]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TRD/AliTRDgeometry.cxx
AliDCSClient "multiSplit" option added in the DCS configuration
[u/mrichter/AliRoot.git] / TRD / AliTRDgeometry.cxx
CommitLineData
f7336fa3 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
afc51ac2 16/* $Id$ */
f7336fa3 17
18///////////////////////////////////////////////////////////////////////////////
19// //
20// TRD geometry class //
21// //
22///////////////////////////////////////////////////////////////////////////////
23
793ff80c 24
b4a9cd27 25#include <TGeoManager.h>
26#include <TGeoPhysicalNode.h>
27#include <TGeoMatrix.h>
28
2745a409 29#include "AliLog.h"
bdbb05bb 30#include "AliRunLoader.h"
b4a9cd27 31#include "AliAlignObj.h"
90dbf5fb 32#include "AliAlignObjParams.h"
ecb36af7 33#include "AliRun.h"
030b4415 34
ecb36af7 35#include "AliTRD.h"
3551db50 36#include "AliTRDcalibDB.h"
2745a409 37#include "AliTRDgeometry.h"
38#include "AliTRDpadPlane.h"
ecb36af7 39
f7336fa3 40ClassImp(AliTRDgeometry)
41
793ff80c 42//_____________________________________________________________________________
43
44 //
45 // The geometry constants
46 //
7925de54 47 const Int_t AliTRDgeometry::fgkNsect = kNsect;
48 const Int_t AliTRDgeometry::fgkNplan = kNplan;
49 const Int_t AliTRDgeometry::fgkNcham = kNcham;
50 const Int_t AliTRDgeometry::fgkNdet = kNdet;
793ff80c 51
52 //
53 // Dimensions of the detector
54 //
0a770ac9 55
0a5f3331 56 // Parameter of the BTRD mother volumes
7925de54 57 const Float_t AliTRDgeometry::fgkSheight = 77.9;
58 const Float_t AliTRDgeometry::fgkSwidth1 = 94.881;
59 const Float_t AliTRDgeometry::fgkSwidth2 = 122.353;
60 const Float_t AliTRDgeometry::fgkSlength = 751.0;
793ff80c 61
73ae7b59 62 // The super module side plates
7925de54 63 const Float_t AliTRDgeometry::fgkSMpltT = 0.2;
73ae7b59 64
0a770ac9 65 // Height of different chamber parts
66 // Radiator
7925de54 67 const Float_t AliTRDgeometry::fgkCraH = 4.8;
0a770ac9 68 // Drift region
7925de54 69 const Float_t AliTRDgeometry::fgkCdrH = 3.0;
0a770ac9 70 // Amplification region
7925de54 71 const Float_t AliTRDgeometry::fgkCamH = 0.7;
0a770ac9 72 // Readout
7925de54 73 const Float_t AliTRDgeometry::fgkCroH = 2.316;
0a770ac9 74 // Total height
7925de54 75 const Float_t AliTRDgeometry::fgkCH = AliTRDgeometry::fgkCraH
76 + AliTRDgeometry::fgkCdrH
77 + AliTRDgeometry::fgkCamH
25ca55ce 78 + AliTRDgeometry::fgkCroH;
0a770ac9 79
80 // Vertical spacing of the chambers
7925de54 81 const Float_t AliTRDgeometry::fgkVspace = 1.784;
0a770ac9 82 // Horizontal spacing of the chambers
7925de54 83 const Float_t AliTRDgeometry::fgkHspace = 2.0;
a797f961 84 // Radial distance of the first ROC to the outer plates of the SM
7925de54 85 const Float_t AliTRDgeometry::fgkVrocsm = 1.2;
a797f961 86
0a770ac9 87 // Thicknesses of different parts of the chamber frame
88 // Lower aluminum frame
7925de54 89 const Float_t AliTRDgeometry::fgkCalT = 0.4;
0a5f3331 90 // Lower Wacosit frame sides
7925de54 91 const Float_t AliTRDgeometry::fgkCclsT = 0.21;
0a5f3331 92 // Lower Wacosit frame front
7925de54 93 const Float_t AliTRDgeometry::fgkCclfT = 1.0;
0a5f3331 94 // Thickness of glue around radiator
7925de54 95 const Float_t AliTRDgeometry::fgkCglT = 0.25;
0a5f3331 96 // Upper Wacosit frame
7925de54 97 const Float_t AliTRDgeometry::fgkCcuT = 0.9;
0a5f3331 98 // Al frame of back panel
7925de54 99 const Float_t AliTRDgeometry::fgkCauT = 1.5;
0a5f3331 100 // Additional Al of the lower chamber frame
7925de54 101 const Float_t AliTRDgeometry::fgkCalW = 1.11;
0a770ac9 102
103 // Additional width of the readout chamber frames
7925de54 104 const Float_t AliTRDgeometry::fgkCroW = 0.9;
0a770ac9 105
106 // Difference of outer chamber width and pad plane width
7925de54 107 const Float_t AliTRDgeometry::fgkCpadW = 0.0;
108 const Float_t AliTRDgeometry::fgkRpadW = 1.0;
793ff80c 109
110 //
111 // Thickness of the the material layers
112 //
7925de54 113 const Float_t AliTRDgeometry::fgkMyThick = 0.005;
25ca55ce 114 const Float_t AliTRDgeometry::fgkRaThick = 0.3233;
7925de54 115 const Float_t AliTRDgeometry::fgkDrThick = AliTRDgeometry::fgkCdrH;
116 const Float_t AliTRDgeometry::fgkAmThick = AliTRDgeometry::fgkCamH;
117 const Float_t AliTRDgeometry::fgkXeThick = AliTRDgeometry::fgkDrThick
118 + AliTRDgeometry::fgkAmThick;
119 const Float_t AliTRDgeometry::fgkWrThick = 0.0002;
25ca55ce 120 const Float_t AliTRDgeometry::fgkCuThick = 0.0072;
7925de54 121 const Float_t AliTRDgeometry::fgkGlThick = 0.05;
122 const Float_t AliTRDgeometry::fgkSuThick = 0.0919;
123 const Float_t AliTRDgeometry::fgkRcThick = 0.0058;
124 const Float_t AliTRDgeometry::fgkRpThick = 0.0632;
125 const Float_t AliTRDgeometry::fgkRoThick = 0.0028;
793ff80c 126
127 //
128 // Position of the material layers
129 //
7925de54 130 const Float_t AliTRDgeometry::fgkRaZpos = 0.0;
131 const Float_t AliTRDgeometry::fgkDrZpos = 2.4;
132 const Float_t AliTRDgeometry::fgkAmZpos = 0.0;
133 const Float_t AliTRDgeometry::fgkWrZpos = 0.0;
134 const Float_t AliTRDgeometry::fgkCuZpos = -0.9995;
135 const Float_t AliTRDgeometry::fgkGlZpos = -0.5;
136 const Float_t AliTRDgeometry::fgkSuZpos = 0.0;
137 const Float_t AliTRDgeometry::fgkRcZpos = 1.04;
138 const Float_t AliTRDgeometry::fgkRpZpos = 1.0;
139 const Float_t AliTRDgeometry::fgkRoZpos = 1.05;
140
25ca55ce 141 const Int_t AliTRDgeometry::fgkMCMmax = 16;
142 const Int_t AliTRDgeometry::fgkMCMrow = 4;
143 const Int_t AliTRDgeometry::fgkROBmaxC0 = 6;
144 const Int_t AliTRDgeometry::fgkROBmaxC1 = 8;
7925de54 145 const Int_t AliTRDgeometry::fgkADCmax = 21;
146 const Int_t AliTRDgeometry::fgkTBmax = 60;
25ca55ce 147 const Int_t AliTRDgeometry::fgkPadmax = 18;
7925de54 148 const Int_t AliTRDgeometry::fgkColmax = 144;
149 const Int_t AliTRDgeometry::fgkRowmaxC0 = 12;
150 const Int_t AliTRDgeometry::fgkRowmaxC1 = 16;
0a5f3331 151
ca06fab2 152 const Double_t AliTRDgeometry::fgkTime0Base = 300.65;
7925de54 153 const Float_t AliTRDgeometry::fgkTime0[6] = { fgkTime0Base + 0 * (Cheight() + Cspace())
154 , fgkTime0Base + 1 * (Cheight() + Cspace())
155 , fgkTime0Base + 2 * (Cheight() + Cspace())
156 , fgkTime0Base + 3 * (Cheight() + Cspace())
157 , fgkTime0Base + 4 * (Cheight() + Cspace())
158 , fgkTime0Base + 5 * (Cheight() + Cspace())};
793ff80c 159
f7336fa3 160//_____________________________________________________________________________
2745a409 161AliTRDgeometry::AliTRDgeometry()
162 :AliGeometry()
9a96f175 163 ,fClusterMatrixArray(0)
f162af62 164 ,fPadPlaneArray(0)
f7336fa3 165{
166 //
167 // AliTRDgeometry default constructor
168 //
bd0f8685 169
2745a409 170 Init();
171
172}
173
174//_____________________________________________________________________________
175AliTRDgeometry::AliTRDgeometry(const AliTRDgeometry &g)
176 :AliGeometry(g)
9a96f175 177 ,fClusterMatrixArray(0)
f162af62 178 ,fPadPlaneArray(0)
2745a409 179{
180 //
181 // AliTRDgeometry copy constructor
182 //
bd0f8685 183
f7336fa3 184 Init();
bd0f8685 185
f7336fa3 186}
187
188//_____________________________________________________________________________
189AliTRDgeometry::~AliTRDgeometry()
190{
8230f242 191 //
192 // AliTRDgeometry destructor
193 //
bd0f8685 194
9a96f175 195 if (fClusterMatrixArray) {
196 fClusterMatrixArray->Delete();
197 delete fClusterMatrixArray;
198 fClusterMatrixArray = 0;
4d18f746 199 }
200
f162af62 201 if (fPadPlaneArray) {
202 fPadPlaneArray->Delete();
203 delete fPadPlaneArray;
204 fPadPlaneArray = 0;
205 }
206
f7336fa3 207}
208
2745a409 209//_____________________________________________________________________________
210AliTRDgeometry &AliTRDgeometry::operator=(const AliTRDgeometry &g)
211{
212 //
213 // Assignment operator
214 //
215
0a5f3331 216 if (this != &g) {
217 Init();
218 }
030b4415 219
2745a409 220 return *this;
221
222}
223
f7336fa3 224//_____________________________________________________________________________
225void AliTRDgeometry::Init()
226{
227 //
228 // Initializes the geometry parameter
229 //
f7336fa3 230
0a770ac9 231 Int_t icham;
232 Int_t iplan;
233 Int_t isect;
234
235 // The outer width of the chambers
287c5d50 236 fCwidth[0] = 90.4;
e0d47c25 237 fCwidth[1] = 94.8;
238 fCwidth[2] = 99.3;
239 fCwidth[3] = 103.7;
240 fCwidth[4] = 108.1;
241 fCwidth[5] = 112.6;
0a770ac9 242
243 // The outer lengths of the chambers
73ae7b59 244 // Includes the spacings between the chambers!
8737e16f 245 Float_t length[kNplan][kNcham] = { { 124.0, 124.0, 110.0, 124.0, 124.0 }
e0d47c25 246 , { 124.0, 124.0, 110.0, 124.0, 124.0 }
8737e16f 247 , { 131.0, 131.0, 110.0, 131.0, 131.0 }
248 , { 138.0, 138.0, 110.0, 138.0, 138.0 }
249 , { 145.0, 145.0, 110.0, 145.0, 145.0 }
e0d47c25 250 , { 147.0, 147.0, 110.0, 147.0, 147.0 } };
0a770ac9 251
252 for (icham = 0; icham < kNcham; icham++) {
253 for (iplan = 0; iplan < kNplan; iplan++) {
030b4415 254 fClength[iplan][icham] = length[iplan][icham];
0a770ac9 255 }
256 }
257
793ff80c 258 // The rotation matrix elements
030b4415 259 Float_t phi = 0.0;
793ff80c 260 for (isect = 0; isect < fgkNsect; isect++) {
439c63c8 261 phi = 2.0 * TMath::Pi() / (Float_t) fgkNsect * ((Float_t) isect + 0.5);
793ff80c 262 fRotB11[isect] = TMath::Cos(phi);
263 fRotB12[isect] = TMath::Sin(phi);
264 fRotB21[isect] = TMath::Sin(phi);
265 fRotB22[isect] = TMath::Cos(phi);
266 }
bd0f8685 267
f162af62 268 // Initialize the SM status
bd0f8685 269 for (isect = 0; isect < fgkNsect; isect++) {
270 SetSMstatus(isect,1);
271 }
793ff80c 272
273}
274
f162af62 275//_____________________________________________________________________________
276void AliTRDgeometry::CreatePadPlaneArray()
277{
278 //
279 // Creates the array of AliTRDpadPlane objects
280 //
281
282 if (fPadPlaneArray) {
283 fPadPlaneArray->Delete();
284 delete fPadPlaneArray;
285 }
286
287 fPadPlaneArray = new TObjArray(fgkNplan * fgkNcham);
288 for (Int_t iplan = 0; iplan < fgkNplan; iplan++) {
289 for (Int_t icham = 0; icham < fgkNcham; icham++) {
290 Int_t ipp = GetDetectorSec(iplan,icham);
291 fPadPlaneArray->AddAt(CreatePadPlane(iplan,icham),ipp);
292 }
293 }
294
295}
296
297//_____________________________________________________________________________
298AliTRDpadPlane *AliTRDgeometry::CreatePadPlane(Int_t iplan, Int_t icham)
299{
300 //
301 // Creates an AliTRDpadPlane object
302 //
303
304 AliTRDpadPlane *padPlane = new AliTRDpadPlane();
305
306 padPlane->SetPlane(iplan);
307 padPlane->SetChamber(icham);
308
309 padPlane->SetRowSpacing(0.0);
310 padPlane->SetColSpacing(0.0);
311
312 padPlane->SetLengthRim(1.0);
313 padPlane->SetWidthRim(0.5);
314
315 padPlane->SetNcols(144);
316
317 //
318 // The pad plane parameter
319 //
320 switch (iplan) {
321 case 0:
322 if (icham == 2) {
323 // L0C0 type
324 padPlane->SetNrows(12);
325 padPlane->SetLength(108.0);
326 padPlane->SetWidth(92.2);
327 padPlane->SetLengthOPad(8.0);
328 padPlane->SetWidthOPad(0.515);
329 padPlane->SetLengthIPad(9.0);
330 padPlane->SetWidthIPad(0.635);
331 padPlane->SetTiltingAngle(-2.0);
332 }
333 else {
334 // L0C1 type
335 padPlane->SetNrows(16);
336 padPlane->SetLength(122.0);
337 padPlane->SetWidth(92.2);
338 padPlane->SetLengthOPad(7.5);
339 padPlane->SetWidthOPad(0.515);
340 padPlane->SetLengthIPad(7.5);
341 padPlane->SetWidthIPad(0.635);
342 padPlane->SetTiltingAngle(-2.0);
343 }
344 break;
345 case 1:
346 if (icham == 2) {
347 // L1C0 type
348 padPlane->SetNrows(12);
349 padPlane->SetLength(108.0);
350 padPlane->SetWidth(96.6);
351 padPlane->SetLengthOPad(8.0);
352 padPlane->SetWidthOPad(0.585);
353 padPlane->SetLengthIPad(9.0);
354 padPlane->SetWidthIPad(0.665);
355 padPlane->SetTiltingAngle(2.0);
356 }
357 else {
358 // L1C1 type
359 padPlane->SetNrows(16);
360 padPlane->SetLength(122.0);
361 padPlane->SetWidth(96.6);
362 padPlane->SetLengthOPad(7.5);
363 padPlane->SetWidthOPad(0.585);
364 padPlane->SetLengthIPad(7.5);
365 padPlane->SetWidthIPad(0.665);
366 padPlane->SetTiltingAngle(2.0);
367 }
368 break;
369 case 2:
370 if (icham == 2) {
371 // L2C0 type
372 padPlane->SetNrows(12);
373 padPlane->SetLength(108.0);
374 padPlane->SetWidth(101.1);
375 padPlane->SetLengthOPad(8.0);
376 padPlane->SetWidthOPad(0.705);
377 padPlane->SetLengthIPad(9.0);
378 padPlane->SetWidthIPad(0.695);
379 padPlane->SetTiltingAngle(-2.0);
380 }
381 else {
382 // L2C1 type
383 padPlane->SetNrows(16);
384 padPlane->SetLength(129.0);
385 padPlane->SetWidth(101.1);
386 padPlane->SetLengthOPad(7.5);
387 padPlane->SetWidthOPad(0.705);
388 padPlane->SetLengthIPad(8.0);
389 padPlane->SetWidthIPad(0.695);
390 padPlane->SetTiltingAngle(-2.0);
391 }
392 break;
393 case 3:
394 if (icham == 2) {
395 // L3C0 type
396 padPlane->SetNrows(12);
397 padPlane->SetLength(108.0);
398 padPlane->SetWidth(105.5);
399 padPlane->SetLengthOPad(8.0);
400 padPlane->SetWidthOPad(0.775);
401 padPlane->SetLengthIPad(9.0);
402 padPlane->SetWidthIPad(0.725);
403 padPlane->SetTiltingAngle(2.0);
404 }
405 else {
406 // L3C1 type
407 padPlane->SetNrows(16);
408 padPlane->SetLength(136.0);
409 padPlane->SetWidth(105.5);
410 padPlane->SetLengthOPad(7.5);
411 padPlane->SetWidthOPad(0.775);
412 padPlane->SetLengthIPad(8.5);
413 padPlane->SetWidthIPad(0.725);
414 padPlane->SetTiltingAngle(2.0);
415 }
416 break;
417 case 4:
418 if (icham == 2) {
419 // L4C0 type
420 padPlane->SetNrows(12);
421 padPlane->SetLength(108.0);
422 padPlane->SetWidth(109.9);
423 padPlane->SetLengthOPad(8.0);
424 padPlane->SetWidthOPad(0.845);
425 padPlane->SetLengthIPad(9.0);
426 padPlane->SetWidthIPad(0.755);
427 padPlane->SetTiltingAngle(-2.0);
428 }
429 else {
430 // L4C1 type
431 padPlane->SetNrows(16);
432 padPlane->SetLength(143.0);
433 padPlane->SetWidth(109.9);
434 padPlane->SetLengthOPad(7.5);
435 padPlane->SetWidthOPad(0.845);
436 padPlane->SetLengthIPad(9.0);
437 padPlane->SetWidthIPad(0.755);
438 padPlane->SetTiltingAngle(-2.0);
439 }
440 break;
441 case 5:
442 if (icham == 2) {
443 // L5C0 type
444 padPlane->SetNrows(12);
445 padPlane->SetLength(108.0);
446 padPlane->SetWidth(114.4);
447 padPlane->SetLengthOPad(8.0);
448 padPlane->SetWidthOPad(0.965);
449 padPlane->SetLengthIPad(9.0);
450 padPlane->SetWidthIPad(0.785);
451 padPlane->SetTiltingAngle(2.0);
452 }
453 else {
454 // L5C1 type
455 padPlane->SetNrows(16);
456 padPlane->SetLength(145.0);
457 padPlane->SetWidth(114.4);
458 padPlane->SetLengthOPad(8.5);
459 padPlane->SetWidthOPad(0.965);
460 padPlane->SetLengthIPad(9.0);
461 padPlane->SetWidthIPad(0.785);
462 padPlane->SetTiltingAngle(2.0);
463 }
464 break;
465 };
466
467 //
468 // The positions of the borders of the pads
469 //
470 // Row direction
471 //
472 Double_t row = fClength[iplan][icham] / 2.0
473 - fgkRpadW
474 - padPlane->GetLengthRim();
475 for (Int_t ir = 0; ir < padPlane->GetNrows(); ir++) {
476 padPlane->SetPadRow(ir,row);
477 row -= padPlane->GetRowSpacing();
478 if (ir == 0) {
479 row -= padPlane->GetLengthOPad();
480 }
481 else {
482 row -= padPlane->GetLengthIPad();
483 }
484 }
485 //
486 // Column direction
487 //
488 Double_t col = fCwidth[iplan] / 2.0
489 + fgkCroW
490 - padPlane->GetWidthRim();
491 for (Int_t ic = 0; ic < padPlane->GetNcols(); ic++) {
492 padPlane->SetPadCol(ic,col);
493 col -= padPlane->GetColSpacing();
494 if (ic == 0) {
495 col -= padPlane->GetWidthOPad();
496 }
497 else {
498 col -= padPlane->GetWidthIPad();
499 }
500 }
501 // Calculate the offset to translate from the local ROC system into
502 // the local supermodule system, which is used for clusters
503 Double_t rowTmp = fClength[iplan][0]
504 + fClength[iplan][1]
505 + fClength[iplan][2] / 2.0;
506 for (Int_t ic = 0; ic < icham; ic++) {
507 rowTmp -= fClength[iplan][ic];
508 }
509 padPlane->SetPadRowSMOffset(rowTmp - fClength[iplan][icham]/2.0);
510
511 return padPlane;
512
513}
514
f7336fa3 515//_____________________________________________________________________________
bd0f8685 516void AliTRDgeometry::CreateGeometry(Int_t *idtmed)
517{
518 //
519 // Create the TRD geometry without hole
520 //
521 //
522 // Names of the TRD volumina (xx = detector number):
523 //
524 // Volume (Air) wrapping the readout chamber components
525 // UTxx includes: UAxx, UDxx, UFxx, UUxx
0a5f3331 526 //
527 // Volume (Air) wrapping the services (fee + cooling)
bd0f8685 528 // UUxx the services volume has been reduced by 7.42 mm
529 // in order to allow shifts in radial direction
530 //
0a5f3331 531 // Lower part of the readout chambers (drift volume + radiator)
bd0f8685 532 //
0a5f3331 533 // UAxx Aluminum frames (Al)
534 // UBxx Wacosit frames (C)
535 // UXxx Glue around radiator (Epoxy)
536 // UCxx Inner volumes (Air)
537 // UZxx Additional aluminum ledges (Al)
bd0f8685 538 //
539 // Upper part of the readout chambers (readout plane + fee)
540 //
0a5f3331 541 // UDxx Wacosit frames of amp. region (C)
542 // UExx Inner volumes of the frame (Air)
543 // UFxx Aluminum frame of back panel (Al)
544 // UGxx Inner volumes of the back panel (Air)
bd0f8685 545 //
546 // Inner material layers
547 //
0a5f3331 548 // UHxx Radiator (Rohacell)
549 // UJxx Drift volume (Xe/CO2)
550 // UKxx Amplification volume (Xe/CO2)
551 // UWxx Wire plane (Cu)
552 // ULxx Pad plane (Cu)
553 // UYxx Glue layer (Epoxy)
554 // UMxx Support structure (Rohacell)
555 // UNxx ROB base material (C)
556 // UOxx ROB copper (Cu)
557 // UVxx ROB other materials (Cu)
bd0f8685 558 //
559
560 const Int_t kNparTrd = 4;
561 const Int_t kNparCha = 3;
562
030b4415 563 Float_t xpos;
564 Float_t ypos;
565 Float_t zpos;
bd0f8685 566
567 Float_t parTrd[kNparTrd];
568 Float_t parCha[kNparCha];
569
570 Char_t cTagV[6];
571 Char_t cTagM[5];
572
573 // The TRD mother volume for one sector (Air), full length in z-direction
574 // Provides material for side plates of super module
030b4415 575 parTrd[0] = fgkSwidth1/2.0;
576 parTrd[1] = fgkSwidth2/2.0;
0a5f3331 577 parTrd[2] = fgkSlength/2.0;
030b4415 578 parTrd[3] = fgkSheight/2.0;
bd0f8685 579 gMC->Gsvolu("UTR1","TRD1",idtmed[1302-1],parTrd,kNparTrd);
580
a797f961 581 // The outer aluminum plates of the super module (Al)
030b4415 582 parTrd[0] = fgkSwidth1/2.0;
583 parTrd[1] = fgkSwidth2/2.0;
0a5f3331 584 parTrd[2] = fgkSlength/2.0;
030b4415 585 parTrd[3] = fgkSheight/2.0;
bd0f8685 586 gMC->Gsvolu("UTS1","TRD1",idtmed[1301-1],parTrd,kNparTrd);
587
588 // The inner part of the TRD mother volume for one sector (Air),
589 // full length in z-direction
030b4415 590 parTrd[0] = fgkSwidth1/2.0 - fgkSMpltT;
591 parTrd[1] = fgkSwidth2/2.0 - fgkSMpltT;
0a5f3331 592 parTrd[2] = fgkSlength/2.0;
030b4415 593 parTrd[3] = fgkSheight/2.0 - fgkSMpltT;
bd0f8685 594 gMC->Gsvolu("UTI1","TRD1",idtmed[1302-1],parTrd,kNparTrd);
595
596 for (Int_t icham = 0; icham < kNcham; icham++) {
597 for (Int_t iplan = 0; iplan < kNplan; iplan++) {
598
599 Int_t iDet = GetDetectorSec(iplan,icham);
600
0a5f3331 601 // The lower part of the readout chambers (drift volume + radiator)
bd0f8685 602 // The aluminum frames
603 sprintf(cTagV,"UA%02d",iDet);
030b4415 604 parCha[0] = fCwidth[iplan]/2.0;
605 parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
606 parCha[2] = fgkCraH/2.0 + fgkCdrH/2.0;
bd0f8685 607 fChamberUAboxd[iDet][0] = parCha[0];
608 fChamberUAboxd[iDet][1] = parCha[1];
609 fChamberUAboxd[iDet][2] = parCha[2];
610 gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha);
0a5f3331 611 // The additional aluminum on the frames
612 // This part has not the correct postion but is just supposed to
613 // represent the missing material. The correct from of the L-shaped
614 // profile would not fit into the alignable volume.
615 sprintf(cTagV,"UZ%02d",iDet);
616 parCha[0] = fgkCroW/2.0;
617 parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
618 parCha[2] = fgkCalW/2.0;
619 fChamberUAboxd[iDet][0] = fChamberUAboxd[iDet][0] + fgkCroW;
620 gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha);
621 // The Wacosit frames
bd0f8685 622 sprintf(cTagV,"UB%02d",iDet);
030b4415 623 parCha[0] = fCwidth[iplan]/2.0 - fgkCalT;
624 parCha[1] = -1.0;
625 parCha[2] = -1.0;
bd0f8685 626 gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha);
0a5f3331 627 // The glue around the radiator
628 sprintf(cTagV,"UX%02d",iDet);
030b4415 629 parCha[0] = fCwidth[iplan]/2.0 - fgkCalT - fgkCclsT;
0a5f3331 630 parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0 - fgkCclfT;
631 parCha[2] = fgkCraH/2.0;
632 gMC->Gsvolu(cTagV,"BOX ",idtmed[1311-1],parCha,kNparCha);
633 // The inner part of radiator (air)
634 sprintf(cTagV,"UC%02d",iDet);
635 parCha[0] = fCwidth[iplan]/2.0 - fgkCalT - fgkCclsT - fgkCglT;
636 parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0 - fgkCclfT - fgkCglT;
030b4415 637 parCha[2] = -1.0;
bd0f8685 638 gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
639
0a5f3331 640 // The upper part of the readout chambers (amplification volume)
641 // The Wacosit frames
bd0f8685 642 sprintf(cTagV,"UD%02d",iDet);
030b4415 643 parCha[0] = fCwidth[iplan]/2.0 + fgkCroW;
644 parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
645 parCha[2] = fgkCamH/2.0;
bd0f8685 646 fChamberUDboxd[iDet][0] = parCha[0];
647 fChamberUDboxd[iDet][1] = parCha[1];
648 fChamberUDboxd[iDet][2] = parCha[2];
649 gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha);
0a5f3331 650 // The inner part of the Wacosit frame (air)
bd0f8685 651 sprintf(cTagV,"UE%02d",iDet);
030b4415 652 parCha[0] = fCwidth[iplan]/2.0 + fgkCroW - fgkCcuT;
0a5f3331 653 parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0 - fgkCcuT;
bd0f8685 654 parCha[2] = -1.;
655 gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
0a5f3331 656
657 // The support structure (pad plane, back panel, readout boards)
bd0f8685 658 // The aluminum frames
659 sprintf(cTagV,"UF%02d",iDet);
030b4415 660 parCha[0] = fCwidth[iplan]/2.0 + fgkCroW;
661 parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
662 parCha[2] = fgkCroH/2.0;
bd0f8685 663 fChamberUFboxd[iDet][0] = parCha[0];
664 fChamberUFboxd[iDet][1] = parCha[1];
665 fChamberUFboxd[iDet][2] = parCha[2];
666 gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha);
667 // The inner part of the aluminum frames
668 sprintf(cTagV,"UG%02d",iDet);
030b4415 669 parCha[0] = fCwidth[iplan]/2.0 + fgkCroW - fgkCauT;
0a5f3331 670 parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0 - fgkCauT;
030b4415 671 parCha[2] = -1.0;
bd0f8685 672 gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
673
674 // The material layers inside the chambers
0a5f3331 675 // Rohacell layer (radiator)
030b4415 676 parCha[0] = -1.0;
677 parCha[1] = -1.0;
030b4415 678 parCha[2] = fgkRaThick/2.0;
bd0f8685 679 sprintf(cTagV,"UH%02d",iDet);
680 gMC->Gsvolu(cTagV,"BOX ",idtmed[1315-1],parCha,kNparCha);
bd0f8685 681 // Xe/Isobutane layer (drift volume)
0a5f3331 682 parCha[0] = fCwidth[iplan]/2.0 - fgkCalT - fgkCclsT;
683 parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0 - fgkCclfT;
030b4415 684 parCha[2] = fgkDrThick/2.0;
bd0f8685 685 sprintf(cTagV,"UJ%02d",iDet);
686 gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha);
687 // Xe/Isobutane layer (amplification volume)
0a5f3331 688 parCha[0] = -1.0;
689 parCha[1] = -1.0;
030b4415 690 parCha[2] = fgkAmThick/2.0;
bd0f8685 691 sprintf(cTagV,"UK%02d",iDet);
692 gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha);
0a5f3331 693 // Cu layer (wire plane)
694 parCha[0] = -1.0;
695 parCha[1] = -1.0;
696 parCha[2] = fgkWrThick/2.0;
697 sprintf(cTagV,"UW%02d",iDet);
698 gMC->Gsvolu(cTagV,"BOX ",idtmed[1303-1],parCha,kNparCha);
bd0f8685 699 // Cu layer (pad plane)
0a5f3331 700 parCha[0] = -1.0;
701 parCha[1] = -1.0;
030b4415 702 parCha[2] = fgkCuThick/2.0;
bd0f8685 703 sprintf(cTagV,"UL%02d",iDet);
704 gMC->Gsvolu(cTagV,"BOX ",idtmed[1305-1],parCha,kNparCha);
0a5f3331 705 // Epoxy layer (glue)
706 parCha[0] = -1.0;
707 parCha[1] = -1.0;
708 parCha[2] = fgkGlThick/2.0;
709 sprintf(cTagV,"UY%02d",iDet);
710 gMC->Gsvolu(cTagV,"BOX ",idtmed[1311-1],parCha,kNparCha);
bd0f8685 711 // G10 layer (support structure / honeycomb)
0a5f3331 712 parCha[0] = -1.0;
713 parCha[1] = -1.0;
030b4415 714 parCha[2] = fgkSuThick/2.0;
bd0f8685 715 sprintf(cTagV,"UM%02d",iDet);
0a5f3331 716 gMC->Gsvolu(cTagV,"BOX ",idtmed[1310-1],parCha,kNparCha);
717 // G10 layer (PCB readout board)
718 parCha[0] = -1.0;
719 parCha[1] = -1.0;
a797f961 720 parCha[2] = fgkRpThick/2;
721 sprintf(cTagV,"UN%02d",iDet);
722 gMC->Gsvolu(cTagV,"BOX ",idtmed[1313-1],parCha,kNparCha);
0a5f3331 723 // Cu layer (traces in readout board)
724 parCha[0] = -1.0;
725 parCha[1] = -1.0;
030b4415 726 parCha[2] = fgkRcThick/2.0;
a797f961 727 sprintf(cTagV,"UO%02d",iDet);
728 gMC->Gsvolu(cTagV,"BOX ",idtmed[1306-1],parCha,kNparCha);
0a5f3331 729 // Cu layer (other material on in readout board)
730 parCha[0] = -1.0;
731 parCha[1] = -1.0;
732 parCha[2] = fgkRoThick/2.0;
733 sprintf(cTagV,"UV%02d",iDet);
734 gMC->Gsvolu(cTagV,"BOX ",idtmed[1304-1],parCha,kNparCha);
bd0f8685 735
736 // Position the layers in the chambers
030b4415 737 xpos = 0.0;
738 ypos = 0.0;
bd0f8685 739 // Lower part
740 // Rohacell layer (radiator)
741 zpos = fgkRaZpos;
742 sprintf(cTagV,"UH%02d",iDet);
743 sprintf(cTagM,"UC%02d",iDet);
744 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
bd0f8685 745 // Xe/Isobutane layer (drift volume)
746 zpos = fgkDrZpos;
747 sprintf(cTagV,"UJ%02d",iDet);
0a5f3331 748 sprintf(cTagM,"UB%02d",iDet);
bd0f8685 749 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
750 // Upper part
751 // Xe/Isobutane layer (amplification volume)
752 zpos = fgkAmZpos;
753 sprintf(cTagV,"UK%02d",iDet);
754 sprintf(cTagM,"UE%02d",iDet);
755 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
0a5f3331 756 // Cu layer (wire plane inside amplification volume)
757 zpos = fgkWrZpos;
758 sprintf(cTagV,"UW%02d",iDet);
759 sprintf(cTagM,"UK%02d",iDet);
760 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
761 // Readout part + support plane
bd0f8685 762 // Cu layer (pad plane)
763 zpos = fgkCuZpos;
764 sprintf(cTagV,"UL%02d",iDet);
765 sprintf(cTagM,"UG%02d",iDet);
766 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
0a5f3331 767 // Epoxy layer (glue)
768 zpos = fgkGlZpos;
769 sprintf(cTagV,"UY%02d",iDet);
770 sprintf(cTagM,"UG%02d",iDet);
771 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
bd0f8685 772 // G10 layer (support structure)
773 zpos = fgkSuZpos;
774 sprintf(cTagV,"UM%02d",iDet);
775 sprintf(cTagM,"UG%02d",iDet);
776 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
0a5f3331 777 // G10 layer (PCB readout board)
a797f961 778 zpos = fgkRpZpos;
779 sprintf(cTagV,"UN%02d",iDet);
780 sprintf(cTagM,"UG%02d",iDet);
781 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
0a5f3331 782 // Cu layer (traces in readout board)
a797f961 783 zpos = fgkRcZpos;
784 sprintf(cTagV,"UO%02d",iDet);
785 sprintf(cTagM,"UG%02d",iDet);
786 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
0a5f3331 787 // Cu layer (other materials on readout board)
788 zpos = fgkRoZpos;
789 sprintf(cTagV,"UV%02d",iDet);
790 sprintf(cTagM,"UG%02d",iDet);
791 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
bd0f8685 792
793 // Position the inner volumes of the chambers in the frames
030b4415 794 xpos = 0.0;
795 ypos = 0.0;
0a5f3331 796 // The inner part of the radiator
030b4415 797 zpos = 0.0;
bd0f8685 798 sprintf(cTagV,"UC%02d",iDet);
0a5f3331 799 sprintf(cTagM,"UX%02d",iDet);
800 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
801 // The glue around the radiator
802 zpos = fgkCraH/2.0 - fgkCdrH/2.0 - fgkCraH/2.0;
803 sprintf(cTagV,"UX%02d",iDet);
bd0f8685 804 sprintf(cTagM,"UB%02d",iDet);
805 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
0a5f3331 806 // The lower Wacosit frame inside the aluminum frame
807 zpos = 0.0;
bd0f8685 808 sprintf(cTagV,"UB%02d",iDet);
809 sprintf(cTagM,"UA%02d",iDet);
810 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
0a5f3331 811 // The inside of the upper Wacosit frame
812 zpos = 0.0;
bd0f8685 813 sprintf(cTagV,"UE%02d",iDet);
814 sprintf(cTagM,"UD%02d",iDet);
815 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
816 // The inside of the upper aluminum frame
0a5f3331 817 zpos = 0.0;
bd0f8685 818 sprintf(cTagV,"UG%02d",iDet);
819 sprintf(cTagM,"UF%02d",iDet);
820 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
821
822 // Position the frames of the chambers in the TRD mother volume
030b4415 823 xpos = 0.0;
8a497c18 824 ypos = fClength[iplan][0] + fClength[iplan][1] + fClength[iplan][2]/2.0;
bd0f8685 825 for (Int_t ic = 0; ic < icham; ic++) {
8a497c18 826 ypos -= fClength[iplan][ic];
bd0f8685 827 }
8a497c18 828 ypos -= fClength[iplan][icham]/2.0;
829 zpos = fgkVrocsm + fgkSMpltT + fgkCraH/2.0 + fgkCdrH/2.0 - fgkSheight/2.0
a797f961 830 + iplan * (fgkCH + fgkVspace);
bd0f8685 831 // The lower aluminum frame, radiator + drift region
832 sprintf(cTagV,"UA%02d",iDet);
833 fChamberUAorig[iDet][0] = xpos;
834 fChamberUAorig[iDet][1] = ypos;
835 fChamberUAorig[iDet][2] = zpos;
836 // The upper G10 frame, amplification region
837 sprintf(cTagV,"UD%02d",iDet);
030b4415 838 zpos += fgkCamH/2.0 + fgkCraH/2.0 + fgkCdrH/2.0;
bd0f8685 839 fChamberUDorig[iDet][0] = xpos;
840 fChamberUDorig[iDet][1] = ypos;
841 fChamberUDorig[iDet][2] = zpos;
842 // The upper aluminum frame
843 sprintf(cTagV,"UF%02d",iDet);
030b4415 844 zpos += fgkCroH/2.0 + fgkCamH/2.0;
bd0f8685 845 fChamberUForig[iDet][0] = xpos;
846 fChamberUForig[iDet][1] = ypos;
847 fChamberUForig[iDet][2] = zpos;
848
849 }
850 }
851
852 // Create the volumes of the super module frame
853 CreateFrame(idtmed);
854
855 // Create the volumes of the services
856 CreateServices(idtmed);
857
858 for (Int_t icham = 0; icham < kNcham; icham++) {
859 for (Int_t iplan = 0; iplan < kNplan; iplan++) {
860 GroupChamber(iplan,icham,idtmed);
861 }
862 }
863
030b4415 864 xpos = 0.0;
865 ypos = 0.0;
866 zpos = 0.0;
bd0f8685 867 gMC->Gspos("UTI1",1,"UTS1",xpos,ypos,zpos,0,"ONLY");
868
030b4415 869 xpos = 0.0;
870 ypos = 0.0;
871 zpos = 0.0;
bd0f8685 872 gMC->Gspos("UTS1",1,"UTR1",xpos,ypos,zpos,0,"ONLY");
873
874 // Put the TRD volumes into the space frame mother volumes
875 // if enabled via status flag
030b4415 876 xpos = 0.0;
877 ypos = 0.0;
878 zpos = 0.0;
bd0f8685 879 for (Int_t isect = 0; isect < kNsect; isect++) {
880 if (fSMstatus[isect]) {
881 sprintf(cTagV,"BTRD%d",isect);
f9017ffb 882 gMC->Gspos("UTR1",1,cTagV,xpos,ypos,zpos,0,"ONLY");
bd0f8685 883 }
884 }
885
886}
887
888//_____________________________________________________________________________
889void AliTRDgeometry::CreateFrame(Int_t *idtmed)
890{
891 //
892 // Create the geometry of the frame of the supermodule
893 //
894 // Names of the TRD services volumina
895 //
896 // USRL Support rails for the chambers (Al)
897 // USxx Support cross bars between the chambers (Al)
0a5f3331 898 // USHx Horizontal connection between the cross bars (Al)
899 // USLx Long corner ledges (Al)
bd0f8685 900 //
901
902 Int_t iplan = 0;
903
904 Float_t xpos = 0.0;
905 Float_t ypos = 0.0;
906 Float_t zpos = 0.0;
907
908 Char_t cTagV[5];
0a5f3331 909 Char_t cTagM[5];
910
911 // The rotation matrices
912 const Int_t kNmatrix = 4;
913 Int_t matrix[kNmatrix];
914 gMC->Matrix(matrix[0], 100.0, 0.0, 90.0, 90.0, 10.0, 0.0);
915 gMC->Matrix(matrix[1], 80.0, 0.0, 90.0, 90.0, 10.0, 180.0);
916 gMC->Matrix(matrix[2], 90.0, 0.0, 0.0, 0.0, 90.0, 90.0);
917 gMC->Matrix(matrix[3], 90.0, 180.0, 0.0, 180.0, 90.0, 90.0);
bd0f8685 918
919 //
920 // The chamber support rails
921 //
922
030b4415 923 const Float_t kSRLwid = 2.00;
bd0f8685 924 const Float_t kSRLhgt = 2.3;
0a5f3331 925 const Float_t kSRLdst = 1.0;
bd0f8685 926 const Int_t kNparSRL = 3;
927 Float_t parSRL[kNparSRL];
0a5f3331 928 parSRL[0] = kSRLwid /2.0;
929 parSRL[1] = fgkSlength/2.0;
930 parSRL[2] = kSRLhgt /2.0;
bd0f8685 931 gMC->Gsvolu("USRL","BOX ",idtmed[1301-1],parSRL,kNparSRL);
932
933 xpos = 0.0;
934 ypos = 0.0;
935 zpos = 0.0;
936 for (iplan = 0; iplan < kNplan; iplan++) {
0a5f3331 937 xpos = fCwidth[iplan]/2.0 + kSRLwid/2.0 + kSRLdst;
bd0f8685 938 ypos = 0.0;
0a5f3331 939 zpos = fgkVrocsm + fgkSMpltT + fgkCraH + fgkCdrH + fgkCamH
940 - fgkSheight/2.0
bd0f8685 941 + iplan * (fgkCH + fgkVspace);
942 gMC->Gspos("USRL",iplan+1 ,"UTI1", xpos,ypos,zpos,0,"ONLY");
943 gMC->Gspos("USRL",iplan+1+ kNplan,"UTI1",-xpos,ypos,zpos,0,"ONLY");
bd0f8685 944 }
945
946 //
947 // The cross bars between the chambers
948 //
949
950 const Float_t kSCBwid = 1.0;
0a5f3331 951 const Float_t kSCBthk = 2.0;
952 const Float_t kSCHhgt = 0.3;
953
bd0f8685 954 const Int_t kNparSCB = 3;
955 Float_t parSCB[kNparSCB];
030b4415 956 parSCB[1] = kSCBwid/2.0;
0a5f3331 957 parSCB[2] = fgkCH /2.0 + fgkVspace/2.0 - kSCHhgt;
958
959 const Int_t kNparSCI = 3;
960 Float_t parSCI[kNparSCI];
961 parSCI[1] = -1;
bd0f8685 962
963 xpos = 0.0;
964 ypos = 0.0;
965 zpos = 0.0;
966 for (iplan = 0; iplan < kNplan; iplan++) {
967
0a5f3331 968 // The aluminum of the cross bars
030b4415 969 parSCB[0] = fCwidth[iplan]/2.0 + kSRLdst/2.0;
0a5f3331 970 sprintf(cTagV,"USF%01d",iplan);
bd0f8685 971 gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
bd0f8685 972
0a5f3331 973 // The empty regions in the cross bars
974 Float_t thkSCB = kSCBthk;
975 if (iplan < 2) {
976 thkSCB *= 1.5;
977 }
978 parSCI[2] = parSCB[2] - thkSCB;
979 parSCI[0] = parSCB[0]/4.0 - kSCBthk;
980 sprintf(cTagV,"USI%01d",iplan);
981 gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parSCI,kNparSCI);
bd0f8685 982
0a5f3331 983 sprintf(cTagV,"USI%01d",iplan);
984 sprintf(cTagM,"USF%01d",iplan);
985 ypos = 0.0;
986 zpos = 0.0;
987 xpos = parSCI[0] + thkSCB/2.0;
988 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
989 xpos = - parSCI[0] - thkSCB/2.0;
990 gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY");
991 xpos = 3.0 * parSCI[0] + 1.5 * thkSCB;
992 gMC->Gspos(cTagV,3,cTagM,xpos,ypos,zpos,0,"ONLY");
993 xpos = - 3.0 * parSCI[0] - 1.5 * thkSCB;
994 gMC->Gspos(cTagV,4,cTagM,xpos,ypos,zpos,0,"ONLY");
995
996 sprintf(cTagV,"USF%01d",iplan);
bd0f8685 997 xpos = 0.0;
0a5f3331 998 zpos = fgkVrocsm + fgkSMpltT + parSCB[2] - fgkSheight/2.0
999 + iplan * (fgkCH + fgkVspace);
1000
1001 ypos = fgkSlength/2.0 - kSCBwid/2.0;
bd0f8685 1002 gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
1003
0a5f3331 1004 ypos = fClength[iplan][2]/2.0 + fClength[iplan][1];
1005 gMC->Gspos(cTagV,2,"UTI1", xpos,ypos,zpos,0,"ONLY");
1006
1007 ypos = fClength[iplan][2]/2.0;
1008 gMC->Gspos(cTagV,3,"UTI1", xpos,ypos,zpos,0,"ONLY");
1009
030b4415 1010 ypos = - fClength[iplan][2]/2.0;
0a5f3331 1011 gMC->Gspos(cTagV,4,"UTI1", xpos,ypos,zpos,0,"ONLY");
bd0f8685 1012
030b4415 1013 ypos = - fClength[iplan][2]/2.0 - fClength[iplan][1];
0a5f3331 1014 gMC->Gspos(cTagV,5,"UTI1", xpos,ypos,zpos,0,"ONLY");
bd0f8685 1015
0a5f3331 1016 ypos = - fgkSlength/2.0 + kSCBwid/2.0;
1017 gMC->Gspos(cTagV,6,"UTI1", xpos,ypos,zpos,0,"ONLY");
1018
1019 }
1020
1021 //
1022 // The horizontal connections between the cross bars
1023 //
1024
1025 const Int_t kNparSCH = 3;
1026 Float_t parSCH[kNparSCH];
1027
1028 for (iplan = 1; iplan < kNplan-1; iplan++) {
1029
1030 parSCH[0] = fCwidth[iplan]/2.0;
1031 parSCH[1] = (fClength[iplan+1][2]/2.0 + fClength[iplan+1][1]
1032 - fClength[iplan ][2]/2.0 - fClength[iplan ][1])/2.0;
1033 parSCH[2] = kSCHhgt/2.0;
1034
1035 sprintf(cTagV,"USH%01d",iplan);
1036 gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCH,kNparSCH);
bd0f8685 1037 xpos = 0.0;
0a5f3331 1038 ypos = fClength[iplan][2]/2.0 + fClength[iplan][1] + parSCH[1];
1039 zpos = fgkVrocsm + fgkSMpltT - kSCHhgt/2.0 - fgkSheight/2.0
1040 + (iplan+1) * (fgkCH + fgkVspace);
bd0f8685 1041 gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
0a5f3331 1042 ypos = -ypos;
1043 gMC->Gspos(cTagV,2,"UTI1", xpos,ypos,zpos,0,"ONLY");
bd0f8685 1044
1045 }
1046
0a5f3331 1047 //
1048 // The long corner ledges
1049 //
1050
1051 const Int_t kNparSCL = 3;
1052 Float_t parSCL[kNparSCL];
1053 const Int_t kNparSCLb = 11;
1054 Float_t parSCLb[kNparSCLb];
1055
1056 // Upper ledges
1057 // Thickness of the corner ledges
1058 const Float_t kSCLthkUa = 0.6;
1059 const Float_t kSCLthkUb = 0.6;
1060 // Width of the corner ledges
1061 const Float_t kSCLwidUa = 3.2;
1062 const Float_t kSCLwidUb = 4.8;
1063 // Position of the corner ledges
1064 const Float_t kSCLposxUa = 0.7;
1065 const Float_t kSCLposxUb = 3.3;
1066 const Float_t kSCLposzUa = 1.6;
1067 const Float_t kSCLposzUb = 0.3;
1068 // Vertical
1069 parSCL[0] = kSCLthkUa /2.0;
1070 parSCL[1] = fgkSlength/2.0;
1071 parSCL[2] = kSCLwidUa /2.0;
1072 gMC->Gsvolu("USL1","BOX ",idtmed[1301-1],parSCL,kNparSCL);
1073 xpos = fgkSwidth2/2.0 - fgkSMpltT - kSCLposxUa;
1074 ypos = 0.0;
1075 zpos = fgkSheight/2.0 - fgkSMpltT - kSCLposzUa;
1076 gMC->Gspos("USL1",1,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY");
1077 xpos = -xpos;
1078 gMC->Gspos("USL1",2,"UTI1", xpos,ypos,zpos,matrix[1],"ONLY");
1079 // Horizontal
1080 parSCL[0] = kSCLwidUb /2.0;
1081 parSCL[1] = fgkSlength/2.0;
1082 parSCL[2] = kSCLthkUb /2.0;
1083 gMC->Gsvolu("USL2","BOX ",idtmed[1301-1],parSCL,kNparSCL);
1084 xpos = fgkSwidth2/2.0 - fgkSMpltT - kSCLposxUb;
1085 ypos = 0.0;
1086 zpos = fgkSheight/2.0 - fgkSMpltT - kSCLposzUb;
1087 gMC->Gspos("USL2",1,"UTI1", xpos,ypos,zpos, 0,"ONLY");
1088 xpos = -xpos;
1089 gMC->Gspos("USL2",2,"UTI1", xpos,ypos,zpos, 0,"ONLY");
1090
1091 // Lower ledges
1092 // Thickness of the corner ledges
1093 const Float_t kSCLthkLa = 2.464;
1094 const Float_t kSCLthkLb = 1.0;
1095 // Width of the corner ledges
1096 const Float_t kSCLwidLa = 8.5;
1097 const Float_t kSCLwidLb = 3.3;
1098 // Position of the corner ledges
1099 const Float_t kSCLposxLa = 0.0;
1100 const Float_t kSCLposxLb = 2.6;
1101 const Float_t kSCLposzLa = -4.25;
1102 const Float_t kSCLposzLb = -0.5;
1103 // Vertical
1104 // Trapezoidal shape
1105 parSCLb[ 0] = fgkSlength/2.0;
1106 parSCLb[ 1] = 0.0;
1107 parSCLb[ 2] = 0.0;
1108 parSCLb[ 3] = kSCLwidLa /2.0;
1109 parSCLb[ 4] = kSCLthkLb /2.0;
1110 parSCLb[ 5] = kSCLthkLa /2.0;
1111 parSCLb[ 6] = 5.0;
1112 parSCLb[ 7] = kSCLwidLa /2.0;
1113 parSCLb[ 8] = kSCLthkLb /2.0;
1114 parSCLb[ 9] = kSCLthkLa /2.0;
1115 parSCLb[10] = 5.0;
1116 gMC->Gsvolu("USL3","TRAP",idtmed[1301-1],parSCLb,kNparSCLb);
1117 xpos = fgkSwidth1/2.0 - fgkSMpltT - kSCLposxLa;
1118 ypos = 0.0;
1119 zpos = - fgkSheight/2.0 + fgkSMpltT - kSCLposzLa;
1120 gMC->Gspos("USL3",1,"UTI1", xpos,ypos,zpos,matrix[2],"ONLY");
1121 xpos = -xpos;
1122 gMC->Gspos("USL3",2,"UTI1", xpos,ypos,zpos,matrix[3],"ONLY");
1123 // Horizontal
1124 parSCL[0] = kSCLwidLb /2.0;
1125 parSCL[1] = fgkSlength/2.0;
1126 parSCL[2] = kSCLthkLb /2.0;
1127 gMC->Gsvolu("USL4","BOX ",idtmed[1301-1],parSCL,kNparSCL);
1128 xpos = fgkSwidth1/2.0 - fgkSMpltT - kSCLposxLb;
1129 ypos = 0.0;
1130 zpos = - fgkSheight/2.0 + fgkSMpltT - kSCLposzLb;
1131 gMC->Gspos("USL4",1,"UTI1", xpos,ypos,zpos, 0,"ONLY");
1132 xpos = -xpos;
1133 gMC->Gspos("USL4",2,"UTI1", xpos,ypos,zpos, 0,"ONLY");
1134
bd0f8685 1135}
1136
1137//_____________________________________________________________________________
1138void AliTRDgeometry::CreateServices(Int_t *idtmed)
1139{
1140 //
1141 // Create the geometry of the services
1142 //
1143 // Names of the TRD services volumina
1144 //
1145 // UTCL Cooling arterias (Al)
1146 // UTCW Cooling arterias (Water)
1147 // UUxx Volumes for the services at the chambers (Air)
1148 // UTPW Power bars (Cu)
0a5f3331 1149 // UTCP Cooling pipes (Fe)
bd0f8685 1150 // UTCH Cooling pipes (Water)
1151 // UTPL Power lines (Cu)
1152 // UMCM Readout MCMs (G10/Cu/Si)
1153 //
1154
1155 Int_t iplan = 0;
1156 Int_t icham = 0;
1157
1158 Float_t xpos = 0.0;
1159 Float_t ypos = 0.0;
1160 Float_t zpos = 0.0;
1161
1162 Char_t cTagV[5];
1163
1164 // The rotation matrices
99ed5146 1165 const Int_t kNmatrix = 4;
bd0f8685 1166 Int_t matrix[kNmatrix];
030b4415 1167 gMC->Matrix(matrix[0], 100.0, 0.0, 90.0, 90.0, 10.0, 0.0);
1168 gMC->Matrix(matrix[1], 80.0, 0.0, 90.0, 90.0, 10.0, 180.0);
1169 gMC->Matrix(matrix[2], 0.0, 0.0, 90.0, 90.0, 90.0, 0.0);
99ed5146 1170 gMC->Matrix(matrix[3], 180.0, 0.0, 90.0, 90.0, 90.0, 180.0);
bd0f8685 1171
1172 //
1173 // The cooling arterias
1174 //
1175
1176 // Width of the cooling arterias
0a5f3331 1177 const Float_t kCOLwid = 0.8;
bd0f8685 1178 // Height of the cooling arterias
0a5f3331 1179 const Float_t kCOLhgt = 6.5;
bd0f8685 1180 // Positioning of the cooling
0a5f3331 1181 const Float_t kCOLposx = 1.8;
1182 const Float_t kCOLposz = -0.1;
bd0f8685 1183 // Thickness of the walls of the cooling arterias
1184 const Float_t kCOLthk = 0.1;
030b4415 1185 const Int_t kNparCOL = 3;
bd0f8685 1186 Float_t parCOL[kNparCOL];
0a5f3331 1187 parCOL[0] = kCOLwid /2.0;
1188 parCOL[1] = fgkSlength/2.0;
1189 parCOL[2] = kCOLhgt /2.0;
1190 gMC->Gsvolu("UTCL","BOX ",idtmed[1308-1],parCOL,kNparCOL);
bd0f8685 1191 parCOL[0] -= kCOLthk;
0a5f3331 1192 parCOL[1] = fgkSlength/2.0;
bd0f8685 1193 parCOL[2] -= kCOLthk;
1194 gMC->Gsvolu("UTCW","BOX ",idtmed[1314-1],parCOL,kNparCOL);
1195
1196 xpos = 0.0;
1197 ypos = 0.0;
1198 zpos = 0.0;
1199 gMC->Gspos("UTCW",1,"UTCL", xpos,ypos,zpos,0,"ONLY");
1200
99ed5146 1201 for (iplan = 1; iplan < kNplan; iplan++) {
1202
030b4415 1203 xpos = fCwidth[iplan]/2.0 + kCOLwid/2.0 + kCOLposx;
bd0f8685 1204 ypos = 0.0;
0a5f3331 1205 zpos = fgkVrocsm + fgkSMpltT + kCOLhgt/2.0 - fgkSheight/2.0 + kCOLposz
a797f961 1206 + iplan * (fgkCH + fgkVspace);
99ed5146 1207 gMC->Gspos("UTCL",iplan ,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY");
1208 gMC->Gspos("UTCL",iplan+kNplan,"UTI1",-xpos,ypos,zpos,matrix[1],"ONLY");
1209
bd0f8685 1210 }
1211
99ed5146 1212 // The upper most layer (reaching into TOF acceptance)
0a5f3331 1213 xpos = fCwidth[5]/2.0 - kCOLhgt/2.0 - 1.3;
99ed5146 1214 ypos = 0.0;
0a5f3331 1215 zpos = fgkSheight/2.0 - fgkSMpltT - 0.4 - kCOLwid/2.0;
99ed5146 1216 gMC->Gspos("UTCL",6 ,"UTI1", xpos,ypos,zpos,matrix[3],"ONLY");
1217 gMC->Gspos("UTCL",6+kNplan,"UTI1",-xpos,ypos,zpos,matrix[3],"ONLY");
1218
bd0f8685 1219 //
1220 // The power bars
1221 //
1222
1223 const Float_t kPWRwid = 0.6;
0a5f3331 1224 const Float_t kPWRhgt = 5.0;
1225 const Float_t kPWRposx = 1.4;
1226 const Float_t kPWRposz = 1.9;
030b4415 1227 const Int_t kNparPWR = 3;
bd0f8685 1228 Float_t parPWR[kNparPWR];
0a5f3331 1229 parPWR[0] = kPWRwid /2.0;
1230 parPWR[1] = fgkSlength/2.0;
1231 parPWR[2] = kPWRhgt /2.0;
bd0f8685 1232 gMC->Gsvolu("UTPW","BOX ",idtmed[1325-1],parPWR,kNparPWR);
1233
99ed5146 1234 for (iplan = 1; iplan < kNplan; iplan++) {
bd0f8685 1235
030b4415 1236 xpos = fCwidth[iplan]/2.0 + kPWRwid/2.0 + kPWRposx;
bd0f8685 1237 ypos = 0.0;
0a5f3331 1238 zpos = fgkVrocsm + fgkSMpltT + kPWRhgt/2.0 - fgkSheight/2.0 + kPWRposz
a797f961 1239 + iplan * (fgkCH + fgkVspace);
99ed5146 1240 gMC->Gspos("UTPW",iplan ,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY");
1241 gMC->Gspos("UTPW",iplan+kNplan,"UTI1",-xpos,ypos,zpos,matrix[1],"ONLY");
bd0f8685 1242
1243 }
1244
99ed5146 1245 // The upper most layer (reaching into TOF acceptance)
0a5f3331 1246 xpos = fCwidth[5]/2.0 + kPWRhgt/2.0 - 1.3;
99ed5146 1247 ypos = 0.0;
0a5f3331 1248 zpos = fgkSheight/2.0 - fgkSMpltT - 0.6 - kPWRwid/2.0;
99ed5146 1249 gMC->Gspos("UTPW",6 ,"UTI1", xpos,ypos,zpos,matrix[3],"ONLY");
1250 gMC->Gspos("UTPW",6+kNplan,"UTI1",-xpos,ypos,zpos,matrix[3],"ONLY");
1251
bd0f8685 1252 //
1253 // The volumes for the services at the chambers
1254 //
1255
1256 const Int_t kNparServ = 3;
1257 Float_t parServ[kNparServ];
1258
1259 for (icham = 0; icham < kNcham; icham++) {
1260 for (iplan = 0; iplan < kNplan; iplan++) {
bd0f8685 1261
1262 Int_t iDet = GetDetectorSec(iplan,icham);
1263
1264 sprintf(cTagV,"UU%02d",iDet);
0a5f3331 1265 parServ[0] = fCwidth[iplan] /2.0;
030b4415 1266 parServ[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
0a5f3331 1267 parServ[2] = fgkVspace /2.0 - 0.742/2.0;
bd0f8685 1268 fChamberUUboxd[iDet][0] = parServ[0];
1269 fChamberUUboxd[iDet][1] = parServ[1];
1270 fChamberUUboxd[iDet][2] = parServ[2];
bd0f8685 1271 gMC->Gsvolu(cTagV,"BOX",idtmed[1302-1],parServ,kNparServ);
a797f961 1272
0a5f3331 1273 xpos = 0.0;
8a497c18 1274 ypos = fClength[iplan][0] + fClength[iplan][1] + fClength[iplan][2]/2.0;
bd0f8685 1275 for (Int_t ic = 0; ic < icham; ic++) {
8a497c18 1276 ypos -= fClength[iplan][ic];
bd0f8685 1277 }
8a497c18 1278 ypos -= fClength[iplan][icham]/2.0;
1279 zpos = fgkVrocsm + fgkSMpltT + fgkCH + fgkVspace/2.0 - fgkSheight/2.0
a797f961 1280 + iplan * (fgkCH + fgkVspace);
030b4415 1281 zpos -= 0.742/2.0;
bd0f8685 1282 fChamberUUorig[iDet][0] = xpos;
1283 fChamberUUorig[iDet][1] = ypos;
1284 fChamberUUorig[iDet][2] = zpos;
1285
1286 }
1287 }
1288
1289 //
1290 // The cooling pipes inside the service volumes
1291 //
1292
1293 const Int_t kNparTube = 3;
1294 Float_t parTube[kNparTube];
0a5f3331 1295 // The cooling pipes
bd0f8685 1296 parTube[0] = 0.0;
1297 parTube[1] = 0.0;
1298 parTube[2] = 0.0;
1299 gMC->Gsvolu("UTCP","TUBE",idtmed[1324-1],parTube,0);
1300 // The cooling water
1301 parTube[0] = 0.0;
030b4415 1302 parTube[1] = 0.2/2.0;
39c725cf 1303 parTube[2] = fCwidth[iplan]/2.0;
bd0f8685 1304 gMC->Gsvolu("UTCH","TUBE",idtmed[1314-1],parTube,kNparTube);
1305 // Water inside the cooling pipe
1306 xpos = 0.0;
1307 ypos = 0.0;
1308 zpos = 0.0;
1309 gMC->Gspos("UTCH",1,"UTCP",xpos,ypos,zpos,0,"ONLY");
1310
1311 // Position the cooling pipes in the mother volume
1312 const Int_t kNpar = 3;
1313 Float_t par[kNpar];
1314 for (icham = 0; icham < kNcham; icham++) {
1315 for (iplan = 0; iplan < kNplan; iplan++) {
bd0f8685 1316 Int_t iDet = GetDetectorSec(iplan,icham);
1317 Int_t iCopy = GetDetector(iplan,icham,0) * 100;
f162af62 1318 Int_t nMCMrow = GetRowMax(iplan,icham,0);
030b4415 1319 Float_t ySize = (GetChamberLength(iplan,icham) - 2.0*fgkRpadW)
bd0f8685 1320 / ((Float_t) nMCMrow);
1321 sprintf(cTagV,"UU%02d",iDet);
1322 for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
1323 xpos = 0.0;
1324 ypos = (0.5 + iMCMrow) * ySize - 1.9
030b4415 1325 - fClength[iplan][icham]/2.0 + fgkHspace/2.0;
1326 zpos = 0.0 + 0.742/2.0;
bd0f8685 1327 par[0] = 0.0;
030b4415 1328 par[1] = 0.3/2.0; // Thickness of the cooling pipes
1329 par[2] = fCwidth[iplan]/2.0;
bd0f8685 1330 gMC->Gsposp("UTCP",iCopy+iMCMrow,cTagV,xpos,ypos,zpos
1331 ,matrix[2],"ONLY",par,kNpar);
1332 }
1333 }
1334 }
1335
1336 //
1337 // The power lines
1338 //
1339
1340 // The copper power lines
1341 parTube[0] = 0.0;
1342 parTube[1] = 0.0;
1343 parTube[2] = 0.0;
1344 gMC->Gsvolu("UTPL","TUBE",idtmed[1305-1],parTube,0);
1345
1346 // Position the power lines in the mother volume
1347 for (icham = 0; icham < kNcham; icham++) {
1348 for (iplan = 0; iplan < kNplan; iplan++) {
bd0f8685 1349 Int_t iDet = GetDetectorSec(iplan,icham);
1350 Int_t iCopy = GetDetector(iplan,icham,0) * 100;
f162af62 1351 Int_t nMCMrow = GetRowMax(iplan,icham,0);
030b4415 1352 Float_t ySize = (GetChamberLength(iplan,icham) - 2.0*fgkRpadW)
bd0f8685 1353 / ((Float_t) nMCMrow);
1354 sprintf(cTagV,"UU%02d",iDet);
1355 for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
1356 xpos = 0.0;
1357 ypos = (0.5 + iMCMrow) * ySize - 1.0
030b4415 1358 - fClength[iplan][icham]/2.0 + fgkHspace/2.0;
1359 zpos = -0.4 + 0.742/2.0;
bd0f8685 1360 par[0] = 0.0;
030b4415 1361 par[1] = 0.2/2.0; // Thickness of the power lines
1362 par[2] = fCwidth[iplan]/2.0;
bd0f8685 1363 gMC->Gsposp("UTPL",iCopy+iMCMrow,cTagV,xpos,ypos,zpos
1364 ,matrix[2],"ONLY",par,kNpar);
1365 }
1366 }
1367 }
1368
1369 //
1370 // The MCMs
1371 //
1372
1f766e4b 1373 const Float_t kMCMx = 3.0;
1374 const Float_t kMCMy = 3.0;
1375 const Float_t kMCMz = 0.3;
1376
1377 const Float_t kMCMpcTh = 0.1;
1378 const Float_t kMCMcuTh = 0.0025;
1379 const Float_t kMCMsiTh = 0.03;
1380 const Float_t kMCMcoTh = 0.04;
0a5f3331 1381
bd0f8685 1382 // The mother volume for the MCMs (air)
1383 const Int_t kNparMCM = 3;
1384 Float_t parMCM[kNparMCM];
0a5f3331 1385 parMCM[0] = kMCMx /2.0;
1386 parMCM[1] = kMCMy /2.0;
1387 parMCM[2] = kMCMz /2.0;
bd0f8685 1388 gMC->Gsvolu("UMCM","BOX",idtmed[1302-1],parMCM,kNparMCM);
1389
1390 // The MCM carrier G10 layer
0a5f3331 1391 parMCM[0] = kMCMx /2.0;
1392 parMCM[1] = kMCMy /2.0;
1393 parMCM[2] = kMCMpcTh/2.0;
bd0f8685 1394 gMC->Gsvolu("UMC1","BOX",idtmed[1319-1],parMCM,kNparMCM);
1395 // The MCM carrier Cu layer
0a5f3331 1396 parMCM[0] = kMCMx /2.0;
1397 parMCM[1] = kMCMy /2.0;
1398 parMCM[2] = kMCMcuTh/2.0;
bd0f8685 1399 gMC->Gsvolu("UMC2","BOX",idtmed[1318-1],parMCM,kNparMCM);
1400 // The silicon of the chips
0a5f3331 1401 parMCM[0] = kMCMx /2.0;
1402 parMCM[1] = kMCMy /2.0;
1403 parMCM[2] = kMCMsiTh/2.0;
bd0f8685 1404 gMC->Gsvolu("UMC3","BOX",idtmed[1320-1],parMCM,kNparMCM);
0a5f3331 1405 // The aluminum of the cooling plates
1406 parMCM[0] = kMCMx /2.0;
1407 parMCM[1] = kMCMy /2.0;
1408 parMCM[2] = kMCMcoTh/2.0;
1409 gMC->Gsvolu("UMC4","BOX",idtmed[1324-1],parMCM,kNparMCM);
bd0f8685 1410
1411 // Put the MCM material inside the MCM mother volume
1412 xpos = 0.0;
1413 ypos = 0.0;
0a5f3331 1414 zpos = -kMCMz /2.0 + kMCMpcTh/2.0;
bd0f8685 1415 gMC->Gspos("UMC1",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
0a5f3331 1416 zpos += kMCMpcTh/2.0 + kMCMcuTh/2.0;
bd0f8685 1417 gMC->Gspos("UMC2",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
0a5f3331 1418 zpos += kMCMcuTh/2.0 + kMCMsiTh/2.0;
bd0f8685 1419 gMC->Gspos("UMC3",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
0a5f3331 1420 zpos += kMCMsiTh/2.0 + kMCMcoTh/2.0;
1421 gMC->Gspos("UMC4",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
bd0f8685 1422
1423 // Position the MCMs in the mother volume
1424 for (icham = 0; icham < kNcham; icham++) {
1425 for (iplan = 0; iplan < kNplan; iplan++) {
bd0f8685 1426 Int_t iDet = GetDetectorSec(iplan,icham);
1427 Int_t iCopy = GetDetector(iplan,icham,0) * 1000;
f162af62 1428 Int_t nMCMrow = GetRowMax(iplan,icham,0);
030b4415 1429 Float_t ySize = (GetChamberLength(iplan,icham) - 2.0*fgkRpadW)
bd0f8685 1430 / ((Float_t) nMCMrow);
1431 Int_t nMCMcol = 8;
0a5f3331 1432 Float_t xSize = (GetChamberWidth(iplan) - 2.0*fgkCpadW)
bd0f8685 1433 / ((Float_t) nMCMcol);
1434 sprintf(cTagV,"UU%02d",iDet);
1435 for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
1436 for (Int_t iMCMcol = 0; iMCMcol < nMCMcol; iMCMcol++) {
1437 xpos = (0.5 + iMCMcol) * xSize + 1.0
030b4415 1438 - fCwidth[iplan]/2.0;
1f766e4b 1439 ypos = (0.5 + iMCMrow) * ySize + 1.0
030b4415 1440 - fClength[iplan][icham]/2.0 + fgkHspace/2.0;
1441 zpos = -0.4 + 0.742/2.0;
bd0f8685 1442 par[0] = 0.0;
030b4415 1443 par[1] = 0.2/2.0; // Thickness of the power lines
1444 par[2] = fCwidth[iplan]/2.0;
bd0f8685 1445 gMC->Gspos("UMCM",iCopy+iMCMrow*10+iMCMcol,cTagV
1446 ,xpos,ypos,zpos,0,"ONLY");
1447 }
1448 }
1449
1450 }
1451 }
1452
1453}
1454
1455//_____________________________________________________________________________
1456void AliTRDgeometry::GroupChamber(Int_t iplan, Int_t icham, Int_t *idtmed)
f7336fa3 1457{
1458 //
bd0f8685 1459 // Group volumes UA, UD, UF, UU in a single chamber (Air)
1460 // UA, UD, UF, UU are boxes
1461 // UT will be a box
0a770ac9 1462 //
bd0f8685 1463
1464 const Int_t kNparCha = 3;
1465
1466 Int_t iDet = GetDetectorSec(iplan,icham);
1467
1468 Float_t xyzMin[3];
1469 Float_t xyzMax[3];
1470 Float_t xyzOrig[3];
1471 Float_t xyzBoxd[3];
1472
1473 Char_t cTagV[5];
1474 Char_t cTagM[5];
1475
1476 for (Int_t i = 0; i < 3; i++) {
030b4415 1477 xyzMin[i] = +9999.0;
1478 xyzMax[i] = -9999.0;
bd0f8685 1479 }
1480
1481 for (Int_t i = 0; i < 3; i++) {
1482
1483 xyzMin[i] = TMath::Min(xyzMin[i],fChamberUAorig[iDet][i]-fChamberUAboxd[iDet][i]);
1484 xyzMax[i] = TMath::Max(xyzMax[i],fChamberUAorig[iDet][i]+fChamberUAboxd[iDet][i]);
1485
1486 xyzMin[i] = TMath::Min(xyzMin[i],fChamberUDorig[iDet][i]-fChamberUDboxd[iDet][i]);
1487 xyzMax[i] = TMath::Max(xyzMax[i],fChamberUDorig[iDet][i]+fChamberUDboxd[iDet][i]);
1488
1489 xyzMin[i] = TMath::Min(xyzMin[i],fChamberUForig[iDet][i]-fChamberUFboxd[iDet][i]);
1490 xyzMax[i] = TMath::Max(xyzMax[i],fChamberUForig[iDet][i]+fChamberUFboxd[iDet][i]);
1491
a797f961 1492 xyzMin[i] = TMath::Min(xyzMin[i],fChamberUUorig[iDet][i]-fChamberUUboxd[iDet][i]);
1493 xyzMax[i] = TMath::Max(xyzMax[i],fChamberUUorig[iDet][i]+fChamberUUboxd[iDet][i]);
bd0f8685 1494
1495 xyzOrig[i] = 0.5*(xyzMax[i]+xyzMin[i]);
1496 xyzBoxd[i] = 0.5*(xyzMax[i]-xyzMin[i]);
1497
1498 }
1499
1500 sprintf(cTagM,"UT%02d",iDet);
bd0f8685 1501 gMC->Gsvolu(cTagM,"BOX ",idtmed[1302-1],xyzBoxd,kNparCha);
1502
1503 sprintf(cTagV,"UA%02d",iDet);
0a5f3331 1504 gMC->Gspos(cTagV,1,cTagM
1505 ,fChamberUAorig[iDet][0]-xyzOrig[0]
1506 ,fChamberUAorig[iDet][1]-xyzOrig[1]
1507 ,fChamberUAorig[iDet][2]-xyzOrig[2]
1508 ,0,"ONLY");
1509
1510 sprintf(cTagV,"UZ%02d",iDet);
1511 gMC->Gspos(cTagV,1,cTagM
1512 ,fChamberUAorig[iDet][0]-xyzOrig[0] + fChamberUAboxd[iDet][0] - fgkCroW/2.0
1513 ,fChamberUAorig[iDet][1]-xyzOrig[1]
1514 ,fChamberUAorig[iDet][2]-xyzOrig[2] + fgkCraH/2.0 + fgkCdrH/2.0 - fgkCalW/2.0
1515 ,0,"ONLY");
1516 gMC->Gspos(cTagV,2,cTagM
1517 ,fChamberUAorig[iDet][0]-xyzOrig[0] - fChamberUAboxd[iDet][0] + fgkCroW/2.0
1518 ,fChamberUAorig[iDet][1]-xyzOrig[1]
1519 ,fChamberUAorig[iDet][2]-xyzOrig[2] + fgkCraH/2.0 + fgkCdrH/2.0 - fgkCalW/2.0
1520 ,0,"ONLY");
bd0f8685 1521
1522 sprintf(cTagV,"UD%02d",iDet);
0a5f3331 1523 gMC->Gspos(cTagV,1,cTagM
1524 ,fChamberUDorig[iDet][0]-xyzOrig[0]
1525 ,fChamberUDorig[iDet][1]-xyzOrig[1]
1526 ,fChamberUDorig[iDet][2]-xyzOrig[2]
1527 ,0,"ONLY");
bd0f8685 1528
1529 sprintf(cTagV,"UF%02d",iDet);
0a5f3331 1530 gMC->Gspos(cTagV,1,cTagM
1531 ,fChamberUForig[iDet][0]-xyzOrig[0]
1532 ,fChamberUForig[iDet][1]-xyzOrig[1]
1533 ,fChamberUForig[iDet][2]-xyzOrig[2]
1534 ,0,"ONLY");
bd0f8685 1535
a797f961 1536 sprintf(cTagV,"UU%02d",iDet);
0a5f3331 1537 gMC->Gspos(cTagV,1,cTagM
1538 ,fChamberUUorig[iDet][0]-xyzOrig[0]
1539 ,fChamberUUorig[iDet][1]-xyzOrig[1]
1540 ,fChamberUUorig[iDet][2]-xyzOrig[2]
1541 ,0,"ONLY");
bd0f8685 1542
1543 sprintf(cTagV,"UT%02d",iDet);
0a5f3331 1544 gMC->Gspos(cTagV,1,"UTI1"
1545 ,xyzOrig[0]
1546 ,xyzOrig[1]
1547 ,xyzOrig[2]
1548 ,0,"ONLY");
f7336fa3 1549
1550}
1551
25ca55ce 1552//_____________________________________________________________________________
2669905c 1553Bool_t AliTRDgeometry::RotateBack(Int_t det, Double_t *loc, Double_t *glb) const
25ca55ce 1554{
1555 //
2669905c 1556 // Rotates a chambers to transform the corresponding local frame
1557 // coordinates <loc> into the coordinates of the ALICE restframe <glb>.
25ca55ce 1558 //
1559
2669905c 1560 Int_t sector = GetSector(det);
25ca55ce 1561
2669905c 1562 glb[0] = loc[0] * fRotB11[sector] - loc[1] * fRotB12[sector];
1563 glb[1] = loc[0] * fRotB21[sector] + loc[1] * fRotB22[sector];
1564 glb[2] = loc[2];
f7336fa3 1565
1566 return kTRUE;
1567
1568}
1569
1570//_____________________________________________________________________________
3551db50 1571Int_t AliTRDgeometry::GetDetectorSec(Int_t p, Int_t c)
0a770ac9 1572{
1573 //
1574 // Convert plane / chamber into detector number for one single sector
1575 //
1576
1577 return (p + c * fgkNplan);
1578
1579}
1580
1581//_____________________________________________________________________________
3551db50 1582Int_t AliTRDgeometry::GetDetector(Int_t p, Int_t c, Int_t s)
f7336fa3 1583{
1584 //
1585 // Convert plane / chamber / sector into detector number
1586 //
1587
793ff80c 1588 return (p + c * fgkNplan + s * fgkNplan * fgkNcham);
f7336fa3 1589
1590}
1591
1592//_____________________________________________________________________________
c6011b06 1593Int_t AliTRDgeometry::GetPlane(Int_t d)
f7336fa3 1594{
1595 //
1596 // Reconstruct the plane number from the detector number
1597 //
1598
793ff80c 1599 return ((Int_t) (d % fgkNplan));
f7336fa3 1600
1601}
1602
1603//_____________________________________________________________________________
afc51ac2 1604Int_t AliTRDgeometry::GetChamber(Int_t d) const
f7336fa3 1605{
1606 //
1607 // Reconstruct the chamber number from the detector number
1608 //
1609
793ff80c 1610 return ((Int_t) (d % (fgkNplan * fgkNcham)) / fgkNplan);
f7336fa3 1611
1612}
1613
1614//_____________________________________________________________________________
afc51ac2 1615Int_t AliTRDgeometry::GetSector(Int_t d) const
f7336fa3 1616{
1617 //
1618 // Reconstruct the sector number from the detector number
1619 //
1620
793ff80c 1621 return ((Int_t) (d / (fgkNplan * fgkNcham)));
f7336fa3 1622
1623}
1624
7925de54 1625//_____________________________________________________________________________
f162af62 1626AliTRDpadPlane *AliTRDgeometry::GetPadPlane(Int_t p, Int_t c)
7925de54 1627{
f162af62 1628 //
1629 // Returns the pad plane for a given plane <p> and chamber <c> number
1630 //
7925de54 1631
f162af62 1632 if (!fPadPlaneArray) {
1633 CreatePadPlaneArray();
1634 }
1635
1636 Int_t ipp = GetDetectorSec(p,c);
1637 return ((AliTRDpadPlane *) fPadPlaneArray->At(ipp));
1638
1639}
1640
1641//_____________________________________________________________________________
1642Int_t AliTRDgeometry::GetRowMax(Int_t p, Int_t c, Int_t /*s*/)
1643{
1644 //
1645 // Returns the number of rows on the pad plane
1646 //
1647
1648 return GetPadPlane(p,c)->GetNrows();
1649
1650}
1651
1652//_____________________________________________________________________________
1653Int_t AliTRDgeometry::GetColMax(Int_t p)
1654{
1655 //
1656 // Returns the number of rows on the pad plane
1657 //
1658
1659 return GetPadPlane(p,0)->GetNcols();
1660
1661}
1662
1663//_____________________________________________________________________________
1664Double_t AliTRDgeometry::GetRow0(Int_t p, Int_t c, Int_t /*s*/)
1665{
1666 //
1667 // Returns the position of the border of the first pad in a row
1668 //
1669
1670 return GetPadPlane(p,c)->GetRow0();
1671
1672}
1673
1674//_____________________________________________________________________________
1675Double_t AliTRDgeometry::GetCol0(Int_t p)
1676{
1677 //
1678 // Returns the position of the border of the first pad in a column
1679 //
1680
1681 return GetPadPlane(p,0)->GetCol0();
1682
1683}
1684
1685//_____________________________________________________________________________
ecf39416 1686//Int_t AliTRDgeometry::GetPadRowFromMCM(Int_t irob, Int_t imcm) const
1687//{
f162af62 1688 //
1689 // Return on which row this mcm sits
1690 //
ecf39416 1691//
1692// return fgkMCMrow*(irob/2) + imcm/fgkMCMrow;
1693//
1694//}
7925de54 1695
1696//_____________________________________________________________________________
ecf39416 1697//Int_t AliTRDgeometry::GetPadColFromADC(Int_t irob, Int_t imcm, Int_t iadc) const
1698//{
7925de54 1699 //
f162af62 1700 // Return which pad is connected to this adc channel. return -1 if it
25ca55ce 1701 // is one of the not directly connected adc channels (0, 1 20)
7925de54 1702 //
ecf39416 1703//
1704// if (iadc < 2 || iadc > 19 ) return -1;
1705//
1706// return (iadc-2) + (imcm%fgkMCMrow)*fgkPadmax + GetRobSide(irob)*fgkColmax/2;
1707//
1708//}
7925de54 1709
1710//_____________________________________________________________________________
ecf39416 1711//Int_t AliTRDgeometry::GetMCMfromPad(Int_t irow, Int_t icol) const
1712//{
f162af62 1713 //
1714 // Return on which mcm this pad is
1715 //
ecf39416 1716//
1717// if ( irow < 0 || icol < 0 || irow > fgkRowmaxC1 || icol > fgkColmax ) return -1;
1718//
1719// return (icol%(fgkColmax/2))/fgkPadmax + fgkMCMrow*(irow%fgkMCMrow);
1720//
1721//}
7925de54 1722
1723//_____________________________________________________________________________
ecf39416 1724//Int_t AliTRDgeometry::GetROBfromPad(Int_t irow, Int_t icol) const
1725//{
f162af62 1726 //
1727 // Return on which rob this pad is
1728 //
ecf39416 1729//
1730// return (irow/fgkMCMrow)*2 + GetColSide(icol);
1731//
1732//}
7925de54 1733
1734//_____________________________________________________________________________
ecf39416 1735//Int_t AliTRDgeometry::GetRobSide(Int_t irob) const
1736//{
f162af62 1737 //
1738 // Return on which side this rob sits (A side = 0, B side = 1)
1739 //
ecf39416 1740//
1741// if ( irob < 0 || irob >= fgkROBmaxC1 ) return -1;
1742//
1743// return irob%2;
1744//
1745//}
7925de54 1746
1747//_____________________________________________________________________________
ecf39416 1748//Int_t AliTRDgeometry::GetColSide(Int_t icol) const
1749//{
bdbb05bb 1750 //
f162af62 1751 // Return on which side this column sits (A side = 0, B side = 1)
bdbb05bb 1752 //
ecf39416 1753//
1754// if ( icol < 0 || icol >= fgkColmax ) return -1;
1755//
1756// return icol/(fgkColmax/2);
1757//
1758//}
b4a9cd27 1759
1760//_____________________________________________________________________________
9a96f175 1761Bool_t AliTRDgeometry::CreateClusterMatrixArray()
bd0f8685 1762{
b4a9cd27 1763 //
9a96f175 1764 // Create the matrices to transform cluster coordinates from the
1765 // local chamber system to the tracking coordinate system
b4a9cd27 1766 //
1767
030b4415 1768 if (!gGeoManager) {
1769 return kFALSE;
1770 }
0a5f3331 1771
9a96f175 1772 fClusterMatrixArray = new TObjArray(kNdet);
90dbf5fb 1773 AliAlignObjParams o;
bd0f8685 1774
ae079791 1775 for (Int_t iLayer = AliGeomManager::kTRD1; iLayer <= AliGeomManager::kTRD6; iLayer++) {
1776 for (Int_t iModule = 0; iModule < AliGeomManager::LayerSize(iLayer); iModule++) {
030b4415 1777
ae079791 1778 UShort_t volid = AliGeomManager::LayerToVolUID(iLayer,iModule);
1779 const char *symname = AliGeomManager::SymName(volid);
0a5f3331 1780 TGeoPNEntry *pne = gGeoManager->GetAlignableEntry(symname);
1781 const char *path = symname;
1782 if (pne) {
1783 path = pne->GetTitle();
1784 }
9a96f175 1785 if (!strstr(path,"ALIC")) {
1786 AliDebug(1,Form("Not a valid path: %s\n",path));
1787 continue;
1788 }
0a5f3331 1789 if (!gGeoManager->cd(path)) {
9a96f175 1790 continue;
0a5f3331 1791 }
c127f13a 1792 TGeoHMatrix *m = gGeoManager->GetCurrentMatrix();
ae079791 1793 Int_t iLayerTRD = iLayer - AliGeomManager::kTRD1;
8a497c18 1794 Int_t isector = iModule/Ncham();
1795 Int_t ichamber = iModule%Ncham();
25ca55ce 1796 Int_t lid = GetDetector(iLayerTRD,ichamber,isector);
25ca55ce 1797
1798 TGeoRotation mchange;
1799 mchange.RotateY(90);
c127f13a 1800 mchange.RotateX(90);
1801
c127f13a 1802 //
1803 // Cluster transformation matrix
1804 //
1805 TGeoHMatrix rotMatrix(mchange.Inverse());
1806 rotMatrix.MultiplyLeft(m);
030b4415 1807 Double_t sectorAngle = 20.0 * (isector % 18) + 10.0;
c127f13a 1808 TGeoHMatrix rotSector;
b4a9cd27 1809 rotSector.RotateZ(sectorAngle);
8a497c18 1810 rotMatrix.MultiplyLeft(&rotSector.Inverse());
c127f13a 1811
9a96f175 1812 fClusterMatrixArray->AddAt(new TGeoHMatrix(rotMatrix),lid);
bd0f8685 1813
25ca55ce 1814 }
b4a9cd27 1815 }
bd0f8685 1816
b4a9cd27 1817 return kTRUE;
b4a9cd27 1818
bd0f8685 1819}
25ca55ce 1820