isHitOnFiredPad++;
1976 hitArray[isHitOnFiredPad-1].SetX(0.);
1977 hitArray[isHitOnFiredPad-1].SetY(0.);
1978 hitArray[isHitOnFiredPad-1].SetZ(zNoise);
1979 hitArray[isHitOnFiredPad-1].SetNoise(1);
1980 } // close if(indexOfPad==0)
1981
1982 ipad = nPlace[indexOfPad];
1983
1984 Int_t iMapValue=MapPixels[AliTOFConstants::fgkNSectors*(iplate-1)+isector-1][istrip-1][ipad-1];
1985
1986 if(iMapValue==0) {
1987 ipixel++;
1988 if(indexOfPad) nPixEdge++;
1989 MapPixels[AliTOFConstants::fgkNSectors*(iplate-1)+isector-1][istrip-1][ipad-1]=ipixel;
1990 pixelArray[ipixel-1].SetGeom(isector,iplate,istrip,ipad);
1991 pixelArray[ipixel-1].AddState(1);
1992 pixelArray[ipixel-1].SetRealTime(tofAfterSimul[indexOfPad]);
1993 pixelArray[ipixel-1].SetHit(isHitOnFiredPad);
1994 } else if( tofAfterSimul[indexOfPad] < pixelArray[iMapValue-1].GetRealTime() ) {
1995 pixelArray[iMapValue-1].SetTrack(-1);
1996 pixelArray[iMapValue-1].AddState(1);
1997 pixelArray[iMapValue-1].SetRealTime(tofAfterSimul[indexOfPad]);
1998 pixelArray[iMapValue-1].SetHit(isHitOnFiredPad);
1999 } //end of if(iMapValue==0)
2000
2001 }// close if(isFired[indexOfPad])
2002 } //end loop on activated pads indexOfPad
2003 } // close if(nFiredPads)
2004 } //end of NOISE cycle
2005 }
2006
2007 // free used memory
2008 if (fZnoise)
2009 {
2010 delete fZnoise;
2011 fZnoise = 0;
2012 }
2013
2014 if (noiseTof)
2015 {
2016 delete noiseTof;
2017 noiseTof = 0;
2018 }
2019
2020 Int_t nNoiseSignals=0;
2021 Int_t nAll=0;
2022 for(Int_t idummy=1; idummy<ipixel+1; idummy++) {
2023 if(hitArray[pixelArray[idummy-1].GetHit()-1].GetNoise()==1) {
2024 nNoiseSignals++;
2025 if(pixelArray[idummy-1].GetState()>10) nAll++;
2026 }
2027 }
2028
2029 if(fdbg) {
2030 cout << " after adding " << fNoise << " noise hits: " << ipixel << " fired pixels (" << nNoiseSignals << " fired by noise, " << nAll << " noise+track)" << endl;
2031 printf(" %i additional pixels are fired by noise due to edge effect\n",nPixEdge);
2032 cout << " End of adding additional noise hits from outer regions" << endl;
2033 }
2034
2035 Float_t occupancy;
2036 // numberOfPads for AliTOFV4 (Full coverage)
2037 // - to be upgraded checking the used TOF version -
2038 Float_t numberOfPads=AliTOFConstants::fgkPadXSector*AliTOFConstants::fgkNSectors;
2039 occupancy=100.*ipixel/numberOfPads; // percentage of fired pads
2040 printf(" Overall TOF occupancy (percentage of fired pads after adding noise) = %f\n",occupancy);
2041
2042}
2043
2044
2045//____________________________________________________________________________
2046void AliTOFReconstructioner::SetMinDistance(AliTOFRecHit* hitArray, Int_t ilastEntry)
2047{
2048 //
2049 // Set the distance to the nearest hit for hitArray
2050 // ilastEntry is the index of the last entry of hitArray
2051
2052 // starting the setting for the distance to the nearest TOFhit (cm)
2053 for(Int_t i=0; i<ilastEntry; i++) {
2054
2055 if(hitArray[i].GetFirst()==1 && hitArray[i].GetNoise()==0) { // select the first hit of the track
2056 // hits are not due to noise
2057 Float_t minDistance=10000.,squareDistance; // current values of the (square) distance
2058 Int_t jAtMin=0; // index of the hit nearest to the i-th hit
2059 Float_t xhit=hitArray[i].X(); // x coordinate for i-th hit
2060 Float_t yhit=hitArray[i].Y(); // y coordinate for i-th hit
2061 Float_t zhit=hitArray[i].Z(); // z coordinate for i-th hit
2062 // was for(Int_t j=0; j<isHitOnFiredPad; j++) {
2063 for(Int_t j=0; j<ilastEntry; j++) {
2064 if(i!=j) {
2065 squareDistance=(hitArray[j].X()-xhit)*(hitArray[j].X()-xhit)+
2066 (hitArray[j].Y()-yhit)*(hitArray[j].Y()-yhit)+
2067 (hitArray[j].Z()-zhit)*(hitArray[j].Z()-zhit);
2068 if(squareDistance<minDistance) {
2069 minDistance=squareDistance;
2070 jAtMin=j;
2071 }
2072 }
2073 }
2074 minDistance=TMath::Sqrt(minDistance);
2075 hitArray[i].SetRmin(minDistance);
2076 if(minDistance==0.) printf(" Rmin=0, i=%i, j=%i, x=%f,y=%f,z=%f\n",i,jAtMin,xhit,yhit,zhit);// it cannot happen
2077 }
2078 }
2079
2080}
2081
2082// these lines has to be commented till TPC will provide fPx fPy fPz
2083// and fL in AliTPChit class
2084//____________________________________________________________________________
2085/*
2086void AliTOFReconstructioner::ReadTPCHits(Int_t ntracks, TTree* treehits, TClonesArray* tpchits, Int_t* iTrackPt, Int_t* iparticle, Float_t* ptTrack, AliTOFTrack* trackArray, Int_t& itrack)
2087{
2088 //
2089 // Read TPC hits for the current event
2090 //
2091 TParticle *particle=0;
2092 Int_t npions=0; // number of pions for the current event
2093 Int_t nkaons=0; // number of kaons for the current event
2094 Int_t nprotons=0; // number of protons for the current event
2095 Int_t nelectrons=0;// number of electrons for the current event
2096 Int_t nmuons=0; // number of muons for the current event
2097 Int_t ntotalTPChits=0; // total number of TPC hits for the current event
2098 Int_t idummy=-1; // dummy var used to count double hit TPC cases
2099 Int_t nTpcDoubleHitsLastRow=0; // number of double TPC hits in the last pad row
2100 Int_t nTpcHitsLastRow=0; // number of TPC hits in the last pad row
2101 Float_t trdpos[2]={0.,0.};
2102 Float_t pos[3]; // TPC hit position
2103 Float_t mom[3]; // momentum components in the last TPC row
2104 Float_t pt=0., tpclen; // pt: transverse momentum in the last TPC row
2105 Int_t nbytes = 0;
2106 Int_t ipart=0, nhits=0, iprim=0;
2107
2108 itrack=0; // itrack: total number of selected TPC tracks
2109
5fff655e 2110 // speed-up the code
2111 treehits->SetBranchStatus("*",0); // switch off all branches
2112 treehits->SetBranchStatus("TPC*",1); // switch on only TPC
2113
db9ba97f 2114 for (Int_t track=0; track<ntracks;track++) {
2115 gAlice->ResetHits();
2116 nbytes += treehits->GetEvent(track);
2117
2118
2119 nhits = tpchits->GetEntriesFast();
2120
2121 for (Int_t hit=0;hit<nhits;hit++) {
2122 ntotalTPChits++;
2123 AliTPChit* tpcHit = (AliTPChit*)tpchits->UncheckedAt(hit);
2124 Int_t row = tpcHit->fPadRow;
2125 ipart = tpcHit->GetTrack();
2126 if(ipart>=fMaxAllTracks) break;
2127 particle = (TParticle*)gAlice->Particle(ipart);
2128 Int_t pdgCode=particle->GetPdgCode();
2129 // only high momentum tracks
2130 // momentum components at production vertex
2131 Float_t pxvtx = particle->Px();
2132 Float_t pyvtx = particle->Py();
2133 Float_t pzvtx = particle->Pz();
2134 Float_t pvtx = TMath::Sqrt(pxvtx*pxvtx+pyvtx*pyvtx+pzvtx*pzvtx);
2135 if(pvtx>fPBound && row == fLastTPCRow) {
2136 Float_t vx = particle->Vx();
2137 Float_t vy = particle->Vy();
2138 Float_t vr = TMath::Sqrt(vx*vx+vy*vy);
2139 Float_t x = tpcHit->X();
2140 Float_t y = tpcHit->Y();
2141 Float_t z = tpcHit->Z();
2142 pos[0]=x; pos[1]=y; pos[2]=z;
2143
2144 Float_t pxtpc = tpcHit->fPx;
2145 Float_t pytpc = tpcHit->fPy;
2146 Float_t pztpc = tpcHit->fPz;
2147 mom[0]=pxtpc; mom[1]=pytpc; mom[2]=pztpc;
2148 Float_t momtpc = TMath::Sqrt(pxtpc*pxtpc+pytpc*pytpc+pztpc*pztpc);
2149
2150 if(x*pxtpc+y*pytpc>0) { // only tracks going out of TPC
2151
2152 Float_t isoutgoing = x*pxtpc+y*pytpc+z*pztpc;
2153 isoutgoing /= (momtpc*TMath::Sqrt(x*x+y*y+z*z));
2154 tpclen = tpcHit->fL;
2155
2156
2157 if(ipart!=idummy) {
2158 if(particle->GetFirstMother() < 0) {
2159 Int_t abspdgCode=TMath::Abs(pdgCode);
2160 switch (abspdgCode) {
2161 case 211:
2162 npions++;
2163 break ;
2164 case 321:
2165 nkaons++;
2166 break ;
2167 case 2212:
2168 nprotons++;
2169 break ;
2170 case 11:
2171 nelectrons++;
2172 break ;
2173 case 13:
2174 nmuons++;
2175 break ;
2176 }
2177 } // close if(particle->GetFirstMother() < 0)
2178 } // close if(ipart!=idummy)
2179
2180 if(gRandom->Rndm()<fTrackingEfficiency && vr<fRadiusvtxBound && ipart!=idummy) {
2181
2182 itrack++;
2183 if(particle->GetFirstMother() < 0) iprim++;
2184
2185 if(itrack>fMaxTracks) {
2186 cout << "itrack=" << itrack << " > MAXTRACKS=" << fMaxTracks << endl;
2187 return;
2188 } // close if(itrack>fMaxTracks)
2189
2190
2191 iparticle[ipart]=itrack;
2192
2193 trackArray[itrack-1].SetTrack(ipart,pvtx,pdgCode,tpclen,pos,mom,trdpos);
2194
2195 pt=TMath::Sqrt(pxtpc*pxtpc+pytpc*pytpc); // pt: transverse momentum at TPC
2196 // Filling iTrackPt[MAXTRACKS] by itrack ordering on Pt
2197 if(itrack==1) {
2198 iTrackPt[itrack-1]=itrack;
2199 ptTrack[itrack-1]=pt;
2200 } else {
2201 for (Int_t i=0; i<itrack-1; i++) {
2202 if(pt>ptTrack[i]) {
2203 for(Int_t j=i; j<itrack-1; j++) {
2204 Int_t k=itrack-1+i-j;
2205 iTrackPt[k]= iTrackPt[k-1];
2206 ptTrack[k] = ptTrack[k-1];
2207 }
2208 iTrackPt[i]=itrack;
2209 ptTrack[i]=pt;
2210 break;
2211 }
2212 if(i==itrack-2) {
2213 iTrackPt[itrack-1]=itrack;
2214 ptTrack[itrack-1]=pt;
2215 }
2216 }
2217 }
2218
2219 } //end of itrack
2220 if(vr>fRadiusvtxBound) nTpcHitsLastRow++;
2221 if(ipart==idummy) nTpcDoubleHitsLastRow++;
2222 idummy=ipart;
2223 } // close if(x*px+y*py>0)
2224 } // close if(pvtx>fPBound && row == fLastTPCRow)
2225 } //end of hits
2226 } // close loop on tracks
2227
2228
2229 if(fdbg) {
2230 cout << ntotalTPChits << " TPC hits in the last TPC row " << fLastTPCRow << endl;
2231 cout << " " << nTpcHitsLastRow << " - hits with Rvtx>fRadiusvtxBound=" << fRadiusvtxBound << endl;
2232 cout << " " << nTpcDoubleHitsLastRow << " double TPC hits" << endl;
2233 cout << itrack << " - extracted TPC tracks " << iprim << " - primary" << endl;
2234 cout << npions << " primary pions reached TPC" << endl;
2235 cout << nkaons << " primary kaons reached TPC" << endl;
2236 cout << nprotons << " primary protons reached TPC" << endl;
2237 cout << nelectrons<< " primary electrons reached TPC" << endl;
2238 cout << nmuons << " primary muons reached TPC" << endl;
2239 } // if(fdbg)
2240
2241 Int_t primaryInTPC[6]={0,0,0,0,0,0};
2242 primaryInTPC[0]=npions;
2243 primaryInTPC[1]=nkaons;
2244 primaryInTPC[2]=nprotons;
2245 primaryInTPC[3]=nelectrons;
2246 primaryInTPC[4]=nmuons;
2247 primaryInTPC[5]=npions+nkaons+nprotons+nelectrons+nmuons;
2248
2249 if(fdbg) {
2250 printf(" contents of iTrackPt[MAXTRACKS],PtTrack[MAXTRACKS]\n");
2251 for (Int_t i=0; i<itrack; i++) {
2252 printf(" %i : iTrackPt=%i, PtTrack=%f\n",i+1,iTrackPt[i],ptTrack[i]);
2253 }
2254 printf(" Check ordered transverse momentum array\n");
2255 for (Int_t i=itrack-1; i>=0; i--) {
2256 printf(" %i : iTrackPt=%i, PtTrack=%f\n",i+1,iTrackPt[i],ptTrack[i]);
2257 }
2258 }// if(fdbg)
2259
2260}
2261*/
2262//____________________________________________________________________________
2263void cylcor(Float_t& x, Float_t& y) {
2264 Float_t rho,phi;
2265
2266 rho=TMath::Sqrt(x*x+y*y);
2267 phi=0.;
2268 if(TMath::Abs(x)>0. || TMath::Abs(y)>0.) phi=TMath::ATan2(y,x);
2269 if(phi<0.) phi=phi+2.*TMath::Pi();
2270 x=rho;
2271 y=phi;
2272
2273}
2274
2275//____________________________________________________________________________
2276void AliTOFReconstructioner::Matching(AliTOFTrack* trackArray, AliTOFRecHit* hitArray, Int_t ***mapPixels, AliTOFPad* pixelArray, Int_t* kTOFhitFirst, Int_t& ipixel, Int_t* iTrackPt, Int_t* iTOFpixel, Int_t ntotTpcTracks)
2277{
2278 Int_t TestTracks,iTestTrack,itest,ntest[fMaxTestTracks],testPixel[fMaxTestTracks],wPixel=0,itestc;
2279 Float_t testLength[fMaxTestTracks],wLength=0.,testRho[fMaxTestTracks],testZ[fMaxTestTracks],wRho=0.,wZ=0.;
2280 Float_t weight,testWeight[fMaxTestTracks];
2281 Float_t rotationFactor,phi0,coslam,sinlam,helixRadius,xHelixCenter,yHelixCenter,zHelixCenter,helixFactor;
2282 Int_t npixel[5],iMapValue,iwork1,iwork2,iwork3,iwork4,ihit=0;
2283 Int_t charge[48]={ 0, 1,-1, 0, 1,-1, 0, 1,-1, 0,
2284 1,-1, 0, 1,-1, 0, 0, 0, 1, 0,
2285 -1, 0,-1,-1, 0, 0,-1, 0, 1, 0,
2286 1, 1, 0, 0, 1,-1, 0, 0, 1,-1,
2287 1, 1,-1, 0, 1, 1, 2, 0};
2288 Float_t theta0,gpx,gpy,gpz,gp,gpt,gtheta,gx,gy,gz,gr,gxLast,gyLast,gzLast,chargeField;
2289 Float_t sumOfTheta=0.,weightTestTracksOutTof[4];
2290 Float_t s,ds,xRespectToHelixCenter,yRespectToHelixCenter,deltaRadius,fp,xp,yp,grho;
2291 Float_t mass,energy,g;
2292 Int_t itrack=0,itr,particleCharge,istep,iplate=0,iPadAlongX=0;
2293 Int_t itra,t34=0,t32=0,t44=0,t43=0,t42=0;
2294 Int_t wstate=0,m2state=0,wPix;
2295 Int_t idelR=0,idelR1=0,idelR2=0,iRmin=0,iRmin1=0,iRmin2=0;
2296 Float_t massArray[50] = {0.0,0.00051,0.00051,0.0,0.1057,0.1057,0.135,0.1396,0.1396,0.4977,
2297 0.4936,0.4936,0.9396,0.9383,0.9383,0.4977,0.5488,1.1156,1.1894,1.1926,1.1926,
2298 1.3149,1.3213,1.6724,0.9396,1.1156,1.1894,1.1926,1.1974,1.3149,
2299 0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.};
2300 Float_t delR;
2301 Float_t radius,area,normR,normS,cosAngl;
2302 Int_t iPlateFirst,iTestGmax=0;
2303 Int_t fstate,iPrintM1=0,iPrintM2=0;
2304 Float_t gxExtrap=0.,gyExtrap=0.,gzExtrap=0.;
2305 Float_t avSigZ=0,avSigRPHI=0,avSigP=0,avSigPHI=0,avSigTHETA=0;
2306
2307 Float_t gxW,gyW,gzW;
2308 Float_t length0;
2309 Float_t snr=0;
2310 Int_t indexOfTestTrack;
2311 Float_t zPad,xPad;
2312 Int_t istate=0,imax=0,match,iMaxTestTracksOutTof=0,matchw;
2313 Float_t w,wmax=0.,inverseOfParticleSpeed,w2,smat[9],largestWeightTracksOutTof,sw;
2314 Float_t sumWeightTracksOutTof,sGeomWeigth;
2315 Int_t imatched;
2316 Int_t m10=0,m20=0,m22=0,m23=0;
2317 Int_t PRINT=0;
2318 TParticle *particle;
2319
2320 Float_t time=0.;
2321 itr=ntotTpcTracks;
2322 printf(" itr=%i\n",itr);
2323 for (itra=1; itra<itr+1; itra++) {
2324
2325 Int_t itrack=iTrackPt[itra-1];
2326 if(itrack==0) printf(" iTrackPt[itra-1]=0 for itra=%i\n",itra);
2327 Int_t ipart=trackArray[itrack-1].GetTrack();
2328 Float_t pvtx=trackArray[itrack-1].GetP();
2329 Int_t pdgCode=trackArray[itrack-1].GetPdgCode();
2330 Float_t tpclength=trackArray[itrack-1].GetlTPC();
2331 Float_t x=trackArray[itrack-1].GetRxTPC();
2332 Float_t y=trackArray[itrack-1].GetRyTPC();
2333 Float_t z=trackArray[itrack-1].GetRzTPC();
2334 Float_t RxTPC=x;
2335 Float_t RyTPC=y;
2336 Float_t RzTPC=z;
2337 Float_t Wx=x;
2338 Float_t Wy=y;
2339 Float_t Wz=z;
2340 Float_t px=trackArray[itrack-1].GetPxTPC();
2341 Float_t py=trackArray[itrack-1].GetPyTPC();
2342 Float_t pz=trackArray[itrack-1].GetPzTPC();
2343 Float_t pxTPC=px;
2344 Float_t pyTPC=py;
2345 Float_t pzTPC=pz;
2346
2347 Float_t p = TMath::Sqrt(px*px+py*py+pz*pz);
2348 Float_t pTPC=p;
2349
2350 Float_t rho = TMath::Sqrt(x*x+y*y);
2351 Float_t phi=0.;
2352 if(TMath::Abs(x)>0. || TMath::Abs(y)>0.) phi=TMath::ATan2(y,x);
2353 if(phi<0.) phi=phi+2.*TMath::Pi();
2354 Float_t phiTPC=phi*kRaddeg;
2355 if(fSigmavsp) {
2356 if(p==0) printf(" p=%f in g=0.022/p\n",p);
2357 g=0.022/p;
2358 avSigRPHI += g; // (cm)
2359 if(rho==0) printf(" rho=%f in phi += g*gRandom->Gaus()/rho\n",rho);
2360 phi += g*gRandom->Gaus()/rho;
2361 } else {
2362 if(rho==0) printf(" rho=%f in phi += (SIGMARPHI*gRandom->Gaus()/rho\n",rho);
2363 phi += (fSigmarphi*gRandom->Gaus()/rho);
2364 }
2365 x=rho*TMath::Cos(phi);
2366 y=rho*TMath::Sin(phi);
2367 Float_t zTPC=z;
2368 if(fSigmavsp) {
2369 if(p==0) printf(" p=%f in g=0.0275/p\n",p);
2370 g=0.0275/p;
2371 avSigZ += g; // (cm)
2372 z += g*gRandom->Gaus();
2373 } else {
2374 z += fSigmaZ*gRandom->Gaus();
2375 }
2376
2377 // smearing on TPC momentum
2378
2379 {
2380 Float_t pmom,phi,theta,arg;
2381
2382 pmom=TMath::Sqrt(px*px+py*py+pz*pz);
2383 phi=0.;
2384 if(TMath::Abs(px)>0. || TMath::Abs(py)>0.) phi=TMath::ATan2(py,px);
2385 if(phi<0.) phi=phi+2*TMath::Pi();
2386 arg=1.;
2387 if(pmom>0.) arg=pz/pmom;
2388 theta=0.;
2389 if(TMath::Abs(arg)<=1.) theta=TMath::ACos(arg);
2390
2391 if(fSigmavsp) {
2392 if(pmom<=0) printf(" pmom=%f in g = TMath::Abs(TMath::Log(pmom)/TMath::Log(10)+0.5)/0.7\n",pmom);
2393 g = TMath::Abs(TMath::Log(pmom)/TMath::Log(10)+0.5)/0.7;
2394 g = 0.01*(g*g*g+1.5)*1.24;
2395 avSigP += g;
2396 pmom *= (1+g*gRandom->Gaus());
2397
2398 if(p<10) {
2399 if(pmom<=0) printf(" pmom=%f in g = 1-TMath::Log(pmom)/TMath::Log(10)\n",pmom);
2400 g = 1-TMath::Log(pmom)/TMath::Log(10);
2401 g = 0.001*(g*g*g+0.3)*0.65; // (radian)
2402 } else {
2403 g = 0.001*0.3*0.65;
2404 }
2405 avSigPHI += g;
2406 phi += g*gRandom->Gaus();
2407 avSigTHETA += g;
2408 theta += g*gRandom->Gaus();
2409
2410 } else {
2411 pmom *= (1+fSigmap*gRandom->Gaus());
2412 phi += fSigmaPhi*gRandom->Gaus();
2413 theta += fSigmaTheta*gRandom->Gaus();
2414 }
2415 gxW=px;
2416 gyW=py;
2417 gzW=pz;
2418
2419 px=pmom*TMath::Sin(theta)*TMath::Cos(phi);
2420 py=pmom*TMath::Sin(theta)*TMath::Sin(phi);
2421 pz=pmom*TMath::Cos(theta);
2422
2423
2424 if(x*px+y*py<=0) {
2425 x=Wx;
2426 y=Wy;
2427 z=Wz;
2428 px=gxW;
2429 py=gyW;
2430 pz=gzW;
2431 }// if(x*px+y*py<=0)
2432 }
2433
2434 p = TMath::Sqrt(px*px+py*py+pz*pz);
2435
2436 particleCharge=charge[PDGtoGeantCode(pdgCode)-1];
2437 mass=massArray[PDGtoGeantCode(pdgCode)-1];
2438 mass=massArray[8-1]; //we take pion mass for all tracks
2439 // mass=massArray[14-1]; //here we take proton mass for all tracks
2440 energy=TMath::Sqrt(p*p+mass*mass);
2441 chargeField=particleCharge*fField;
2442
2443 g=fRadLenTPC/( (x*px+y*py)/(rho*p) );
2444
2445 if(g<=0) printf(" error, g<=0: g=%f, itra=%i, x,y,px,py=%f, %f, %f, %f\n",g,itra,x,y,px,py);
2446
2447 theta0=13.6*0.001*TMath::Sqrt(g)*(1.+0.038*TMath::Log(g))*energy/(p*p);
2448
2449
2450 // start Loop on test tracks
2451 sumOfTheta=0.;
2452 for(Int_t i=0;i<4;i++) {
2453 weightTestTracksOutTof[i]=0.;
2454 }
2455
2456 itest=0;
2457 for(Int_t i=0;i<fMaxTestTracks;i++) {
2458 ntest[i]=0;
2459 testPixel[i]=0;
2460 testLength[i]=0.;
2461 testRho[i]=0.;
2462 testZ[i]=0.;
2463 testWeight[i]=0.;
2464 }
2465
2466 iPlateFirst=0;
2467 TestTracks=0;
2468 iTestTrack=0;
2469 iTestGmax=0;
2470
2471 length0=0;
2472
2473 for (indexOfTestTrack=0; indexOfTestTrack<fMaxTestTracks; indexOfTestTrack++) {
2474
2475 iTestTrack++;
2476 gpx=px;
2477 gpy=py;
2478 gpz=pz;
2479 gp=p;
2480 if(indexOfTestTrack) {
2481 gtheta=theta0;
2482 EpMulScatt(gpx,gpy,gpz,gp,gtheta);
2483
2484 } else {
2485 gtheta=0;
2486 }
2487
2488 weight=TMath::Exp(-gtheta*gtheta/(2*theta0*theta0));
2489 sumOfTheta += gtheta;
2490
2491 // ==========================================================
2492 // Calculate crossing of the track in magnetic field with cylidrical surface
2493 // of radius RTOFINNER
2494 // chargeField = qB, where q is a charge of a particle in units of e,
2495 // B is magnetic field in tesla
2496 // see 3.3.1.1. in the book "Data analysis techniques for
2497 // high-energy physics experiments", edited by M.Regler
2498 // in Russian: "Metody analiza dannykh v fizicheskom eksperimente"
2499 // Moskva, "Mir", 1993. ctr.306
2500
2501 // Initial constants
2502 rotationFactor=1.;
2503 if(chargeField<0.) rotationFactor=-1.;
2504 rotationFactor=-rotationFactor;
2505 gpt=gpx;
2506 phi0=gpy;
2507 cylcor(gpt,phi0);
2508 phi0 -= rotationFactor*TMath::Pi()*0.5;
2509 // phi0 -= h*PID2;
2510 coslam=gpt/gp;
2511 sinlam=gpz/gp;
2512 // helixRadius=100.*gpt/TMath::Abs(0.299792458*chargeField);
2513 helixRadius=100.*gpt/TMath::Abs(AliTOFConstants::fgkSpeedOfLight*chargeField);
2514 xHelixCenter=x-helixRadius*TMath::Cos(phi0);
2515 yHelixCenter=y-helixRadius*TMath::Sin(phi0);
2516 zHelixCenter=z;
2517 helixFactor=rotationFactor*coslam/helixRadius;
2518
2519 // Solves the equation f(s)=r(s)-RTOFINNER=0 by the Newton's method:
2520 // snew=s-f/f'
2521 istep=0;
2522 s=AliTOFConstants::fgkrmin-TMath::Sqrt(x*x+y*y);;
2523 do {
2524 istep++;
2525 xRespectToHelixCenter=helixRadius*TMath::Cos(phi0+s*helixFactor);
2526 yRespectToHelixCenter=helixRadius*TMath::Sin(phi0+s*helixFactor);
2527 gx=xHelixCenter+xRespectToHelixCenter;
2528 gy=yHelixCenter+yRespectToHelixCenter;
2529 gr=TMath::Sqrt(gx*gx+gy*gy);
2530 deltaRadius=gr-AliTOFConstants::fgkrmin;
2531 xp=-helixFactor*yRespectToHelixCenter;
2532 yp= helixFactor*xRespectToHelixCenter;
2533 fp=(gx*xp+gy*yp)/gr;
2534 ds=deltaRadius/fp;
2535 s -= ds;
2536 if(istep==20) {
2537 istep=0;
2538 break;
2539 }
2540 } while (TMath::Abs(ds)>0.01);
2541
2542
2543 if(istep==0) goto end;
2544
2545 // Steps along the circle till a pad
2546 wPixel=0;
2547 wLength=0.;
2548 iplate=0;
2549 iPadAlongX=0;
2550 grho=0.;
2551 ds=fStep;
2552 gxLast=xHelixCenter+helixRadius*TMath::Cos(phi0+s*helixFactor);
2553 gyLast=yHelixCenter+helixRadius*TMath::Sin(phi0+s*helixFactor);
2554 gzLast=zHelixCenter+s*sinlam;
2555
2556
2557 do {
2558 istep++;
2559 s += ds;
2560 gx=xHelixCenter+helixRadius*TMath::Cos(phi0+s*helixFactor);
2561 gy=yHelixCenter+helixRadius*TMath::Sin(phi0+s*helixFactor);
2562 gz=zHelixCenter+s*sinlam;
2563 rho=TMath::Sqrt(gx*gx+gy*gy);
2564
2565 IsInsideThePad(fg3,gx,gy,gz,npixel,zPad,xPad);
2566
2567 iplate += npixel[1];
2568 iPadAlongX += npixel[4];
2569
2570 if(indexOfTestTrack==0 && iplate && iPlateFirst==0) {
2571 iPlateFirst=1;
2572 length0=s;
2573
2574 radius=s*3*theta0;
2575 area=TMath::Pi()*radius*radius;
2576 normR=TMath::Sqrt(gx*gx+gy*gy);
2577 normS=TMath::Sqrt((gx-gxLast)*(gx-gxLast)+
2578 (gy-gyLast)*(gy-gyLast)+
2579 (gz-gzLast)*(gz-gzLast));
2580
2581 cosAngl=(gx*(gx-gxLast)+gy*(gy-gyLast))/(normR*normS);
2582 if(cosAngl<0) printf(" cosAngl<0: gx=%f,gy=%f, gxLast=%f,gyLast=%f,gzLast=%f\n",gx,gy,gxLast,gyLast,gzLast);
2583
2584 area /= cosAngl;
2585 TestTracks=(Int_t) (2*area/(AliTOFConstants::fgkXPad * AliTOFConstants::fgkZPad));
2586
2587 if(TestTracks<12) TestTracks=12;
2588
2589 // Angles of entering into the TOF plate
2590
2591 Int_t iZ=0;
2592 if(TMath::Abs(gz)>300) {
2593 iZ=4;
2594 } else if(TMath::Abs(gz)>200) {
2595 iZ=3;
2596 } else if(TMath::Abs(gz)>100) {
2597 iZ=2;
2598 } else if(TMath::Abs(gz)>0) {
2599 iZ=1;
2600 }
2601
2602
2603 } // end of if(indexOfTestTrack==0 && iplate && iPlateFirst==0)
2604
2605
2606 if(npixel[4]>0) {
2607
2608 iwork1=npixel[0];
2609 iwork2=npixel[1];
2610 iwork3=npixel[2];
2611 // iwork4=npixel[3];
2612 iwork4=(npixel[3]-1)*AliTOFConstants::fgkNpadX+npixel[4];
2613
2614 Int_t ifirstindex=AliTOFConstants::fgkNSectors*(npixel[1]-1)+npixel[0];
2615 iMapValue=mapPixels[ifirstindex-1][iwork3-1][iwork4-1];
2616 if(iMapValue==0) {
2617 ipixel++;
2618 if(ipixel>fMaxPixels) {
2619 cout << "ipixel=" << ipixel << " > MAXPIXELS=" << fMaxPixels << endl;
2620 break;
2621 }
2622 mapPixels[ifirstindex-1][iwork3-1][iwork4-1]=ipixel;
2623 pixelArray[ipixel-1].SetGeom(iwork1,iwork2,iwork3,iwork4);
2624 iMapValue=ipixel;
2625 }
2626
2627 wPixel=iMapValue;
2628 wLength=tpclength+s;
2629 wRho=rho;
2630 wZ=gz;
2631
2632 ihit=kTOFhitFirst[ipart];
2633
2634 if(ihit) {
2635 if(indexOfTestTrack==0) {
2636 {
2637 idelR++;
2638 delR=TMath::Sqrt((gx-hitArray[ihit-1].X())*(gx-hitArray[ihit-1].X())+
2639 (gy-hitArray[ihit-1].Y())*(gy-hitArray[ihit-1].Y())+
2640 (gz-hitArray[ihit-1].Z())*(gz-hitArray[ihit-1].Z()));
2641
2642 }
2643
2644 if(delR>hitArray[ihit-1].GetRmin()) iRmin++;
2645 gxExtrap=gx;
2646 gyExtrap=gy;
2647 gzExtrap=gz;
2648 } else {
2649 delR=TMath::Sqrt((gx-gxExtrap)*(gx-gxExtrap)+
2650 (gy-gyExtrap)*(gy-gyExtrap)+
2651 (gz-gzExtrap)*(gz-gzExtrap));
2652 }
2653 } //end of if(ihit)
2654
2655 break;
2656
2657 } //end of npixel[4]
2658
2659 if(rho<grho) {
2660 istep=0;
2661 break;
2662 }
2663 grho=rho;
2664
2665 gxLast=gx;
2666 gyLast=gy;
2667 gzLast=gz;
2668
2669 } while(rho<AliTOFConstants::fgkrmax); //end of do
2670
2671
2672 if(istep>0) {
2673 if(iplate) {
2674 if(iPadAlongX==0) {
2675 istep=-3; // holes in TOF
2676 }
2677 } else {
2678 if(TMath::Abs(gz)<AliTOFConstants::fgkMaxhZtof) {
2679 // if(TMath::Abs(gz)<MAXZTOF2) {
2680 istep=-2; // PHOS and RICH holes or holes in between TOF plates
2681 } else {
2682 istep=-1; // out of TOF on z-size
2683 }
2684 }
2685 }
2686
2687 if(iPadAlongX>0) {
2688 if(itest==0) {
2689 itest=1;
2690 ntest[itest-1]=1;
2691 testPixel[itest-1]=wPixel;
2692 testLength[itest-1]=wLength;
2693 testRho[itest-1]=wRho;
2694 testZ[itest-1]=wZ;
2695 testWeight[itest-1]=weight;
2696 } else {
2697 Int_t k;
2698 for(Int_t i=0;i<itest;i++) {
2699 k=0;
2700 if(testPixel[i]==wPixel) {
2701 k=1;
2702 ntest[i]++;
2703 testLength[i] += wLength;
2704 testRho[i] += wRho;
2705 testZ[i] += wZ;
2706 testWeight[i] += weight;
2707 break;
2708 }
2709 } //end for i
2710 if(k==0) {
2711 itest++;
2712 ntest[itest-1]=1;
2713 testPixel[itest-1]=wPixel;
2714 testLength[itest-1]=wLength;
2715 testRho[itest-1]=wRho;
2716 testZ[itest-1]=wZ;
2717 testWeight[itest-1]=weight;
2718 }
2719 }
2720 }
2721
2722 end: ;
2723 // Statistics
2724 if(fMatchingStyle==1) {
2725 if(istep>-4 && istep<1) weightTestTracksOutTof[-istep] ++;
2726 } else {
2727 if(istep>-4 && istep<1) weightTestTracksOutTof[-istep] += weight;
2728 }
2729
2730 if(fMatchingStyle==2) {
2731 if(indexOfTestTrack==0 && istep==0) break;
2732 if(indexOfTestTrack+1==TestTracks) break;
2733 }
2734
2735 } //end of indexOfTestTrack
2736
2737 snr += (Float_t) (indexOfTestTrack+1);
2738
2739 // Search for the "hole" with the largest weigth
2740 largestWeightTracksOutTof=0.;
2741 sumWeightTracksOutTof=0.;
2742 for(Int_t i=0;i<4;i++) {
2743 w=weightTestTracksOutTof[i];
2744 sumWeightTracksOutTof += w;
2745 if(w>largestWeightTracksOutTof) {
2746 largestWeightTracksOutTof=w;
2747 iMaxTestTracksOutTof=i;
2748 }
2749 }
2750
2751 itestc=itest;
2752 if(itest>0) {
2753 for(Int_t i=0;i<itest;i++) {
2754 testLength[i] /= ntest[i];
2755 testRho[i] /= ntest[i];
2756 testZ[i] /= ntest[i];
2757 }
2758 // Search for the pixel with the largest weigth
2759 wmax=0.;
2760 wstate=0;
2761 sw=0;
2762 sGeomWeigth=0;
2763 for(Int_t i=0;i<itest;i++) {
2764 istate=pixelArray[testPixel[i]-1].GetState();
2765 fstate=0;
2766 if(istate>0) {
2767 fstate=1;
2768 wstate++;
2769 }
2770 if(fMatchingStyle==1) {
2771 sGeomWeigth += ntest[i];
2772 w=(fpadefficiency*fstate+(1.-fpadefficiency)*(1-fstate))*ntest[i];
2773 if(pixelArray[testPixel[i]-1].GetTrackMatched()>0) w *= 0.1;
2774 } else {
2775 sGeomWeigth += testWeight[i];
2776 w=(fpadefficiency*fstate+(1.-fpadefficiency)*(1-fstate))*testWeight[i];
2777 if(pixelArray[testPixel[i]-1].GetTrackMatched()>0) w *= 0.1;
2778 }
2779
2780 // weighting according to the Pulse Height (we use the square of weight)
2781 // if (fChargeFactorForMatching) w *= (pixelArray[testPixel[i]-1].GetCharge())*(pixelArray[testPixel[i]-1].GetCharge());
2782 if (fChargeFactorForMatching && fstate==1) w *= (pixelArray[testPixel[i]-1].GetCharge())*(pixelArray[testPixel[i]-1].GetCharge());
2783
2784 if(w>wmax) {
2785 wmax=w;
2786 imax=i;
2787 }
2788 sw += w;
2789 }
2790 wPixel=testPixel[imax];
2791 wLength=testLength[imax];
2792 istate=pixelArray[wPixel-1].GetState();
2793
2794 //Choose the TOF dead space
2795 // if(istate==0 && largestWeightTracksOutTof>wmax) {
2796 // if(istate==0 && largestWeightTracksOutTof>=sw) {
2797 if(istate==0 && sumWeightTracksOutTof>sGeomWeigth) {
2798 itestc=itest;
2799 itest=0;
2800 }
2801 }
2802
2803 if(itest>0) {
2804
2805 // Set for MyTrack: Pixel
2806 trackArray[itrack-1].SetPixel(wPixel);
2807
2808 istate=pixelArray[wPixel-1].GetState();
2809
2810 if(istate) {
2811
2812 // Set for MyTrack: Pixel, Length, TOF, MassTOF
2813 //fp
2814 //time=pixelArray[wPixel-1].GetTime();
2815 time=pixelArray[wPixel-1].GetRealTime();
2816 trackArray[itrack-1].SetLength(wLength);
2817 trackArray[itrack-1].SetTof(time);
2818
2819 inverseOfParticleSpeed=time/wLength;
2820 //w=900.*inverseOfParticleSpeed*inverseOfParticleSpeed-1.;
2821 w=(100.*AliTOFConstants::fgkSpeedOfLight)*(100.*AliTOFConstants::fgkSpeedOfLight)*inverseOfParticleSpeed*inverseOfParticleSpeed-1.;
2822 w2=pvtx*pvtx;
2823 Float_t squareMass=w2*w;
2824 mass=TMath::Sqrt(TMath::Abs(squareMass));
2825 if(w<0.) mass=-mass;
2826
2827 trackArray[itrack-1].SetMassTOF(mass);
2828
2829 // Set for MyTrack: Matching
2830 match=4;
2831 // if(ipart==pixelArray[wPixel-1].GetTrack()) match=3;
2832 if( (ipart==pixelArray[wPixel-1].GetTrack()) && hitArray[pixelArray[wPixel-1].GetHit()-1].GetNoise()==0)match=3;
2833 imatched=pixelArray[wPixel-1].GetTrackMatched();
2834 // Set for TOFPixel the number of matched track
2835 pixelArray[wPixel-1].SetTrackMatched(itrack);
2836
2837 if(imatched>0) {
2838 matchw=trackArray[imatched-1].GetMatching();
2839 if(match==3 && matchw==4) t34++;
2840 if(match==3 && matchw==2) t32++;
2841 if(match==4 && matchw==4) t44++;
2842 if(match==4 && matchw==3) t43++;
2843 if(match==4 && matchw==2) t42++;
2844 if(iTOFpixel[ipart]==0 || iTOFpixel[trackArray[imatched-1].GetTrack()]==0) {
2845 m20++;
2846 } else if(iTOFpixel[ipart]==iTOFpixel[trackArray[imatched-1].GetTrack()]) {
2847 m22++;
2848 } else {
2849 m23++;
2850 wPix=iTOFpixel[ipart];
2851 if(PRINT && iPrintM1==10 && iPrintM2<10) {
2852 if(iPrintM2==0) {
2853 printf("*** test print for tracks matched with the pixel for with we had matched track\n");
2854 }
2855 iPrintM2++;
2856 printf(" m=2: ipart=%i, pdgCode=%i, p=%f, theta0=%f, %i Pixel(LP=%i,SP=%i,P=%i) \n",
2857 ipart,pdgCode,p,theta0,wPix,
2858 pixelArray[wPix-1].GetSector(),pixelArray[wPix-1].GetPlate(),pixelArray[wPix-1].GetPixel());
2859 printf(" mat=%i, %i Pixel(LP=%i,SP=%i,P=%i), Test(n=%i,i=%i,w=%f,z=%f), wst=%i \n",
2860 match,wPixel,
2861 pixelArray[wPixel-1].GetSector(),pixelArray[wPixel-1].GetPlate(),pixelArray[wPixel-1].GetPixel(),
2862 itest,imax,wmax,testZ[imax],wstate);
2863 Int_t fstat,istat;
2864 for(Int_t i=0;i<itest;i++) {
2865 wPix=testPixel[i];
2866 istat=pixelArray[wPix-1].GetState();
2867 fstat=0;
2868 if(istat>0) fstat=1;
2869 w=(fpadefficiency*fstat+(1.-fpadefficiency)*(1-fstat))*ntest[i];
2870 if(istat>0)
2871 printf(" %i: %i Pixel(LP=%i,SP=%i,P=%i), istat=%i, ntest=%i, w=%f\n",i+1,
2872 wPix,pixelArray[wPix-1].GetSector(),pixelArray[wPix-1].GetPlate(),pixelArray[wPix-1].GetPixel(),
2873 istat,ntest[i],w);
2874 }
2875 printf(" mat=%i, %i Pixel \n",matchw,trackArray[imatched-1].GetPad());
2876 }
2877 }
2878 if(wstate>1) m2state++;
2879 smat[matchw+4]--;
2880 match=2;
2881 trackArray[imatched-1].SetMatching(match);
2882 smat[match+4]++;
2883
2884 } // if(imatched>0)
2885
2886 } else { //else if(istate)
2887
2888 match=1;
2889 if(iTOFpixel[ipart]==0) m10++;
2890 if(PRINT && iPrintM1<10) {
2891 Int_t wPix;
2892 wPix=iTOFpixel[ipart];
2893 if(wPix) {
2894 if(iPrintM1==0) {
2895 printf("*** test print for tracks fired a pixel but matched with non-fired pixel\n");
2896 }
2897 iPrintM1++;
2898 printf(" m=1: itra=%i,ipart=%i, pdgCode=%i, p=%f, theta0=%f, %i Pixel(LP=%i,SP=%i,P=%i) \n",
2899 itra,ipart,pdgCode,p,theta0,wPix,
2900 pixelArray[wPix-1].GetSector(),pixelArray[wPix-1].GetPlate(),pixelArray[wPix-1].GetPixel());
2901 printf(" mat=%i, %i Pixel(LP=%i,SP=%i,P=%i), Test(n=%i,i=%i,w=%f,z=%f), wst=%i \n",
2902 match,wPixel,
2903 pixelArray[wPixel-1].GetSector(),pixelArray[wPixel-1].GetPlate(),pixelArray[wPixel-1].GetPixel(),
2904 itest,imax,wmax,testZ[imax],wstate);
2905
2906 }
2907 } //end if(PRINT && iPrintM1<10)
2908
2909 } //end if(istate)
2910
2911 } else {
2912 match=-1-iMaxTestTracksOutTof;
2913
2914 } //end itest
2915
2916 trackArray[itrack-1].SetMatching(match);
2917 // if(iTestGmax==1) hMTT->Fill(match);
2918 smat[match+4]++;
2919
2920 sumOfTheta /= iTestTrack;
2921
2922 itest=itestc;
2923
2924 //Test
2925 if(PRINT) {
2926 if(iTOFpixel[ipart] && match!=3) {
2927 particle = (TParticle*)gAlice->Particle(ipart); //for V3.05
2928
2929 printf(" ipixel=%i (Sector=%i, Plate=%i, Strip=%i, Pixel=%i), fired by %i track\n",iTOFpixel[ipart],pixelArray[iTOFpixel[ipart]-1].GetSector(),pixelArray[iTOFpixel[ipart]-1].GetPlate(),pixelArray[iTOFpixel[ipart]-1].GetStrip(),pixelArray[iTOFpixel[ipart]-1].GetPixel(),pixelArray[iTOFpixel[ipart]-1].GetTrack());
2930 printf(" indexOfTestTrack=%i itest=%i weightTestTracksOutTof[4]=%f weightTestTracksOutTof[2]=%f weightTestTracksOutTof[1]=%f weightTestTracksOutTof[0]=%f\n",indexOfTestTrack,itest,weightTestTracksOutTof[3],weightTestTracksOutTof[2],weightTestTracksOutTof[1],weightTestTracksOutTof[0]);
2931 if(itest) {
2932
2933 printf(" take ipixel=%i (Sector=%i, Plate=%i, Strip=%i, Pixel=%i), (fired by %i track), match=%i\n",wPixel,pixelArray[wPixel-1].GetSector(),pixelArray[wPixel-1].GetPlate(),pixelArray[wPixel-1].GetStrip(),pixelArray[wPixel-1].GetPixel(),pixelArray[wPixel-1].GetTrack(),match);
2934 }
2935 }
2936 }
2937 if(PRINT && itra<10 ) {
2938
2939 if(itest) {
2940 cout << " number of pixels with test tracks=" << itest << endl;
2941 for(Int_t i=0;i<itest;i++) {
2942 cout << " " << i+1 << " tr.=" << ntest[i] << " w=" << testWeight[i] << " pix.= " << testPixel[i] << " (" <<
2943 pixelArray[testPixel[i]-1].GetSector() << " " << " " << pixelArray[testPixel[i]-1].GetPlate() << " " <<
2944 pixelArray[testPixel[i]-1].GetPixel() << " )" << " l= " << testLength[i] << " sig=" <<
2945 theta0*(testLength[i]-tpclength) << " rho= " << testRho[i] << " z= " << testZ[i] << endl;
2946 }
2947 cout << " pixel=" << wPixel << " state=" << istate << " l=" << wLength << " TOF=" << time << " m=" << mass << " match=" << match << endl;
2948 if(istate>0) cout << " fired by track " << pixelArray[wPixel-1].GetTrack() << endl;
2949 }
2950 }
2951 } //end of track
2952
2953
2954 if(itr) {
2955 printf(" %f probe tracks per 1 real track\n",snr/itr);
2956 itrack=itr;
2957 }
2958
2959
2960 cout << ipixel << " - total number of TOF pixels after matching" << endl;
2961 w=iRmin;
2962 if(idelR!=0) {
2963 w /= idelR;
2964 printf(" %i tracks with delR, %f of them have delR>Rmin \n",idelR,w);
2965 }
2966 w=iRmin1;
2967 if(idelR1!=0) {
2968 w /= idelR1;
2969 printf(" %i tracks with delR1 (|z|<175), %f of them have delR>Rmin \n",idelR1,w);
2970 }
2971 w=iRmin2;
2972 if(idelR2!=0) {
2973 w /= idelR2;
2974 printf(" %i tracks with delR2 (|z|>175), %f of them have delR>Rmin \n",idelR2,w);
2975 }
2976
2977 cout << " ******************** End of matching **********" << endl;
2978}
2979
2980//____________________________________________________________________________
2981void AliTOFReconstructioner::FillNtuple(Int_t ntracks, AliTOFTrack* trackArray, AliTOFRecHit* hitArray, AliTOFPad* pixelArray, Int_t* iTOFpixel, Int_t* iparticle, Float_t* toftime, Int_t& ipixelLastEntry, Int_t itrack){
2982
2983 // itrack : total number of TPC selected tracks
2984 // for the caller is ntotTPCtracks
2985
2986 cout << " ******************** Start of searching non-matched fired pixels **********" << endl;
2987 const Int_t charge[48]={ 0, 1,-1, 0, 1,-1, 0, 1,-1, 0,
2988 1,-1, 0, 1,-1, 0, 0, 0, 1, 0,
2989 -1, 0,-1,-1, 0, 0,-1, 0, 1, 0,
2990 1, 1, 0, 0, 1,-1, 0, 0, 1,-1,
2991 1, 1,-1, 0, 1, 1, 2, 0};
2992
2993 Int_t macthm1=0;
2994 Int_t macthm2=0;
2995 Int_t macthm3=0;
2996 Int_t macthm4=0;
2997 Int_t macth0=0;
2998 Int_t macth1=0;
2999 Int_t macth2=0;
3000 Int_t macth3=0;
3001 Int_t macth4=0;
3002
3003
3004 Float_t smat[9],smat0[9],smat1[9];
3005 for(Int_t i=0;i<9;i++) {
3006 smat[i]=0.;
3007 smat0[i]=0.;
3008 smat1[i]=0.;
3009 }
3010
3011 Int_t nFiredPixelsNotMatchedWithTracks=0;
3012 Int_t istate;
3013 for (Int_t i=0; i<ipixelLastEntry; i++) {
3014 istate=pixelArray[i].GetState();
3015 if(istate==0) break;
3016 if(pixelArray[i].GetTrackMatched()==-1) nFiredPixelsNotMatchedWithTracks++;
3017 }
3018 printf(" %i fired pixels have not matched tracks\n",nFiredPixelsNotMatchedWithTracks);
3019 cout << " ******************** End of searching non-matched fired pixels **********" << endl;
3020
3021 Int_t nTPCHitMissing=0;
3022 for(Int_t i=0; i<ipixelLastEntry; i++) {
3023 if(pixelArray[i].GetHit()>0) {
3024 if(hitArray[pixelArray[i].GetHit()-1].GetNoise()==0) {
3025 if(iparticle[pixelArray[i].GetTrack()]==0) nTPCHitMissing++;
3026 }
3027 }
3028 }
3029 printf(" %i pixels fired by track hit without a hit on the last layer of TPC\n",nTPCHitMissing);
3030
3031
3032 Int_t icharge=0; // total number of charged particles
3033 Int_t iprim=0; // number of primaries
3034 Int_t ipions=0; // number of primary pions
3035 Int_t ikaons=0; // number of primary kaons
3036 Int_t iprotons=0; // number of primary protons
3037 Int_t ielectrons=0;// number of primary electrons
3038 Int_t imuons=0; // number of primary muons
3039 Float_t particleTypeArray[6][5][2];
3040
3041 for (Int_t index1=0;index1<6;index1++) {
3042 for (Int_t index2=0;index2<5;index2++) {
3043 for (Int_t index3=0;index3<2;index3++) {
3044 particleTypeArray[index1][index2][index3]=0.;
3045 }
3046 }
3047 }
3048
3049 Int_t nTOFhitsWithNoTPCTracks=0; // to be moved later when used
3050
3051 /*
3052 TObjArray *Particles = gAlice->Particles();
3053 Int_t numberOfParticles=Particles->GetEntries();
3054 cout << "numberOfParticles " << numberOfParticles << endl;
3055 // fpdbg
3056 if(numberOfParticles>fMaxAllTracks) numberOfParticles=fMaxAllTracks;
3057 */
3058
3059 for (Int_t i=0; i<ntracks; i++) { // starting loop on all primaries charged particles for current event)
3060
3061 /*
3062 cout << "particle " << i << endl;
3063 cout << "total " << numberOfParticles << endl;
3064 */
3065 TParticle *part = (TParticle *) gAlice->Particle(i);
3066 if(charge[PDGtoGeantCode(part->GetPdgCode())-1]) {
3067 icharge++;
3068 /*
3069 cout << "charged particles " << icharge << endl;
3070 */
3071 Int_t particleType=0;
3072 Int_t absPdgCode = TMath::Abs(part->GetPdgCode());
3073 switch (absPdgCode) {
3074 case 211:
3075 particleType=3;
3076 break ;
3077 case 321:
3078 particleType=2;
3079 break ;
3080 case 2212:
3081 particleType=1;
3082 break ;
3083 case 11:
3084 particleType=4;
3085 break ;
3086 case 13:
3087 particleType=5;
3088 break ;
3089 }
3090
3091 if(part->GetFirstMother() < 0) {
3092 iprim++;
3093 switch (particleType) {
3094 case 1:
3095 iprotons++;
3096 break ;
3097 case 2:
3098 ikaons++;
3099 break ;
3100 case 3:
3101 ipions++;
3102 break ;
3103 case 4:
3104 ielectrons++;
3105 break ;
3106 case 5:
3107 imuons++;
3108 break ;
3109 }
3110 }
3111
3112 Int_t match=0;
3113 Float_t wLength=-1.;
3114 Float_t time=-1.;
3115 Float_t mass=-1.;
3116
3117 Int_t itr=iparticle[i]; // get the track number for the current charged particle
3118
3119 if(iTOFpixel[i]>0 && itr==0) nTOFhitsWithNoTPCTracks++;
3120
3121 if(itr) {
3122 match=trackArray[itr-1].GetMatching();
3123 //cout << "match " << match << endl;
3124 wLength=trackArray[itr-1].GetLength();
3125 //cout << "wLength " << wLength << endl;
3126 time=trackArray[itr-1].GetTof();
3127 mass=trackArray[itr-1].GetMassTOF();
3128 //cout << "mext " << mass << endl;
3129 // if(PRINT && (i>789 && i<800) ) cout << i << " track: l=" << wLength << " TOF=" << time << " m=" << mass << " match=" << match << endl;
3130 if(iTOFpixel[i]==0) {
3131 smat0[match+4]++;
3132 wLength=-wLength;
3133 }
3134 }
3135 Int_t ikparen=part->GetFirstMother();
3136 Int_t imam;
3137 if(ikparen<0) {
3138 imam=0;
3139 } else {
3140 imam=part->GetPdgCode();
3141 }
3142
3143 Int_t evnumber=gAlice->GetEvNumber();
3144 if(match==-1) macthm1++;
3145 if(match==-2) macthm2++;
3146 if(match==-3) macthm3++;
3147 if(match==-4) macthm4++;
3148 if(match==0) macth0++;
3149 if(match==1) macth1++;
3150 if(match==2) macth2++;
3151 if(match==3) macth3++;
3152 if(match==4) macth4++;
3153 foutputntuple->Fill(evnumber,part->GetPdgCode(),imam,part->Vx(),part->Vy(),part->Vz(),part->Px(),part->Py(),part->Pz(),toftime[i],wLength,match,time,mass);
3154
3155
3156
3157 // -----------------------------------------------------------
3158 // Filling 2 dimensional Histograms true time vs matched time
3159 // Filling 1 dimensional Histogram true time - matched time
3160 //
3161 // time = time associated to the matched pad [ns]
3162 // it could be the average time of the cluster fired
3163 //
3164 // toftime[i] = real time (including pulse height delays) [s]
3165 //
3166 //
3167 // if (time>=0) {
3168 // if (imam==0) TimeTrueMatched->Fill(time, toftime[i]*1E+09);
3169 // if (imam==0) DeltaTrueTimeMatched->Fill(time-toftime[i]*1E+09);
3170 // }
3171 //
3172 //---------------------------------------------------------------
3173
3174 if(match==-4 || match>0) {
3175 Int_t matchW;
3176 matchW=match;
3177 if(match==-4) matchW=1;
3178 if(particleType) {
3179 particleTypeArray[particleType-1][matchW-1][1]++;
3180 particleTypeArray[5][matchW-1][1]++;
3181 particleTypeArray[particleType-1][4][1]++;
3182 particleTypeArray[5][4][1]++;
3183 if(part->GetFirstMother() < 0) {
3184 particleTypeArray[particleType-1][matchW-1][0]++;
3185 particleTypeArray[5][matchW-1][0]++;
3186 particleTypeArray[particleType-1][4][0]++;
3187 particleTypeArray[5][4][0]++;
3188
3189 // fill histos for QA
3190 //if(particleType==3 && matchW==3) hPiWithTrueTime->Fill(sqrt((part->Px())*(part->Px())+(part->Py())*(part->Py())+(part->Pz())*(part->Pz())));
3191 //if(particleType==2 && matchW==3) hKWithTrueTime->Fill(sqrt((part->Px())*(part->Px())+(part->Py())*(part->Py())+(part->Pz())*(part->Pz())));
3192 //if(particleType==1 && matchW==3) hPWithTrueTime->Fill(sqrt((part->Px())*(part->Px())+(part->Py())*(part->Py())+(part->Pz())*(part->Pz())));
3193 //
3194
3195 } // close if(part->GetFirstMother() < 0)
3196 } // close if(particleType)
3197 } // close if(match==-4 || match>0)
3198 } // close if(charge[PDGtoGeantCode(part->GetPdgCode())-1])
3199 } // close for (Int_t i=0; i<ntracks; i++) {
3200
3201 cout << " macthm1 " << macthm1 << endl;
3202 cout << " macthm2 " << macthm2 << endl;
3203 cout << " macthm3 " << macthm3 << endl;
3204 cout << " macthm4 " << macthm4 << endl;
3205 cout << " macth0 " << macth0 << endl;
3206 cout << " macth1 " << macth1 << endl;
3207 cout << " macth2 " << macth2 << endl;
3208 cout << " macth3 " << macth3 << endl;
3209 cout << " macth4 " << macth4 << endl;
3210
3211
3212 printf(" %i TOF hits have not TPC track\n",nTOFhitsWithNoTPCTracks);
3213 Int_t imatch=0;
3214 for(Int_t i=0;i<9;i++) {
3215 if(itrack) cout << " " << smat[i]*100./itrack << " % of them (="<<smat[i]<<") have match=" << i-4 << " " << smat0[i] << " have not TOF hits" << endl;
3216 if(i==0 || i>4) imatch += (Int_t) (smat[i]);
3217
3218 // cout << " " << smat[i]*100./itrack << " % of them (="<<smat[i]<<") have match=" << i-4 << " " << smat0[i] << " have not TOF hits" << " " << smat1[i] << " have (r.p)<0 for first hit" << endl;
3219 }
3220
3221 if(fdbg){
3222 /*
3223 cout << " nparticles = " << numberOfParticles << " charged = " << icharge << " prim.=" << iprim << endl;
3224 */
3225 cout << " nparticles = " << ntracks << " charged = " << icharge << " prim.=" << iprim << endl;
3226 cout << ipions << " - primary pions" << endl;
3227 cout << ikaons << " - primary kaons" << endl;
3228 cout << iprotons << " - primary protons" << endl;
3229 cout << ielectrons << " - primary electrons" << endl;
3230 cout << imuons << " - primary muons reached TPC" << endl;
3231 cout << " ********** " << imatch << " TPC tracks are matched with TOF pixels (incl.match=-4) **********" << endl;
3232 }
3233
3234 /*
3235 Float_t PrimaryInBarrel[6],Acceptance[6];
3236 PrimaryInBarrel[0]=ipions;
3237 PrimaryInBarrel[1]=ikaons;
3238 PrimaryInBarrel[2]=iprotons;
3239 PrimaryInBarrel[3]=ielectrons;
3240 PrimaryInBarrel[4]=imuons;
3241 PrimaryInBarrel[5]=ipions+ikaons+iprotons+ielectrons+imuons;
3242
3243 // cout << " TPC acceptance for the primary species: 1-p, 2-K, 3-pi, 4-e, 5-mu, 6-all" << endl;
3244 for(Int_t i=0; i<6; i++) {
3245 Acceptance[i]=0.;
3246 if(PrimaryInBarrel[i]) Acceptance[i]=100.*PrimaryReachedTPC[i]/PrimaryInBarrel[i];
3247 //hTPCacceptance[i]->Fill(Acceptance[i]);
3248 // printf(" species: %i %f\n",i+1,Acceptance[i]);
3249 }
3250
3251 // cout << " TOF acceptance for the primary species: 1-p, 2-K, 3-pi, 4-e, 5-mu, 6-all" << endl;
3252 for(Int_t i=0; i<6; i++) {
3253 Acceptance[i]=0.;
3254 if(PrimaryInBarrel[i]) Acceptance[i]=100.*PrimaryReachedTOF[i]/PrimaryInBarrel[i];
3255 //hTOFacceptance[i]->Fill(Acceptance[i]);
3256 // printf(" species: %i %f\n",i+1,Acceptance[i]);
3257 }
3258
3259 for (Int_t index1=0;index1<6;index1++) {
3260 for (Int_t index2=0;index2<4;index2++) {
3261 for (Int_t index3=0;index3<2;index3++) {
3262 if(particleTypeArray[index1][4][index3]) particleTypeArray[index1][index2][index3]=
3263 100.*particleTypeArray[index1][index2][index3]/particleTypeArray[index1][4][index3];
3264 }
3265 }
3266 }
3267
3268 cout << "species: 1-p, 2-K, 3-pi, 4-e, 5-mu, 6-all" << endl;
3269 cout << " matched pixels(%): 1-unfired 2-double 3-true 4-wrong 5-total number of tracks" << endl;
3270
3271 cout << " primary tracks:" << endl;
3272 for (Int_t i=0;i<6;i++) {
3273 cout << i+1 << " " << particleTypeArray[i][0][0] << " " << particleTypeArray[i][1][0] << " " << particleTypeArray[i][2][0] << " " << particleTypeArray[i][3][0] << " " << particleTypeArray[i][4][0] << endl;
3274 }
3275
3276 // cout<<" contam.for all prim.(%)="<<100*particleTypeArray[5][3][0]/(particleTypeArray[5][3][0]+particleTypeArray[5][2][0])<<endl;
3277
3278 cout << " all tracks:" << endl;
3279 for (Int_t i=0;i<6;i++) {
3280 cout << i+1 << " " << particleTypeArray[i][0][1] << " " << particleTypeArray[i][1][1] << " " << particleTypeArray[i][2][1] << " " << particleTypeArray[i][3][1] << " " << particleTypeArray[i][4][1] << endl;
3281 }
3282
3283 // cout<<" contam.for all (%)="<<100*particleTypeArray[5][3][1]/(particleTypeArray[5][3][1]+particleTypeArray[5][2][1])<<endl;
3284 // printf(" t34=%i, t32=%i, t44=%i, t43=%i, t42=%i\n",t34,t32,t44,t43,t42);
3285 // printf(" m10=%f, m20=%f, m22=%f, m23=%f, m2state=%i\n",m10,m20,m22,m23,m2state);
3286 */
3287}