]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TOF/AliTOFv2.cxx
Updated Strip Structure (Double Stack)
[u/mrichter/AliRoot.git] / TOF / AliTOFv2.cxx
CommitLineData
4c039060 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
dfacde63 18Revision 1.21 2001/08/28 08:45:59 vicinanz
19TTask and TFolder structures implemented
20
68861244 21Revision 1.20 2001/05/16 14:57:24 alibrary
22New files for folders and Stack
23
9e1a0ddb 24Revision 1.19 2001/05/04 10:09:48 vicinanz
25Major upgrades to the strip structure
26
b94fa26c 27Revision 1.18 2000/12/04 08:48:20 alibrary
28Fixing problems in the HEAD
29
0cc62300 30Revision 1.17 2000/10/02 21:28:17 fca
31Removal of useless dependecies via forward declarations
32
94de3818 33Revision 1.16 2000/05/10 16:52:18 vicinanz
34New TOF version with holes for PHOS/RICH
35
2cef3cb2 36Revision 1.14.2.1 2000/05/10 09:37:16 vicinanz
37New version with Holes for PHOS/RICH
38
da39da0c 39Revision 1.14 1999/11/05 22:39:06 fca
40New hits structure
41
2cef3cb2 42Revision 1.13 1999/11/02 11:26:39 fca
43added stdlib.h for exit
44
45Revision 1.12 1999/11/01 20:41:57 fca
826b71ec 46Added protections against using the wrong version of FRAME
47
2cef3cb2 48Revision 1.11 1999/10/22 08:04:14 fca
ab76897d 49Correct improper use of negative parameters
50
2cef3cb2 51Revision 1.10 1999/10/16 19:30:06 fca
d0a635a0 52Corrected Rotation Matrix and CVS log
53
2cef3cb2 54Revision 1.9 1999/10/15 15:35:20 fca
00e5f8d9 55New version for frame1099 with and without holes
56
2cef3cb2 57Revision 1.8 1999/09/29 09:24:33 fca
937fe4a4 58Introduction of the Copyright and cvs Log
59
4c039060 60*/
61
fe4da5cc 62///////////////////////////////////////////////////////////////////////////////
63// //
68861244 64// Time Of Flight: design of C.Williams
65//
66// This class contains the functions for version 2 of the Time Of Flight //
fe4da5cc 67// detector. //
937fe4a4 68//
69// VERSION WITH 5 MODULES AND TILTED STRIPS
70//
2cef3cb2 71// HOLES FOR PHOS AND RICH DETECTOR
937fe4a4 72//
2cef3cb2 73// Authors:
937fe4a4 74//
75// Alessio Seganti
76// Domenico Vicinanza
77//
78// University of Salerno - Italy
79//
b94fa26c 80// Fabrizio Pierella
81// University of Bologna - Italy
82//
937fe4a4 83//
fe4da5cc 84//Begin_Html
85/*
3fe3a833 86<img src="picts/AliTOFv2Class.gif">
fe4da5cc 87*/
88//End_Html
89// //
90///////////////////////////////////////////////////////////////////////////////
91
826b71ec 92#include <iostream.h>
ab76897d 93#include <stdlib.h>
94
fe4da5cc 95#include "AliTOFv2.h"
2cef3cb2 96#include "TBRIK.h"
94de3818 97#include "TGeometry.h"
2cef3cb2 98#include "TNode.h"
0cc62300 99#include <TLorentzVector.h>
2cef3cb2 100#include "TObject.h"
fe4da5cc 101#include "AliRun.h"
94de3818 102#include "AliMC.h"
103#include "AliMagF.h"
fe4da5cc 104#include "AliConst.h"
2cef3cb2 105
fe4da5cc 106
107ClassImp(AliTOFv2)
108
109//_____________________________________________________________________________
151e057e 110AliTOFv2::AliTOFv2()
fe4da5cc 111{
112 //
113 // Default constructor
114 //
115}
116
117//_____________________________________________________________________________
118AliTOFv2::AliTOFv2(const char *name, const char *title)
2cef3cb2 119 : AliTOF(name,title)
fe4da5cc 120{
121 //
122 // Standard constructor
123 //
da39da0c 124 //
125 // Check that FRAME is there otherwise we have no place where to
126 // put TOF
b94fa26c 127 AliModule* frame=gAlice->GetModule("FRAME");
128 if(!frame) {
da39da0c 129 Error("Ctor","TOF needs FRAME to be present\n");
130 exit(1);
2cef3cb2 131 } else
b94fa26c 132 if(frame->IsVersion()!=1) {
da39da0c 133 Error("Ctor","FRAME version 1 needed with this version of TOF\n");
134 exit(1);
135 }
136
fe4da5cc 137}
2cef3cb2 138
b94fa26c 139//____________________________________________________________________________
140AliTOFv2::~AliTOFv2()
141{
142 // destructor
143
144 if ( fHits) {
145 fHits->Delete() ;
146 delete fHits ;
147 fHits = 0 ;
148 }
68861244 149
b94fa26c 150 if ( fSDigits) {
151 fSDigits->Delete() ;
152 delete fSDigits ;
153 fSDigits = 0 ;
154 }
68861244 155
b94fa26c 156 if ( fDigits) {
157 fDigits->Delete() ;
158 delete fDigits ;
159 fDigits = 0 ;
160 }
161
162}
163
2cef3cb2 164//_____________________________________________________________________________
165void AliTOFv2::BuildGeometry()
166{
167 //
168 // Build TOF ROOT geometry for the ALICE event display
169 //
b94fa26c 170 TNode *node, *top;
2cef3cb2 171 const int kColorTOF = 27;
172
173 // Find top TNODE
b94fa26c 174 top = gAlice->GetGeometry()->GetNode("alice");
2cef3cb2 175
176 // Position the different copies
b94fa26c 177 const Float_t krTof =(fRmax+fRmin)/2;
178 const Float_t khTof = fRmax-fRmin;
179 const Int_t kNTof = fNTof;
2cef3cb2 180 const Float_t kPi = TMath::Pi();
b94fa26c 181 const Float_t kangle = 2*kPi/kNTof;
2cef3cb2 182 Float_t ang;
183
184 // Define TOF basic volume
185
b94fa26c 186 char nodeName0[6], nodeName1[6], nodeName2[6];
187 char nodeName3[6], nodeName4[6], rotMatNum[6];
2cef3cb2 188
189 new TBRIK("S_TOF_C","TOF box","void",
b94fa26c 190 120*0.5,khTof*0.5,fZlenC*0.5);
2cef3cb2 191 new TBRIK("S_TOF_B","TOF box","void",
b94fa26c 192 120*0.5,khTof*0.5,fZlenB*0.5);
2cef3cb2 193 new TBRIK("S_TOF_A","TOF box","void",
b94fa26c 194 120*0.5,khTof*0.5,fZlenA*0.5);
2cef3cb2 195
b94fa26c 196 for (Int_t nodeNum=1;nodeNum<19;nodeNum++){
2cef3cb2 197
b94fa26c 198 if (nodeNum<10) {
199 sprintf(rotMatNum,"rot50%i",nodeNum);
200 sprintf(nodeName0,"FTO00%i",nodeNum);
201 sprintf(nodeName1,"FTO10%i",nodeNum);
202 sprintf(nodeName2,"FTO20%i",nodeNum);
203 sprintf(nodeName3,"FTO30%i",nodeNum);
204 sprintf(nodeName4,"FTO40%i",nodeNum);
2cef3cb2 205 }
b94fa26c 206 if (nodeNum>9) {
207 sprintf(rotMatNum,"rot5%i",nodeNum);
208 sprintf(nodeName0,"FTO0%i",nodeNum);
209 sprintf(nodeName1,"FTO1%i",nodeNum);
210 sprintf(nodeName2,"FTO2%i",nodeNum);
211 sprintf(nodeName3,"FTO3%i",nodeNum);
212 sprintf(nodeName4,"FTO4%i",nodeNum);
2cef3cb2 213 }
214
b94fa26c 215 new TRotMatrix(rotMatNum,rotMatNum,90,-20*nodeNum,90,90-20*nodeNum,0,0);
216 ang = (4.5-nodeNum) * kangle;
217
218 top->cd();
219 node = new TNode(nodeName0,nodeName0,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),299.15,rotMatNum);
220 node->SetLineColor(kColorTOF);
221 fNodes->Add(node);
222
223 top->cd();
224 node = new TNode(nodeName1,nodeName1,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-299.15,rotMatNum);
225 node->SetLineColor(kColorTOF);
226 fNodes->Add(node);
227if (nodeNum !=1 && nodeNum!=2 && nodeNum !=18)
2cef3cb2 228 {
b94fa26c 229 top->cd();
230 node = new TNode(nodeName2,nodeName2,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),146.45,rotMatNum);
231 node->SetLineColor(kColorTOF);
232 fNodes->Add(node);
233
234 top->cd();
235 node = new TNode(nodeName3,nodeName3,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-146.45,rotMatNum);
236 node->SetLineColor(kColorTOF);
237 fNodes->Add(node);
2cef3cb2 238 } // Holes for RICH detector
239
b94fa26c 240if ((nodeNum<8 || nodeNum>12) && nodeNum !=1 && nodeNum!=2 && nodeNum !=18)
2cef3cb2 241 {
b94fa26c 242 top->cd();
243 node = new TNode(nodeName4,nodeName4,"S_TOF_A",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),0.,rotMatNum);
244 node->SetLineColor(kColorTOF);
245 fNodes->Add(node);
2cef3cb2 246 } // Holes for PHOS detector (+ Holes for RICH detector, central part)
b94fa26c 247 } // end loop on nodeNum
2cef3cb2 248}
249
fe4da5cc 250
251//_____________________________________________________________________________
252void AliTOFv2::CreateGeometry()
253{
254 //
3fe3a833 255 // Create geometry for Time Of Flight version 0
fe4da5cc 256 //
257 //Begin_Html
258 /*
3fe3a833 259 <img src="picts/AliTOFv2.gif">
fe4da5cc 260 */
261 //End_Html
262 //
937fe4a4 263 // Creates common geometry
fe4da5cc 264 //
265 AliTOF::CreateGeometry();
266}
267
268//_____________________________________________________________________________
2cef3cb2 269void AliTOFv2::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC,
270 Float_t zlenB, Float_t zlenA, Float_t ztof0)
fe4da5cc 271{
272 //
273 // Definition of the Time Of Fligh Resistive Plate Chambers
937fe4a4 274 // xFLT, yFLT, zFLT - sizes of TOF modules (large)
3fe3a833 275
937fe4a4 276 Float_t ycoor, zcoor;
b94fa26c 277 Float_t par[3];
2cef3cb2 278 Int_t *idtmed = fIdtmed->GetArray()-499;
279 Int_t idrotm[100];
280 Int_t nrot = 0;
281 Float_t hTof = fRmax-fRmin;
fe4da5cc 282
b94fa26c 283 Float_t radius = fRmin+2.;//cm
937fe4a4 284
2cef3cb2 285 par[0] = xtof * 0.5;
286 par[1] = ytof * 0.5;
287 par[2] = zlenC * 0.5;
288 gMC->Gsvolu("FTOC", "BOX ", idtmed[506], par, 3);
289 par[2] = zlenB * 0.5;
290 gMC->Gsvolu("FTOB", "BOX ", idtmed[506], par, 3);
291 par[2] = zlenA * 0.5;
292 gMC->Gsvolu("FTOA", "BOX ", idtmed[506], par, 3);
937fe4a4 293
937fe4a4 294
2cef3cb2 295// Positioning of modules
937fe4a4 296
2cef3cb2 297 Float_t zcor1 = ztof0 - zlenC*0.5;
298 Float_t zcor2 = ztof0 - zlenC - zlenB*0.5;
299 Float_t zcor3 = 0.;
937fe4a4 300
2cef3cb2 301 AliMatrix(idrotm[0], 90., 0., 0., 0., 90,-90.);
302 AliMatrix(idrotm[1], 90.,180., 0., 0., 90, 90.);
303 gMC->Gspos("FTOC", 1, "BTO1", 0, zcor1, 0, idrotm[0], "ONLY");
304 gMC->Gspos("FTOC", 2, "BTO1", 0, -zcor1, 0, idrotm[1], "ONLY");
305 gMC->Gspos("FTOC", 1, "BTO2", 0, zcor1, 0, idrotm[0], "ONLY");
306 gMC->Gspos("FTOC", 2, "BTO2", 0, -zcor1, 0, idrotm[1], "ONLY");
307 gMC->Gspos("FTOC", 1, "BTO3", 0, zcor1, 0, idrotm[0], "ONLY");
308 gMC->Gspos("FTOC", 2, "BTO3", 0, -zcor1, 0, idrotm[1], "ONLY");
937fe4a4 309
2cef3cb2 310 gMC->Gspos("FTOB", 1, "BTO1", 0, zcor2, 0, idrotm[0], "ONLY");
311 gMC->Gspos("FTOB", 2, "BTO1", 0, -zcor2, 0, idrotm[1], "ONLY");
312 gMC->Gspos("FTOB", 1, "BTO2", 0, zcor2, 0, idrotm[0], "ONLY");
313 gMC->Gspos("FTOB", 2, "BTO2", 0, -zcor2, 0, idrotm[1], "ONLY");
937fe4a4 314
2cef3cb2 315 gMC->Gspos("FTOA", 0, "BTO1", 0, zcor3, 0, idrotm[0], "ONLY");
937fe4a4 316
2cef3cb2 317 Float_t db = 0.5;//cm
318 Float_t xFLT, xFST, yFLT, zFLTA, zFLTB, zFLTC;
937fe4a4 319
2cef3cb2 320 xFLT = fStripLn;
937fe4a4 321 yFLT = ytof;
2cef3cb2 322 zFLTA = zlenA;
323 zFLTB = zlenB;
324 zFLTC = zlenC;
325
326 xFST = xFLT-fDeadBndX*2;//cm
937fe4a4 327
937fe4a4 328// Sizes of MRPC pads
329
2cef3cb2 330 Float_t yPad = 0.505;//cm
fe4da5cc 331
b94fa26c 332// Large not sensitive volumes with Insensitive Freon
2cef3cb2 333 par[0] = xFLT*0.5;
334 par[1] = yFLT*0.5;
b94fa26c 335
9e1a0ddb 336 if(fDebug)
337 cout <<ClassName()
338 <<": ************************* TOF geometry **************************"
339 <<endl;
937fe4a4 340
2cef3cb2 341 par[2] = (zFLTA *0.5);
b94fa26c 342 gMC->Gsvolu("FLTA", "BOX ", idtmed[512], par, 3); // Insensitive Freon
2cef3cb2 343 gMC->Gspos ("FLTA", 0, "FTOA", 0., 0., 0., 0, "ONLY");
937fe4a4 344
2cef3cb2 345 par[2] = (zFLTB * 0.5);
b94fa26c 346 gMC->Gsvolu("FLTB", "BOX ", idtmed[512], par, 3); // Insensitive Freon
2cef3cb2 347 gMC->Gspos ("FLTB", 0, "FTOB", 0., 0., 0., 0, "ONLY");
937fe4a4 348
b94fa26c 349 par[2] = (zFLTC * 0.5);
350 gMC->Gsvolu("FLTC", "BOX ", idtmed[512], par, 3); // Insensitive Freon
2cef3cb2 351 gMC->Gspos ("FLTC", 0, "FTOC", 0., 0., 0., 0, "ONLY");
937fe4a4 352
b94fa26c 353////////// Layers of Aluminum before and after detector //////////
354////////// Aluminum Box for Modules (2.0 mm thickness) /////////
355////////// lateral walls not simulated
356 par[0] = xFLT*0.5;
2cef3cb2 357 par[1] = 0.1;//cm
937fe4a4 358 ycoor = -yFLT/2 + par[1];
b94fa26c 359 par[2] = (zFLTA *0.5);
360 gMC->Gsvolu("FALA", "BOX ", idtmed[508], par, 3); // Alluminium
361 gMC->Gspos ("FALA", 1, "FLTA", 0., ycoor, 0., 0, "ONLY");
362 gMC->Gspos ("FALA", 2, "FLTA", 0.,-ycoor, 0., 0, "ONLY");
363 par[2] = (zFLTB *0.5);
364 gMC->Gsvolu("FALB", "BOX ", idtmed[508], par, 3); // Alluminium
365 gMC->Gspos ("FALB", 1, "FLTB", 0., ycoor, 0., 0, "ONLY");
366 gMC->Gspos ("FALB", 2, "FLTB", 0.,-ycoor, 0., 0, "ONLY");
367 par[2] = (zFLTC *0.5);
368 gMC->Gsvolu("FALC", "BOX ", idtmed[508], par, 3); // Alluminium
369 gMC->Gspos ("FALC", 1, "FLTC", 0., ycoor, 0., 0, "ONLY");
370 gMC->Gspos ("FALC", 2, "FLTC", 0.,-ycoor, 0., 0, "ONLY");
371
937fe4a4 372///////////////// Detector itself //////////////////////
373
b94fa26c 374 const Float_t kdeadBound = fDeadBndZ; //cm non-sensitive between the pad edge
2cef3cb2 375 //and the boundary of the strip
b94fa26c 376 const Int_t knx = fNpadX; // number of pads along x
377 const Int_t knz = fNpadZ; // number of pads along z
378 const Float_t kspace = fSpace; //cm distance from the front plate of the box
937fe4a4 379
2cef3cb2 380 Float_t zSenStrip = fZpad*fNpadZ;//cm
b94fa26c 381 Float_t stripWidth = zSenStrip + 2*kdeadBound;
937fe4a4 382
2cef3cb2 383 par[0] = xFLT*0.5;
384 par[1] = yPad*0.5;
b94fa26c 385 par[2] = stripWidth*0.5;
937fe4a4 386
dfacde63 387// new description for strip volume -double stack strip-
b94fa26c 388// -- all constants are expressed in cm
389// heigth of different layers
390 const Float_t khhony = 1. ; // heigth of HONY Layer
391 const Float_t khpcby = 0.15 ; // heigth of PCB Layer
392 const Float_t khmyly = 0.035 ; // heigth of MYLAR Layer
393 const Float_t khgraphy = 0.02 ; // heigth of GRAPHITE Layer
dfacde63 394 const Float_t khglasseiy = 0.17; // 0.6 Ext. Glass + 1.1 i.e. (Int. Glass/2) (mm)
b94fa26c 395 const Float_t khsensmy = 0.11 ; // heigth of Sensitive Freon Mixture
396 const Float_t kwsensmz = 2*3.5 ; // cm
397 const Float_t klsensmx = 48*2.5; // cm
398 const Float_t kwpadz = 3.5; // cm z dimension of the FPAD volume
399 const Float_t klpadx = 2.5; // cm x dimension of the FPAD volume
400
401 // heigth of the FSTR Volume (the strip volume)
dfacde63 402 const Float_t khstripy = 2*khhony+3*khpcby+4*(khmyly+khgraphy+khglasseiy)+2*khsensmy;
b94fa26c 403 // width of the FSTR Volume (the strip volume)
404 const Float_t kwstripz = 10.;
405 // length of the FSTR Volume (the strip volume)
406 const Float_t klstripx = 122.;
407
408 Float_t parfp[3]={klstripx*0.5,khstripy*0.5,kwstripz*0.5};
409// coordinates of the strip center in the strip reference frame; used for positioning
410// internal strip volumes
411 Float_t posfp[3]={0.,0.,0.};
dfacde63 412
b94fa26c 413
414 // FSTR volume definition and filling this volume with non sensitive Gas Mixture
415 gMC->Gsvolu("FSTR","BOX",idtmed[512],parfp,3);
416 //-- HONY Layer definition
417// parfp[0] = -1;
418 parfp[1] = khhony*0.5;
419// parfp[2] = -1;
420 gMC->Gsvolu("FHON","BOX",idtmed[503],parfp,3);
421 // positioning 2 HONY Layers on FSTR volume
dfacde63 422
b94fa26c 423 posfp[1]=-khstripy*0.5+parfp[1];
424 gMC->Gspos("FHON",1,"FSTR",0., posfp[1],0.,0,"ONLY");
425 gMC->Gspos("FHON",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
dfacde63 426
b94fa26c 427 //-- PCB Layer definition
428 parfp[1] = khpcby*0.5;
429 gMC->Gsvolu("FPCB","BOX",idtmed[504],parfp,3);
430 // positioning 2 PCB Layers on FSTR volume
431 posfp[1]=-khstripy*0.5+khhony+parfp[1];
432 gMC->Gspos("FPCB",1,"FSTR",0., posfp[1],0.,0,"ONLY");
433 gMC->Gspos("FPCB",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
dfacde63 434 // positioning the central PCB layer
435 gMC->Gspos("FPCB",3,"FSTR",0.,0.,0.,0,"ONLY");
436
437
438
b94fa26c 439 //-- MYLAR Layer definition
440 parfp[1] = khmyly*0.5;
441 gMC->Gsvolu("FMYL","BOX",idtmed[511],parfp,3);
442 // positioning 2 MYLAR Layers on FSTR volume
443 posfp[1] = -khstripy*0.5+khhony+khpcby+parfp[1];
444 gMC->Gspos("FMYL",1,"FSTR",0., posfp[1],0.,0,"ONLY");
445 gMC->Gspos("FMYL",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
dfacde63 446 // adding further 2 MYLAR Layers on FSTR volume
447 posfp[1] = khpcby*0.5+parfp[1];
448 gMC->Gspos("FMYL",3,"FSTR",0., posfp[1],0.,0,"ONLY");
449 gMC->Gspos("FMYL",4,"FSTR",0.,-posfp[1],0.,0,"ONLY");
450
b94fa26c 451
452 //-- Graphite Layer definition
453 parfp[1] = khgraphy*0.5;
454 gMC->Gsvolu("FGRP","BOX",idtmed[502],parfp,3);
455 // positioning 2 Graphite Layers on FSTR volume
456 posfp[1] = -khstripy*0.5+khhony+khpcby+khmyly+parfp[1];
457 gMC->Gspos("FGRP",1,"FSTR",0., posfp[1],0.,0,"ONLY");
458 gMC->Gspos("FGRP",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
dfacde63 459 // adding further 2 Graphite Layers on FSTR volume
460 posfp[1] = khpcby*0.5+khmyly+parfp[1];
461 gMC->Gspos("FGRP",3,"FSTR",0., posfp[1],0.,0,"ONLY");
462 gMC->Gspos("FGRP",4,"FSTR",0.,-posfp[1],0.,0,"ONLY");
463
b94fa26c 464
465 //-- Glass (EXT. +Semi INT.) Layer definition
466 parfp[1] = khglasseiy*0.5;
467 gMC->Gsvolu("FGLA","BOX",idtmed[514],parfp,3);
468 // positioning 2 Glass Layers on FSTR volume
469 posfp[1] = -khstripy*0.5+khhony+khpcby+khmyly+khgraphy+parfp[1];
470 gMC->Gspos("FGLA",1,"FSTR",0., posfp[1],0.,0,"ONLY");
471 gMC->Gspos("FGLA",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
dfacde63 472 // adding further 2 Glass Layers on FSTR volume
473 posfp[1] = khpcby*0.5+khmyly+khgraphy+parfp[1];
474 gMC->Gspos("FGLA",3,"FSTR",0., posfp[1],0.,0,"ONLY");
475 gMC->Gspos("FGLA",4,"FSTR",0.,-posfp[1],0.,0,"ONLY");
476
b94fa26c 477
478 //-- Sensitive Mixture Layer definition
479 parfp[0] = klsensmx*0.5;
480 parfp[1] = khsensmy*0.5;
dfacde63 481 parfp[2] = kwsensmz*0.5;
b94fa26c 482 gMC->Gsvolu("FSEN","BOX",idtmed[513],parfp,3);
dfacde63 483 gMC->Gsvolu("FNSE","BOX",idtmed[512],parfp,3);
484 // positioning 2 gas Layers on FSTR volume
485 // the upper is insensitive freon
486 // while the remaining is sensitive
487 posfp[1] = khpcby*0.5+khmyly+khgraphy+khglasseiy+parfp[1];
488 gMC->Gspos("FNSE",0,"FSTR", 0., posfp[1],0.,0,"ONLY");
489 gMC->Gspos("FSEN",0,"FSTR", 0.,-posfp[1],0.,0,"ONLY");
b94fa26c 490
491 // dividing FSEN along z in knz=2 and along x in knx=48
492 gMC->Gsdvn("FSEZ","FSEN",knz,3);
493 gMC->Gsdvn("FSEX","FSEZ",knx,1);
494
495 // FPAD volume definition
496 parfp[0] = klpadx*0.5;
497 parfp[1] = khsensmy*0.5;
498 parfp[2] = kwpadz*0.5;
499 gMC->Gsvolu("FPAD","BOX",idtmed[513],parfp,3);
500 // positioning the FPAD volumes on previous divisions
501 gMC->Gspos("FPAD",0,"FSEX",0.,0.,0.,0,"ONLY");
937fe4a4 502
937fe4a4 503//// Positioning the Strips (FSTR) in the FLT volumes /////
504
2cef3cb2 505 // Plate A (Central)
506
507 Float_t t = zFLTC+zFLTB+zFLTA*0.5+ 2*db;//Half Width of Barrel
508
b94fa26c 509 Float_t gap = fGapA; //cm distance between the strip axis
937fe4a4 510 Float_t zpos = 0;
2cef3cb2 511 Float_t ang = 0;
937fe4a4 512 Int_t i=1,j=1;
2cef3cb2 513 nrot = 0;
514 zcoor = 0;
b94fa26c 515 ycoor = -14.5 + kspace ; //2 cm over front plate
2cef3cb2 516
517 AliMatrix (idrotm[0], 90., 0.,90.,90.,0., 90.);
518 gMC->Gspos("FSTR",j,"FLTA",0.,ycoor, 0.,idrotm[0],"ONLY");
519
9e1a0ddb 520 if(fDebug) {
521 printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,i);
522 printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos);
523 }
2cef3cb2 524
525 zcoor -= zSenStrip;
526 j++;
b94fa26c 527 Int_t upDown = -1; // upDown=-1 -> Upper strip
528 // upDown=+1 -> Lower strip
937fe4a4 529 do{
b94fa26c 530 ang = atan(zcoor/radius);
2cef3cb2 531 ang *= kRaddeg;
532 AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.);
533 AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.);
534 ang /= kRaddeg;
b94fa26c 535 ycoor = -14.5+ kspace; //2 cm over front plate
536 ycoor += (1-(upDown+1)/2)*gap;
2cef3cb2 537 gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY");
538 gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY");
539
9e1a0ddb 540 if(fDebug) {
68861244 541 printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,i);
9e1a0ddb 542 printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos);
543 }
2cef3cb2 544
545 j += 2;
b94fa26c 546 upDown*= -1; // Alternate strips
2cef3cb2 547 zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)-
b94fa26c 548 upDown*gap*TMath::Tan(ang)-
2cef3cb2 549 (zSenStrip/2)/TMath::Cos(ang);
b94fa26c 550 } while (zcoor-(stripWidth/2)*TMath::Cos(ang)>-t+zFLTC+zFLTB+db*2);
937fe4a4 551
2cef3cb2 552 zcoor = zcoor+(zSenStrip/2)/TMath::Cos(ang)+
b94fa26c 553 upDown*gap*TMath::Tan(ang)+
2cef3cb2 554 (zSenStrip/2)/TMath::Cos(ang);
555
b94fa26c 556 gap = fGapB;
2cef3cb2 557 zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)-
b94fa26c 558 upDown*gap*TMath::Tan(ang)-
2cef3cb2 559 (zSenStrip/2)/TMath::Cos(ang);
560
b94fa26c 561 ang = atan(zcoor/radius);
2cef3cb2 562 ang *= kRaddeg;
563 AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.);
564 AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.);
565 ang /= kRaddeg;
566
b94fa26c 567 ycoor = -14.5+ kspace; //2 cm over front plate
568 ycoor += (1-(upDown+1)/2)*gap;
2cef3cb2 569 gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY");
570 gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY");
571
68861244 572 if(fDebug) {
573 printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,i);
574 printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos);
575 }
2cef3cb2 576
b94fa26c 577 ycoor = -hTof/2.+ kspace;//2 cm over front plate
2cef3cb2 578
579 // Plate B
937fe4a4 580
937fe4a4 581 nrot = 0;
582 i=1;
b94fa26c 583 upDown = 1;
584 Float_t deadRegion = 1.0;//cm
2cef3cb2 585
586 zpos = zcoor - (zSenStrip/2)/TMath::Cos(ang)-
b94fa26c 587 upDown*gap*TMath::Tan(ang)-
2cef3cb2 588 (zSenStrip/2)/TMath::Cos(ang)-
b94fa26c 589 deadRegion/TMath::Cos(ang);
2cef3cb2 590
b94fa26c 591 ang = atan(zpos/radius);
2cef3cb2 592 ang *= kRaddeg;
593 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
594 ang /= kRaddeg;
b94fa26c 595 ycoor = -hTof*0.5+ kspace ; //2 cm over front plate
596 ycoor += (1-(upDown+1)/2)*gap;
2cef3cb2 597 zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB
598 gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
599
68861244 600 if(fDebug) {
601 printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i);
9e1a0ddb 602 printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos);
68861244 603 }
2cef3cb2 604
605 i++;
b94fa26c 606 upDown*=-1;
937fe4a4 607
608 do {
2cef3cb2 609 zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)-
b94fa26c 610 upDown*gap*TMath::Tan(ang)-
2cef3cb2 611 (zSenStrip/2)/TMath::Cos(ang);
b94fa26c 612 ang = atan(zpos/radius);
2cef3cb2 613 ang *= kRaddeg;
00e5f8d9 614 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
2cef3cb2 615 ang /= kRaddeg;
b94fa26c 616 ycoor = -hTof*0.5+ kspace ; //2 cm over front plate
617 ycoor += (1-(upDown+1)/2)*gap;
2cef3cb2 618 zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB
619 gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
620
9e1a0ddb 621 if(fDebug) {
68861244 622 printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i);
9e1a0ddb 623 printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos);
624 }
2cef3cb2 625
b94fa26c 626 upDown*=-1;
2cef3cb2 627 i++;
628 } while (TMath::Abs(ang*kRaddeg)<22.5);
629 //till we reach a tilting angle of 22.5 degrees
630
b94fa26c 631 ycoor = -hTof*0.5+ kspace ; //2 cm over front plate
2cef3cb2 632 zpos = zpos - zSenStrip/TMath::Cos(ang);
633
634 do {
b94fa26c 635 ang = atan(zpos/radius);
2cef3cb2 636 ang *= kRaddeg;
637 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
638 ang /= kRaddeg;
639 zcoor = zpos+(zFLTB/2+zFLTA/2+db);
640 gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
641 zpos = zpos - zSenStrip/TMath::Cos(ang);
9e1a0ddb 642 if(fDebug) {
68861244 643 printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i);
9e1a0ddb 644 printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos);
645 }
2cef3cb2 646 i++;
647
b94fa26c 648 } while (zpos-stripWidth*0.5/TMath::Cos(ang)>-t+zFLTC+db);
2cef3cb2 649
650 // Plate C
651
652 zpos = zpos + zSenStrip/TMath::Cos(ang);
653
654 zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)+
b94fa26c 655 gap*TMath::Tan(ang)-
2cef3cb2 656 (zSenStrip/2)/TMath::Cos(ang);
657
937fe4a4 658 nrot = 0;
659 i=0;
b94fa26c 660 ycoor= -hTof*0.5+kspace+gap;
937fe4a4 661
2cef3cb2 662 do {
937fe4a4 663 i++;
b94fa26c 664 ang = atan(zpos/radius);
2cef3cb2 665 ang *= kRaddeg;
666 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
667 ang /= kRaddeg;
668 zcoor = zpos+(zFLTC*0.5+zFLTB+zFLTA*0.5+db*2);
669 gMC->Gspos("FSTR",i, "FLTC", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
670
9e1a0ddb 671 if(fDebug) {
68861244 672 printf("%s: %f, St. %2i, Pl.5 ",ClassName(),ang*kRaddeg,i);
9e1a0ddb 673 printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos);
674 }
937fe4a4 675
937fe4a4 676 zpos = zpos - zSenStrip/TMath::Cos(ang);
b94fa26c 677 } while (zpos-stripWidth*TMath::Cos(ang)*0.5>-t);
2cef3cb2 678
937fe4a4 679
b94fa26c 680////////// Layers after strips /////////////////
681// honeycomb (Polyethilene) Layer after (1.2cm)
937fe4a4 682
b94fa26c 683 Float_t overSpace = fOverSpc;//cm
937fe4a4 684
b94fa26c 685 par[0] = xFLT*0.5;
937fe4a4 686 par[1] = 0.6;
b94fa26c 687 par[2] = (zFLTA *0.5);
688 ycoor = -yFLT/2 + overSpace + par[1];
2cef3cb2 689 gMC->Gsvolu("FPEA", "BOX ", idtmed[503], par, 3); // Hony
690 gMC->Gspos ("FPEA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
b94fa26c 691 par[2] = (zFLTB *0.5);
2cef3cb2 692 gMC->Gsvolu("FPEB", "BOX ", idtmed[503], par, 3); // Hony
693 gMC->Gspos ("FPEB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
b94fa26c 694 par[2] = (zFLTC *0.5);
2cef3cb2 695 gMC->Gsvolu("FPEC", "BOX ", idtmed[503], par, 3); // Hony
696 gMC->Gspos ("FPEC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
937fe4a4 697
698// Electronics (Cu) after
699 ycoor += par[1];
b94fa26c 700 par[0] = xFLT*0.5;
2cef3cb2 701 par[1] = 1.43*0.05*0.5; // 5% of X0
b94fa26c 702 par[2] = (zFLTA *0.5);
937fe4a4 703 ycoor += par[1];
2cef3cb2 704 gMC->Gsvolu("FECA", "BOX ", idtmed[501], par, 3); // Cu
705 gMC->Gspos ("FECA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
b94fa26c 706 par[2] = (zFLTB *0.5);
2cef3cb2 707 gMC->Gsvolu("FECB", "BOX ", idtmed[501], par, 3); // Cu
708 gMC->Gspos ("FECB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
b94fa26c 709 par[2] = (zFLTC *0.5);
2cef3cb2 710 gMC->Gsvolu("FECC", "BOX ", idtmed[501], par, 3); // Cu
711 gMC->Gspos ("FECC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
712
713// cooling WAter after
937fe4a4 714 ycoor += par[1];
b94fa26c 715 par[0] = xFLT*0.5;
2cef3cb2 716 par[1] = 36.1*0.02*0.5; // 2% of X0
b94fa26c 717 par[2] = (zFLTA *0.5);
937fe4a4 718 ycoor += par[1];
2cef3cb2 719 gMC->Gsvolu("FWAA", "BOX ", idtmed[515], par, 3); // Water
720 gMC->Gspos ("FWAA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
b94fa26c 721 par[2] = (zFLTB *0.5);
2cef3cb2 722 gMC->Gsvolu("FWAB", "BOX ", idtmed[515], par, 3); // Water
723 gMC->Gspos ("FWAB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
b94fa26c 724 par[2] = (zFLTC *0.5);
2cef3cb2 725 gMC->Gsvolu("FWAC", "BOX ", idtmed[515], par, 3); // Water
726 gMC->Gspos ("FWAC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
727
b94fa26c 728// frame of Air
729 ycoor += par[1];
730 par[0] = xFLT*0.5;
731 par[1] = (yFLT/2-ycoor-0.2)*0.5; // Aluminum layer considered (0.2 cm)
732 par[2] = (zFLTA *0.5);
733 ycoor += par[1];
734 gMC->Gsvolu("FAIA", "BOX ", idtmed[500], par, 3); // Air
735 gMC->Gspos ("FAIA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
736 par[2] = (zFLTB *0.5);
737 gMC->Gsvolu("FAIB", "BOX ", idtmed[500], par, 3); // Air
738 gMC->Gspos ("FAIB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
739 par[2] = (zFLTC *0.5);
740 gMC->Gsvolu("FAIC", "BOX ", idtmed[500], par, 3); // Air
741 gMC->Gspos ("FAIC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
742/* fp
2cef3cb2 743//Back Plate honycomb (2cm)
937fe4a4 744 par[0] = -1;
2cef3cb2 745 par[1] = 2 *0.5;
937fe4a4 746 par[2] = -1;
747 ycoor = yFLT/2 - par[1];
2cef3cb2 748 gMC->Gsvolu("FBPA", "BOX ", idtmed[503], par, 3); // Hony
749 gMC->Gspos ("FBPA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
750 gMC->Gsvolu("FBPB", "BOX ", idtmed[503], par, 3); // Hony
751 gMC->Gspos ("FBPB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
752 gMC->Gsvolu("FBPC", "BOX ", idtmed[503], par, 3); // Hony
753 gMC->Gspos ("FBPC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
b94fa26c 754fp */
fe4da5cc 755}
756
757//_____________________________________________________________________________
68861244 758void AliTOFv2::DrawModule() const
fe4da5cc 759{
760 //
937fe4a4 761 // Draw a shaded view of the Time Of Flight version 1
fe4da5cc 762 //
fe4da5cc 763 // Set everything unseen
cfce8870 764 gMC->Gsatt("*", "seen", -1);
fe4da5cc 765 //
766 // Set ALIC mother transparent
cfce8870 767 gMC->Gsatt("ALIC","SEEN",0);
fe4da5cc 768 //
769 // Set the volumes visible
cfce8870 770 gMC->Gsatt("ALIC","SEEN",0);
2cef3cb2 771
772 gMC->Gsatt("FTOA","SEEN",1);
773 gMC->Gsatt("FTOB","SEEN",1);
774 gMC->Gsatt("FTOC","SEEN",1);
775 gMC->Gsatt("FLTA","SEEN",1);
776 gMC->Gsatt("FLTB","SEEN",1);
777 gMC->Gsatt("FLTC","SEEN",1);
778 gMC->Gsatt("FPLA","SEEN",1);
779 gMC->Gsatt("FPLB","SEEN",1);
780 gMC->Gsatt("FPLC","SEEN",1);
781 gMC->Gsatt("FSTR","SEEN",1);
782 gMC->Gsatt("FPEA","SEEN",1);
783 gMC->Gsatt("FPEB","SEEN",1);
784 gMC->Gsatt("FPEC","SEEN",1);
785
786 gMC->Gsatt("FLZ1","SEEN",0);
787 gMC->Gsatt("FLZ2","SEEN",0);
788 gMC->Gsatt("FLZ3","SEEN",0);
789 gMC->Gsatt("FLX1","SEEN",0);
790 gMC->Gsatt("FLX2","SEEN",0);
791 gMC->Gsatt("FLX3","SEEN",0);
792 gMC->Gsatt("FPAD","SEEN",0);
793
cfce8870 794 gMC->Gdopt("hide", "on");
795 gMC->Gdopt("shad", "on");
796 gMC->Gsatt("*", "fill", 7);
797 gMC->SetClipBox(".");
798 gMC->SetClipBox("*", 0, 1000, -1000, 1000, -1000, 1000);
799 gMC->DefaultRange();
800 gMC->Gdraw("alic", 40, 30, 0, 12, 9.5, .02, .02);
801 gMC->Gdhead(1111, "Time Of Flight");
802 gMC->Gdman(18, 4, "MAN");
803 gMC->Gdopt("hide","off");
fe4da5cc 804}
805
806//_____________________________________________________________________________
807void AliTOFv2::CreateMaterials()
808{
809 //
810 // Define materials for the Time Of Flight
811 //
812 AliTOF::CreateMaterials();
813}
814
815//_____________________________________________________________________________
816void AliTOFv2::Init()
817{
818 //
819 // Initialise the detector after the geometry has been defined
820 //
68861244 821 if(fDebug) {
9e1a0ddb 822 printf("%s: **************************************"
68861244 823 " TOF "
824 "**************************************\n",ClassName());
9e1a0ddb 825 printf("\n%s: Version 2 of TOF initialing, "
68861244 826 "TOF with holes for PHOS and RICH \n",ClassName());
827 }
ab76897d 828
fe4da5cc 829 AliTOF::Init();
ab76897d 830
2cef3cb2 831 fIdFTOA = gMC->VolId("FTOA");
832 fIdFTOB = gMC->VolId("FTOB");
833 fIdFTOC = gMC->VolId("FTOC");
834 fIdFLTA = gMC->VolId("FLTA");
835 fIdFLTB = gMC->VolId("FLTB");
836 fIdFLTC = gMC->VolId("FLTC");
837
9e1a0ddb 838 if(fDebug) {
839 printf("%s: **************************************"
68861244 840 " TOF "
841 "**************************************\n",ClassName());
9e1a0ddb 842 }
fe4da5cc 843}
844
845//_____________________________________________________________________________
846void AliTOFv2::StepManager()
847{
848 //
849 // Procedure called at each step in the Time Of Flight
850 //
3fe3a833 851 TLorentzVector mom, pos;
2cef3cb2 852 Float_t xm[3],pm[3],xpad[3],ppad[3];
853 Float_t hits[13],phi,phid,z;
854 Int_t vol[5];
b94fa26c 855 Int_t sector, plate, padx, padz, strip;
856 Int_t copy, padzid, padxid, stripid, i;
2cef3cb2 857 Int_t *idtmed = fIdtmed->GetArray()-499;
b94fa26c 858 Float_t incidenceAngle;
826b71ec 859
860 if(gMC->GetMedium()==idtmed[513] &&
0a6d8768 861 gMC->IsTrackEntering() && gMC->TrackCharge()
826b71ec 862 && gMC->CurrentVolID(copy)==fIdSens)
2cef3cb2 863 {
864 // getting information about hit volumes
826b71ec 865
b94fa26c 866 padzid=gMC->CurrentVolOffID(2,copy);
867 padz=copy;
826b71ec 868
b94fa26c 869 padxid=gMC->CurrentVolOffID(1,copy);
870 padx=copy;
826b71ec 871
b94fa26c 872 stripid=gMC->CurrentVolOffID(4,copy);
826b71ec 873 strip=copy;
874
0a6d8768 875 gMC->TrackPosition(pos);
876 gMC->TrackMomentum(mom);
826b71ec 877
2cef3cb2 878// Double_t NormPos=1./pos.Rho();
b94fa26c 879 Double_t normMom=1./mom.Rho();
2cef3cb2 880
881// getting the cohordinates in pad ref system
882 xm[0] = (Float_t)pos.X();
883 xm[1] = (Float_t)pos.Y();
884 xm[2] = (Float_t)pos.Z();
885
b94fa26c 886 pm[0] = (Float_t)mom.X()*normMom;
887 pm[1] = (Float_t)mom.Y()*normMom;
888 pm[2] = (Float_t)mom.Z()*normMom;
2cef3cb2 889
890 gMC->Gmtod(xm,xpad,1);
891 gMC->Gmtod(pm,ppad,2);
892
b94fa26c 893 incidenceAngle = TMath::ACos(ppad[1])*kRaddeg;
826b71ec 894
895 z = pos[2];
2cef3cb2 896
897 plate = 0;
898 if (TMath::Abs(z) <= fZlenA*0.5) plate = 3;
899 if (z < (fZlenA*0.5+fZlenB) &&
900 z > fZlenA*0.5) plate = 4;
901 if (z >-(fZlenA*0.5+fZlenB) &&
902 z < -fZlenA*0.5) plate = 2;
903 if (z > (fZlenA*0.5+fZlenB)) plate = 5;
904 if (z <-(fZlenA*0.5+fZlenB)) plate = 1;
905
906 phi = pos.Phi();
907 phid = phi*kRaddeg+180.;
826b71ec 908 sector = Int_t (phid/20.);
909 sector++;
910
0a6d8768 911 for(i=0;i<3;++i) {
2cef3cb2 912 hits[i] = pos[i];
913 hits[i+3] = pm[i];
0a6d8768 914 }
2cef3cb2 915
916 hits[6] = mom.Rho();
917 hits[7] = pos[3];
918 hits[8] = xpad[0];
919 hits[9] = xpad[1];
920 hits[10]= xpad[2];
b94fa26c 921 hits[11]= incidenceAngle;
2cef3cb2 922 hits[12]= gMC->Edep();
923
924 vol[0]= sector;
925 vol[1]= plate;
926 vol[2]= strip;
b94fa26c 927 vol[3]= padx;
928 vol[4]= padz;
2cef3cb2 929
930 AddHit(gAlice->CurrentTrack(),vol, hits);
fe4da5cc 931 }
932}