]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TOF/AliTOFv3.cxx
Temporary disable GetParticle and GetNParticles functions
[u/mrichter/AliRoot.git] / TOF / AliTOFv3.cxx
CommitLineData
4c039060 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
68861244 18Revision 1.20 2001/05/16 14:57:24 alibrary
19New files for folders and Stack
20
9e1a0ddb 21Revision 1.19 2001/05/04 10:09:48 vicinanz
22Major upgrades to the strip structure
23
b94fa26c 24Revision 1.18 2000/12/04 08:48:20 alibrary
25Fixing problems in the HEAD
26
0cc62300 27Revision 1.17 2000/10/02 21:28:17 fca
28Removal of useless dependecies via forward declarations
29
94de3818 30Revision 1.16 2000/05/10 16:52:18 vicinanz
31New TOF version with holes for PHOS/RICH
32
2cef3cb2 33Revision 1.14.2.1 2000/05/10 09:37:16 vicinanz
34New version with Holes for PHOS/RICH
35
da39da0c 36Revision 1.14 1999/11/05 22:39:06 fca
37New hits structure
38
826b71ec 39Revision 1.13 1999/11/02 11:26:39 fca
40added stdlib.h for exit
41
0c50193f 42Revision 1.12 1999/11/01 20:41:57 fca
43Added protections against using the wrong version of FRAME
44
ab76897d 45Revision 1.11 1999/10/22 08:04:14 fca
46Correct improper use of negative parameters
47
d0a635a0 48Revision 1.10 1999/10/16 19:30:06 fca
49Corrected Rotation Matrix and CVS log
50
00e5f8d9 51Revision 1.9 1999/10/15 15:35:20 fca
52New version for frame1099 with and without holes
53
54Revision 1.8 1999/09/29 09:24:33 fca
937fe4a4 55Introduction of the Copyright and cvs Log
56
4c039060 57*/
58
fe4da5cc 59///////////////////////////////////////////////////////////////////////////////
60// //
68861244 61// Time Of Flight: design of C.Williams //
62// //
63// This class contains the functions for version 3 of the Time Of Flight //
fe4da5cc 64// detector. //
937fe4a4 65//
66// VERSION WITH 5 MODULES AND TILTED STRIPS
68861244 67// HITS DEFINED FOR THIS VERSION
2cef3cb2 68// HOLES FOR RICH DETECTOR
937fe4a4 69//
70// Authors:
71//
72// Alessio Seganti
73// Domenico Vicinanza
74//
75// University of Salerno - Italy
76//
b94fa26c 77// Fabrizio Pierella
78// University of Bologna - Italy
79//
937fe4a4 80//
fe4da5cc 81//Begin_Html
82/*
1439f98e 83<img src="picts/AliTOFv3Class.gif">
fe4da5cc 84*/
85//End_Html
86// //
87///////////////////////////////////////////////////////////////////////////////
88
826b71ec 89#include <iostream.h>
0c50193f 90#include <stdlib.h>
91
fe4da5cc 92#include "AliTOFv3.h"
2cef3cb2 93#include "TBRIK.h"
94de3818 94#include "TGeometry.h"
2cef3cb2 95#include "TNode.h"
0cc62300 96#include <TLorentzVector.h>
2cef3cb2 97#include "TObject.h"
fe4da5cc 98#include "AliRun.h"
94de3818 99#include "AliMC.h"
3fe3a833 100#include "AliConst.h"
2cef3cb2 101
fe4da5cc 102
103ClassImp(AliTOFv3)
104
105//_____________________________________________________________________________
ad51aeb0 106AliTOFv3::AliTOFv3()
fe4da5cc 107{
108 //
109 // Default constructor
110 //
111}
112
113//_____________________________________________________________________________
114AliTOFv3::AliTOFv3(const char *name, const char *title)
2cef3cb2 115 : AliTOF(name,title)
fe4da5cc 116{
117 //
118 // Standard constructor
119 //
da39da0c 120 //
121 // Check that FRAME is there otherwise we have no place where to
122 // put TOF
b94fa26c 123 AliModule* frame=gAlice->GetModule("FRAME");
124 if(!frame) {
da39da0c 125 Error("Ctor","TOF needs FRAME to be present\n");
126 exit(1);
2cef3cb2 127 } else
b94fa26c 128 if(frame->IsVersion()!=1) {
da39da0c 129 Error("Ctor","FRAME version 1 needed with this version of TOF\n");
130 exit(1);
131 }
132
fe4da5cc 133}
2cef3cb2 134
b94fa26c 135//____________________________________________________________________________
136AliTOFv3::~AliTOFv3()
137{
138 // destructor
139
140 if ( fHits) {
141 fHits->Delete() ;
142 delete fHits ;
143 fHits = 0 ;
144 }
68861244 145
b94fa26c 146 if ( fSDigits) {
147 fSDigits->Delete() ;
148 delete fSDigits ;
149 fSDigits = 0 ;
150 }
68861244 151
b94fa26c 152 if ( fDigits) {
153 fDigits->Delete() ;
154 delete fDigits ;
155 fDigits = 0 ;
156 }
157
158}
159
2cef3cb2 160//_____________________________________________________________________________
161void AliTOFv3::BuildGeometry()
162{
163 //
164 // Build TOF ROOT geometry for the ALICE event display
165 //
b94fa26c 166 TNode *node, *top;
2cef3cb2 167 const int kColorTOF = 27;
168
169 // Find top TNODE
b94fa26c 170 top = gAlice->GetGeometry()->GetNode("alice");
2cef3cb2 171
172 // Position the different copies
b94fa26c 173 const Float_t krTof =(fRmax+fRmin)/2;
174 const Float_t khTof = fRmax-fRmin;
175 const Int_t kNTof = fNTof;
2cef3cb2 176 const Float_t kPi = TMath::Pi();
b94fa26c 177 const Float_t kangle = 2*kPi/kNTof;
2cef3cb2 178 Float_t ang;
179
180 // Define TOF basic volume
181
b94fa26c 182 char nodeName0[7], nodeName1[7], nodeName2[7];
183 char nodeName3[7], nodeName4[7], rotMatNum[7];
2cef3cb2 184
185 new TBRIK("S_TOF_C","TOF box","void",
b94fa26c 186 120*0.5,khTof*0.5,fZlenC*0.5);
2cef3cb2 187 new TBRIK("S_TOF_B","TOF box","void",
b94fa26c 188 120*0.5,khTof*0.5,fZlenB*0.5);
2cef3cb2 189 new TBRIK("S_TOF_A","TOF box","void",
b94fa26c 190 120*0.5,khTof*0.5,fZlenA*0.5);
2cef3cb2 191
b94fa26c 192 for (Int_t nodeNum=1;nodeNum<19;nodeNum++){
2cef3cb2 193
b94fa26c 194 if (nodeNum<10) {
195 sprintf(rotMatNum,"rot50%i",nodeNum);
196 sprintf(nodeName0,"FTO00%i",nodeNum);
197 sprintf(nodeName1,"FTO10%i",nodeNum);
198 sprintf(nodeName2,"FTO20%i",nodeNum);
199 sprintf(nodeName3,"FTO30%i",nodeNum);
200 sprintf(nodeName4,"FTO40%i",nodeNum);
2cef3cb2 201 }
b94fa26c 202 if (nodeNum>9) {
203 sprintf(rotMatNum,"rot5%i",nodeNum);
204 sprintf(nodeName0,"FTO0%i",nodeNum);
205 sprintf(nodeName1,"FTO1%i",nodeNum);
206 sprintf(nodeName2,"FTO2%i",nodeNum);
207 sprintf(nodeName3,"FTO3%i",nodeNum);
208 sprintf(nodeName4,"FTO4%i",nodeNum);
2cef3cb2 209 }
210
b94fa26c 211 new TRotMatrix(rotMatNum,rotMatNum,90,-20*nodeNum,90,90-20*nodeNum,0,0);
212 ang = (4.5-nodeNum) * kangle;
213
214 top->cd();
215 node = new TNode(nodeName0,nodeName0,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),299.15,rotMatNum);
216 node->SetLineColor(kColorTOF);
217 fNodes->Add(node);
218
219 top->cd();
220 node = new TNode(nodeName1,nodeName1,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-299.15,rotMatNum);
221 node->SetLineColor(kColorTOF);
222 fNodes->Add(node);
223if (nodeNum !=1 && nodeNum!=2 && nodeNum !=18)
2cef3cb2 224 {
b94fa26c 225 top->cd();
226 node = new TNode(nodeName2,nodeName2,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),146.45,rotMatNum);
227 node->SetLineColor(kColorTOF);
228 fNodes->Add(node);
229
230 top->cd();
231 node = new TNode(nodeName3,nodeName3,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-146.45,rotMatNum);
232 node->SetLineColor(kColorTOF);
233 fNodes->Add(node);
2cef3cb2 234 } // Holes for RICH detector
235
b94fa26c 236if (nodeNum !=1 && nodeNum !=2 && nodeNum !=18)
2cef3cb2 237 {
b94fa26c 238 top->cd();
239 node = new TNode(nodeName4,nodeName4,"S_TOF_A",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),0.,rotMatNum);
240 node->SetLineColor(kColorTOF);
241 fNodes->Add(node);
2cef3cb2 242 } // Holes for RICH detector, central part
243 }
244}
245
246
fe4da5cc 247
248//_____________________________________________________________________________
249void AliTOFv3::CreateGeometry()
250{
251 //
3fe3a833 252 // Create geometry for Time Of Flight version 0
fe4da5cc 253 //
254 //Begin_Html
255 /*
1439f98e 256 <img src="picts/AliTOFv3.gif">
fe4da5cc 257 */
258 //End_Html
259 //
937fe4a4 260 // Creates common geometry
fe4da5cc 261 //
262 AliTOF::CreateGeometry();
263}
264
265//_____________________________________________________________________________
2cef3cb2 266void AliTOFv3::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC,
267 Float_t zlenB, Float_t zlenA, Float_t ztof0)
fe4da5cc 268{
269 //
3fe3a833 270 // Definition of the Time Of Fligh Resistive Plate Chambers
937fe4a4 271 // xFLT, yFLT, zFLT - sizes of TOF modules (large)
3fe3a833 272
937fe4a4 273 Float_t ycoor, zcoor;
b94fa26c 274 Float_t par[3];
2cef3cb2 275 Int_t *idtmed = fIdtmed->GetArray()-499;
276 Int_t idrotm[100];
277 Int_t nrot = 0;
278 Float_t hTof = fRmax-fRmin;
fe4da5cc 279
b94fa26c 280 Float_t radius = fRmin+2.;//cm
937fe4a4 281
2cef3cb2 282 par[0] = xtof * 0.5;
283 par[1] = ytof * 0.5;
284 par[2] = zlenC * 0.5;
285 gMC->Gsvolu("FTOC", "BOX ", idtmed[506], par, 3);
286 par[2] = zlenB * 0.5;
287 gMC->Gsvolu("FTOB", "BOX ", idtmed[506], par, 3);
288 par[2] = zlenA * 0.5;
289 gMC->Gsvolu("FTOA", "BOX ", idtmed[506], par, 3);
937fe4a4 290
291
292// Positioning of modules
293
2cef3cb2 294 Float_t zcor1 = ztof0 - zlenC*0.5;
295 Float_t zcor2 = ztof0 - zlenC - zlenB*0.5;
937fe4a4 296 Float_t zcor3 = 0.;
297
2cef3cb2 298 AliMatrix(idrotm[0], 90., 0., 0., 0., 90,-90.);
299 AliMatrix(idrotm[1], 90.,180., 0., 0., 90, 90.);
300 gMC->Gspos("FTOC", 1, "BTO1", 0, zcor1, 0, idrotm[0], "ONLY");
301 gMC->Gspos("FTOC", 2, "BTO1", 0, -zcor1, 0, idrotm[1], "ONLY");
302 gMC->Gspos("FTOC", 1, "BTO2", 0, zcor1, 0, idrotm[0], "ONLY");
303 gMC->Gspos("FTOC", 2, "BTO2", 0, -zcor1, 0, idrotm[1], "ONLY");
304 gMC->Gspos("FTOC", 1, "BTO3", 0, zcor1, 0, idrotm[0], "ONLY");
305 gMC->Gspos("FTOC", 2, "BTO3", 0, -zcor1, 0, idrotm[1], "ONLY");
937fe4a4 306
2cef3cb2 307 gMC->Gspos("FTOB", 1, "BTO1", 0, zcor2, 0, idrotm[0], "ONLY");
308 gMC->Gspos("FTOB", 2, "BTO1", 0, -zcor2, 0, idrotm[1], "ONLY");
309 gMC->Gspos("FTOB", 1, "BTO2", 0, zcor2, 0, idrotm[0], "ONLY");
310 gMC->Gspos("FTOB", 2, "BTO2", 0, -zcor2, 0, idrotm[1], "ONLY");
937fe4a4 311
2cef3cb2 312 gMC->Gspos("FTOA", 0, "BTO1", 0, zcor3, 0, idrotm[0], "ONLY");
313 gMC->Gspos("FTOA", 0, "BTO2", 0, zcor3, 0, idrotm[0], "ONLY");
937fe4a4 314
2cef3cb2 315 Float_t db = 0.5;//cm
316 Float_t xFLT, xFST, yFLT, zFLTA, zFLTB, zFLTC;
937fe4a4 317
2cef3cb2 318 xFLT = fStripLn;
937fe4a4 319 yFLT = ytof;
2cef3cb2 320 zFLTA = zlenA;
321 zFLTB = zlenB;
322 zFLTC = zlenC;
323
324 xFST = xFLT-fDeadBndX*2;//cm
937fe4a4 325
326// Sizes of MRPC pads
327
2cef3cb2 328 Float_t yPad = 0.505;//cm
937fe4a4 329
b94fa26c 330// Large not sensitive volumes with Insensitive Freon
2cef3cb2 331 par[0] = xFLT*0.5;
332 par[1] = yFLT*0.5;
9e1a0ddb 333
68861244 334 if (fDebug) cout << ClassName() <<
9e1a0ddb 335 cout <<": ************************* TOF geometry **************************"<<endl;
937fe4a4 336
2cef3cb2 337 par[2] = (zFLTA *0.5);
b94fa26c 338 gMC->Gsvolu("FLTA", "BOX ", idtmed[512], par, 3); // Insensitive Freon
2cef3cb2 339 gMC->Gspos ("FLTA", 0, "FTOA", 0., 0., 0., 0, "ONLY");
937fe4a4 340
2cef3cb2 341 par[2] = (zFLTB * 0.5);
b94fa26c 342 gMC->Gsvolu("FLTB", "BOX ", idtmed[512], par, 3); // Insensitive Freon
2cef3cb2 343 gMC->Gspos ("FLTB", 0, "FTOB", 0., 0., 0., 0, "ONLY");
937fe4a4 344
b94fa26c 345 par[2] = (zFLTC * 0.5);
346 gMC->Gsvolu("FLTC", "BOX ", idtmed[512], par, 3); // Insensitive Freon
2cef3cb2 347 gMC->Gspos ("FLTC", 0, "FTOC", 0., 0., 0., 0, "ONLY");
937fe4a4 348
b94fa26c 349////////// Layers of Aluminum before and after detector //////////
350////////// Aluminum Box for Modules (2.0 mm thickness) /////////
351////////// lateral walls not simulated
352 par[0] = xFLT*0.5;
2cef3cb2 353 par[1] = 0.1;//cm
937fe4a4 354 ycoor = -yFLT/2 + par[1];
b94fa26c 355 par[2] = (zFLTA *0.5);
356 gMC->Gsvolu("FALA", "BOX ", idtmed[508], par, 3); // Alluminium
357 gMC->Gspos ("FALA", 1, "FLTA", 0., ycoor, 0., 0, "ONLY");
358 gMC->Gspos ("FALA", 2, "FLTA", 0.,-ycoor, 0., 0, "ONLY");
359 par[2] = (zFLTB *0.5);
360 gMC->Gsvolu("FALB", "BOX ", idtmed[508], par, 3); // Alluminium
361 gMC->Gspos ("FALB", 1, "FLTB", 0., ycoor, 0., 0, "ONLY");
362 gMC->Gspos ("FALB", 2, "FLTB", 0.,-ycoor, 0., 0, "ONLY");
363 par[2] = (zFLTC *0.5);
364 gMC->Gsvolu("FALC", "BOX ", idtmed[508], par, 3); // Alluminium
365 gMC->Gspos ("FALC", 1, "FLTC", 0., ycoor, 0., 0, "ONLY");
366 gMC->Gspos ("FALC", 2, "FLTC", 0.,-ycoor, 0., 0, "ONLY");
367
3fe3a833 368///////////////// Detector itself //////////////////////
937fe4a4 369
b94fa26c 370 const Float_t kdeadBound = fDeadBndZ; //cm non-sensitive between the pad edge
2cef3cb2 371 //and the boundary of the strip
b94fa26c 372 const Int_t knx = fNpadX; // number of pads along x
373 const Int_t knz = fNpadZ; // number of pads along z
374 const Float_t kspace = fSpace; //cm distance from the front plate of the box
937fe4a4 375
2cef3cb2 376 Float_t zSenStrip = fZpad*fNpadZ;//cm
b94fa26c 377 Float_t stripWidth = zSenStrip + 2*kdeadBound;
937fe4a4 378
2cef3cb2 379 par[0] = xFLT*0.5;
380 par[1] = yPad*0.5;
b94fa26c 381 par[2] = stripWidth*0.5;
937fe4a4 382
b94fa26c 383// new description for strip volume
384// -- all constants are expressed in cm
385// heigth of different layers
386 const Float_t khhony = 1. ; // heigth of HONY Layer
387 const Float_t khpcby = 0.15 ; // heigth of PCB Layer
388 const Float_t khmyly = 0.035 ; // heigth of MYLAR Layer
389 const Float_t khgraphy = 0.02 ; // heigth of GRAPHITE Layer
390 const Float_t khglasseiy = 0.32; // 2.2 Ext. Glass + 1. Semi Int. Glass (mm)
391 const Float_t khsensmy = 0.11 ; // heigth of Sensitive Freon Mixture
392 const Float_t kwsensmz = 2*3.5 ; // cm
393 const Float_t klsensmx = 48*2.5; // cm
394 const Float_t kwpadz = 3.5; // cm z dimension of the FPAD volume
395 const Float_t klpadx = 2.5; // cm x dimension of the FPAD volume
396
397 // heigth of the FSTR Volume (the strip volume)
398 const Float_t khstripy = 2*(khhony+khpcby+khmyly+khgraphy+khglasseiy)+khsensmy;
399 // width of the FSTR Volume (the strip volume)
400 const Float_t kwstripz = 10.;
401 // length of the FSTR Volume (the strip volume)
402 const Float_t klstripx = 122.;
403
404 Float_t parfp[3]={klstripx*0.5,khstripy*0.5,kwstripz*0.5};
405// coordinates of the strip center in the strip reference frame; used for positioning
406// internal strip volumes
407 Float_t posfp[3]={0.,0.,0.};
408
409 // FSTR volume definition and filling this volume with non sensitive Gas Mixture
410 gMC->Gsvolu("FSTR","BOX",idtmed[512],parfp,3);
411 //-- HONY Layer definition
412// parfp[0] = -1;
413 parfp[1] = khhony*0.5;
414// parfp[2] = -1;
415 gMC->Gsvolu("FHON","BOX",idtmed[503],parfp,3);
416 // positioning 2 HONY Layers on FSTR volume
417 posfp[1]=-khstripy*0.5+parfp[1];
418 gMC->Gspos("FHON",1,"FSTR",0., posfp[1],0.,0,"ONLY");
419 gMC->Gspos("FHON",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
420
421 //-- PCB Layer definition
422 parfp[1] = khpcby*0.5;
423 gMC->Gsvolu("FPCB","BOX",idtmed[504],parfp,3);
424 // positioning 2 PCB Layers on FSTR volume
425 posfp[1]=-khstripy*0.5+khhony+parfp[1];
426 gMC->Gspos("FPCB",1,"FSTR",0., posfp[1],0.,0,"ONLY");
427 gMC->Gspos("FPCB",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
428
429 //-- MYLAR Layer definition
430 parfp[1] = khmyly*0.5;
431 gMC->Gsvolu("FMYL","BOX",idtmed[511],parfp,3);
432 // positioning 2 MYLAR Layers on FSTR volume
433 posfp[1] = -khstripy*0.5+khhony+khpcby+parfp[1];
434 gMC->Gspos("FMYL",1,"FSTR",0., posfp[1],0.,0,"ONLY");
435 gMC->Gspos("FMYL",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
436
437 //-- Graphite Layer definition
438 parfp[1] = khgraphy*0.5;
439 gMC->Gsvolu("FGRP","BOX",idtmed[502],parfp,3);
440 // positioning 2 Graphite Layers on FSTR volume
441 posfp[1] = -khstripy*0.5+khhony+khpcby+khmyly+parfp[1];
442 gMC->Gspos("FGRP",1,"FSTR",0., posfp[1],0.,0,"ONLY");
443 gMC->Gspos("FGRP",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
444
445 //-- Glass (EXT. +Semi INT.) Layer definition
446 parfp[1] = khglasseiy*0.5;
447 gMC->Gsvolu("FGLA","BOX",idtmed[514],parfp,3);
448 // positioning 2 Glass Layers on FSTR volume
449 posfp[1] = -khstripy*0.5+khhony+khpcby+khmyly+khgraphy+parfp[1];
450 gMC->Gspos("FGLA",1,"FSTR",0., posfp[1],0.,0,"ONLY");
451 gMC->Gspos("FGLA",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
452
453 //-- Sensitive Mixture Layer definition
454 parfp[0] = klsensmx*0.5;
455 parfp[1] = khsensmy*0.5;
456 parfp[2] = kwsensmz*0.5;
457 gMC->Gsvolu("FSEN","BOX",idtmed[513],parfp,3);
458 // positioning the sensitive gas Layer on FSTR volume
459 gMC->Gspos("FSEN",0,"FSTR",0.,0.,0.,0,"ONLY");
460
461 // dividing FSEN along z in knz=2 and along x in knx=48
462 gMC->Gsdvn("FSEZ","FSEN",knz,3);
463 gMC->Gsdvn("FSEX","FSEZ",knx,1);
464
465 // FPAD volume definition
466 parfp[0] = klpadx*0.5;
467 parfp[1] = khsensmy*0.5;
468 parfp[2] = kwpadz*0.5;
469 gMC->Gsvolu("FPAD","BOX",idtmed[513],parfp,3);
470 // positioning the FPAD volumes on previous divisions
471 gMC->Gspos("FPAD",0,"FSEX",0.,0.,0.,0,"ONLY");
937fe4a4 472
937fe4a4 473//// Positioning the Strips (FSTR) in the FLT volumes /////
474
2cef3cb2 475 // Plate A (Central)
476
477 Float_t t = zFLTC+zFLTB+zFLTA*0.5+ 2*db;//Half Width of Barrel
478
b94fa26c 479 Float_t gap = fGapA; //cm distance between the strip axis
937fe4a4 480 Float_t zpos = 0;
2cef3cb2 481 Float_t ang = 0;
937fe4a4 482 Int_t i=1,j=1;
2cef3cb2 483 nrot = 0;
484 zcoor = 0;
b94fa26c 485 ycoor = -14.5 + kspace ; //2 cm over front plate
2cef3cb2 486
487 AliMatrix (idrotm[0], 90., 0.,90.,90.,0., 90.);
488 gMC->Gspos("FSTR",j,"FLTA",0.,ycoor, 0.,idrotm[0],"ONLY");
9e1a0ddb 489 if(fDebug) {
68861244 490 printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,i);
2cef3cb2 491 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
9e1a0ddb 492 }
2cef3cb2 493 zcoor -= zSenStrip;
494 j++;
b94fa26c 495 Int_t upDown = -1; // upDown=-1 -> Upper strip
496 // upDown=+1 -> Lower strip
937fe4a4 497 do{
b94fa26c 498 ang = atan(zcoor/radius);
2cef3cb2 499 ang *= kRaddeg;
500 AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.);
501 AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.);
502 ang /= kRaddeg;
b94fa26c 503 ycoor = -14.5+ kspace; //2 cm over front plate
504 ycoor += (1-(upDown+1)/2)*gap;
2cef3cb2 505 gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY");
506 gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY");
9e1a0ddb 507 if(fDebug) {
68861244 508 printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,i);
9e1a0ddb 509 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
510 }
2cef3cb2 511 j += 2;
b94fa26c 512 upDown*= -1; // Alternate strips
2cef3cb2 513 zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)-
b94fa26c 514 upDown*gap*TMath::Tan(ang)-
2cef3cb2 515 (zSenStrip/2)/TMath::Cos(ang);
b94fa26c 516 } while (zcoor-(stripWidth/2)*TMath::Cos(ang)>-t+zFLTC+zFLTB+db*2);
937fe4a4 517
2cef3cb2 518 zcoor = zcoor+(zSenStrip/2)/TMath::Cos(ang)+
b94fa26c 519 upDown*gap*TMath::Tan(ang)+
2cef3cb2 520 (zSenStrip/2)/TMath::Cos(ang);
521
b94fa26c 522 gap = fGapB;
2cef3cb2 523 zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)-
b94fa26c 524 upDown*gap*TMath::Tan(ang)-
2cef3cb2 525 (zSenStrip/2)/TMath::Cos(ang);
526
b94fa26c 527 ang = atan(zcoor/radius);
2cef3cb2 528 ang *= kRaddeg;
529 AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.);
530 AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.);
531 ang /= kRaddeg;
532
b94fa26c 533 ycoor = -14.5+ kspace; //2 cm over front plate
534 ycoor += (1-(upDown+1)/2)*gap;
2cef3cb2 535 gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY");
536 gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY");
68861244 537 if(fDebug) {
538 printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,i);
539 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
9e1a0ddb 540 }
b94fa26c 541 ycoor = -hTof/2.+ kspace;//2 cm over front plate
2cef3cb2 542
543 // Plate B
937fe4a4 544
937fe4a4 545 nrot = 0;
546 i=1;
b94fa26c 547 upDown = 1;
548 Float_t deadRegion = 1.0;//cm
2cef3cb2 549
550 zpos = zcoor - (zSenStrip/2)/TMath::Cos(ang)-
b94fa26c 551 upDown*gap*TMath::Tan(ang)-
2cef3cb2 552 (zSenStrip/2)/TMath::Cos(ang)-
b94fa26c 553 deadRegion/TMath::Cos(ang);
2cef3cb2 554
b94fa26c 555 ang = atan(zpos/radius);
2cef3cb2 556 ang *= kRaddeg;
557 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
558 ang /= kRaddeg;
b94fa26c 559 ycoor = -hTof*0.5+ kspace ; //2 cm over front plate
560 ycoor += (1-(upDown+1)/2)*gap;
2cef3cb2 561 zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB
562 gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
68861244 563 if(fDebug) {
564 printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i);
565 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
9e1a0ddb 566 }
2cef3cb2 567 i++;
b94fa26c 568 upDown*=-1;
937fe4a4 569
570 do {
2cef3cb2 571 zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)-
b94fa26c 572 upDown*gap*TMath::Tan(ang)-
2cef3cb2 573 (zSenStrip/2)/TMath::Cos(ang);
b94fa26c 574 ang = atan(zpos/radius);
2cef3cb2 575 ang *= kRaddeg;
00e5f8d9 576 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
2cef3cb2 577 ang /= kRaddeg;
b94fa26c 578 ycoor = -hTof*0.5+ kspace ; //2 cm over front plate
579 ycoor += (1-(upDown+1)/2)*gap;
2cef3cb2 580 zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB
581 gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
68861244 582 if(fDebug) {
583 printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i);
9e1a0ddb 584 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
585 }
b94fa26c 586 upDown*=-1;
2cef3cb2 587 i++;
588 } while (TMath::Abs(ang*kRaddeg)<22.5);
589 //till we reach a tilting angle of 22.5 degrees
590
b94fa26c 591 ycoor = -hTof*0.5+ kspace ; //2 cm over front plate
2cef3cb2 592 zpos = zpos - zSenStrip/TMath::Cos(ang);
593
594 do {
b94fa26c 595 ang = atan(zpos/radius);
2cef3cb2 596 ang *= kRaddeg;
597 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
598 ang /= kRaddeg;
599 zcoor = zpos+(zFLTB/2+zFLTA/2+db);
600 gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
601 zpos = zpos - zSenStrip/TMath::Cos(ang);
68861244 602 if(fDebug) {
603 printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i);
9e1a0ddb 604 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
605 }
2cef3cb2 606 i++;
607
b94fa26c 608 } while (zpos-stripWidth*0.5/TMath::Cos(ang)>-t+zFLTC+db);
2cef3cb2 609
610 // Plate C
611
612 zpos = zpos + zSenStrip/TMath::Cos(ang);
613
614 zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)+
b94fa26c 615 gap*TMath::Tan(ang)-
2cef3cb2 616 (zSenStrip/2)/TMath::Cos(ang);
617
937fe4a4 618 nrot = 0;
619 i=0;
b94fa26c 620 ycoor= -hTof*0.5+kspace+gap;
937fe4a4 621
2cef3cb2 622 do {
937fe4a4 623 i++;
b94fa26c 624 ang = atan(zpos/radius);
2cef3cb2 625 ang *= kRaddeg;
626 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
627 ang /= kRaddeg;
628 zcoor = zpos+(zFLTC*0.5+zFLTB+zFLTA*0.5+db*2);
629 gMC->Gspos("FSTR",i, "FLTC", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
68861244 630 if(fDebug) {
631 printf("%s: %f, St. %2i, Pl.5 ",ClassName(),ang*kRaddeg,i);
9e1a0ddb 632 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
68861244 633 }
937fe4a4 634 zpos = zpos - zSenStrip/TMath::Cos(ang);
b94fa26c 635 } while (zpos-stripWidth*TMath::Cos(ang)*0.5>-t);
2cef3cb2 636
937fe4a4 637
b94fa26c 638////////// Layers after strips /////////////////
639// honeycomb (Polyethilene) Layer after (1.2cm)
937fe4a4 640
b94fa26c 641 Float_t overSpace = fOverSpc;//cm
937fe4a4 642
b94fa26c 643 par[0] = xFLT*0.5;
937fe4a4 644 par[1] = 0.6;
b94fa26c 645 par[2] = (zFLTA *0.5);
646 ycoor = -yFLT/2 + overSpace + par[1];
2cef3cb2 647 gMC->Gsvolu("FPEA", "BOX ", idtmed[503], par, 3); // Hony
648 gMC->Gspos ("FPEA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
b94fa26c 649 par[2] = (zFLTB *0.5);
2cef3cb2 650 gMC->Gsvolu("FPEB", "BOX ", idtmed[503], par, 3); // Hony
651 gMC->Gspos ("FPEB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
b94fa26c 652 par[2] = (zFLTC *0.5);
2cef3cb2 653 gMC->Gsvolu("FPEC", "BOX ", idtmed[503], par, 3); // Hony
654 gMC->Gspos ("FPEC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
937fe4a4 655
656// Electronics (Cu) after
657 ycoor += par[1];
b94fa26c 658 par[0] = xFLT*0.5;
2cef3cb2 659 par[1] = 1.43*0.05*0.5; // 5% of X0
b94fa26c 660 par[2] = (zFLTA *0.5);
937fe4a4 661 ycoor += par[1];
2cef3cb2 662 gMC->Gsvolu("FECA", "BOX ", idtmed[501], par, 3); // Cu
663 gMC->Gspos ("FECA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
b94fa26c 664 par[2] = (zFLTB *0.5);
2cef3cb2 665 gMC->Gsvolu("FECB", "BOX ", idtmed[501], par, 3); // Cu
666 gMC->Gspos ("FECB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
b94fa26c 667 par[2] = (zFLTC *0.5);
2cef3cb2 668 gMC->Gsvolu("FECC", "BOX ", idtmed[501], par, 3); // Cu
669 gMC->Gspos ("FECC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
670
671// cooling WAter after
937fe4a4 672 ycoor += par[1];
b94fa26c 673 par[0] = xFLT*0.5;
2cef3cb2 674 par[1] = 36.1*0.02*0.5; // 2% of X0
b94fa26c 675 par[2] = (zFLTA *0.5);
937fe4a4 676 ycoor += par[1];
2cef3cb2 677 gMC->Gsvolu("FWAA", "BOX ", idtmed[515], par, 3); // Water
678 gMC->Gspos ("FWAA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
b94fa26c 679 par[2] = (zFLTB *0.5);
2cef3cb2 680 gMC->Gsvolu("FWAB", "BOX ", idtmed[515], par, 3); // Water
681 gMC->Gspos ("FWAB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
b94fa26c 682 par[2] = (zFLTC *0.5);
2cef3cb2 683 gMC->Gsvolu("FWAC", "BOX ", idtmed[515], par, 3); // Water
684 gMC->Gspos ("FWAC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
685
b94fa26c 686// frame of Air
687 ycoor += par[1];
688 par[0] = xFLT*0.5;
689 par[1] = (yFLT/2-ycoor-0.2)*0.5; // Aluminum layer considered (0.2 cm)
690 par[2] = (zFLTA *0.5);
691 ycoor += par[1];
692 gMC->Gsvolu("FAIA", "BOX ", idtmed[500], par, 3); // Air
693 gMC->Gspos ("FAIA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
694 par[2] = (zFLTB *0.5);
695 gMC->Gsvolu("FAIB", "BOX ", idtmed[500], par, 3); // Air
696 gMC->Gspos ("FAIB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
697 par[2] = (zFLTC *0.5);
698 gMC->Gsvolu("FAIC", "BOX ", idtmed[500], par, 3); // Air
699 gMC->Gspos ("FAIC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
700/* fp
2cef3cb2 701//Back Plate honycomb (2cm)
3fe3a833 702 par[0] = -1;
2cef3cb2 703 par[1] = 2 *0.5;
3fe3a833 704 par[2] = -1;
937fe4a4 705 ycoor = yFLT/2 - par[1];
2cef3cb2 706 gMC->Gsvolu("FBPA", "BOX ", idtmed[503], par, 3); // Hony
707 gMC->Gspos ("FBPA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
708 gMC->Gsvolu("FBPB", "BOX ", idtmed[503], par, 3); // Hony
709 gMC->Gspos ("FBPB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
710 gMC->Gsvolu("FBPC", "BOX ", idtmed[503], par, 3); // Hony
711 gMC->Gspos ("FBPC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
b94fa26c 712fp */
fe4da5cc 713}
714
715//_____________________________________________________________________________
68861244 716void AliTOFv3::DrawModule() const
fe4da5cc 717{
718 //
937fe4a4 719 // Draw a shaded view of the Time Of Flight version 1
fe4da5cc 720 //
fe4da5cc 721 // Set everything unseen
cfce8870 722 gMC->Gsatt("*", "seen", -1);
fe4da5cc 723 //
724 // Set ALIC mother transparent
cfce8870 725 gMC->Gsatt("ALIC","SEEN",0);
fe4da5cc 726 //
727 // Set the volumes visible
cfce8870 728 gMC->Gsatt("ALIC","SEEN",0);
2cef3cb2 729
730 gMC->Gsatt("FTOA","SEEN",1);
731 gMC->Gsatt("FTOB","SEEN",1);
732 gMC->Gsatt("FTOC","SEEN",1);
733 gMC->Gsatt("FLTA","SEEN",1);
734 gMC->Gsatt("FLTB","SEEN",1);
735 gMC->Gsatt("FLTC","SEEN",1);
736 gMC->Gsatt("FPLA","SEEN",1);
737 gMC->Gsatt("FPLB","SEEN",1);
738 gMC->Gsatt("FPLC","SEEN",1);
739 gMC->Gsatt("FSTR","SEEN",1);
740 gMC->Gsatt("FPEA","SEEN",1);
741 gMC->Gsatt("FPEB","SEEN",1);
742 gMC->Gsatt("FPEC","SEEN",1);
743
744 gMC->Gsatt("FLZ1","SEEN",0);
745 gMC->Gsatt("FLZ2","SEEN",0);
746 gMC->Gsatt("FLZ3","SEEN",0);
747 gMC->Gsatt("FLX1","SEEN",0);
748 gMC->Gsatt("FLX2","SEEN",0);
749 gMC->Gsatt("FLX3","SEEN",0);
750 gMC->Gsatt("FPAD","SEEN",0);
751
cfce8870 752 gMC->Gdopt("hide", "on");
753 gMC->Gdopt("shad", "on");
754 gMC->Gsatt("*", "fill", 7);
755 gMC->SetClipBox(".");
756 gMC->SetClipBox("*", 0, 1000, -1000, 1000, -1000, 1000);
757 gMC->DefaultRange();
758 gMC->Gdraw("alic", 40, 30, 0, 12, 9.5, .02, .02);
759 gMC->Gdhead(1111, "Time Of Flight");
760 gMC->Gdman(18, 4, "MAN");
761 gMC->Gdopt("hide","off");
fe4da5cc 762}
763
764//_____________________________________________________________________________
765void AliTOFv3::CreateMaterials()
766{
767 //
768 // Define materials for the Time Of Flight
769 //
3fe3a833 770 AliTOF::CreateMaterials();
fe4da5cc 771}
772
773//_____________________________________________________________________________
774void AliTOFv3::Init()
775{
776 //
777 // Initialise the detector after the geometry has been defined
778 //
9e1a0ddb 779 if(fDebug) {
780 printf("%s: **************************************"
68861244 781 " TOF "
782 "**************************************\n",ClassName());
9e1a0ddb 783 printf("\n%s Version 3 of TOF initialing, "
68861244 784 "TOF with holes for RICH detector\n",ClassName());
9e1a0ddb 785 }
ab76897d 786
fe4da5cc 787 AliTOF::Init();
ab76897d 788
2cef3cb2 789 fIdFTOA = gMC->VolId("FTOA");
790 fIdFTOB = gMC->VolId("FTOB");
791 fIdFTOC = gMC->VolId("FTOC");
792 fIdFLTA = gMC->VolId("FLTA");
793 fIdFLTB = gMC->VolId("FLTB");
794 fIdFLTC = gMC->VolId("FLTC");
ab76897d 795
9e1a0ddb 796 if(fDebug) {
797 printf("%s: **************************************"
68861244 798 " TOF "
799 "**************************************\n",ClassName());
800 }
fe4da5cc 801}
802
803//_____________________________________________________________________________
804void AliTOFv3::StepManager()
805{
806 //
807 // Procedure called at each step in the Time Of Flight
808 //
0a6d8768 809 TLorentzVector mom, pos;
2cef3cb2 810 Float_t xm[3],pm[3],xpad[3],ppad[3];
811 Float_t hits[13],phi,phid,z;
812 Int_t vol[5];
b94fa26c 813 Int_t sector, plate, padx, padz, strip;
814 Int_t copy, padzid, padxid, stripid, i;
2cef3cb2 815 Int_t *idtmed = fIdtmed->GetArray()-499;
b94fa26c 816 Float_t incidenceAngle;
826b71ec 817
818 if(gMC->GetMedium()==idtmed[513] &&
0a6d8768 819 gMC->IsTrackEntering() && gMC->TrackCharge()
826b71ec 820 && gMC->CurrentVolID(copy)==fIdSens)
2cef3cb2 821 {
822 // getting information about hit volumes
826b71ec 823
b94fa26c 824 padzid=gMC->CurrentVolOffID(2,copy);
825 padz=copy;
826b71ec 826
b94fa26c 827 padxid=gMC->CurrentVolOffID(1,copy);
828 padx=copy;
826b71ec 829
b94fa26c 830 stripid=gMC->CurrentVolOffID(4,copy);
826b71ec 831 strip=copy;
832
0a6d8768 833 gMC->TrackPosition(pos);
834 gMC->TrackMomentum(mom);
826b71ec 835
2cef3cb2 836// Double_t NormPos=1./pos.Rho();
b94fa26c 837 Double_t normMom=1./mom.Rho();
2cef3cb2 838
839// getting the cohordinates in pad ref system
840 xm[0] = (Float_t)pos.X();
841 xm[1] = (Float_t)pos.Y();
842 xm[2] = (Float_t)pos.Z();
843
b94fa26c 844 pm[0] = (Float_t)mom.X()*normMom;
845 pm[1] = (Float_t)mom.Y()*normMom;
846 pm[2] = (Float_t)mom.Z()*normMom;
2cef3cb2 847
848 gMC->Gmtod(xm,xpad,1);
849 gMC->Gmtod(pm,ppad,2);
850
b94fa26c 851 incidenceAngle = TMath::ACos(ppad[1])*kRaddeg;
826b71ec 852
853 z = pos[2];
2cef3cb2 854
855 plate = 0;
856 if (TMath::Abs(z) <= fZlenA*0.5) plate = 3;
857 if (z < (fZlenA*0.5+fZlenB) &&
858 z > fZlenA*0.5) plate = 4;
859 if (z >-(fZlenA*0.5+fZlenB) &&
860 z < -fZlenA*0.5) plate = 2;
861 if (z > (fZlenA*0.5+fZlenB)) plate = 5;
862 if (z <-(fZlenA*0.5+fZlenB)) plate = 1;
863
864 phi = pos.Phi();
865 phid = phi*kRaddeg+180.;
826b71ec 866 sector = Int_t (phid/20.);
867 sector++;
868
0a6d8768 869 for(i=0;i<3;++i) {
2cef3cb2 870 hits[i] = pos[i];
871 hits[i+3] = pm[i];
0a6d8768 872 }
2cef3cb2 873
874 hits[6] = mom.Rho();
875 hits[7] = pos[3];
876 hits[8] = xpad[0];
877 hits[9] = xpad[1];
878 hits[10]= xpad[2];
b94fa26c 879 hits[11]= incidenceAngle;
2cef3cb2 880 hits[12]= gMC->Edep();
881
882 vol[0]= sector;
883 vol[1]= plate;
884 vol[2]= strip;
b94fa26c 885 vol[3]= padx;
886 vol[4]= padz;
2cef3cb2 887
888 AddHit(gAlice->CurrentTrack(),vol, hits);
fe4da5cc 889 }
890}