]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TRD/AliTRDclusterizerV1.cxx
Reintrodruce old clusterizer for HLT
[u/mrichter/AliRoot.git] / TRD / AliTRDclusterizerV1.cxx
CommitLineData
24b99a2e 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18///////////////////////////////////////////////////////////////////////////////
19// //
20// TRD cluster finder //
21// //
22///////////////////////////////////////////////////////////////////////////////
23
24#include <TF1.h>
25#include <TTree.h>
26#include <TH1.h>
27#include <TFile.h>
28
29#include "AliRunLoader.h"
30#include "AliLoader.h"
31#include "AliRawReader.h"
32#include "AliLog.h"
33#include "AliAlignObj.h"
34
35#include "AliTRDclusterizerV1.h"
36#include "AliTRDgeometry.h"
37#include "AliTRDdataArrayF.h"
38#include "AliTRDdataArrayI.h"
39#include "AliTRDdigitsManager.h"
40#include "AliTRDpadPlane.h"
41#include "AliTRDrawData.h"
42#include "AliTRDcalibDB.h"
43#include "AliTRDSimParam.h"
44#include "AliTRDRecParam.h"
45#include "AliTRDcluster.h"
46
47#include "Cal/AliTRDCalROC.h"
48#include "Cal/AliTRDCalDet.h"
49
50ClassImp(AliTRDclusterizerV1)
51
52//_____________________________________________________________________________
53AliTRDclusterizerV1::AliTRDclusterizerV1()
54 :AliTRDclusterizer()
55 ,fDigitsManager(NULL)
56{
57 //
58 // AliTRDclusterizerV1 default constructor
59 //
60
61}
62
63//_____________________________________________________________________________
64AliTRDclusterizerV1::AliTRDclusterizerV1(const Text_t *name, const Text_t *title)
65 :AliTRDclusterizer(name,title)
66 ,fDigitsManager(new AliTRDdigitsManager())
67{
68 //
69 // AliTRDclusterizerV1 constructor
70 //
71
72 fDigitsManager->CreateArrays();
73
74}
75
76//_____________________________________________________________________________
77AliTRDclusterizerV1::AliTRDclusterizerV1(const AliTRDclusterizerV1 &c)
78 :AliTRDclusterizer(c)
79 ,fDigitsManager(NULL)
80{
81 //
82 // AliTRDclusterizerV1 copy constructor
83 //
84
85}
86
87//_____________________________________________________________________________
88AliTRDclusterizerV1::~AliTRDclusterizerV1()
89{
90 //
91 // AliTRDclusterizerV1 destructor
92 //
93
94 if (fDigitsManager) {
95 delete fDigitsManager;
96 fDigitsManager = NULL;
97 }
98
99}
100
101//_____________________________________________________________________________
102AliTRDclusterizerV1 &AliTRDclusterizerV1::operator=(const AliTRDclusterizerV1 &c)
103{
104 //
105 // Assignment operator
106 //
107
108 if (this != &c) ((AliTRDclusterizerV1 &) c).Copy(*this);
109 return *this;
110
111}
112
113//_____________________________________________________________________________
114void AliTRDclusterizerV1::Copy(TObject &c) const
115{
116 //
117 // Copy function
118 //
119
120 ((AliTRDclusterizerV1 &) c).fDigitsManager = 0;
121
122 AliTRDclusterizer::Copy(c);
123
124}
125
126//_____________________________________________________________________________
127Bool_t AliTRDclusterizerV1::ReadDigits()
128{
129 //
130 // Reads the digits arrays from the input aliroot file
131 //
132
133 if (!fRunLoader) {
134 AliError("No run loader available");
135 return kFALSE;
136 }
137
138 AliLoader* loader = fRunLoader->GetLoader("TRDLoader");
139 if (!loader->TreeD()) {
140 loader->LoadDigits();
141 }
142
143 // Read in the digit arrays
144 return (fDigitsManager->ReadDigits(loader->TreeD()));
145
146}
147
148//_____________________________________________________________________________
149Bool_t AliTRDclusterizerV1::ReadDigits(TTree *digitsTree)
150{
151 //
152 // Reads the digits arrays from the input tree
153 //
154
155 // Read in the digit arrays
156 return (fDigitsManager->ReadDigits(digitsTree));
157
158}
159
160//_____________________________________________________________________________
161Bool_t AliTRDclusterizerV1::ReadDigits(AliRawReader *rawReader)
162{
163 //
164 // Reads the digits arrays from the ddl file
165 //
166
167 AliTRDrawData raw;
168 fDigitsManager = raw.Raw2Digits(rawReader);
169
170 return kTRUE;
171
172}
173
174//_____________________________________________________________________________
175Bool_t AliTRDclusterizerV1::MakeClusters()
176{
177 //
178 // Generates the cluster.
179 //
180
181 Int_t row = 0;
182 Int_t col = 0;
183 Int_t time = 0;
184 Int_t icham = 0;
185 Int_t iplan = 0;
186 Int_t isect = 0;
187 Int_t iPad = 0;
188
189 AliTRDdataArrayI *digitsIn;
190 AliTRDdataArrayI *tracksIn;
191
192 AliTRDgeometry geo;
193
194 AliTRDcalibDB *calibration = AliTRDcalibDB::Instance();
195 if (!calibration) {
196 AliFatal("No AliTRDcalibDB instance available\n");
197 return kFALSE;
198 }
199
200 AliTRDSimParam *simParam = AliTRDSimParam::Instance();
201 if (!simParam) {
202 AliError("No AliTRDSimParam instance available\n");
203 return kFALSE;
204 }
205
206 AliTRDRecParam *recParam = AliTRDRecParam::Instance();
207 if (!recParam) {
208 AliError("No AliTRDRecParam instance available\n");
209 return kFALSE;
210 }
211
212 // ADC thresholds
213 // Float_t ADCthreshold = simParam->GetADCthreshold();
214 Float_t ADCthreshold = 0;
215 // Threshold value for the maximum
216 Float_t maxThresh = recParam->GetClusMaxThresh();
217 // Threshold value for the digit signal
218 Float_t sigThresh = recParam->GetClusSigThresh();
219
220 // Detector wise calibration object for t0
221 const AliTRDCalDet *calT0Det = calibration->GetT0Det();
222 // Detector wise calibration object for the gain factors
223 const AliTRDCalDet *calGainFactorDet = calibration->GetGainFactorDet();
224
225 // Iteration limit for unfolding procedure
226 const Float_t kEpsilon = 0.01;
227 const Int_t kNclus = 3;
228 const Int_t kNsig = 5;
229 const Int_t kNdict = AliTRDdigitsManager::kNDict;
230 const Int_t kNtrack = kNdict * kNclus;
231
232 Int_t iUnfold = 0;
233 Double_t ratioLeft = 1.0;
234 Double_t ratioRight = 1.0;
235
236 Int_t iClusterROC = 0;
237
238 Double_t padSignal[kNsig];
239 Double_t clusterSignal[kNclus];
240 Double_t clusterPads[kNclus];
241
242 Int_t chamBeg = 0;
243 Int_t chamEnd = AliTRDgeometry::Ncham();
244 Int_t planBeg = 0;
245 Int_t planEnd = AliTRDgeometry::Nplan();
246 Int_t sectBeg = 0;
247 Int_t sectEnd = AliTRDgeometry::Nsect();
248 Int_t nTimeTotal = calibration->GetNumberOfTimeBins();
249
250 AliDebug(1,Form("Number of Time Bins = %d.\n",nTimeTotal));
251
252 // Start clustering in every chamber
253 for (icham = chamBeg; icham < chamEnd; icham++) {
254 for (iplan = planBeg; iplan < planEnd; iplan++) {
255 for (isect = sectBeg; isect < sectEnd; isect++) {
256
257 Int_t idet = geo.GetDetector(iplan,icham,isect);
258 Int_t ilayer = AliGeomManager::kTRD1 + iplan;
259 Int_t imodule = icham + chamEnd * isect;
260 UShort_t volid = AliGeomManager::LayerToVolUID(ilayer,imodule);
261
262 // Get the digits
263 digitsIn = fDigitsManager->GetDigits(idet);
264 // This is to take care of switched off super modules
265 if (digitsIn->GetNtime() == 0) {
266 continue;
267 }
268 digitsIn->Expand();
269 AliTRDdataArrayI *tracksTmp = fDigitsManager->GetDictionary(idet,0);
270 tracksTmp->Expand();
271
272 Int_t nRowMax = geo.GetRowMax(iplan,icham,isect);
273 Int_t nColMax = geo.GetColMax(iplan);
274
275 AliTRDpadPlane *padPlane = geo.GetPadPlane(iplan,icham);
276
277 // Calibration object with pad wise values for t0
278 AliTRDCalROC *calT0ROC = calibration->GetT0ROC(idet);
279 // Calibration object with pad wise values for the gain factors
280 AliTRDCalROC *calGainFactorROC = calibration->GetGainFactorROC(idet);
281 // Calibration value for chamber wise t0
282 Float_t calT0DetValue = calT0Det->GetValue(idet);
283 // Calibration value for chamber wise gain factor
284 Float_t calGainFactorDetValue = calGainFactorDet->GetValue(idet);
285
286 Int_t nClusters = 0;
287
288 // Apply the gain and the tail cancelation via digital filter
289 AliTRDdataArrayF *digitsOut = new AliTRDdataArrayF(digitsIn->GetNrow()
290 ,digitsIn->GetNcol()
291 ,digitsIn->GetNtime());
292 Transform(digitsIn
293 ,digitsOut
294 ,nRowMax,nColMax,nTimeTotal
295 ,ADCthreshold
296 ,calGainFactorROC
297 ,calGainFactorDetValue);
298
299 // Input digits are not needed any more
300 digitsIn->Compress(1,0);
301
302 // Loop through the chamber and find the maxima
303 for ( row = 0; row < nRowMax; row++) {
304 for ( col = 2; col < nColMax; col++) {
305 for (time = 0; time < nTimeTotal; time++) {
306
307 Float_t signalM = TMath::Abs(digitsOut->GetDataUnchecked(row,col-1,time));
308
309 // Look for the maximum
310 if (signalM >= maxThresh) {
311
312 Float_t signalL = TMath::Abs(digitsOut->GetDataUnchecked(row,col ,time));
313 Float_t signalR = TMath::Abs(digitsOut->GetDataUnchecked(row,col-2,time));
314
315 if ((TMath::Abs(signalL) <= signalM) &&
316 (TMath::Abs(signalR) < signalM)) {
317 if ((TMath::Abs(signalL) >= sigThresh) ||
318 (TMath::Abs(signalR) >= sigThresh)) {
319 // Maximum found, mark the position by a negative signal
320 digitsOut->SetDataUnchecked(row,col-1,time,-signalM);
321 }
322 }
323
324 }
325
326 }
327 }
328 }
329 tracksTmp->Compress(1,0);
330
331 // The index to the first cluster of a given ROC
332 Int_t firstClusterROC = -1;
333 // The number of cluster in a given ROC
334 Int_t nClusterROC = 0;
335
336 // Now check the maxima and calculate the cluster position
337 for ( row = 0; row < nRowMax ; row++) {
338 for (time = 0; time < nTimeTotal; time++) {
339 for ( col = 1; col < nColMax-1; col++) {
340
341 // Maximum found ?
342 if (digitsOut->GetDataUnchecked(row,col,time) < 0.0) {
343
344 for (iPad = 0; iPad < kNclus; iPad++) {
345 Int_t iPadCol = col - 1 + iPad;
346 clusterSignal[iPad] =
347 TMath::Abs(digitsOut->GetDataUnchecked(row,iPadCol,time));
348 }
349
350 // Count the number of pads in the cluster
351 Int_t nPadCount = 0;
352 Int_t ii;
353 // Look to the left
354 ii = 0;
355 while (TMath::Abs(digitsOut->GetDataUnchecked(row,col-ii ,time)) >= sigThresh) {
356 nPadCount++;
357 ii++;
358 if (col-ii < 0) break;
359 }
360 // Look to the right
361 ii = 0;
362 while (TMath::Abs(digitsOut->GetDataUnchecked(row,col+ii+1,time)) >= sigThresh) {
363 nPadCount++;
364 ii++;
365 if (col+ii+1 >= nColMax) break;
366 }
367 nClusters++;
368
369 // Look for 5 pad cluster with minimum in the middle
370 Bool_t fivePadCluster = kFALSE;
371 if (col < (nColMax - 3)) {
372 if (digitsOut->GetDataUnchecked(row,col+2,time) < 0) {
373 fivePadCluster = kTRUE;
374 }
375 if ((fivePadCluster) && (col < (nColMax - 5))) {
376 if (digitsOut->GetDataUnchecked(row,col+4,time) >= sigThresh) {
377 fivePadCluster = kFALSE;
378 }
379 }
380 if ((fivePadCluster) && (col > 1)) {
381 if (digitsOut->GetDataUnchecked(row,col-2,time) >= sigThresh) {
382 fivePadCluster = kFALSE;
383 }
384 }
385 }
386
387 // 5 pad cluster
388 // Modify the signal of the overlapping pad for the left part
389 // of the cluster which remains from a previous unfolding
390 if (iUnfold) {
391 clusterSignal[0] *= ratioLeft;
392 iUnfold = 0;
393 }
394
395 // Unfold the 5 pad cluster
396 if (fivePadCluster) {
397 for (iPad = 0; iPad < kNsig; iPad++) {
398 padSignal[iPad] = TMath::Abs(digitsOut->GetDataUnchecked(row
399 ,col-1+iPad
400 ,time));
401 }
402 // Unfold the two maxima and set the signal on
403 // the overlapping pad to the ratio
404 ratioRight = Unfold(kEpsilon,iplan,padSignal);
405 ratioLeft = 1.0 - ratioRight;
406 clusterSignal[2] *= ratioRight;
407 iUnfold = 1;
408 }
409
410 Double_t clusterCharge = clusterSignal[0]
411 + clusterSignal[1]
412 + clusterSignal[2];
413
414 // The position of the cluster
415 clusterPads[0] = row + 0.5;
416 // Take the shift of the additional time bins into account
417 clusterPads[2] = time + 0.5;
418
419 if (recParam->LUTOn()) {
420 // Calculate the position of the cluster by using the
421 // lookup table method
422 clusterPads[1] = recParam->LUTposition(iplan,clusterSignal[0]
423 ,clusterSignal[1]
424 ,clusterSignal[2]);
425 }
426 else {
427 // Calculate the position of the cluster by using the
428 // center of gravity method
429 for (Int_t i = 0; i < kNsig; i++) {
430 padSignal[i] = 0.0;
431 }
432 padSignal[2] = TMath::Abs(digitsOut->GetDataUnchecked(row,col ,time)); // Central pad
433 padSignal[1] = TMath::Abs(digitsOut->GetDataUnchecked(row,col-1,time)); // Left pad
434 padSignal[3] = TMath::Abs(digitsOut->GetDataUnchecked(row,col+1,time)); // Right pad
435 if ((col > 2) &&
436 (TMath::Abs(digitsOut->GetDataUnchecked(row,col-2,time)) < padSignal[1])) {
437 padSignal[0] = TMath::Abs(digitsOut->GetDataUnchecked(row,col-2,time));
438 }
439 if ((col < nColMax - 3) &&
440 (TMath::Abs(digitsOut->GetDataUnchecked(row,col+2,time)) < padSignal[3])) {
441 padSignal[4] = TMath::Abs(digitsOut->GetDataUnchecked(row,col+2,time));
442 }
443 clusterPads[1] = GetCOG(padSignal);
444 }
445
446 Double_t q0 = clusterSignal[0];
447 Double_t q1 = clusterSignal[1];
448 Double_t q2 = clusterSignal[2];
449 Double_t clusterSigmaY2 = (q1 * (q0 + q2) + 4.0 * q0 * q2)
450 / (clusterCharge*clusterCharge);
451
452 //
453 // Calculate the position and the error
454 //
455
456 // Correct for t0 (sum of chamber and pad wise values !!!)
457 Float_t calT0ROCValue = calT0ROC->GetValue(col,row);
458 Char_t clusterTimeBin = ((Char_t) TMath::Nint(time - (calT0DetValue + calT0ROCValue)));
459 Double_t colSize = padPlane->GetColSize(col);
460 Double_t rowSize = padPlane->GetRowSize(row);
461
462 Float_t clusterPos[3];
463 clusterPos[0] = padPlane->GetColPos(col) - (clusterPads[1] + 0.5) * colSize;
464 clusterPos[1] = padPlane->GetRowPos(row) - 0.5 * rowSize;
465 clusterPos[2] = CalcXposFromTimebin(clusterPads[2],idet,col,row);
466 Float_t clusterSig[2];
467 clusterSig[0] = (clusterSigmaY2 + 1.0/12.0) * colSize*colSize;
468 clusterSig[1] = rowSize * rowSize / 12.0;
469
470 // Store the amplitudes of the pads in the cluster for later analysis
471 Short_t signals[7] = { 0, 0, 0, 0, 0, 0, 0 };
472 for (Int_t jPad = col-3; jPad <= col+3; jPad++) {
473 if ((jPad < 0) ||
474 (jPad >= nColMax-1)) {
475 continue;
476 }
477 signals[jPad-col+3] = TMath::Nint(TMath::Abs(digitsOut->GetDataUnchecked(row,jPad,time)));
478 }
479
480 // Add the cluster to the output array
481 // The track indices will be stored later
482 AliTRDcluster *cluster = new AliTRDcluster(idet
483 ,clusterCharge
484 ,clusterPos
485 ,clusterSig
486 ,0x0
487 ,((Char_t) nPadCount)
488 ,signals
489 ,((UChar_t) col)
490 ,clusterTimeBin
491 ,clusterPads[1]
492 ,volid);
493 // Temporarily store the row, column and time bin of the center pad
494 // Used to later on assign the track indices
495 cluster->SetLabel( row,0);
496 cluster->SetLabel( col,1);
497 cluster->SetLabel(time,2);
498 RecPoints()->Add(cluster);
499
500 // Store the index of the first cluster in the current ROC
501 if (firstClusterROC < 0) {
502 firstClusterROC = RecPoints()->GetEntriesFast() - 1;
503 }
504 // Count the number of cluster in the current ROC
505 nClusterROC++;
506
507 } // if: Maximum found ?
508
509 } // loop: pad columns
510 } // loop: time bins
511 } // loop: pad rows
512
513 delete digitsOut;
514
515 //
516 // Add the track indices to the found clusters
517 //
518
519 // Temporary array to collect the track indices
520 Int_t *idxTracks = new Int_t[kNtrack*nClusterROC];
521
522 // Loop through the dictionary arrays one-by-one
523 // to keep memory consumption low
524 for (Int_t iDict = 0; iDict < kNdict; iDict++) {
525
526 tracksIn = fDigitsManager->GetDictionary(idet,iDict);
527 tracksIn->Expand();
528
529 // Loop though the clusters found in this ROC
530 for (iClusterROC = 0; iClusterROC < nClusterROC; iClusterROC++) {
531
532 AliTRDcluster *cluster = (AliTRDcluster *)
533 RecPoints()->UncheckedAt(firstClusterROC+iClusterROC);
534 row = cluster->GetLabel(0);
535 col = cluster->GetLabel(1);
536 time = cluster->GetLabel(2);
537
538 for (iPad = 0; iPad < kNclus; iPad++) {
539 Int_t iPadCol = col - 1 + iPad;
540 Int_t index = tracksIn->GetDataUnchecked(row,iPadCol,time) - 1;
541 idxTracks[3*iPad+iDict + iClusterROC*kNtrack] = index;
542 }
543
544 }
545
546 // Compress the arrays
547 tracksIn->Compress(1,0);
548
549 }
550
551 // Copy the track indices into the cluster
552 // Loop though the clusters found in this ROC
553 for (iClusterROC = 0; iClusterROC < nClusterROC; iClusterROC++) {
554
555 AliTRDcluster *cluster = (AliTRDcluster *)
556 RecPoints()->UncheckedAt(firstClusterROC+iClusterROC);
557 cluster->SetLabel(-9999,0);
558 cluster->SetLabel(-9999,1);
559 cluster->SetLabel(-9999,2);
560
561 cluster->AddTrackIndex(&idxTracks[iClusterROC*kNtrack]);
562
563 }
564
565 delete [] idxTracks;
566
567 // Write the cluster and reset the array
568 WriteClusters(idet);
569 ResetRecPoints();
570
571 } // loop: Sectors
572 } // loop: Planes
573 } // loop: Chambers
574
575 return kTRUE;
576
577}
578
579//_____________________________________________________________________________
580Double_t AliTRDclusterizerV1::GetCOG(Double_t signal[5])
581{
582 //
583 // Get COG position
584 // Used for clusters with more than 3 pads - where LUT not applicable
585 //
586
587 Double_t sum = signal[0]
588 + signal[1]
589 + signal[2]
590 + signal[3]
591 + signal[4];
592
593 Double_t res = (0.0 * (-signal[0] + signal[4])
594 + (-signal[1] + signal[3])) / sum;
595
596 return res;
597
598}
599
600//_____________________________________________________________________________
601Double_t AliTRDclusterizerV1::Unfold(Double_t eps, Int_t plane, Double_t *padSignal)
602{
603 //
604 // Method to unfold neighbouring maxima.
605 // The charge ratio on the overlapping pad is calculated
606 // until there is no more change within the range given by eps.
607 // The resulting ratio is then returned to the calling method.
608 //
609
610 AliTRDcalibDB *calibration = AliTRDcalibDB::Instance();
611 if (!calibration) {
612 AliError("No AliTRDcalibDB instance available\n");
613 return kFALSE;
614 }
615
616 Int_t irc = 0;
617 Int_t itStep = 0; // Count iteration steps
618
619 Double_t ratio = 0.5; // Start value for ratio
620 Double_t prevRatio = 0.0; // Store previous ratio
621
622 Double_t newLeftSignal[3] = { 0.0, 0.0, 0.0 }; // Array to store left cluster signal
623 Double_t newRightSignal[3] = { 0.0, 0.0, 0.0 }; // Array to store right cluster signal
624 Double_t newSignal[3] = { 0.0, 0.0, 0.0 };
625
626 // Start the iteration
627 while ((TMath::Abs(prevRatio - ratio) > eps) && (itStep < 10)) {
628
629 itStep++;
630 prevRatio = ratio;
631
632 // Cluster position according to charge ratio
633 Double_t maxLeft = (ratio*padSignal[2] - padSignal[0])
634 / (padSignal[0] + padSignal[1] + ratio*padSignal[2]);
635 Double_t maxRight = (padSignal[4] - (1-ratio)*padSignal[2])
636 / ((1.0 - ratio)*padSignal[2] + padSignal[3] + padSignal[4]);
637
638 // Set cluster charge ratio
639 irc = calibration->PadResponse(1.0,maxLeft ,plane,newSignal);
640 Double_t ampLeft = padSignal[1] / newSignal[1];
641 irc = calibration->PadResponse(1.0,maxRight,plane,newSignal);
642 Double_t ampRight = padSignal[3] / newSignal[1];
643
644 // Apply pad response to parameters
645 irc = calibration->PadResponse(ampLeft ,maxLeft ,plane,newLeftSignal );
646 irc = calibration->PadResponse(ampRight,maxRight,plane,newRightSignal);
647
648 // Calculate new overlapping ratio
649 ratio = TMath::Min((Double_t)1.0,newLeftSignal[2] /
650 (newLeftSignal[2] + newRightSignal[0]));
651
652 }
653
654 return ratio;
655
656}
657
658//_____________________________________________________________________________
659void AliTRDclusterizerV1::Transform(AliTRDdataArrayI *digitsIn
660 , AliTRDdataArrayF *digitsOut
661 , Int_t nRowMax, Int_t nColMax, Int_t nTimeTotal
662 , Float_t ADCthreshold
663 , AliTRDCalROC *calGainFactorROC
664 , Float_t calGainFactorDetValue)
665{
666 //
667 // Apply gain factor
668 // Apply tail cancelation: Transform digitsIn to digitsOut
669 //
670
671 Int_t iRow = 0;
672 Int_t iCol = 0;
673 Int_t iTime = 0;
674
675 AliTRDRecParam *recParam = AliTRDRecParam::Instance();
676 if (!recParam) {
677 AliError("No AliTRDRecParam instance available\n");
678 return;
679 }
680
681 Double_t *inADC = new Double_t[nTimeTotal]; // ADC data before tail cancellation
682 Double_t *outADC = new Double_t[nTimeTotal]; // ADC data after tail cancellation
683
684 for (iRow = 0; iRow < nRowMax; iRow++ ) {
685 for (iCol = 0; iCol < nColMax; iCol++ ) {
686
687 Float_t calGainFactorROCValue = calGainFactorROC->GetValue(iCol,iRow);
688 Double_t gain = calGainFactorDetValue
689 * calGainFactorROCValue;
690
691 for (iTime = 0; iTime < nTimeTotal; iTime++) {
692
693 //
694 // Add gain
695 //
696 inADC[iTime] = digitsIn->GetDataUnchecked(iRow,iCol,iTime);
697 inADC[iTime] /= gain;
698 outADC[iTime] = inADC[iTime];
699
700 }
701
702 // Apply the tail cancelation via the digital filter
703 if (recParam->TCOn()) {
704 DeConvExp(inADC,outADC,nTimeTotal,recParam->GetTCnexp());
705 }
706
707 for (iTime = 0; iTime < nTimeTotal; iTime++) {
708
709 // Store the amplitude of the digit if above threshold
710 if (outADC[iTime] > ADCthreshold) {
711 digitsOut->SetDataUnchecked(iRow,iCol,iTime,outADC[iTime]);
712 }
713
714 }
715
716 }
717 }
718
719 delete [] inADC;
720 delete [] outADC;
721
722 return;
723
724}
725
726//_____________________________________________________________________________
727void AliTRDclusterizerV1::DeConvExp(Double_t *source, Double_t *target
728 , Int_t n, Int_t nexp)
729{
730 //
731 // Tail cancellation by deconvolution for PASA v4 TRF
732 //
733
734 Double_t rates[2];
735 Double_t coefficients[2];
736
737 // Initialization (coefficient = alpha, rates = lambda)
738 Double_t R1 = 1.0;
739 Double_t R2 = 1.0;
740 Double_t C1 = 0.5;
741 Double_t C2 = 0.5;
742
743 if (nexp == 1) { // 1 Exponentials
744 R1 = 1.156;
745 R2 = 0.130;
746 C1 = 0.066;
747 C2 = 0.000;
748 }
749 if (nexp == 2) { // 2 Exponentials
750 R1 = 1.156;
751 R2 = 0.130;
752 C1 = 0.114;
753 C2 = 0.624;
754 }
755
756 coefficients[0] = C1;
757 coefficients[1] = C2;
758
759 Double_t Dt = 0.1;
760
761 rates[0] = TMath::Exp(-Dt/(R1));
762 rates[1] = TMath::Exp(-Dt/(R2));
763
764 Int_t i = 0;
765 Int_t k = 0;
766
767 Double_t reminder[2];
768 Double_t correction;
769 Double_t result;
770
771 // Attention: computation order is important
772 correction = 0.0;
773 for (k = 0; k < nexp; k++) {
774 reminder[k] = 0.0;
775 }
776 for (i = 0; i < n; i++) {
777 result = (source[i] - correction); // No rescaling
778 target[i] = result;
779
780 for (k = 0; k < nexp; k++) {
781 reminder[k] = rates[k] * (reminder[k] + coefficients[k] * result);
782 }
783 correction = 0.0;
784 for (k = 0; k < nexp; k++) {
785 correction += reminder[k];
786 }
787 }
788
789}