]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TRD/AliTRDclusterizerMI.cxx
New comparison macro (M.Ivanov)
[u/mrichter/AliRoot.git] / TRD / AliTRDclusterizerMI.cxx
CommitLineData
64b82e53 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18///////////////////////////////////////////////////////////////////////////////
19// //
20// TRD cluster finder for the slow simulator.
21// //
22///////////////////////////////////////////////////////////////////////////////
23
24#include <TF1.h>
25#include <TTree.h>
26#include <TH1.h>
27#include <TFile.h>
28
29#include "AliRun.h"
30#include "AliRunLoader.h"
31#include "AliLoader.h"
32
64b82e53 33#include "AliTRDclusterizerMI.h"
34#include "AliTRDmatrix.h"
35#include "AliTRDgeometry.h"
64b82e53 36#include "AliTRDdataArrayF.h"
37#include "AliTRDdataArrayI.h"
38#include "AliTRDdigitsManager.h"
39#include "AliTRDparameter.h"
40#include "AliTRDclusterMI.h"
a5cadd36 41#include "AliTRDpadPlane.h"
64b82e53 42
43ClassImp(AliTRDclusterizerMI)
44
45//_____________________________________________________________________________
46AliTRDclusterizerMI::AliTRDclusterizerMI():AliTRDclusterizerV1()
47{
48 //
49 // AliTRDclusterizerMI default constructor
50 //
51}
52
53//_____________________________________________________________________________
54AliTRDclusterizerMI::AliTRDclusterizerMI(const Text_t* name, const Text_t* title)
55 :AliTRDclusterizerV1(name,title)
56{
57 //
58 // AliTRDclusterizerMI default constructor
59 //
60}
61
62//_____________________________________________________________________________
63AliTRDclusterizerMI::~AliTRDclusterizerMI()
64{
65 //
66 // AliTRDclusterizerMI destructor
67 //
68}
69
a5cadd36 70//_____________________________________________________________________________
64b82e53 71AliTRDclusterMI * AliTRDclusterizerMI::AddCluster()
72{
a5cadd36 73 //
74 // Adds cluster
75 //
76
64b82e53 77 AliTRDclusterMI *c = new AliTRDclusterMI();
78 fClusterContainer->Add(c);
79 return c;
a5cadd36 80
64b82e53 81}
82
a5cadd36 83//_____________________________________________________________________________
84void AliTRDclusterizerMI::SetCluster(AliTRDclusterMI * cl,Double_t *pos
85 , Int_t det, Double_t amp
86 , Int_t *tracks, Double_t *sig, Int_t iType
87 , Double_t sigmay, Double_t relpad)
64b82e53 88{
89 //
a5cadd36 90 // Sets cluster
64b82e53 91 //
a5cadd36 92
64b82e53 93 cl->SetDetector(det);
94 cl->AddTrackIndex(tracks);
95 cl->SetQ(amp);
96 cl->SetY(pos[0]);
97 cl->SetZ(pos[1]);
98 cl->SetSigmaY2(sig[0]);
99 cl->SetSigmaZ2(sig[1]);
100 cl->SetLocalTimeBin(((Int_t) pos[2]));
101 cl->SetNPads(iType);
102 cl->SetRelPos(relpad);
103 cl->fRmsY = sigmay;
104}
105
a5cadd36 106//_____________________________________________________________________________
107void AliTRDclusterizerMI::MakeCluster(Double_t * padSignal, Double_t * pos
108 , Double_t &sigma, Double_t & relpad)
64b82e53 109{
110 //
a5cadd36 111 // Does something with the cluster
112 //
113
114 Double_t sum = 0;
115 Double_t sumx = 0;
116 Double_t sumx2 = 0;
117 Double_t signal[3]={padSignal[0],padSignal[1],padSignal[2]};
64b82e53 118 if ( signal[0]<2){
119 signal[0] = 0.015*(signal[1]*signal[1])/(signal[2]+0.5);
120 if (signal[0]>2) signal[0]=2;
121 }
122 if ( signal[2]<2){
123 signal[2] = 0.015*(signal[1]*signal[1])/(signal[0]+0.5);
124 if (signal[2]>2) signal[2]=2;
125 }
126
127 for (Int_t i=-1;i<=1;i++){
128 sum +=signal[i+1];
129 sumx +=signal[i+1]*float(i);
130 sumx2 +=signal[i+1]*float(i)*float(i);
131 }
132
133 pos[0] = sumx/sum;
134 sigma = sumx2/sum-pos[0]*pos[0];
135 relpad = pos[0];
136}
137
138//_____________________________________________________________________________
139Bool_t AliTRDclusterizerMI::MakeClusters()
140{
141 //
142 // Generates the cluster.
143 //
144
145 //////////////////////
146 //STUPIDITY to be fixed later
bdbb05bb 147 fClusterContainer = RecPoints();
64b82e53 148
149 Int_t row, col, time;
150
bdbb05bb 151 /*
64b82e53 152 if (fTRD->IsVersion() != 1) {
153 printf("<AliTRDclusterizerMI::MakeCluster> ");
154 printf("TRD must be version 1 (slow simulator).\n");
155 return kFALSE;
156 }
bdbb05bb 157 */
64b82e53 158
159 // Get the geometry
bdbb05bb 160 AliTRDgeometry *geo = AliTRDgeometry::GetGeometry(fRunLoader);
64b82e53 161
162 // Create a default parameter class if none is defined
163 if (!fPar) {
164 fPar = new AliTRDparameter("TRDparameter","Standard TRD parameter");
165 printf("<AliTRDclusterizerMI::MakeCluster> ");
166 printf("Create the default parameter object.\n");
167 }
168
a5cadd36 169 Double_t timeBinSize = fPar->GetDriftVelocity()
170 / fPar->GetSamplingFrequency();
64b82e53 171 // Half of ampl.region
172 const Float_t kAmWidth = AliTRDgeometry::AmThick()/2.;
173
174 Float_t omegaTau = fPar->GetOmegaTau();
175 if (fVerbose > 0) {
176 printf("<AliTRDclusterizerMI::MakeCluster> ");
177 printf("OmegaTau = %f \n",omegaTau);
178 printf("<AliTRDclusterizerMI::MakeCluster> ");
179 printf("Start creating clusters.\n");
180 }
181
182 AliTRDdataArrayI *digits;
183 AliTRDdataArrayI *track0;
184 AliTRDdataArrayI *track1;
185 AliTRDdataArrayI *track2;
186
187 // Threshold value for the maximum
188 Int_t maxThresh = fPar->GetClusMaxThresh();
189 // Threshold value for the digit signal
190 Int_t sigThresh = fPar->GetClusSigThresh();
191
192 // Iteration limit for unfolding procedure
a5cadd36 193 const Double_t kEpsilon = 0.01;
64b82e53 194
a5cadd36 195 const Int_t kNclus = 3;
196 const Int_t kNsig = 5;
197 const Int_t kNtrack = 3 * kNclus;
64b82e53 198
a5cadd36 199 Int_t iType = 0;
200 Int_t iUnfold = 0;
64b82e53 201
a5cadd36 202 Double_t ratioLeft = 1.0;
203 Double_t ratioRight = 1.0;
64b82e53 204
a5cadd36 205 Double_t padSignal[kNsig];
206 Double_t clusterSignal[kNclus];
207 Double_t clusterPads[kNclus];
208 Int_t clusterDigit[kNclus];
209 Int_t clusterTracks[kNtrack];
64b82e53 210
211 Int_t chamBeg = 0;
212 Int_t chamEnd = AliTRDgeometry::Ncham();
64b82e53 213 Int_t planBeg = 0;
214 Int_t planEnd = AliTRDgeometry::Nplan();
64b82e53 215 Int_t sectBeg = 0;
216 Int_t sectEnd = AliTRDgeometry::Nsect();
217
218 // Start clustering in every chamber
219 for (Int_t icham = chamBeg; icham < chamEnd; icham++) {
220 for (Int_t iplan = planBeg; iplan < planEnd; iplan++) {
221 for (Int_t isect = sectBeg; isect < sectEnd; isect++) {
222
64b82e53 223 Int_t idet = geo->GetDetector(iplan,icham,isect);
224
225 Int_t nClusters = 0;
226 Int_t nClusters2pad = 0;
227 Int_t nClusters3pad = 0;
228 Int_t nClusters4pad = 0;
229 Int_t nClusters5pad = 0;
230 Int_t nClustersLarge = 0;
231
232 if (fVerbose > 0) {
233 printf("<AliTRDclusterizerMI::MakeCluster> ");
234 printf("Analyzing chamber %d, plane %d, sector %d.\n"
235 ,icham,iplan,isect);
236 }
237
238 Int_t nRowMax = fPar->GetRowMax(iplan,icham,isect);
239 Int_t nColMax = fPar->GetColMax(iplan);
240 Int_t nTimeBefore = fPar->GetTimeBefore();
241 Int_t nTimeTotal = fPar->GetTimeTotal();
242
a5cadd36 243 AliTRDpadPlane *padPlane = fPar->GetPadPlane(iplan,icham);
64b82e53 244
245 // Get the digits
246 digits = fDigitsManager->GetDigits(idet);
247 digits->Expand();
248 track0 = fDigitsManager->GetDictionary(idet,0);
249 track0->Expand();
250 track1 = fDigitsManager->GetDictionary(idet,1);
251 track1->Expand();
252 track2 = fDigitsManager->GetDictionary(idet,2);
253 track2->Expand();
254
255 // Loop through the chamber and find the maxima
256 for ( row = 0; row < nRowMax; row++) {
257 for ( col = 2; col < nColMax; col++) {
258 for (time = 0; time < nTimeTotal; time++) {
259
260 Int_t signalL = TMath::Abs(digits->GetDataUnchecked(row,col ,time));
261 Int_t signalM = TMath::Abs(digits->GetDataUnchecked(row,col-1,time));
262 Int_t signalR = TMath::Abs(digits->GetDataUnchecked(row,col-2,time));
263
264 // Look for the maximum
265 if (signalM >= maxThresh) {
266 if (((signalL >= sigThresh) &&
267 (signalL < signalM)) ||
268 ((signalR >= sigThresh) &&
269 (signalR < signalM))) {
270 // Maximum found, mark the position by a negative signal
271 digits->SetDataUnchecked(row,col-1,time,-signalM);
272 }
273 }
274
275 }
276 }
277 }
278
279 // Now check the maxima and calculate the cluster position
280 for ( row = 0; row < nRowMax ; row++) {
281 for (time = 0; time < nTimeTotal; time++) {
282 for ( col = 1; col < nColMax-1; col++) {
283
284 // Maximum found ?
285 if (digits->GetDataUnchecked(row,col,time) < 0) {
286
287 Int_t iPad;
288 for (iPad = 0; iPad < kNclus; iPad++) {
289 Int_t iPadCol = col - 1 + iPad;
290 clusterSignal[iPad] = TMath::Abs(digits->GetDataUnchecked(row
291 ,iPadCol
292 ,time));
293 clusterDigit[iPad] = digits->GetIndexUnchecked(row,iPadCol,time);
294 clusterTracks[3*iPad ] = track0->GetDataUnchecked(row,iPadCol,time) - 1;
295 clusterTracks[3*iPad+1] = track1->GetDataUnchecked(row,iPadCol,time) - 1;
296 clusterTracks[3*iPad+2] = track2->GetDataUnchecked(row,iPadCol,time) - 1;
297 }
298
299 // Count the number of pads in the cluster
300 Int_t nPadCount = 0;
301 Int_t ii = 0;
302 while (TMath::Abs(digits->GetDataUnchecked(row,col-ii ,time))
303 >= sigThresh) {
304 nPadCount++;
305 ii++;
306 if (col-ii < 0) break;
307 }
308 ii = 0;
309 while (TMath::Abs(digits->GetDataUnchecked(row,col+ii+1,time))
310 >= sigThresh) {
311 nPadCount++;
312 ii++;
313 if (col+ii+1 >= nColMax) break;
314 }
315
316 nClusters++;
317 switch (nPadCount) {
318 case 2:
319 iType = 0;
320 nClusters2pad++;
321 break;
322 case 3:
323 iType = 1;
324 nClusters3pad++;
325 break;
326 case 4:
327 iType = 2;
328 nClusters4pad++;
329 break;
330 case 5:
331 iType = 3;
332 nClusters5pad++;
333 break;
334 default:
335 iType = 4;
336 nClustersLarge++;
337 break;
338 };
339
340 // Don't analyze large clusters
341 //if (iType == 4) continue;
342
343 // Look for 5 pad cluster with minimum in the middle
344 Bool_t fivePadCluster = kFALSE;
345 if (col < nColMax-3) {
346 if (digits->GetDataUnchecked(row,col+2,time) < 0) {
347 fivePadCluster = kTRUE;
348 }
349 if ((fivePadCluster) && (col < nColMax-5)) {
350 if (digits->GetDataUnchecked(row,col+4,time) >= sigThresh) {
351 fivePadCluster = kFALSE;
352 }
353 }
354 if ((fivePadCluster) && (col > 1)) {
355 if (digits->GetDataUnchecked(row,col-2,time) >= sigThresh) {
356 fivePadCluster = kFALSE;
357 }
358 }
359 }
360
361 // 5 pad cluster
362 // Modify the signal of the overlapping pad for the left part
363 // of the cluster which remains from a previous unfolding
364 if (iUnfold) {
365 clusterSignal[0] *= ratioLeft;
366 iType = 3;
367 iUnfold = 0;
368 }
369
370 // Unfold the 5 pad cluster
371 if (fivePadCluster) {
372 for (iPad = 0; iPad < kNsig; iPad++) {
373 padSignal[iPad] = TMath::Abs(digits->GetDataUnchecked(row
374 ,col-1+iPad
375 ,time));
376 }
377 // Unfold the two maxima and set the signal on
378 // the overlapping pad to the ratio
379 ratioRight = Unfold(kEpsilon,iplan,padSignal);
380 ratioLeft = 1.0 - ratioRight;
381 clusterSignal[2] *= ratioRight;
382 iType = 3;
383 iUnfold = 1;
384 }
385
a5cadd36 386 Double_t clusterCharge = clusterSignal[0]
387 + clusterSignal[1]
388 + clusterSignal[2];
64b82e53 389
390 // The position of the cluster
391 clusterPads[0] = row + 0.5;
392 // Take the shift of the additional time bins into account
393 clusterPads[2] = time - nTimeBefore + 0.5;
394
395 if (fPar->LUTOn()) {
396
397 // Calculate the position of the cluster by using the
398 // lookup table method
a5cadd36 399// clusterPads[1] = col + 0.5
400// + fPar->LUTposition(iplan,clusterSignal[0]
401// ,clusterSignal[1]
402// ,clusterSignal[2]);
403 clusterPads[1] = 0.5
64b82e53 404 + fPar->LUTposition(iplan,clusterSignal[0]
405 ,clusterSignal[1]
406 ,clusterSignal[2]);
407
408 }
409 else {
410
411 // Calculate the position of the cluster by using the
412 // center of gravity method
a5cadd36 413// clusterPads[1] = col + 0.5
414// + (clusterSignal[2] - clusterSignal[0])
415// / clusterCharge;
416 clusterPads[1] = 0.5
64b82e53 417 + (clusterSignal[2] - clusterSignal[0])
418 / clusterCharge;
419
420 }
421
a5cadd36 422 Double_t q0 = clusterSignal[0];
423 Double_t q1 = clusterSignal[1];
424 Double_t q2 = clusterSignal[2];
425 Double_t clusterSigmaY2 = (q1*(q0+q2)+4*q0*q2) /
64b82e53 426 (clusterCharge*clusterCharge);
427
64b82e53 428 // Calculate the position and the error
a5cadd36 429 Double_t clusterPos[3];
430// clusterPos[0] = clusterPads[1] * colSize + col0;
431// clusterPos[1] = clusterPads[0] * rowSize + row0;
432 clusterPos[0] = padPlane->GetColPos(col) - clusterPads[1];
433 clusterPos[1] = padPlane->GetRowPos(row) - clusterPads[0];
64b82e53 434 clusterPos[2] = clusterPads[2];
a5cadd36 435 Double_t clusterSig[2];
436 Double_t colSize = padPlane->GetColSize(col);
437 Double_t rowSize = padPlane->GetRowSize(row);
64b82e53 438 clusterSig[0] = (clusterSigmaY2 + 1./12.) * colSize*colSize;
439 clusterSig[1] = rowSize * rowSize / 12.;
a5cadd36 440
441 // Correct for ExB displacement
442 if (fPar->ExBOn()) {
443 Int_t local_time_bin = (Int_t) clusterPads[2];
444 Double_t driftLength = local_time_bin * timeBinSize + kAmWidth;
445 Double_t deltaY = omegaTau * driftLength;
446 clusterPos[1] = clusterPos[1] - deltaY;
447 }
448
64b82e53 449 //
450 //
451 AliTRDclusterMI * cluster = AddCluster();
a5cadd36 452 Double_t sigma, relpos;
64b82e53 453 MakeCluster(clusterSignal, clusterPos, sigma,relpos);
454
a5cadd36 455// clusterPos[0] = clusterPads[1] * colSize + col0;
456// clusterPos[1] = clusterPads[0] * rowSize + row0;
64b82e53 457 clusterPos[2] = clusterPads[2];
a5cadd36 458 clusterPos[0] = padPlane->GetColPos(col) - clusterPads[1];
459 clusterPos[1] = padPlane->GetRowPos(row) - clusterPads[0];
64b82e53 460 SetCluster(cluster, clusterPos,idet,clusterCharge,clusterTracks,clusterSig,iType,sigma,relpos);
461 // Add the cluster to the output array
462 // fTRD->AddCluster(clusterPos
463 // ,idet
464 // ,clusterCharge
465 // ,clusterTracks
466 // ,clusterSig
467 // ,iType);
468
469 }
470 }
471 }
472 }
473
474 // Compress the arrays
475 digits->Compress(1,0);
476 track0->Compress(1,0);
477 track1->Compress(1,0);
478 track2->Compress(1,0);
479
480 // Write the cluster and reset the array
481 WriteClusters(idet);
bdbb05bb 482 ResetRecPoints();
64b82e53 483
484 if (fVerbose > 0) {
485 printf("<AliTRDclusterizerMI::MakeCluster> ");
486 printf("Found %d clusters in total.\n"
487 ,nClusters);
488 printf(" 2pad: %d\n",nClusters2pad);
489 printf(" 3pad: %d\n",nClusters3pad);
490 printf(" 4pad: %d\n",nClusters4pad);
491 printf(" 5pad: %d\n",nClusters5pad);
492 printf(" Large: %d\n",nClustersLarge);
493 }
494
495 }
496 }
497 }
498
499 if (fVerbose > 0) {
500 printf("<AliTRDclusterizerMI::MakeCluster> ");
501 printf("Done.\n");
502 }
503
504 return kTRUE;
505
506}
507
508//_____________________________________________________________________________
a5cadd36 509Double_t AliTRDclusterizerMI::Unfold(Double_t eps, Int_t plane, Double_t* padSignal)
64b82e53 510{
511 //
512 // Method to unfold neighbouring maxima.
513 // The charge ratio on the overlapping pad is calculated
514 // until there is no more change within the range given by eps.
515 // The resulting ratio is then returned to the calling method.
516 //
517
a5cadd36 518 Int_t irc = 0;
519 Int_t itStep = 0; // Count iteration steps
64b82e53 520
a5cadd36 521 Double_t ratio = 0.5; // Start value for ratio
522 Double_t prevRatio = 0; // Store previous ratio
64b82e53 523
a5cadd36 524 Double_t newLeftSignal[3] = {0}; // Array to store left cluster signal
525 Double_t newRightSignal[3] = {0}; // Array to store right cluster signal
526 Double_t newSignal[3] = {0};
64b82e53 527
528 // Start the iteration
529 while ((TMath::Abs(prevRatio - ratio) > eps) && (itStep < 10)) {
530
531 itStep++;
532 prevRatio = ratio;
533
534 // Cluster position according to charge ratio
a5cadd36 535 Double_t maxLeft = (ratio*padSignal[2] - padSignal[0])
536 / (padSignal[0] + padSignal[1] + ratio*padSignal[2]);
537 Double_t maxRight = (padSignal[4] - (1-ratio)*padSignal[2])
538 / ((1-ratio)*padSignal[2] + padSignal[3] + padSignal[4]);
64b82e53 539
540 // Set cluster charge ratio
541 irc = fPar->PadResponse(1.0,maxLeft ,plane,newSignal);
a5cadd36 542 Double_t ampLeft = padSignal[1] / newSignal[1];
64b82e53 543 irc = fPar->PadResponse(1.0,maxRight,plane,newSignal);
a5cadd36 544 Double_t ampRight = padSignal[3] / newSignal[1];
64b82e53 545
546 // Apply pad response to parameters
547 irc = fPar->PadResponse(ampLeft ,maxLeft ,plane,newLeftSignal );
548 irc = fPar->PadResponse(ampRight,maxRight,plane,newRightSignal);
549
550 // Calculate new overlapping ratio
a5cadd36 551 ratio = TMath::Min((Double_t)1.0,newLeftSignal[2] /
64b82e53 552 (newLeftSignal[2] + newRightSignal[0]));
553
554 }
555
556 return ratio;
557
558}
559
560
561