]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TRD/AliTRDclusterizerV1.cxx
Anti-Splitting Cut implemented
[u/mrichter/AliRoot.git] / TRD / AliTRDclusterizerV1.cxx
CommitLineData
f7336fa3 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
88cb7938 16/* $Id$ */
f7336fa3 17
18///////////////////////////////////////////////////////////////////////////////
19// //
20// TRD cluster finder for the slow simulator.
21// //
22///////////////////////////////////////////////////////////////////////////////
23
24#include <TF1.h>
94de3818 25#include <TTree.h>
793ff80c 26#include <TH1.h>
a819a5f7 27#include <TFile.h>
f7336fa3 28
793ff80c 29#include "AliRun.h"
88cb7938 30#include "AliRunLoader.h"
31#include "AliLoader.h"
793ff80c 32
33#include "AliTRD.h"
f7336fa3 34#include "AliTRDclusterizerV1.h"
35#include "AliTRDmatrix.h"
36#include "AliTRDgeometry.h"
37#include "AliTRDdigitizer.h"
6f1e466d 38#include "AliTRDdataArrayF.h"
793ff80c 39#include "AliTRDdataArrayI.h"
40#include "AliTRDdigitsManager.h"
17b26de4 41#include "AliTRDparameter.h"
f7336fa3 42
43ClassImp(AliTRDclusterizerV1)
44
45//_____________________________________________________________________________
46AliTRDclusterizerV1::AliTRDclusterizerV1():AliTRDclusterizer()
47{
48 //
49 // AliTRDclusterizerV1 default constructor
50 //
51
17b26de4 52 fDigitsManager = 0;
db30bf0f 53
f7336fa3 54}
55
56//_____________________________________________________________________________
57AliTRDclusterizerV1::AliTRDclusterizerV1(const Text_t* name, const Text_t* title)
58 :AliTRDclusterizer(name,title)
59{
60 //
61 // AliTRDclusterizerV1 default constructor
62 //
63
6f1e466d 64 fDigitsManager = new AliTRDdigitsManager();
17b26de4 65 fDigitsManager->CreateArrays();
f7336fa3 66
67}
68
8230f242 69//_____________________________________________________________________________
dd9a6ee3 70AliTRDclusterizerV1::AliTRDclusterizerV1(const AliTRDclusterizerV1 &c)
73ae7b59 71:AliTRDclusterizer(c)
8230f242 72{
73 //
74 // AliTRDclusterizerV1 copy constructor
75 //
76
dd9a6ee3 77 ((AliTRDclusterizerV1 &) c).Copy(*this);
8230f242 78
79}
80
f7336fa3 81//_____________________________________________________________________________
82AliTRDclusterizerV1::~AliTRDclusterizerV1()
83{
8230f242 84 //
85 // AliTRDclusterizerV1 destructor
86 //
f7336fa3 87
6f1e466d 88 if (fDigitsManager) {
89 delete fDigitsManager;
abaf1f1d 90 fDigitsManager = NULL;
f7336fa3 91 }
92
93}
94
dd9a6ee3 95//_____________________________________________________________________________
96AliTRDclusterizerV1 &AliTRDclusterizerV1::operator=(const AliTRDclusterizerV1 &c)
97{
98 //
99 // Assignment operator
100 //
101
102 if (this != &c) ((AliTRDclusterizerV1 &) c).Copy(*this);
103 return *this;
104
105}
106
8230f242 107//_____________________________________________________________________________
43da34c0 108void AliTRDclusterizerV1::Copy(TObject &c)
8230f242 109{
110 //
111 // Copy function
112 //
113
17b26de4 114 ((AliTRDclusterizerV1 &) c).fDigitsManager = 0;
8230f242 115
116 AliTRDclusterizer::Copy(c);
117
118}
119
f7336fa3 120//_____________________________________________________________________________
121Bool_t AliTRDclusterizerV1::ReadDigits()
122{
123 //
124 // Reads the digits arrays from the input aliroot file
125 //
126
88cb7938 127 if (!fRunLoader) {
17b26de4 128 printf("<AliTRDclusterizerV1::ReadDigits> ");
f7336fa3 129 printf("No input file open\n");
130 return kFALSE;
131 }
88cb7938 132 AliLoader* loader = fRunLoader->GetLoader("TRDLoader");
133 if (!loader->TreeD()) loader->LoadDigits();
abaf1f1d 134
f7336fa3 135 // Read in the digit arrays
88cb7938 136 return (fDigitsManager->ReadDigits(loader->TreeD()));
f7336fa3 137
138}
139
140//_____________________________________________________________________________
793ff80c 141Bool_t AliTRDclusterizerV1::MakeClusters()
f7336fa3 142{
143 //
144 // Generates the cluster.
145 //
146
147 Int_t row, col, time;
148
3e1a3ad8 149 if (fTRD->IsVersion() != 1) {
17b26de4 150 printf("<AliTRDclusterizerV1::MakeCluster> ");
f7336fa3 151 printf("TRD must be version 1 (slow simulator).\n");
152 return kFALSE;
153 }
154
155 // Get the geometry
3e1a3ad8 156 AliTRDgeometry *geo = fTRD->GetGeometry();
f7336fa3 157
17b26de4 158 // Create a default parameter class if none is defined
159 if (!fPar) {
160 fPar = new AliTRDparameter("TRDparameter","Standard TRD parameter");
5443e65e 161 printf("<AliTRDclusterizerV1::MakeCluster> ");
162 printf("Create the default parameter object.\n");
17b26de4 163 }
164
165 Float_t timeBinSize = fPar->GetTimeBinSize();
a819a5f7 166 // Half of ampl.region
167 const Float_t kAmWidth = AliTRDgeometry::AmThick()/2.;
168
17b26de4 169 Float_t omegaTau = fPar->GetOmegaTau();
47517f42 170 if (fVerbose > 0) {
17b26de4 171 printf("<AliTRDclusterizerV1::MakeCluster> ");
47517f42 172 printf("OmegaTau = %f \n",omegaTau);
17b26de4 173 printf("<AliTRDclusterizerV1::MakeCluster> ");
47517f42 174 printf("Start creating clusters.\n");
175 }
f7336fa3 176
8230f242 177 AliTRDdataArrayI *digits;
793ff80c 178 AliTRDdataArrayI *track0;
179 AliTRDdataArrayI *track1;
180 AliTRDdataArrayI *track2;
f7336fa3 181
3e1a3ad8 182 // Threshold value for the maximum
17b26de4 183 Int_t maxThresh = fPar->GetClusMaxThresh();
3e1a3ad8 184 // Threshold value for the digit signal
17b26de4 185 Int_t sigThresh = fPar->GetClusSigThresh();
f7336fa3 186
187 // Iteration limit for unfolding procedure
8230f242 188 const Float_t kEpsilon = 0.01;
f7336fa3 189
8230f242 190 const Int_t kNclus = 3;
191 const Int_t kNsig = 5;
3e1a3ad8 192 const Int_t kNtrack = 3 * kNclus;
193
db30bf0f 194 Int_t iType = 0;
195 Int_t iUnfold = 0;
196
197 Float_t ratioLeft = 1.0;
198 Float_t ratioRight = 1.0;
199
3e1a3ad8 200 Float_t padSignal[kNsig];
201 Float_t clusterSignal[kNclus];
202 Float_t clusterPads[kNclus];
203 Int_t clusterDigit[kNclus];
204 Int_t clusterTracks[kNtrack];
f7336fa3 205
206 Int_t chamBeg = 0;
793ff80c 207 Int_t chamEnd = AliTRDgeometry::Ncham();
3e1a3ad8 208 if (fTRD->GetSensChamber() >= 0) {
209 chamBeg = fTRD->GetSensChamber();
6f1e466d 210 chamEnd = chamBeg + 1;
f7336fa3 211 }
212 Int_t planBeg = 0;
793ff80c 213 Int_t planEnd = AliTRDgeometry::Nplan();
3e1a3ad8 214 if (fTRD->GetSensPlane() >= 0) {
215 planBeg = fTRD->GetSensPlane();
f7336fa3 216 planEnd = planBeg + 1;
217 }
218 Int_t sectBeg = 0;
793ff80c 219 Int_t sectEnd = AliTRDgeometry::Nsect();
f7336fa3 220
3e1a3ad8 221 // Start clustering in every chamber
f7336fa3 222 for (Int_t icham = chamBeg; icham < chamEnd; icham++) {
223 for (Int_t iplan = planBeg; iplan < planEnd; iplan++) {
224 for (Int_t isect = sectBeg; isect < sectEnd; isect++) {
225
3e1a3ad8 226 if (fTRD->GetSensSector() >= 0) {
227 Int_t sens1 = fTRD->GetSensSector();
228 Int_t sens2 = sens1 + fTRD->GetSensSectorRange();
793ff80c 229 sens2 -= ((Int_t) (sens2 / AliTRDgeometry::Nsect()))
230 * AliTRDgeometry::Nsect();
dd9a6ee3 231 if (sens1 < sens2) {
9d0b222b 232 if ((isect < sens1) || (isect >= sens2)) continue;
dd9a6ee3 233 }
234 else {
9d0b222b 235 if ((isect < sens1) && (isect >= sens2)) continue;
dd9a6ee3 236 }
9d0b222b 237 }
238
8230f242 239 Int_t idet = geo->GetDetector(iplan,icham,isect);
f7336fa3 240
db30bf0f 241 Int_t nClusters = 0;
242 Int_t nClusters2pad = 0;
243 Int_t nClusters3pad = 0;
244 Int_t nClusters4pad = 0;
245 Int_t nClusters5pad = 0;
246 Int_t nClustersLarge = 0;
3e1a3ad8 247
47517f42 248 if (fVerbose > 0) {
17b26de4 249 printf("<AliTRDclusterizerV1::MakeCluster> ");
47517f42 250 printf("Analyzing chamber %d, plane %d, sector %d.\n"
251 ,icham,iplan,isect);
252 }
f7336fa3 253
5443e65e 254 Int_t nRowMax = fPar->GetRowMax(iplan,icham,isect);
255 Int_t nColMax = fPar->GetColMax(iplan);
256 Int_t nTimeBefore = fPar->GetTimeBefore();
257 Int_t nTimeTotal = fPar->GetTimeTotal();
258
259 Float_t row0 = fPar->GetRow0(iplan,icham,isect);
260 Float_t col0 = fPar->GetCol0(iplan);
261 Float_t rowSize = fPar->GetRowPadSize(iplan,icham,isect);
262 Float_t colSize = fPar->GetColPadSize(iplan);
f7336fa3 263
3e1a3ad8 264 // Get the digits
8230f242 265 digits = fDigitsManager->GetDigits(idet);
3e1a3ad8 266 digits->Expand();
793ff80c 267 track0 = fDigitsManager->GetDictionary(idet,0);
3e1a3ad8 268 track0->Expand();
793ff80c 269 track1 = fDigitsManager->GetDictionary(idet,1);
3e1a3ad8 270 track1->Expand();
793ff80c 271 track2 = fDigitsManager->GetDictionary(idet,2);
3e1a3ad8 272 track2->Expand();
273
274 // Loop through the chamber and find the maxima
275 for ( row = 0; row < nRowMax; row++) {
276 for ( col = 2; col < nColMax; col++) {
277 for (time = 0; time < nTimeTotal; time++) {
278
a819a5f7 279 Int_t signalL = TMath::Abs(digits->GetDataUnchecked(row,col ,time));
280 Int_t signalM = TMath::Abs(digits->GetDataUnchecked(row,col-1,time));
281 Int_t signalR = TMath::Abs(digits->GetDataUnchecked(row,col-2,time));
3e1a3ad8 282
283 // Look for the maximum
db30bf0f 284 if (signalM >= maxThresh) {
285 if (((signalL >= sigThresh) &&
286 (signalL < signalM)) ||
287 ((signalR >= sigThresh) &&
288 (signalR < signalM))) {
3e1a3ad8 289 // Maximum found, mark the position by a negative signal
290 digits->SetDataUnchecked(row,col-1,time,-signalM);
291 }
292 }
293
294 }
295 }
296 }
297
298 // Now check the maxima and calculate the cluster position
299 for ( row = 0; row < nRowMax ; row++) {
db30bf0f 300 for (time = 0; time < nTimeTotal; time++) {
301 for ( col = 1; col < nColMax-1; col++) {
3e1a3ad8 302
303 // Maximum found ?
304 if (digits->GetDataUnchecked(row,col,time) < 0) {
f7336fa3 305
9d0b222b 306 Int_t iPad;
8230f242 307 for (iPad = 0; iPad < kNclus; iPad++) {
3e1a3ad8 308 Int_t iPadCol = col - 1 + iPad;
309 clusterSignal[iPad] = TMath::Abs(digits->GetDataUnchecked(row
310 ,iPadCol
311 ,time));
312 clusterDigit[iPad] = digits->GetIndexUnchecked(row,iPadCol,time);
313 clusterTracks[3*iPad ] = track0->GetDataUnchecked(row,iPadCol,time) - 1;
314 clusterTracks[3*iPad+1] = track1->GetDataUnchecked(row,iPadCol,time) - 1;
315 clusterTracks[3*iPad+2] = track2->GetDataUnchecked(row,iPadCol,time) - 1;
f7336fa3 316 }
317
db30bf0f 318 // Count the number of pads in the cluster
319 Int_t nPadCount = 0;
320 Int_t ii = 0;
321 while (TMath::Abs(digits->GetDataUnchecked(row,col-ii ,time))
322 >= sigThresh) {
323 nPadCount++;
324 ii++;
325 if (col-ii < 0) break;
326 }
327 ii = 0;
328 while (TMath::Abs(digits->GetDataUnchecked(row,col+ii+1,time))
329 >= sigThresh) {
330 nPadCount++;
331 ii++;
332 if (col+ii+1 >= nColMax) break;
333 }
334
335 nClusters++;
336 switch (nPadCount) {
337 case 2:
338 iType = 0;
339 nClusters2pad++;
340 break;
341 case 3:
342 iType = 1;
343 nClusters3pad++;
344 break;
345 case 4:
346 iType = 2;
347 nClusters4pad++;
348 break;
349 case 5:
350 iType = 3;
351 nClusters5pad++;
352 break;
353 default:
354 iType = 4;
355 nClustersLarge++;
356 break;
357 };
358
359 // Don't analyze large clusters
360 //if (iType == 4) continue;
361
362 // Look for 5 pad cluster with minimum in the middle
363 Bool_t fivePadCluster = kFALSE;
3e1a3ad8 364 if (col < nColMax-3) {
365 if (digits->GetDataUnchecked(row,col+2,time) < 0) {
db30bf0f 366 fivePadCluster = kTRUE;
367 }
368 if ((fivePadCluster) && (col < nColMax-5)) {
369 if (digits->GetDataUnchecked(row,col+4,time) >= sigThresh) {
370 fivePadCluster = kFALSE;
371 }
372 }
373 if ((fivePadCluster) && (col > 1)) {
374 if (digits->GetDataUnchecked(row,col-2,time) >= sigThresh) {
375 fivePadCluster = kFALSE;
376 }
377 }
378 }
379
380 // 5 pad cluster
381 // Modify the signal of the overlapping pad for the left part
382 // of the cluster which remains from a previous unfolding
383 if (iUnfold) {
384 clusterSignal[0] *= ratioLeft;
385 iType = 3;
386 iUnfold = 0;
387 }
388
389 // Unfold the 5 pad cluster
390 if (fivePadCluster) {
391 for (iPad = 0; iPad < kNsig; iPad++) {
392 padSignal[iPad] = TMath::Abs(digits->GetDataUnchecked(row
393 ,col-1+iPad
394 ,time));
f7336fa3 395 }
db30bf0f 396 // Unfold the two maxima and set the signal on
397 // the overlapping pad to the ratio
17b26de4 398 ratioRight = Unfold(kEpsilon,iplan,padSignal);
db30bf0f 399 ratioLeft = 1.0 - ratioRight;
400 clusterSignal[2] *= ratioRight;
401 iType = 3;
402 iUnfold = 1;
f7336fa3 403 }
f7336fa3 404
3e1a3ad8 405 Float_t clusterCharge = clusterSignal[0]
406 + clusterSignal[1]
407 + clusterSignal[2];
408
db30bf0f 409 // The position of the cluster
3e1a3ad8 410 clusterPads[0] = row + 0.5;
3e1a3ad8 411 // Take the shift of the additional time bins into account
412 clusterPads[2] = time - nTimeBefore + 0.5;
413
17b26de4 414 if (fPar->LUTOn()) {
db30bf0f 415
416 // Calculate the position of the cluster by using the
417 // lookup table method
5443e65e 418 clusterPads[1] = col + 0.5
419 + fPar->LUTposition(iplan,clusterSignal[0]
17b26de4 420 ,clusterSignal[1]
421 ,clusterSignal[2]);
db30bf0f 422
423 }
424 else {
425
426 // Calculate the position of the cluster by using the
427 // center of gravity method
428 clusterPads[1] = col + 0.5
429 + (clusterSignal[2] - clusterSignal[0])
430 / clusterCharge;
431
432 }
433
5443e65e 434 Float_t q0 = clusterSignal[0];
435 Float_t q1 = clusterSignal[1];
436 Float_t q2 = clusterSignal[2];
437 Float_t clusterSigmaY2 = (q1*(q0+q2)+4*q0*q2) /
438 (clusterCharge*clusterCharge);
a819a5f7 439
440 // Correct for ExB displacement
17b26de4 441 if (fPar->ExBOn()) {
a819a5f7 442 Int_t local_time_bin = (Int_t) clusterPads[2];
443 Float_t driftLength = local_time_bin * timeBinSize + kAmWidth;
17b26de4 444 Float_t colSize = fPar->GetColPadSize(iplan);
a819a5f7 445 Float_t deltaY = omegaTau*driftLength/colSize;
446 clusterPads[1] = clusterPads[1] - deltaY;
447 }
448
47517f42 449 if (fVerbose > 1) {
3e1a3ad8 450 printf("-----------------------------------------------------------\n");
451 printf("Create cluster no. %d\n",nClusters);
452 printf("Position: row = %f, col = %f, time = %f\n",clusterPads[0]
453 ,clusterPads[1]
454 ,clusterPads[2]);
455 printf("Indices: %d, %d, %d\n",clusterDigit[0]
456 ,clusterDigit[1]
457 ,clusterDigit[2]);
458 printf("Total charge = %f\n",clusterCharge);
459 printf("Tracks: pad0 %d, %d, %d\n",clusterTracks[0]
460 ,clusterTracks[1]
461 ,clusterTracks[2]);
462 printf(" pad1 %d, %d, %d\n",clusterTracks[3]
463 ,clusterTracks[4]
464 ,clusterTracks[5]);
465 printf(" pad2 %d, %d, %d\n",clusterTracks[6]
466 ,clusterTracks[7]
467 ,clusterTracks[8]);
db30bf0f 468 printf("Type = %d, Number of pads = %d\n",iType,nPadCount);
f7336fa3 469 }
470
5443e65e 471 // Calculate the position and the error
472 Float_t clusterPos[3];
473 clusterPos[0] = clusterPads[1] * colSize + col0;
474 clusterPos[1] = clusterPads[0] * rowSize + row0;
475 clusterPos[2] = clusterPads[2];
476 Float_t clusterSig[2];
477 clusterSig[0] = (clusterSigmaY2 + 1./12.) * colSize*colSize;
478 clusterSig[1] = rowSize * rowSize / 12.;
479
f7336fa3 480 // Add the cluster to the output array
5443e65e 481 fTRD->AddCluster(clusterPos
3e1a3ad8 482 ,idet
483 ,clusterCharge
484 ,clusterTracks
5443e65e 485 ,clusterSig
3e1a3ad8 486 ,iType);
f7336fa3 487
488 }
3e1a3ad8 489 }
490 }
491 }
f7336fa3 492
3e1a3ad8 493 // Compress the arrays
494 digits->Compress(1,0);
495 track0->Compress(1,0);
496 track1->Compress(1,0);
497 track2->Compress(1,0);
f7336fa3 498
3e1a3ad8 499 // Write the cluster and reset the array
793ff80c 500 WriteClusters(idet);
3e1a3ad8 501 fTRD->ResetRecPoints();
793ff80c 502
47517f42 503 if (fVerbose > 0) {
17b26de4 504 printf("<AliTRDclusterizerV1::MakeCluster> ");
47517f42 505 printf("Found %d clusters in total.\n"
506 ,nClusters);
507 printf(" 2pad: %d\n",nClusters2pad);
508 printf(" 3pad: %d\n",nClusters3pad);
509 printf(" 4pad: %d\n",nClusters4pad);
510 printf(" 5pad: %d\n",nClusters5pad);
511 printf(" Large: %d\n",nClustersLarge);
512 }
f7336fa3 513
3e1a3ad8 514 }
515 }
516 }
f7336fa3 517
47517f42 518 if (fVerbose > 0) {
17b26de4 519 printf("<AliTRDclusterizerV1::MakeCluster> ");
47517f42 520 printf("Done.\n");
521 }
f7336fa3 522
523 return kTRUE;
524
525}
526
527//_____________________________________________________________________________
17b26de4 528Float_t AliTRDclusterizerV1::Unfold(Float_t eps, Int_t plane, Float_t* padSignal)
f7336fa3 529{
530 //
531 // Method to unfold neighbouring maxima.
532 // The charge ratio on the overlapping pad is calculated
533 // until there is no more change within the range given by eps.
534 // The resulting ratio is then returned to the calling method.
535 //
536
17b26de4 537 Int_t irc = 0;
3e1a3ad8 538 Int_t itStep = 0; // Count iteration steps
f7336fa3 539
3e1a3ad8 540 Float_t ratio = 0.5; // Start value for ratio
541 Float_t prevRatio = 0; // Store previous ratio
f7336fa3 542
3e1a3ad8 543 Float_t newLeftSignal[3] = {0}; // Array to store left cluster signal
544 Float_t newRightSignal[3] = {0}; // Array to store right cluster signal
17b26de4 545 Float_t newSignal[3] = {0};
f7336fa3 546
3e1a3ad8 547 // Start the iteration
f7336fa3 548 while ((TMath::Abs(prevRatio - ratio) > eps) && (itStep < 10)) {
549
550 itStep++;
551 prevRatio = ratio;
552
3e1a3ad8 553 // Cluster position according to charge ratio
554 Float_t maxLeft = (ratio*padSignal[2] - padSignal[0])
555 / (padSignal[0] + padSignal[1] + ratio*padSignal[2]);
556 Float_t maxRight = (padSignal[4] - (1-ratio)*padSignal[2])
557 / ((1-ratio)*padSignal[2] + padSignal[3] + padSignal[4]);
f7336fa3 558
3e1a3ad8 559 // Set cluster charge ratio
17b26de4 560 irc = fPar->PadResponse(1.0,maxLeft ,plane,newSignal);
561 Float_t ampLeft = padSignal[1] / newSignal[1];
562 irc = fPar->PadResponse(1.0,maxRight,plane,newSignal);
563 Float_t ampRight = padSignal[3] / newSignal[1];
f7336fa3 564
3e1a3ad8 565 // Apply pad response to parameters
17b26de4 566 irc = fPar->PadResponse(ampLeft ,maxLeft ,plane,newLeftSignal );
567 irc = fPar->PadResponse(ampRight,maxRight,plane,newRightSignal);
f7336fa3 568
3e1a3ad8 569 // Calculate new overlapping ratio
26edf6a4 570 ratio = TMath::Min((Float_t)1.0,newLeftSignal[2] /
db30bf0f 571 (newLeftSignal[2] + newRightSignal[0]));
f7336fa3 572
573 }
574
575 return ratio;
576
577}
578