]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TOF/AliTOFv2.cxx
Initialize fSepctrum = 0 in ctors
[u/mrichter/AliRoot.git] / TOF / AliTOFv2.cxx
CommitLineData
4c039060 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
0cc62300 18Revision 1.17 2000/10/02 21:28:17 fca
19Removal of useless dependecies via forward declarations
20
94de3818 21Revision 1.16 2000/05/10 16:52:18 vicinanz
22New TOF version with holes for PHOS/RICH
23
2cef3cb2 24Revision 1.14.2.1 2000/05/10 09:37:16 vicinanz
25New version with Holes for PHOS/RICH
26
da39da0c 27Revision 1.14 1999/11/05 22:39:06 fca
28New hits structure
29
2cef3cb2 30Revision 1.13 1999/11/02 11:26:39 fca
31added stdlib.h for exit
32
33Revision 1.12 1999/11/01 20:41:57 fca
826b71ec 34Added protections against using the wrong version of FRAME
35
2cef3cb2 36Revision 1.11 1999/10/22 08:04:14 fca
ab76897d 37Correct improper use of negative parameters
38
2cef3cb2 39Revision 1.10 1999/10/16 19:30:06 fca
d0a635a0 40Corrected Rotation Matrix and CVS log
41
2cef3cb2 42Revision 1.9 1999/10/15 15:35:20 fca
00e5f8d9 43New version for frame1099 with and without holes
44
2cef3cb2 45Revision 1.8 1999/09/29 09:24:33 fca
937fe4a4 46Introduction of the Copyright and cvs Log
47
4c039060 48*/
49
fe4da5cc 50///////////////////////////////////////////////////////////////////////////////
51// //
2cef3cb2 52// Time Of Flight: design of C.Williams
53//
937fe4a4 54// This class contains the functions for version 1 of the Time Of Flight //
fe4da5cc 55// detector. //
937fe4a4 56//
57// VERSION WITH 5 MODULES AND TILTED STRIPS
58//
2cef3cb2 59// HOLES FOR PHOS AND RICH DETECTOR
937fe4a4 60//
2cef3cb2 61// Authors:
937fe4a4 62//
63// Alessio Seganti
64// Domenico Vicinanza
65//
66// University of Salerno - Italy
67//
68//
fe4da5cc 69//Begin_Html
70/*
3fe3a833 71<img src="picts/AliTOFv2Class.gif">
fe4da5cc 72*/
73//End_Html
74// //
75///////////////////////////////////////////////////////////////////////////////
76
826b71ec 77#include <iostream.h>
ab76897d 78#include <stdlib.h>
79
fe4da5cc 80#include "AliTOFv2.h"
2cef3cb2 81#include "TBRIK.h"
94de3818 82#include "TGeometry.h"
2cef3cb2 83#include "TNode.h"
0cc62300 84#include <TLorentzVector.h>
2cef3cb2 85#include "TObject.h"
fe4da5cc 86#include "AliRun.h"
94de3818 87#include "AliMC.h"
88#include "AliMagF.h"
fe4da5cc 89#include "AliConst.h"
2cef3cb2 90
fe4da5cc 91
92ClassImp(AliTOFv2)
93
94//_____________________________________________________________________________
151e057e 95AliTOFv2::AliTOFv2()
fe4da5cc 96{
97 //
98 // Default constructor
99 //
100}
101
102//_____________________________________________________________________________
103AliTOFv2::AliTOFv2(const char *name, const char *title)
2cef3cb2 104 : AliTOF(name,title)
fe4da5cc 105{
106 //
107 // Standard constructor
108 //
da39da0c 109 //
110 // Check that FRAME is there otherwise we have no place where to
111 // put TOF
112 AliModule* FRAME=gAlice->GetModule("FRAME");
113 if(!FRAME) {
114 Error("Ctor","TOF needs FRAME to be present\n");
115 exit(1);
2cef3cb2 116 } else
da39da0c 117 if(FRAME->IsVersion()!=1) {
118 Error("Ctor","FRAME version 1 needed with this version of TOF\n");
119 exit(1);
120 }
121
fe4da5cc 122}
2cef3cb2 123
124//_____________________________________________________________________________
125void AliTOFv2::BuildGeometry()
126{
127 //
128 // Build TOF ROOT geometry for the ALICE event display
129 //
130 TNode *Node, *Top;
131 const int kColorTOF = 27;
132
133 // Find top TNODE
134 Top = gAlice->GetGeometry()->GetNode("alice");
135
136 // Position the different copies
137 const Float_t rTof =(fRmax+fRmin)/2;
138 const Float_t hTof = fRmax-fRmin;
139 const Int_t fNTof = 18;
140 const Float_t kPi = TMath::Pi();
141 const Float_t angle = 2*kPi/fNTof;
142 Float_t ang;
143
144 // Define TOF basic volume
145
146 char NodeName0[6], NodeName1[6], NodeName2[6];
147 char NodeName3[6], NodeName4[6], RotMatNum[6];
148
149 new TBRIK("S_TOF_C","TOF box","void",
150 120*0.5,hTof*0.5,fZlenC*0.5);
151 new TBRIK("S_TOF_B","TOF box","void",
152 120*0.5,hTof*0.5,fZlenB*0.5);
153 new TBRIK("S_TOF_A","TOF box","void",
154 120*0.5,hTof*0.5,fZlenA*0.5);
155
156 for (Int_t NodeNum=1;NodeNum<19;NodeNum++){
157
158 if (NodeNum<10) {
159 sprintf(RotMatNum,"rot50%i",NodeNum);
160 sprintf(NodeName0,"FTO00%i",NodeNum);
161 sprintf(NodeName1,"FTO10%i",NodeNum);
162 sprintf(NodeName2,"FTO20%i",NodeNum);
163 sprintf(NodeName3,"FTO30%i",NodeNum);
164 sprintf(NodeName4,"FTO40%i",NodeNum);
165 }
166 if (NodeNum>9) {
167 sprintf(RotMatNum,"rot5%i",NodeNum);
168 sprintf(NodeName0,"FTO0%i",NodeNum);
169 sprintf(NodeName1,"FTO1%i",NodeNum);
170 sprintf(NodeName2,"FTO2%i",NodeNum);
171 sprintf(NodeName3,"FTO3%i",NodeNum);
172 sprintf(NodeName4,"FTO4%i",NodeNum);
173 }
174
175 new TRotMatrix(RotMatNum,RotMatNum,90,-20*NodeNum,90,90-20*NodeNum,0,0);
176 ang = (4.5-NodeNum) * angle;
177
178 Top->cd();
179 Node = new TNode(NodeName0,NodeName0,"S_TOF_C",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),299.15,RotMatNum);
180 Node->SetLineColor(kColorTOF);
181 fNodes->Add(Node);
182
183 Top->cd();
184 Node = new TNode(NodeName1,NodeName1,"S_TOF_C",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),-299.15,RotMatNum);
185 Node->SetLineColor(kColorTOF);
186 fNodes->Add(Node);
187if (NodeNum !=1 && NodeNum!=2 && NodeNum !=18)
188 {
189 Top->cd();
190 Node = new TNode(NodeName2,NodeName2,"S_TOF_B",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),146.45,RotMatNum);
191 Node->SetLineColor(kColorTOF);
192 fNodes->Add(Node);
193
194 Top->cd();
195 Node = new TNode(NodeName3,NodeName3,"S_TOF_B",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),-146.45,RotMatNum);
196 Node->SetLineColor(kColorTOF);
197 fNodes->Add(Node);
198 } // Holes for RICH detector
199
200if ((NodeNum<8 || NodeNum>12) && NodeNum !=1 && NodeNum!=2 && NodeNum
201!=18)
202 {
203 Top->cd();
204 Node = new TNode(NodeName4,NodeName4,"S_TOF_A",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),0.,RotMatNum);
205 Node->SetLineColor(kColorTOF);
206 fNodes->Add(Node);
207 } // Holes for PHOS detector (+ Holes for RICH detector, central part)
208 }
209}
210
211
fe4da5cc 212
213//_____________________________________________________________________________
214void AliTOFv2::CreateGeometry()
215{
216 //
3fe3a833 217 // Create geometry for Time Of Flight version 0
fe4da5cc 218 //
219 //Begin_Html
220 /*
3fe3a833 221 <img src="picts/AliTOFv2.gif">
fe4da5cc 222 */
223 //End_Html
224 //
937fe4a4 225 // Creates common geometry
fe4da5cc 226 //
227 AliTOF::CreateGeometry();
228}
229
230//_____________________________________________________________________________
2cef3cb2 231void AliTOFv2::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC,
232 Float_t zlenB, Float_t zlenA, Float_t ztof0)
fe4da5cc 233{
234 //
235 // Definition of the Time Of Fligh Resistive Plate Chambers
937fe4a4 236 // xFLT, yFLT, zFLT - sizes of TOF modules (large)
3fe3a833 237
937fe4a4 238 Float_t ycoor, zcoor;
2cef3cb2 239 Float_t par[10];
240 Int_t *idtmed = fIdtmed->GetArray()-499;
241 Int_t idrotm[100];
242 Int_t nrot = 0;
243 Float_t hTof = fRmax-fRmin;
fe4da5cc 244
2cef3cb2 245 Float_t Radius = fRmin+2.;//cm
937fe4a4 246
2cef3cb2 247 par[0] = xtof * 0.5;
248 par[1] = ytof * 0.5;
249 par[2] = zlenC * 0.5;
250 gMC->Gsvolu("FTOC", "BOX ", idtmed[506], par, 3);
251 par[2] = zlenB * 0.5;
252 gMC->Gsvolu("FTOB", "BOX ", idtmed[506], par, 3);
253 par[2] = zlenA * 0.5;
254 gMC->Gsvolu("FTOA", "BOX ", idtmed[506], par, 3);
937fe4a4 255
937fe4a4 256
2cef3cb2 257// Positioning of modules
937fe4a4 258
2cef3cb2 259 Float_t zcor1 = ztof0 - zlenC*0.5;
260 Float_t zcor2 = ztof0 - zlenC - zlenB*0.5;
261 Float_t zcor3 = 0.;
937fe4a4 262
2cef3cb2 263 AliMatrix(idrotm[0], 90., 0., 0., 0., 90,-90.);
264 AliMatrix(idrotm[1], 90.,180., 0., 0., 90, 90.);
265 gMC->Gspos("FTOC", 1, "BTO1", 0, zcor1, 0, idrotm[0], "ONLY");
266 gMC->Gspos("FTOC", 2, "BTO1", 0, -zcor1, 0, idrotm[1], "ONLY");
267 gMC->Gspos("FTOC", 1, "BTO2", 0, zcor1, 0, idrotm[0], "ONLY");
268 gMC->Gspos("FTOC", 2, "BTO2", 0, -zcor1, 0, idrotm[1], "ONLY");
269 gMC->Gspos("FTOC", 1, "BTO3", 0, zcor1, 0, idrotm[0], "ONLY");
270 gMC->Gspos("FTOC", 2, "BTO3", 0, -zcor1, 0, idrotm[1], "ONLY");
937fe4a4 271
2cef3cb2 272 gMC->Gspos("FTOB", 1, "BTO1", 0, zcor2, 0, idrotm[0], "ONLY");
273 gMC->Gspos("FTOB", 2, "BTO1", 0, -zcor2, 0, idrotm[1], "ONLY");
274 gMC->Gspos("FTOB", 1, "BTO2", 0, zcor2, 0, idrotm[0], "ONLY");
275 gMC->Gspos("FTOB", 2, "BTO2", 0, -zcor2, 0, idrotm[1], "ONLY");
937fe4a4 276
2cef3cb2 277 gMC->Gspos("FTOA", 0, "BTO1", 0, zcor3, 0, idrotm[0], "ONLY");
937fe4a4 278
2cef3cb2 279 Float_t db = 0.5;//cm
280 Float_t xFLT, xFST, yFLT, zFLTA, zFLTB, zFLTC;
937fe4a4 281
2cef3cb2 282 xFLT = fStripLn;
937fe4a4 283 yFLT = ytof;
2cef3cb2 284 zFLTA = zlenA;
285 zFLTB = zlenB;
286 zFLTC = zlenC;
287
288 xFST = xFLT-fDeadBndX*2;//cm
937fe4a4 289
937fe4a4 290// Sizes of MRPC pads
291
2cef3cb2 292 Float_t yPad = 0.505;//cm
fe4da5cc 293
937fe4a4 294// Large not sensitive volumes with CO2
2cef3cb2 295 par[0] = xFLT*0.5;
296 par[1] = yFLT*0.5;
937fe4a4 297
298 cout <<"************************* TOF geometry **************************"<<endl;
299
2cef3cb2 300 par[2] = (zFLTA *0.5);
301 gMC->Gsvolu("FLTA", "BOX ", idtmed[506], par, 3); // CO2
302 gMC->Gspos ("FLTA", 0, "FTOA", 0., 0., 0., 0, "ONLY");
937fe4a4 303
2cef3cb2 304 par[2] = (zFLTB * 0.5);
305 gMC->Gsvolu("FLTB", "BOX ", idtmed[506], par, 3); // CO2
306 gMC->Gspos ("FLTB", 0, "FTOB", 0., 0., 0., 0, "ONLY");
937fe4a4 307
2cef3cb2 308 par[2] = (zFLTC * 0.5);
309 gMC->Gsvolu("FLTC", "BOX ", idtmed[506], par, 3); // CO2
310 gMC->Gspos ("FLTC", 0, "FTOC", 0., 0., 0., 0, "ONLY");
937fe4a4 311
312////////// Layers before detector ////////////////////
313
2cef3cb2 314// MYlar layer in front 1.0 mm thick at the beginning
937fe4a4 315 par[0] = -1;
2cef3cb2 316 par[1] = 0.1;//cm
937fe4a4 317 par[2] = -1;
318 ycoor = -yFLT/2 + par[1];
2cef3cb2 319 gMC->Gsvolu("FMYA", "BOX ", idtmed[508], par, 3); // Alluminium
320 gMC->Gspos ("FMYA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
321 gMC->Gsvolu("FMYB", "BOX ", idtmed[508], par, 3); // Alluminium
322 gMC->Gspos ("FMYB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
323 gMC->Gsvolu("FMYC", "BOX ", idtmed[508], par, 3); // Alluminium
324 gMC->Gspos ("FMYC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
325
326// honeycomb (special Polyethilene Layer of 1cm)
937fe4a4 327 ycoor = ycoor + par[1];
328 par[0] = -1;
2cef3cb2 329 par[1] = 0.5;//cm
937fe4a4 330 par[2] = -1;
331 ycoor = ycoor + par[1];
2cef3cb2 332 gMC->Gsvolu("FPLA", "BOX ", idtmed[503], par, 3); // Hony
333 gMC->Gspos ("FPLA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
334 gMC->Gsvolu("FPLB", "BOX ", idtmed[503], par, 3); // Hony
335 gMC->Gspos ("FPLB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
336 gMC->Gsvolu("FPLC", "BOX ", idtmed[503], par, 3); // Hony
337 gMC->Gspos ("FPLC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
937fe4a4 338
339///////////////// Detector itself //////////////////////
340
2cef3cb2 341 const Float_t DeadBound = fDeadBndZ; //cm non-sensitive between the pad edge
342 //and the boundary of the strip
343 const Int_t nx = fNpadX; // number of pads along x
344 const Int_t nz = fNpadZ; // number of pads along z
345 const Float_t Space = fSpace; //cm distance from the front plate of the box
937fe4a4 346
2cef3cb2 347 Float_t zSenStrip = fZpad*fNpadZ;//cm
348 Float_t StripWidth = zSenStrip + 2*DeadBound;
937fe4a4 349
2cef3cb2 350 par[0] = xFLT*0.5;
351 par[1] = yPad*0.5;
352 par[2] = StripWidth*0.5;
937fe4a4 353
2cef3cb2 354 // glass layer of detector STRip
937fe4a4 355 gMC->Gsvolu("FSTR","BOX",idtmed[514],par,3);
356
2cef3cb2 357 // Non-Sesitive Freon boundaries
358 par[0] = xFLT*0.5;
359 par[1] = 0.110*0.5;//cm
937fe4a4 360 par[2] = -1;
361 gMC->Gsvolu("FNSF","BOX",idtmed[512],par,3);
2cef3cb2 362 gMC->Gspos ("FNSF",0,"FSTR",0.,0.,0.,0,"ONLY");
363
364 // MYlar for Internal non-sesitive boundaries
365// par[1] = 0.025;//cm
366// gMC->Gsvolu("FMYI","BOX",idtmed[510],par,3);
367// gMC->Gspos ("FMYI",0,"FNSF",0.,0.,0.,0,"MANY");
368
369 // MYlar eXternal layers
370 par[1] = 0.035*0.5;//cm
371 ycoor = -yPad*0.5+par[1];
937fe4a4 372 gMC->Gsvolu("FMYX","BOX",idtmed[510],par,3);
2cef3cb2 373 gMC->Gspos ("FMYX",1,"FSTR",0.,ycoor,0.,0,"ONLY");
374 gMC->Gspos ("FMYX",2,"FSTR",0.,-ycoor,0.,0,"ONLY");
937fe4a4 375 ycoor += par[1];
376
2cef3cb2 377 // GRaphyte Layers
378 par[1] = 0.003*0.5;
937fe4a4 379 ycoor += par[1];
380 gMC->Gsvolu("FGRL","BOX",idtmed[502],par,3);
2cef3cb2 381 gMC->Gspos ("FGRL",1,"FSTR",0.,ycoor,0.,0,"ONLY");
382 gMC->Gspos ("FGRL",2,"FSTR",0.,-ycoor,0.,0,"ONLY");
937fe4a4 383
2cef3cb2 384 // freon sensitive layer (Chlorine-Fluorine-Carbon)
385 par[0] = xFST*0.5;
386 par[1] = 0.110*0.5;
387 par[2] = zSenStrip*0.5;
937fe4a4 388 gMC->Gsvolu("FCFC","BOX",idtmed[513],par,3);
2cef3cb2 389 gMC->Gspos ("FCFC",0,"FNSF",0.,0.,0.,0,"ONLY");
937fe4a4 390
391 // Pad definition x & z
392 gMC->Gsdvn("FLZ","FCFC", nz, 3);
393 gMC->Gsdvn("FLX","FLZ" , nx, 1);
394
2cef3cb2 395 // MRPC PAD itself
937fe4a4 396 par[0] = -1;
397 par[1] = -1;
398 par[2] = -1;
399 gMC->Gsvolu("FPAD", "BOX ", idtmed[513], par, 3);
2cef3cb2 400 gMC->Gspos ("FPAD", 0, "FLX", 0., 0., 0., 0, "ONLY");
937fe4a4 401
402//// Positioning the Strips (FSTR) in the FLT volumes /////
403
2cef3cb2 404 // Plate A (Central)
405
406 Float_t t = zFLTC+zFLTB+zFLTA*0.5+ 2*db;//Half Width of Barrel
407
408 Float_t Gap = fGapA; //cm distance between the strip axis
937fe4a4 409 Float_t zpos = 0;
2cef3cb2 410 Float_t ang = 0;
937fe4a4 411 Int_t i=1,j=1;
2cef3cb2 412 nrot = 0;
413 zcoor = 0;
414 ycoor = -14.5 + Space ; //2 cm over front plate
415
416 AliMatrix (idrotm[0], 90., 0.,90.,90.,0., 90.);
417 gMC->Gspos("FSTR",j,"FLTA",0.,ycoor, 0.,idrotm[0],"ONLY");
418
419 printf("%f, St. %2i, Pl.3 ",ang*kRaddeg,i);
420 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
421
422 zcoor -= zSenStrip;
423 j++;
424 Int_t UpDown = -1; // UpDown=-1 -> Upper strip
425 // UpDown=+1 -> Lower strip
937fe4a4 426 do{
2cef3cb2 427 ang = atan(zcoor/Radius);
428 ang *= kRaddeg;
429 AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.);
430 AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.);
431 ang /= kRaddeg;
432 ycoor = -14.5+ Space; //2 cm over front plate
937fe4a4 433 ycoor += (1-(UpDown+1)/2)*Gap;
2cef3cb2 434 gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY");
435 gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY");
436
437 printf("%f, St. %2i, Pl.3 ",ang*kRaddeg,i);
438 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
439
440 j += 2;
937fe4a4 441 UpDown*= -1; // Alternate strips
2cef3cb2 442 zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)-
443 UpDown*Gap*TMath::Tan(ang)-
444 (zSenStrip/2)/TMath::Cos(ang);
445 } while (zcoor-(StripWidth/2)*TMath::Cos(ang)>-t+zFLTC+zFLTB+db*2);
937fe4a4 446
2cef3cb2 447 zcoor = zcoor+(zSenStrip/2)/TMath::Cos(ang)+
448 UpDown*Gap*TMath::Tan(ang)+
449 (zSenStrip/2)/TMath::Cos(ang);
450
451 Gap = fGapB;
452 zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)-
453 UpDown*Gap*TMath::Tan(ang)-
454 (zSenStrip/2)/TMath::Cos(ang);
455
456 ang = atan(zcoor/Radius);
457 ang *= kRaddeg;
458 AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.);
459 AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.);
460 ang /= kRaddeg;
461
462 ycoor = -14.5+ Space; //2 cm over front plate
463 ycoor += (1-(UpDown+1)/2)*Gap;
464 gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY");
465 gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY");
466
467 printf("%f, St. %2i, Pl.3 ",ang*kRaddeg,i);
468 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
469
470 ycoor = -hTof/2.+ Space;//2 cm over front plate
471
472 // Plate B
937fe4a4 473
937fe4a4 474 nrot = 0;
475 i=1;
2cef3cb2 476 UpDown = 1;
477 Float_t DeadRegion = 1.0;//cm
478
479 zpos = zcoor - (zSenStrip/2)/TMath::Cos(ang)-
480 UpDown*Gap*TMath::Tan(ang)-
481 (zSenStrip/2)/TMath::Cos(ang)-
482 DeadRegion/TMath::Cos(ang);
483
484 ang = atan(zpos/Radius);
485 ang *= kRaddeg;
486 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
487 ang /= kRaddeg;
488 ycoor = -hTof*0.5+ Space ; //2 cm over front plate
489 ycoor += (1-(UpDown+1)/2)*Gap;
490 zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB
491 gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
492
493 printf("%f, St. %2i, Pl.4 ",ang*kRaddeg,i);
494 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
495
496 i++;
497 UpDown*=-1;
937fe4a4 498
499 do {
2cef3cb2 500 zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)-
501 UpDown*Gap*TMath::Tan(ang)-
502 (zSenStrip/2)/TMath::Cos(ang);
503 ang = atan(zpos/Radius);
504 ang *= kRaddeg;
00e5f8d9 505 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
2cef3cb2 506 ang /= kRaddeg;
507 ycoor = -hTof*0.5+ Space ; //2 cm over front plate
937fe4a4 508 ycoor += (1-(UpDown+1)/2)*Gap;
2cef3cb2 509 zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB
510 gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
511
512 printf("%f, St. %2i, Pl.4 ",ang*kRaddeg,i);
513 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
514
937fe4a4 515 UpDown*=-1;
2cef3cb2 516 i++;
517 } while (TMath::Abs(ang*kRaddeg)<22.5);
518 //till we reach a tilting angle of 22.5 degrees
519
520 ycoor = -hTof*0.5+ Space ; //2 cm over front plate
521 zpos = zpos - zSenStrip/TMath::Cos(ang);
522
523 do {
524 ang = atan(zpos/Radius);
525 ang *= kRaddeg;
526 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
527 ang /= kRaddeg;
528 zcoor = zpos+(zFLTB/2+zFLTA/2+db);
529 gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
530 zpos = zpos - zSenStrip/TMath::Cos(ang);
531 printf("%f, St. %2i, Pl.4 ",ang*kRaddeg,i);
532 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
533 i++;
534
535 } while (zpos-StripWidth*0.5/TMath::Cos(ang)>-t+zFLTC+db);
536
537 // Plate C
538
539 zpos = zpos + zSenStrip/TMath::Cos(ang);
540
541 zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)+
542 Gap*TMath::Tan(ang)-
543 (zSenStrip/2)/TMath::Cos(ang);
544
937fe4a4 545 nrot = 0;
546 i=0;
2cef3cb2 547 ycoor= -hTof*0.5+Space+Gap;
937fe4a4 548
2cef3cb2 549 do {
937fe4a4 550 i++;
2cef3cb2 551 ang = atan(zpos/Radius);
552 ang *= kRaddeg;
553 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
554 ang /= kRaddeg;
555 zcoor = zpos+(zFLTC*0.5+zFLTB+zFLTA*0.5+db*2);
556 gMC->Gspos("FSTR",i, "FLTC", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
557
558 printf("%f, St. %2i, Pl.5 ",ang*kRaddeg,i);
559 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
937fe4a4 560
937fe4a4 561 zpos = zpos - zSenStrip/TMath::Cos(ang);
2cef3cb2 562 } while (zpos-StripWidth*TMath::Cos(ang)*0.5>-t);
563
937fe4a4 564
565////////// Layers after detector /////////////////
566
2cef3cb2 567// honeycomb (Polyethilene) Layer after (3cm)
937fe4a4 568
2cef3cb2 569 Float_t OverSpace = fOverSpc;//cm
937fe4a4 570
571 par[0] = -1;
572 par[1] = 0.6;
573 par[2] = -1;
574 ycoor = -yFLT/2 + OverSpace + par[1];
2cef3cb2 575 gMC->Gsvolu("FPEA", "BOX ", idtmed[503], par, 3); // Hony
576 gMC->Gspos ("FPEA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
577 gMC->Gsvolu("FPEB", "BOX ", idtmed[503], par, 3); // Hony
578 gMC->Gspos ("FPEB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
579 gMC->Gsvolu("FPEC", "BOX ", idtmed[503], par, 3); // Hony
580 gMC->Gspos ("FPEC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
937fe4a4 581
582// Electronics (Cu) after
583 ycoor += par[1];
584 par[0] = -1;
2cef3cb2 585 par[1] = 1.43*0.05*0.5; // 5% of X0
937fe4a4 586 par[2] = -1;
587 ycoor += par[1];
2cef3cb2 588 gMC->Gsvolu("FECA", "BOX ", idtmed[501], par, 3); // Cu
589 gMC->Gspos ("FECA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
590 gMC->Gsvolu("FECB", "BOX ", idtmed[501], par, 3); // Cu
591 gMC->Gspos ("FECB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
592 gMC->Gsvolu("FECC", "BOX ", idtmed[501], par, 3); // Cu
593 gMC->Gspos ("FECC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
594
595// cooling WAter after
937fe4a4 596 ycoor += par[1];
597 par[0] = -1;
2cef3cb2 598 par[1] = 36.1*0.02*0.5; // 2% of X0
937fe4a4 599 par[2] = -1;
600 ycoor += par[1];
2cef3cb2 601 gMC->Gsvolu("FWAA", "BOX ", idtmed[515], par, 3); // Water
602 gMC->Gspos ("FWAA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
603 gMC->Gsvolu("FWAB", "BOX ", idtmed[515], par, 3); // Water
604 gMC->Gspos ("FWAB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
605 gMC->Gsvolu("FWAC", "BOX ", idtmed[515], par, 3); // Water
606 gMC->Gspos ("FWAC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
607
608//Back Plate honycomb (2cm)
937fe4a4 609 par[0] = -1;
2cef3cb2 610 par[1] = 2 *0.5;
937fe4a4 611 par[2] = -1;
612 ycoor = yFLT/2 - par[1];
2cef3cb2 613 gMC->Gsvolu("FBPA", "BOX ", idtmed[503], par, 3); // Hony
614 gMC->Gspos ("FBPA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
615 gMC->Gsvolu("FBPB", "BOX ", idtmed[503], par, 3); // Hony
616 gMC->Gspos ("FBPB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
617 gMC->Gsvolu("FBPC", "BOX ", idtmed[503], par, 3); // Hony
618 gMC->Gspos ("FBPC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
fe4da5cc 619}
620
621//_____________________________________________________________________________
8f72dc0c 622void AliTOFv2::DrawModule()
fe4da5cc 623{
624 //
937fe4a4 625 // Draw a shaded view of the Time Of Flight version 1
fe4da5cc 626 //
fe4da5cc 627 // Set everything unseen
cfce8870 628 gMC->Gsatt("*", "seen", -1);
fe4da5cc 629 //
630 // Set ALIC mother transparent
cfce8870 631 gMC->Gsatt("ALIC","SEEN",0);
fe4da5cc 632 //
633 // Set the volumes visible
cfce8870 634 gMC->Gsatt("ALIC","SEEN",0);
2cef3cb2 635
636 gMC->Gsatt("FTOA","SEEN",1);
637 gMC->Gsatt("FTOB","SEEN",1);
638 gMC->Gsatt("FTOC","SEEN",1);
639 gMC->Gsatt("FLTA","SEEN",1);
640 gMC->Gsatt("FLTB","SEEN",1);
641 gMC->Gsatt("FLTC","SEEN",1);
642 gMC->Gsatt("FPLA","SEEN",1);
643 gMC->Gsatt("FPLB","SEEN",1);
644 gMC->Gsatt("FPLC","SEEN",1);
645 gMC->Gsatt("FSTR","SEEN",1);
646 gMC->Gsatt("FPEA","SEEN",1);
647 gMC->Gsatt("FPEB","SEEN",1);
648 gMC->Gsatt("FPEC","SEEN",1);
649
650 gMC->Gsatt("FLZ1","SEEN",0);
651 gMC->Gsatt("FLZ2","SEEN",0);
652 gMC->Gsatt("FLZ3","SEEN",0);
653 gMC->Gsatt("FLX1","SEEN",0);
654 gMC->Gsatt("FLX2","SEEN",0);
655 gMC->Gsatt("FLX3","SEEN",0);
656 gMC->Gsatt("FPAD","SEEN",0);
657
cfce8870 658 gMC->Gdopt("hide", "on");
659 gMC->Gdopt("shad", "on");
660 gMC->Gsatt("*", "fill", 7);
661 gMC->SetClipBox(".");
662 gMC->SetClipBox("*", 0, 1000, -1000, 1000, -1000, 1000);
663 gMC->DefaultRange();
664 gMC->Gdraw("alic", 40, 30, 0, 12, 9.5, .02, .02);
665 gMC->Gdhead(1111, "Time Of Flight");
666 gMC->Gdman(18, 4, "MAN");
667 gMC->Gdopt("hide","off");
fe4da5cc 668}
669
670//_____________________________________________________________________________
671void AliTOFv2::CreateMaterials()
672{
673 //
674 // Define materials for the Time Of Flight
675 //
676 AliTOF::CreateMaterials();
677}
678
679//_____________________________________________________________________________
680void AliTOFv2::Init()
681{
682 //
683 // Initialise the detector after the geometry has been defined
684 //
ab76897d 685 printf("**************************************"
686 " TOF "
687 "**************************************\n");
2cef3cb2 688 printf("\n Version 2 of TOF initialing, "
689 "TOF with holes for PHOS and RICH \n");
ab76897d 690
fe4da5cc 691 AliTOF::Init();
ab76897d 692
2cef3cb2 693 fIdFTOA = gMC->VolId("FTOA");
694 fIdFTOB = gMC->VolId("FTOB");
695 fIdFTOC = gMC->VolId("FTOC");
696 fIdFLTA = gMC->VolId("FLTA");
697 fIdFLTB = gMC->VolId("FLTB");
698 fIdFLTC = gMC->VolId("FLTC");
699
ab76897d 700 printf("**************************************"
701 " TOF "
702 "**************************************\n");
fe4da5cc 703}
704
705//_____________________________________________________________________________
706void AliTOFv2::StepManager()
707{
708 //
709 // Procedure called at each step in the Time Of Flight
710 //
3fe3a833 711 TLorentzVector mom, pos;
2cef3cb2 712 Float_t xm[3],pm[3],xpad[3],ppad[3];
713 Float_t hits[13],phi,phid,z;
714 Int_t vol[5];
715 Int_t sector, plate, pad_x, pad_z, strip;
716 Int_t copy, pad_z_id, pad_x_id, strip_id, i;
717 Int_t *idtmed = fIdtmed->GetArray()-499;
718 Float_t IncidenceAngle;
826b71ec 719
720 if(gMC->GetMedium()==idtmed[513] &&
0a6d8768 721 gMC->IsTrackEntering() && gMC->TrackCharge()
826b71ec 722 && gMC->CurrentVolID(copy)==fIdSens)
2cef3cb2 723 {
724 // getting information about hit volumes
826b71ec 725
726 pad_z_id=gMC->CurrentVolOffID(2,copy);
727 pad_z=copy;
728
729 pad_x_id=gMC->CurrentVolOffID(1,copy);
730 pad_x=copy;
731
732 strip_id=gMC->CurrentVolOffID(5,copy);
733 strip=copy;
734
0a6d8768 735 gMC->TrackPosition(pos);
736 gMC->TrackMomentum(mom);
826b71ec 737
2cef3cb2 738// Double_t NormPos=1./pos.Rho();
739 Double_t NormMom=1./mom.Rho();
740
741// getting the cohordinates in pad ref system
742 xm[0] = (Float_t)pos.X();
743 xm[1] = (Float_t)pos.Y();
744 xm[2] = (Float_t)pos.Z();
745
746 pm[0] = (Float_t)mom.X()*NormMom;
747 pm[1] = (Float_t)mom.Y()*NormMom;
748 pm[2] = (Float_t)mom.Z()*NormMom;
749
750 gMC->Gmtod(xm,xpad,1);
751 gMC->Gmtod(pm,ppad,2);
752
753 IncidenceAngle = TMath::ACos(ppad[1])*kRaddeg;
826b71ec 754
755 z = pos[2];
2cef3cb2 756
757 plate = 0;
758 if (TMath::Abs(z) <= fZlenA*0.5) plate = 3;
759 if (z < (fZlenA*0.5+fZlenB) &&
760 z > fZlenA*0.5) plate = 4;
761 if (z >-(fZlenA*0.5+fZlenB) &&
762 z < -fZlenA*0.5) plate = 2;
763 if (z > (fZlenA*0.5+fZlenB)) plate = 5;
764 if (z <-(fZlenA*0.5+fZlenB)) plate = 1;
765
766 phi = pos.Phi();
767 phid = phi*kRaddeg+180.;
826b71ec 768 sector = Int_t (phid/20.);
769 sector++;
770
0a6d8768 771 for(i=0;i<3;++i) {
2cef3cb2 772 hits[i] = pos[i];
773 hits[i+3] = pm[i];
0a6d8768 774 }
2cef3cb2 775
776 hits[6] = mom.Rho();
777 hits[7] = pos[3];
778 hits[8] = xpad[0];
779 hits[9] = xpad[1];
780 hits[10]= xpad[2];
781 hits[11]= IncidenceAngle;
782 hits[12]= gMC->Edep();
783
784 vol[0]= sector;
785 vol[1]= plate;
786 vol[2]= strip;
787 vol[3]= pad_x;
788 vol[4]= pad_z;
789
790 AddHit(gAlice->CurrentTrack(),vol, hits);
fe4da5cc 791 }
792}