]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TPC/AliTPCROCVoltError3D.cxx
Adding new data block type for trigger counters.
[u/mrichter/AliRoot.git] / TPC / AliTPCROCVoltError3D.cxx
CommitLineData
c9cbd2f2 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16//////////////////////////////////////////////////////////////////////////////
17// //
18// AliTPCROCVoltError3D class //
19// The class calculates the space point distortions due to residual voltage //
20// errors on Read Out Chambers of the TPC in 3D. //
21// //
22// The class allows "effective Omega Tau" corrections. //
23// //
24// NOTE: This class is capable of calculating z distortions due to //
25// misalignment and the vd dependency on the residual drift field //
26// //
27// date: 08/08/2010 //
28// Authors: Jim Thomas, Stefan Rossegger //
29// //
30// Example usage : //
31// AliTPCROCVoltError3D ROCerror; //
32//////////////////////////////////////////////////////////////////////////////
33
34#include "AliMagF.h"
35#include "TGeoGlobalMagField.h"
36#include "AliTPCcalibDB.h"
37#include "AliTPCParam.h"
38#include "AliLog.h"
39#include "TMatrixD.h"
40#include "TFile.h"
41
42#include "TMath.h"
43#include "AliTPCROC.h"
44#include "AliTPCROCVoltError3D.h"
45
46ClassImp(AliTPCROCVoltError3D)
47
48AliTPCROCVoltError3D::AliTPCROCVoltError3D()
49 : AliTPCCorrection("ROCVoltErrors","ROC z alignment Errors"),
50 fC0(0.),fC1(0.),
51 fROCdisplacement(kTRUE),
52 fInitLookUp(kFALSE),
53 fROCDataFileName("$(ALICE_ROOT)/TPC/Calib/maps/TPCROCdzSurvey.root"), // standard file name of ROC survey
54 fdzDataLinFit(0)
55{
56 //
57 // default constructor
58 //
59
60 // Array which will contain the solution according to the setted boundary conditions
61 // main input: z alignment of the Read Out chambers
62 // see InitROCVoltError3D() function
63 for ( Int_t k = 0 ; k < kNPhi ; k++ ) {
64 fLookUpErOverEz[k] = new TMatrixD(kNR,kNZ);
65 fLookUpEphiOverEz[k] = new TMatrixD(kNR,kNZ);
66 fLookUpDeltaEz[k] = new TMatrixD(kNR,kNZ);
67 }
68
69 SetROCDataFileName(fROCDataFileName); // initialization of fdzDataLinFit is included
70
71}
72
73AliTPCROCVoltError3D::~AliTPCROCVoltError3D() {
74 //
75 // destructor
76 //
77
78 for ( Int_t k = 0 ; k < kNPhi ; k++ ) {
79 delete fLookUpErOverEz[k];
80 delete fLookUpEphiOverEz[k];
81 delete fLookUpDeltaEz[k];
82 }
83
84 delete fdzDataLinFit;
85}
86
87void AliTPCROCVoltError3D::Init() {
88 //
89 // Initialization funtion
90 //
91
92 AliMagF* magF= (AliMagF*)TGeoGlobalMagField::Instance()->GetField();
93 if (!magF) AliError("Magneticd field - not initialized");
94 Double_t bzField = magF->SolenoidField()/10.; //field in T
95 AliTPCParam *param= AliTPCcalibDB::Instance()->GetParameters();
96 if (!param) AliError("Parameters - not initialized");
97 Double_t vdrift = param->GetDriftV()/1000000.; // [cm/us] // From dataBase: to be updated: per second (ideally)
98 Double_t ezField = 400; // [V/cm] // to be updated: never (hopefully)
99 Double_t wt = -10.0 * (bzField*10) * vdrift / ezField ;
100 // Correction Terms for effective omegaTau; obtained by a laser calibration run
101 SetOmegaTauT1T2(wt,fT1,fT2);
102
103 InitROCVoltError3D();
104}
105
106void AliTPCROCVoltError3D::Update(const TTimeStamp &/*timeStamp*/) {
107 //
108 // Update function
109 //
110 AliMagF* magF= (AliMagF*)TGeoGlobalMagField::Instance()->GetField();
111 if (!magF) AliError("Magneticd field - not initialized");
112 Double_t bzField = magF->SolenoidField()/10.; //field in T
113 AliTPCParam *param= AliTPCcalibDB::Instance()->GetParameters();
114 if (!param) AliError("Parameters - not initialized");
115 Double_t vdrift = param->GetDriftV()/1000000.; // [cm/us] // From dataBase: to be updated: per second (ideally)
116 Double_t ezField = 400; // [V/cm] // to be updated: never (hopefully)
117 Double_t wt = -10.0 * (bzField*10) * vdrift / ezField ;
118 // Correction Terms for effective omegaTau; obtained by a laser calibration run
119 SetOmegaTauT1T2(wt,fT1,fT2);
120
121}
122
123void AliTPCROCVoltError3D::SetROCDataFileName(char *const fname) {
124 //
125 // Set / load the ROC data (linear fit of ROC misalignments)
126 //
127
128 fROCDataFileName = fname;
129
130 TFile f(fROCDataFileName,"READ");
131 TMatrixD *m = (TMatrixD*) f.Get("dzSurveyLinFitData");
132 TMatrixD &mf = *m;
133
134 // prepare some space
135
136 if (fdzDataLinFit) delete fdzDataLinFit;
137 fdzDataLinFit = new TMatrixD(72,3);
138 TMatrixD &dataIntern = *fdzDataLinFit;
139
140 for (Int_t iroc=0;iroc<72;iroc++) {
141 dataIntern(iroc,0) = mf(iroc,0); // z0 offset
142 dataIntern(iroc,1) = mf(iroc,1); // slope in x
143 dataIntern(iroc,2) = mf(iroc,2); // slope in y
144 }
145
146 f.Close();
147
148 fInitLookUp = kFALSE;
149
150}
151
152void AliTPCROCVoltError3D::GetCorrection(const Float_t x[],const Short_t roc,Float_t dx[]) {
153 //
154 // Calculates the correction due e.g. residual voltage errors on the TPC boundaries
155 //
156
157 if (!fInitLookUp) {
158 AliInfo("Lookup table was not initialized! Perform the inizialisation now ...");
159 InitROCVoltError3D();
160 return;
161 }
162
163 Int_t order = 1 ; // FIXME: hardcoded? Linear interpolation = 1, Quadratic = 2
164
165 Double_t intEr, intEphi, intDeltaEz;
166 Double_t r, phi, z ;
167 Int_t sign;
168
169 r = TMath::Sqrt( x[0]*x[0] + x[1]*x[1] ) ;
170 phi = TMath::ATan2(x[1],x[0]) ;
171 if ( phi < 0 ) phi += TMath::TwoPi() ; // Table uses phi from 0 to 2*Pi
172 z = x[2] ; // Create temporary copy of x[2]
173
174 if ( (roc%36) < 18 ) {
175 sign = 1; // (TPC A side)
176 } else {
177 sign = -1; // (TPC C side)
178 }
179
180 if ( sign==1 && z < fgkZOffSet ) z = fgkZOffSet; // Protect against discontinuity at CE
181 if ( sign==-1 && z > -fgkZOffSet ) z = -fgkZOffSet; // Protect against discontinuity at CE
182
183
184 if ( (sign==1 && z<0) || (sign==-1 && z>0) ) // just a consistency check
185 AliError("ROC number does not correspond to z coordinate! Calculation of distortions is most likely wrong!");
186
187 // Get the Er and Ephi field integrals plus the integral over DeltaEz
188 intEr = Interpolate3DTable(order, r, z, phi, kNR, kNZ, kNPhi,
189 fgkRList, fgkZList, fgkPhiList, fLookUpErOverEz );
190 intEphi = Interpolate3DTable(order, r, z, phi, kNR, kNZ, kNPhi,
191 fgkRList, fgkZList, fgkPhiList, fLookUpEphiOverEz);
192 intDeltaEz = Interpolate3DTable(order, r, z, phi, kNR, kNZ, kNPhi,
193 fgkRList, fgkZList, fgkPhiList, fLookUpDeltaEz );
194
195 // printf("%lf %lf %lf\n",intEr,intEphi,intDeltaEz);
196
197 // Calculate distorted position
198 if ( r > 0.0 ) {
199 phi = phi + ( fC0*intEphi - fC1*intEr ) / r;
200 r = r + ( fC0*intEr + fC1*intEphi );
201 }
202
203 // Calculate correction in cartesian coordinates
204 dx[0] = r * TMath::Cos(phi) - x[0];
205 dx[1] = r * TMath::Sin(phi) - x[1];
206 dx[2] = intDeltaEz; // z distortion - (internally scaled with driftvelocity dependency
207 // on the Ez field plus the actual ROC misalignment (if set TRUE)
208
209}
210
211void AliTPCROCVoltError3D::InitROCVoltError3D() {
212 //
213 // Initialization of the Lookup table which contains the solutions of the
214 // Dirichlet boundary problem
215 // Calculation of the single 3D-Poisson solver is done just if needed
216 // (see basic lookup tables in header file)
217 //
218
219 const Int_t order = 1 ; // Linear interpolation = 1, Quadratic = 2
220 const Float_t gridSizeR = (fgkOFCRadius-fgkIFCRadius) / (kRows-1) ;
221 const Float_t gridSizeZ = fgkTPCZ0 / (kColumns-1) ;
222 const Float_t gridSizePhi = TMath::TwoPi() / ( 18.0 * kPhiSlicesPerSector);
223
224 // temporary arrays to create the boundary conditions
225 TMatrixD *arrayofArrayV[kPhiSlices], *arrayofCharge[kPhiSlices] ;
226 TMatrixD *arrayofEroverEz[kPhiSlices], *arrayofEphioverEz[kPhiSlices], *arrayofDeltaEz[kPhiSlices] ;
227
228 for ( Int_t k = 0 ; k < kPhiSlices ; k++ ) {
229 arrayofArrayV[k] = new TMatrixD(kRows,kColumns) ;
230 arrayofCharge[k] = new TMatrixD(kRows,kColumns) ;
231 arrayofEroverEz[k] = new TMatrixD(kRows,kColumns) ;
232 arrayofEphioverEz[k] = new TMatrixD(kRows,kColumns) ;
233 arrayofDeltaEz[k] = new TMatrixD(kRows,kColumns) ;
234 }
235
236 // list of point as used in the poisson relation and the interpolation (during sum up)
237 Double_t rlist[kRows], zedlist[kColumns] , philist[kPhiSlices];
238 for ( Int_t k = 0 ; k < kPhiSlices ; k++ ) {
239 philist[k] = gridSizePhi * k;
240 for ( Int_t i = 0 ; i < kRows ; i++ ) {
241 rlist[i] = fgkIFCRadius + i*gridSizeR ;
242 for ( Int_t j = 0 ; j < kColumns ; j++ ) { // Fill Vmatrix with Boundary Conditions
243 zedlist[j] = j * gridSizeZ ;
244 }
245 }
246 }
247
248 // ==========================================================================
249 // Solve Poisson's equation in 3D cylindrical coordinates by relaxation technique
250 // Allow for different size grid spacing in R and Z directions
251
252 const Int_t symmetry = 0;
253
254 // Set bondaries and solve Poisson's equation --------------------------
255
256 if ( !fInitLookUp ) {
257
258 AliInfo(Form("Solving the poisson equation (~ %d sec)",2*10*(int)(kPhiSlices/10)));
259
260 for ( Int_t side = 0 ; side < 2 ; side++ ) { // Solve Poisson3D twice; once for +Z and once for -Z
261
262 for ( Int_t k = 0 ; k < kPhiSlices ; k++ ) {
263 TMatrixD &arrayV = *arrayofArrayV[k] ;
264 TMatrixD &charge = *arrayofCharge[k] ;
265
266 //Fill arrays with initial conditions. V on the boundary and Charge in the volume.
267 for ( Int_t i = 0 ; i < kRows ; i++ ) {
268 for ( Int_t j = 0 ; j < kColumns ; j++ ) { // Fill Vmatrix with Boundary Conditions
269 arrayV(i,j) = 0.0 ;
270 charge(i,j) = 0.0 ;
271
272 Float_t radius0 = rlist[i] ;
273 Float_t phi0 = gridSizePhi * k ;
274
275 // To avoid problems at sector boundaries, use an average of +- 1 degree from actual phi location
276 if ( j == (kColumns-1) )
277 arrayV(i,j) = 0.5* ( GetROCVoltOffset( side, radius0, phi0+0.02 ) + GetROCVoltOffset( side, radius0, phi0-0.02 ) ) ;
278
279 }
280 }
281
282 for ( Int_t i = 1 ; i < kRows-1 ; i++ ) {
283 for ( Int_t j = 1 ; j < kColumns-1 ; j++ ) {
284 charge(i,j) = 0.0 ;
285 }
286 }
287 }
288
289 // Solve Poisson's equation in 3D cylindrical coordinates by relaxation technique
290 // Allow for different size grid spacing in R and Z directions
291
292 PoissonRelaxation3D( arrayofArrayV, arrayofCharge,
293 arrayofEroverEz, arrayofEphioverEz, arrayofDeltaEz,
294 kRows, kColumns, kPhiSlices, gridSizePhi, kIterations,
295 symmetry, fROCdisplacement) ;
296
297
298 //Interpolate results onto a custom grid which is used just for these calculations.
299 Double_t r, phi, z ;
300 for ( Int_t k = 0 ; k < kNPhi ; k++ ) {
301 phi = fgkPhiList[k] ;
302
303 TMatrixD &erOverEz = *fLookUpErOverEz[k] ;
304 TMatrixD &ephiOverEz = *fLookUpEphiOverEz[k];
305 TMatrixD &deltaEz = *fLookUpDeltaEz[k] ;
306
307 for ( Int_t j = 0 ; j < kNZ ; j++ ) {
308
309 z = TMath::Abs(fgkZList[j]) ; // Symmetric solution in Z that depends only on ABS(Z)
310
311 if ( side == 0 && fgkZList[j] < 0 ) continue; // Skip rest of this loop if on the wrong side
312 if ( side == 1 && fgkZList[j] > 0 ) continue; // Skip rest of this loop if on the wrong side
313
314 for ( Int_t i = 0 ; i < kNR ; i++ ) {
315 r = fgkRList[i] ;
316
317 // Interpolate basicLookup tables; once for each rod, then sum the results
318 erOverEz(i,j) = Interpolate3DTable(order, r, z, phi, kRows, kColumns, kPhiSlices,
319 rlist, zedlist, philist, arrayofEroverEz );
320 ephiOverEz(i,j) = Interpolate3DTable(order, r, z, phi, kRows, kColumns, kPhiSlices,
321 rlist, zedlist, philist, arrayofEphioverEz);
322 deltaEz(i,j) = Interpolate3DTable(order, r, z, phi, kRows, kColumns, kPhiSlices,
323 rlist, zedlist, philist, arrayofDeltaEz );
324
325 if (side == 1) deltaEz(i,j) = - deltaEz(i,j); // negative coordinate system on C side
326
327 } // end r loop
328 }// end z loop
329 }// end phi loop
330
331 if ( side == 0 ) AliInfo(" A side done");
332 if ( side == 1 ) AliInfo(" C side done");
333 } // end side loop
334 }
335
336 // clear the temporary arrays lists
337 for ( Int_t k = 0 ; k < kPhiSlices ; k++ ) {
338 delete arrayofArrayV[k];
339 delete arrayofCharge[k];
340 delete arrayofEroverEz[k];
341 delete arrayofEphioverEz[k];
342 delete arrayofDeltaEz[k];
343 }
344
345
346 fInitLookUp = kTRUE;
347
348}
349
350
351Float_t AliTPCROCVoltError3D::GetROCVoltOffset(Int_t side, Float_t r0, Float_t phi0) {
352 //
353 // Returns the dz alignment data (in voltage equivalents) at
354 // the given position
355 //
356
357 Float_t xp = r0*TMath::Cos(phi0);
358 Float_t yp = r0*TMath::Sin(phi0);
359
360 // phi0 should be between 0 and 2pi
361 if (phi0<0) phi0+=TMath::TwoPi();
362 Int_t roc = (Int_t)TMath::Floor((TMath::RadToDeg()*phi0)/20);
363 if (side==1) roc+=18; // C side
364 if (r0>132) roc+=36; // OROC
365
366 // linear-plane data: z = z0 + kx*x + ky*y
367 TMatrixD &fitData = *fdzDataLinFit;
368 Float_t dz = fitData(roc,0)+fitData(roc,1)*xp + fitData(roc,2)*yp; // value in cm
369
370 // aproximated Voltage-offset-aquivalent to the z misalignment
371 // (linearly scaled with the z position)
372 Double_t ezField = (fgkCathodeV-fgkGG)/fgkTPCZ0; // = ALICE Electric Field (V/cm) Magnitude ~ -400 V/cm;
373 Float_t voltOff = dz*ezField; // values in "Volt equivalents"
374
375 return voltOff;
376}
377
378TH2F * AliTPCROCVoltError3D::CreateHistoOfZSurvey(Int_t side, Int_t nx, Int_t ny) {
379 //
380 // return a simple histogramm containing the input to the poisson solver
381 // (z positions of the Read-out chambers, linearly interpolated)
382
383 char hname[100];
384 if (side==0) sprintf(hname,"survey_dz_Aside");
385 if (side==1) sprintf(hname,"survey_dz_Cside");
386
387 TH2F *h = new TH2F(hname,hname,nx,-250.,250.,ny,-250.,250.);
388
389 for (Int_t iy=1;iy<=ny;++iy) {
390 Double_t yp = h->GetYaxis()->GetBinCenter(iy);
391 for (Int_t ix=1;ix<=nx;++ix) {
392 Double_t xp = h->GetXaxis()->GetBinCenter(ix);
393
394 Float_t r0 = TMath::Sqrt(xp*xp+yp*yp);
395 Float_t phi0 = TMath::ATan2(yp,xp);
396
397 Float_t dz = GetROCVoltOffset(side,r0,phi0); // in [volt]
398
399 Double_t ezField = (fgkCathodeV-fgkGG)/fgkTPCZ0; // = ALICE Electric Field (V/cm) Magnitude ~ -400 V/cm;
400 dz = dz/ezField; // in [cm]
401
402 if (85.<=r0 && r0<=245.) {
403 h->SetBinContent(ix,iy,dz);
404 } else {
405 h->SetBinContent(ix,iy,0.);
406 }
407 }
408 }
409
410 h->GetXaxis()->SetTitle("x [cm]");
411 h->GetYaxis()->SetTitle("y [cm]");
412 h->GetZaxis()->SetTitle("dz [cm]");
413 h->SetStats(0);
414 // h->DrawCopy("colz");
415
416 return h;
417}
418
419void AliTPCROCVoltError3D::Print(const Option_t* option) const {
420 //
421 // Print function to check the settings of the Rod shifts and the rotated clips
422 // option=="a" prints the C0 and C1 coefficents for calibration purposes
423 //
424
425 TString opt = option; opt.ToLower();
426 printf("%s\n",GetTitle());
427 printf(" - Voltage settings on the TPC Read-Out chambers - linearly interpolated\n");
428 printf(" info: Check the following data-file for more details: %s \n",fROCDataFileName);
429
430 if (opt.Contains("a")) { // Print all details
431 printf(" - T1: %1.4f, T2: %1.4f \n",fT1,fT2);
432 printf(" - C1: %1.4f, C0: %1.4f \n",fC1,fC0);
433 }
434
435 if (!fInitLookUp) AliError("Lookup table was not initialized! You should do InitROCVoltError3D() ...");
436
437}