]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TRD/AliTRDmcmSim.cxx
Coding rule violations (Raphaelle)
[u/mrichter/AliRoot.git] / TRD / AliTRDmcmSim.cxx
CommitLineData
dfd03fc3 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
5eba8ada 16/* $Id$ */
17
dfd03fc3 18///////////////////////////////////////////////////////////////////////////////
19// //
20// TRD MCM (Multi Chip Module) simulator //
ce4786b9 21// which simulates the TRAP processing after the AD-conversion. //
22// The relevant parameters (i.e. configuration settings of the TRAP) //
23// are taken from AliTRDtrapConfig. //
dfd03fc3 24// //
25///////////////////////////////////////////////////////////////////////////////
26
ce4786b9 27#include <iostream>
28#include <iomanip>
ecf39416 29
ce4786b9 30#include "TCanvas.h"
31#include "TH1F.h"
32#include "TH2F.h"
33#include "TGraph.h"
34#include "TLine.h"
35#include "TRandom.h"
36#include "TClonesArray.h"
ce51199c 37#include "TMath.h"
0c349049 38
dfd03fc3 39#include "AliLog.h"
b0a41e80 40#include "AliRunLoader.h"
41#include "AliLoader.h"
0c349049 42
dfd03fc3 43#include "AliTRDfeeParam.h"
b0a41e80 44#include "AliTRDtrapConfig.h"
4cc89512 45#include "AliTRDdigitsManager.h"
b65e5048 46#include "AliTRDarrayADC.h"
40bd6ee4 47#include "AliTRDarrayDictionary.h"
52c19022 48#include "AliTRDtrackletMCM.h"
b0a41e80 49#include "AliTRDmcmSim.h"
1d93b218 50
dfd03fc3 51ClassImp(AliTRDmcmSim)
52
40bd6ee4 53Bool_t AliTRDmcmSim::fgApplyCut = kTRUE;
ce4786b9 54Int_t AliTRDmcmSim::fgAddBaseline = 0;
55
56const Int_t AliTRDmcmSim::fgkFormatIndex = std::ios_base::xalloc();
57
58const Int_t AliTRDmcmSim::fgkNADC = AliTRDfeeParam::GetNadcMcm();
59const UShort_t AliTRDmcmSim::fgkFPshifts[4] = {11, 14, 17, 21};
60
61
62AliTRDmcmSim::AliTRDmcmSim() :
63 TObject(),
64 fInitialized(kFALSE),
65 fDetector(-1),
66 fRobPos(-1),
67 fMcmPos(-1),
68 fRow (-1),
69 fNTimeBin(-1),
70 fADCR(NULL),
71 fADCF(NULL),
72 fMCMT(NULL),
73 fTrackletArray(NULL),
74 fZSMap(NULL),
75 fFeeParam(NULL),
76 fTrapConfig(NULL),
77 fDigitsManager(NULL),
78 fPedAcc(NULL),
79 fGainCounterA(NULL),
80 fGainCounterB(NULL),
81 fTailAmplLong(NULL),
82 fTailAmplShort(NULL),
83 fNHits(0),
84 fFitReg(NULL)
dfd03fc3 85{
86 //
b0a41e80 87 // AliTRDmcmSim default constructor
dfd03fc3 88 // By default, nothing is initialized.
89 // It is necessary to issue Init before use.
90}
91
dfd03fc3 92AliTRDmcmSim::~AliTRDmcmSim()
93{
94 //
95 // AliTRDmcmSim destructor
96 //
0c349049 97
b0a41e80 98 if(fInitialized) {
ce4786b9 99 for( Int_t iAdc = 0 ; iAdc < fgkNADC; iAdc++ ) {
100 delete [] fADCR[iAdc];
101 delete [] fADCF[iAdc];
dfd03fc3 102 }
16e077d0 103 delete [] fADCR;
104 delete [] fADCF;
ce4786b9 105 delete [] fZSMap;
1d93b218 106 delete [] fMCMT;
b0a41e80 107
108 delete [] fPedAcc;
109 delete [] fGainCounterA;
110 delete [] fGainCounterB;
111 delete [] fTailAmplLong;
112 delete [] fTailAmplShort;
113 delete [] fFitReg;
114
115 fTrackletArray->Delete();
116 delete fTrackletArray;
1d93b218 117 }
dfd03fc3 118}
119
b0a41e80 120void AliTRDmcmSim::Init( Int_t det, Int_t robPos, Int_t mcmPos, Bool_t /* newEvent */ )
dfd03fc3 121{
0c349049 122 //
ce4786b9 123 // Initialize the class with new MCM position information
124 // memory is allocated in the first initialization
0c349049 125 //
96e6312d 126
b0a41e80 127 if (!fInitialized) {
128 fFeeParam = AliTRDfeeParam::Instance();
129 fTrapConfig = AliTRDtrapConfig::Instance();
b0a41e80 130 }
131
132 fDetector = det;
0c349049 133 fRobPos = robPos;
134 fMcmPos = mcmPos;
ce4786b9 135 fNTimeBin = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kC13CPUA);
dfd03fc3 136 fRow = fFeeParam->GetPadRowFromMCM( fRobPos, fMcmPos );
23200400 137
b0a41e80 138 if (!fInitialized) {
ce4786b9 139 fADCR = new Int_t *[fgkNADC];
140 fADCF = new Int_t *[fgkNADC];
141 fZSMap = new Int_t [fgkNADC];
142 fGainCounterA = new UInt_t[fgkNADC];
143 fGainCounterB = new UInt_t[fgkNADC];
144 for( Int_t iAdc = 0 ; iAdc < fgkNADC; iAdc++ ) {
145 fADCR[iAdc] = new Int_t[fNTimeBin];
146 fADCF[iAdc] = new Int_t[fNTimeBin];
dfd03fc3 147 }
b0a41e80 148
149 // filter registers
ce4786b9 150 fPedAcc = new UInt_t[fgkNADC]; // accumulator for pedestal filter
151 fTailAmplLong = new UShort_t[fgkNADC];
152 fTailAmplShort = new UShort_t[fgkNADC];
b0a41e80 153
154 // tracklet calculation
ce4786b9 155 fFitReg = new FitReg_t[fgkNADC];
156 fTrackletArray = new TClonesArray("AliTRDtrackletMCM", fgkMaxTracklets);
b0a41e80 157
ce4786b9 158 fMCMT = new UInt_t[fgkMaxTracklets];
dfd03fc3 159 }
160
b0a41e80 161 fInitialized = kTRUE;
162
163 Reset();
164}
165
166void AliTRDmcmSim::Reset()
167{
168 // Resets the data values and internal filter registers
169 // by re-initialising them
170
ce4786b9 171 if( !CheckInitialized() )
172 return;
5896bc23 173
ce4786b9 174 for( Int_t iAdc = 0 ; iAdc < fgkNADC; iAdc++ ) {
175 for( Int_t it = 0 ; it < fNTimeBin ; it++ ) {
176 fADCR[iAdc][it] = 0;
177 fADCF[iAdc][it] = 0;
dfd03fc3 178 }
ce4786b9 179 fZSMap[iAdc] = -1; // Default unread, low active bit mask
180 fGainCounterA[iAdc] = 0;
181 fGainCounterB[iAdc] = 0;
dfd03fc3 182 }
ecf39416 183
ce4786b9 184 for(Int_t i = 0; i < fgkMaxTracklets; i++) {
1d93b218 185 fMCMT[i] = 0;
186 }
ce4786b9 187
188 for (Int_t iDict = 0; iDict < 3; iDict++)
189 fDict[iDict] = 0x0;
b0a41e80 190
191 FilterPedestalInit();
192 FilterGainInit();
ce4786b9 193 FilterTailInit();
b0a41e80 194}
1d93b218 195
4ff7ed2b 196void AliTRDmcmSim::SetNTimebins(Int_t ntimebins)
197{
ce4786b9 198 // Reallocate memory if a change in the number of timebins
199 // is needed (should not be the case for real data)
200
201 if( !CheckInitialized() )
202 return;
203
4ff7ed2b 204 fNTimeBin = ntimebins;
ce4786b9 205 for( Int_t iAdc = 0 ; iAdc < fgkNADC; iAdc++ ) {
206 delete fADCR[iAdc];
207 delete fADCF[iAdc];
208 fADCR[iAdc] = new Int_t[fNTimeBin];
209 fADCF[iAdc] = new Int_t[fNTimeBin];
4ff7ed2b 210 }
211}
212
ab9f7002 213Bool_t AliTRDmcmSim::LoadMCM(AliRunLoader* const runloader, Int_t det, Int_t rob, Int_t mcm)
b0a41e80 214{
ce4786b9 215 // loads the ADC data as obtained from the digitsManager for the specified MCM.
216 // This method is meant for rare execution, e.g. in the visualization. When called
217 // frequently use SetData(...) instead.
b0a41e80 218
64e3d742 219 Init(det, rob, mcm);
b0a41e80 220
221 if (!runloader) {
222 AliError("No Runloader given");
223 return kFALSE;
224 }
225
226 AliLoader *trdLoader = runloader->GetLoader("TRDLoader");
227 if (!trdLoader) {
228 AliError("Could not get TRDLoader");
229 return kFALSE;
230 }
231
5eba8ada 232 Bool_t retval = kTRUE;
b0a41e80 233 trdLoader->LoadDigits();
40bd6ee4 234 fDigitsManager = 0x0;
b0a41e80 235 AliTRDdigitsManager *digMgr = new AliTRDdigitsManager();
236 digMgr->SetSDigits(0);
237 digMgr->CreateArrays();
238 digMgr->ReadDigits(trdLoader->TreeD());
239 AliTRDarrayADC *digits = (AliTRDarrayADC*) digMgr->GetDigits(det);
5eba8ada 240 if (digits->HasData()) {
241 digits->Expand();
242
5896bc23 243 if (fNTimeBin != digits->GetNtime()) {
ce4786b9 244 AliWarning(Form("Changing no. of timebins from %i to %i", fNTimeBin, digits->GetNtime()));
4ff7ed2b 245 SetNTimebins(digits->GetNtime());
5896bc23 246 }
4ff7ed2b 247
ce4786b9 248 SetData(digits);
b0a41e80 249 }
5eba8ada 250 else
251 retval = kFALSE;
4ff7ed2b 252
b0a41e80 253 delete digMgr;
4ff7ed2b 254
255 return retval;
b0a41e80 256}
257
258void AliTRDmcmSim::NoiseTest(Int_t nsamples, Int_t mean, Int_t sigma, Int_t inputGain, Int_t inputTail)
259{
260 // This function can be used to test the filters.
261 // It feeds nsamples of ADC values with a gaussian distribution specified by mean and sigma.
262 // The filter chain implemented here consists of:
263 // Pedestal -> Gain -> Tail
264 // With inputGain and inputTail the input to the gain and tail filter, respectively,
265 // can be chosen where
266 // 0: noise input
267 // 1: pedestal output
268 // 2: gain output
269 // The input has to be chosen from a stage before.
270 // The filter behaviour is controlled by the TRAP parameters from AliTRDtrapConfig in the
271 // same way as in normal simulation.
272 // The functions produces four histograms with the values at the different stages.
273
ce4786b9 274 if( !CheckInitialized() )
275 return;
276
277 TString nameInputGain;
278 TString nameInputTail;
279
280 switch (inputGain) {
281 case 0:
282 nameInputGain = "Noise";
283 break;
284
285 case 1:
286 nameInputGain = "Pedestal";
287 break;
288
289 default:
290 AliError("Undefined input to tail cancellation filter");
291 return;
292 }
293
294 switch (inputTail) {
295 case 0:
296 nameInputTail = "Noise";
297 break;
298
299 case 1:
300 nameInputTail = "Pedestal";
301 break;
302
303 case 2:
304 nameInputTail = "Gain";
305 break;
306
307 default:
308 AliError("Undefined input to tail cancellation filter");
309 return;
310 }
311
b0a41e80 312 TH1F *h = new TH1F("noise", "Gaussian Noise;sample;ADC count",
313 nsamples, 0, nsamples);
ce4786b9 314 TH1F *hfp = new TH1F("ped", "Noise #rightarrow Pedestal filter;sample;ADC count", nsamples, 0, nsamples);
315 TH1F *hfg = new TH1F("gain",
316 (nameInputGain + "#rightarrow Gain;sample;ADC count").Data(),
317 nsamples, 0, nsamples);
318 TH1F *hft = new TH1F("tail",
319 (nameInputTail + "#rightarrow Tail;sample;ADC count").Data(),
320 nsamples, 0, nsamples);
b0a41e80 321 h->SetStats(kFALSE);
322 hfp->SetStats(kFALSE);
323 hfg->SetStats(kFALSE);
324 hft->SetStats(kFALSE);
325
326 Int_t value; // ADC count with noise (10 bit)
327 Int_t valuep; // pedestal filter output (12 bit)
328 Int_t valueg; // gain filter output (12 bit)
329 Int_t valuet; // tail filter value (12 bit)
330
331 for (Int_t i = 0; i < nsamples; i++) {
332 value = (Int_t) gRandom->Gaus(mean, sigma); // generate noise with gaussian distribution
333 h->SetBinContent(i, value);
334
335 valuep = FilterPedestalNextSample(1, 0, ((Int_t) value) << 2);
336
337 if (inputGain == 0)
338 valueg = FilterGainNextSample(1, ((Int_t) value) << 2);
339 else
340 valueg = FilterGainNextSample(1, valuep);
341
342 if (inputTail == 0)
343 valuet = FilterTailNextSample(1, ((Int_t) value) << 2);
344 else if (inputTail == 1)
345 valuet = FilterTailNextSample(1, valuep);
346 else
347 valuet = FilterTailNextSample(1, valueg);
348
349 hfp->SetBinContent(i, valuep >> 2);
350 hfg->SetBinContent(i, valueg >> 2);
351 hft->SetBinContent(i, valuet >> 2);
352 }
353
354 TCanvas *c = new TCanvas;
355 c->Divide(2,2);
356 c->cd(1);
357 h->Draw();
358 c->cd(2);
359 hfp->Draw();
360 c->cd(3);
361 hfg->Draw();
362 c->cd(4);
363 hft->Draw();
dfd03fc3 364}
365
ce4786b9 366Bool_t AliTRDmcmSim::CheckInitialized() const
ecf39416 367{
0c349049 368 //
369 // Check whether object is initialized
370 //
371
ce4786b9 372 if( ! fInitialized )
373 AliError(Form ("AliTRDmcmSim is not initialized but function other than Init() is called."));
374
ecf39416 375 return fInitialized;
376}
377
ab9f7002 378void AliTRDmcmSim::Print(Option_t* const option) const
b0a41e80 379{
380 // Prints the data stored and/or calculated for this MCM.
381 // The output is controlled by option which can be a sequence of any of
382 // the following characters:
383 // R - prints raw ADC data
384 // F - prints filtered data
385 // H - prints detected hits
386 // T - prints found tracklets
ce4786b9 387 // The later stages are only meaningful after the corresponding calculations
b0a41e80 388 // have been performed.
389
ce4786b9 390 if ( !CheckInitialized() )
391 return;
392
b0a41e80 393 printf("MCM %i on ROB %i in detector %i\n", fMcmPos, fRobPos, fDetector);
394
395 TString opt = option;
ce4786b9 396 if (opt.Contains("R") || opt.Contains("F")) {
397 std::cout << *this;
1d93b218 398 }
399
b0a41e80 400 if (opt.Contains("H")) {
401 printf("Found %i hits:\n", fNHits);
402 for (Int_t iHit = 0; iHit < fNHits; iHit++) {
403 printf("Hit %3i in timebin %2i, ADC %2i has charge %3i and position %3i\n",
ab9f7002 404 iHit, fHits[iHit].fTimebin, fHits[iHit].fChannel, fHits[iHit].fQtot, fHits[iHit].fYpos);
b0a41e80 405 }
1d93b218 406 }
1d93b218 407
b0a41e80 408 if (opt.Contains("T")) {
409 printf("Tracklets:\n");
410 for (Int_t iTrkl = 0; iTrkl < fTrackletArray->GetEntriesFast(); iTrkl++) {
411 printf("tracklet %i: 0x%08x\n", iTrkl, ((AliTRDtrackletMCM*) (*fTrackletArray)[iTrkl])->GetTrackletWord());
412 }
1d93b218 413 }
b0a41e80 414}
1d93b218 415
ab9f7002 416void AliTRDmcmSim::Draw(Option_t* const option)
b0a41e80 417{
418 // Plots the data stored in a 2-dim. timebin vs. ADC channel plot.
419 // The option selects what data is plotted and can be a sequence of
420 // the following characters:
421 // R - plot raw data (default)
422 // F - plot filtered data (meaningless if R is specified)
423 // In addition to the ADC values:
424 // H - plot hits
425 // T - plot tracklets
426
ce4786b9 427 if( !CheckInitialized() )
428 return;
429
b0a41e80 430 TString opt = option;
431
432 TH2F *hist = new TH2F("mcmdata", Form("Data of MCM %i on ROB %i in detector %i", \
433 fMcmPos, fRobPos, fDetector), \
ce4786b9 434 fgkNADC, -0.5, fgkNADC-.5, fNTimeBin, -.5, fNTimeBin-.5);
b0a41e80 435 hist->GetXaxis()->SetTitle("ADC Channel");
436 hist->GetYaxis()->SetTitle("Timebin");
437 hist->SetStats(kFALSE);
438
439 if (opt.Contains("R")) {
440 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 441 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
b0a41e80 442 hist->SetBinContent(iAdc+1, iTimeBin+1, fADCR[iAdc][iTimeBin] >> fgkAddDigits);
443 }
1d93b218 444 }
b0a41e80 445 }
446 else {
447 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 448 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
b0a41e80 449 hist->SetBinContent(iAdc+1, iTimeBin+1, fADCF[iAdc][iTimeBin] >> fgkAddDigits);
450 }
1d93b218 451 }
1d93b218 452 }
b0a41e80 453 hist->Draw("colz");
1d93b218 454
b0a41e80 455 if (opt.Contains("H")) {
456 TGraph *grHits = new TGraph();
457 for (Int_t iHit = 0; iHit < fNHits; iHit++) {
458 grHits->SetPoint(iHit,
ab9f7002 459 fHits[iHit].fChannel + 1 + fHits[iHit].fYpos/256.,
460 fHits[iHit].fTimebin);
b0a41e80 461 }
462 grHits->Draw("*");
463 }
1d93b218 464
b0a41e80 465 if (opt.Contains("T")) {
466 TLine *trklLines = new TLine[4];
64e3d742 467 for (Int_t iTrkl = 0; iTrkl < fTrackletArray->GetEntries(); iTrkl++) {
b0a41e80 468 AliTRDtrackletMCM *trkl = (AliTRDtrackletMCM*) (*fTrackletArray)[iTrkl];
ce4786b9 469 Float_t padWidth = 0.635 + 0.03 * (fDetector % 6);
470 Float_t offset = padWidth/256. * ((((((fRobPos & 0x1) << 2) + (fMcmPos & 0x3)) * 18) << 8) - ((18*4*2 - 18*2 - 3) << 7)); // revert adding offset in FitTracklet
471 Int_t ndrift = fTrapConfig->GetDmem(0xc025, fDetector, fRobPos, fMcmPos) >> 5;
472 Float_t slope = trkl->GetdY() * 140e-4 / ndrift;
473
474 Int_t t0 = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFS);
475 Int_t t1 = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFE);
476
477 trklLines[iTrkl].SetX1((offset - (trkl->GetY() - slope * t0)) / padWidth); // ??? sign?
478 trklLines[iTrkl].SetY1(t0);
479 trklLines[iTrkl].SetX2((offset - (trkl->GetY() - slope * t1)) / padWidth); // ??? sign?
480 trklLines[iTrkl].SetY2(t1);
b0a41e80 481 trklLines[iTrkl].SetLineColor(2);
482 trklLines[iTrkl].SetLineWidth(2);
483 printf("Tracklet %i: y = %f, dy = %f, offset = %f\n", iTrkl, trkl->GetY(), (trkl->GetdY() * 140e-4), offset);
484 trklLines[iTrkl].Draw();
485 }
486 }
1d93b218 487}
488
ce4786b9 489void AliTRDmcmSim::SetData( Int_t adc, Int_t* const data )
dfd03fc3 490{
0c349049 491 //
dfd03fc3 492 // Store ADC data into array of raw data
0c349049 493 //
dfd03fc3 494
ecf39416 495 if( !CheckInitialized() ) return;
dfd03fc3 496
ce4786b9 497 if( adc < 0 || adc >= fgkNADC ) {
498 AliError(Form ("Error: ADC %i is out of range (0 .. %d).", adc, fgkNADC-1));
dfd03fc3 499 return;
500 }
501
4ff7ed2b 502 for( Int_t it = 0 ; it < fNTimeBin ; it++ ) {
ce4786b9 503 fADCR[adc][it] = (Int_t) (data[it]) << fgkAddDigits;
504 fADCF[adc][it] = (Int_t) (data[it]) << fgkAddDigits;
dfd03fc3 505 }
506}
507
ce4786b9 508void AliTRDmcmSim::SetData( Int_t adc, Int_t it, Int_t data )
dfd03fc3 509{
0c349049 510 //
dfd03fc3 511 // Store ADC data into array of raw data
0c349049 512 //
dfd03fc3 513
ecf39416 514 if( !CheckInitialized() ) return;
dfd03fc3 515
ce4786b9 516 if( adc < 0 || adc >= fgkNADC ) {
517 AliError(Form ("Error: ADC %i is out of range (0 .. %d).", adc, fgkNADC-1));
dfd03fc3 518 return;
519 }
520
ce4786b9 521 fADCR[adc][it] = data << fgkAddDigits;
522 fADCF[adc][it] = data << fgkAddDigits;
b0a41e80 523}
524
40bd6ee4 525void AliTRDmcmSim::SetData(AliTRDarrayADC* const adcArray, AliTRDdigitsManager *digitsManager)
b0a41e80 526{
ab9f7002 527 // Set the ADC data from an AliTRDarrayADC
528
ce4786b9 529 if( !CheckInitialized() )
b0a41e80 530 return;
b0a41e80 531
40bd6ee4 532 fDigitsManager = digitsManager;
ce4786b9 533 if (fDigitsManager) {
534 for (Int_t iDict = 0; iDict < 3; iDict++) {
535 AliTRDarrayDictionary *newDict = (AliTRDarrayDictionary*) fDigitsManager->GetDictionary(fDetector, iDict);
536 if (fDict[iDict] != 0x0 && newDict != 0x0) {
537
538 if (fDict[iDict] == newDict)
539 continue;
40bd6ee4 540
ce4786b9 541 fDict[iDict] = newDict;
542
543 if (fDict[iDict]->GetDim() == 0) {
544 AliError(Form("Dictionary %i of det. %i has dim. 0", fDetector, iDict));
545 continue;
546 }
547 fDict[iDict]->Expand();
548 }
549 else {
550 fDict[iDict] = newDict;
551 if (fDict[iDict])
552 fDict[iDict]->Expand();
553 }
554 }
5896bc23 555 }
4ff7ed2b 556
ce4786b9 557 if (fNTimeBin != adcArray->GetNtime())
558 SetNTimebins(adcArray->GetNtime());
559
560 Int_t offset = (fMcmPos % 4 + 1) * 21 + (fRobPos % 2) * 84 - 1;
b0a41e80 561
562 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 563 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
564 Int_t value = adcArray->GetDataByAdcCol(GetRow(), offset - iAdc, iTimeBin);
565 if (value < 0 || (offset - iAdc < 1) || (offset - iAdc > 165)) {
566 fADCR[iAdc][iTimeBin] = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPNP) + (fgAddBaseline << fgkAddDigits);
4ff7ed2b 567 fADCF[iAdc][iTimeBin] = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFP) + (fgAddBaseline << fgkAddDigits);
b0a41e80 568 }
569 else {
ce4786b9 570 fZSMap[iAdc] = 0;
571 fADCR[iAdc][iTimeBin] = (value << fgkAddDigits) + (fgAddBaseline << fgkAddDigits);
572 fADCF[iAdc][iTimeBin] = (value << fgkAddDigits) + (fgAddBaseline << fgkAddDigits);
b0a41e80 573 }
574 }
575 }
dfd03fc3 576}
577
ce51199c 578void AliTRDmcmSim::SetDataByPad(AliTRDarrayADC* const adcArray, AliTRDdigitsManager *digitsManager)
579{
580 // Set the ADC data from an AliTRDarrayADC
581 // (by pad, to be used during initial reading in simulation)
582
583 if( !CheckInitialized() )
584 return;
585
586 fDigitsManager = digitsManager;
587 if (fDigitsManager) {
588 for (Int_t iDict = 0; iDict < 3; iDict++) {
589 AliTRDarrayDictionary *newDict = (AliTRDarrayDictionary*) fDigitsManager->GetDictionary(fDetector, iDict);
590 if (fDict[iDict] != 0x0 && newDict != 0x0) {
591
592 if (fDict[iDict] == newDict)
593 continue;
594
595 fDict[iDict] = newDict;
596
597 if (fDict[iDict]->GetDim() == 0) {
598 AliError(Form("Dictionary %i of det. %i has dim. 0", fDetector, iDict));
599 continue;
600 }
601 fDict[iDict]->Expand();
602 }
603 else {
604 fDict[iDict] = newDict;
605 if (fDict[iDict])
606 fDict[iDict]->Expand();
607 }
608 }
609 }
610
611 if (fNTimeBin != adcArray->GetNtime())
612 SetNTimebins(adcArray->GetNtime());
613
614 Int_t offset = (fMcmPos % 4 + 1) * 18 + (fRobPos % 2) * 72 + 1;
615
616 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
617 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
618 Int_t value = -1;
619 Int_t pad = offset - iAdc;
620 if (pad > -1 && pad < 144)
621 value = adcArray->GetData(GetRow(), offset - iAdc, iTimeBin);
622 // Int_t value = adcArray->GetDataByAdcCol(GetRow(), offset - iAdc, iTimeBin);
623 if (value < 0 || (offset - iAdc < 1) || (offset - iAdc > 165)) {
624 fADCR[iAdc][iTimeBin] = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPNP) + (fgAddBaseline << fgkAddDigits);
625 fADCF[iAdc][iTimeBin] = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFP) + (fgAddBaseline << fgkAddDigits);
626 }
627 else {
628 fZSMap[iAdc] = 0;
629 fADCR[iAdc][iTimeBin] = (value << fgkAddDigits) + (fgAddBaseline << fgkAddDigits);
630 fADCF[iAdc][iTimeBin] = (value << fgkAddDigits) + (fgAddBaseline << fgkAddDigits);
631 }
632 }
633 }
634}
635
ce4786b9 636void AliTRDmcmSim::SetDataPedestal( Int_t adc )
dfd03fc3 637{
0c349049 638 //
dfd03fc3 639 // Store ADC data into array of raw data
0c349049 640 //
dfd03fc3 641
ce4786b9 642 if( !CheckInitialized() )
643 return;
dfd03fc3 644
ce4786b9 645 if( adc < 0 || adc >= fgkNADC ) {
dfd03fc3 646 return;
647 }
648
649 for( Int_t it = 0 ; it < fNTimeBin ; it++ ) {
ce4786b9 650 fADCR[adc][it] = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPNP) + (fgAddBaseline << fgkAddDigits);
651 fADCF[adc][it] = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFP) + (fgAddBaseline << fgkAddDigits);
dfd03fc3 652 }
653}
654
ce4786b9 655Bool_t AliTRDmcmSim::GetHit(Int_t index, Int_t &channel, Int_t &timebin, Int_t &qtot, Int_t &ypos, Float_t &y, Int_t &label) const
656{
657 // retrieve the MC hit information (not available in TRAP hardware)
658
659 if (index < 0 || index >= fNHits)
660 return kFALSE;
661
662 channel = fHits[index].fChannel;
663 timebin = fHits[index].fTimebin;
664 qtot = fHits[index].fQtot;
665 ypos = fHits[index].fYpos;
666 y = (Float_t) ((((((fRobPos & 0x1) << 2) + (fMcmPos & 0x3)) * 18) << 8) - ((18*4*2 - 18*2 - 1) << 7) -
667 (channel << 8) - ypos)
668 * (0.635 + 0.03 * (fDetector % 6))
669 / 256.0;
670 label = fHits[index].fLabel;
671
672 return kTRUE;
673}
674
675Int_t AliTRDmcmSim::GetCol( Int_t adc )
dfd03fc3 676{
0c349049 677 //
dfd03fc3 678 // Return column id of the pad for the given ADC channel
0c349049 679 //
680
f793c83d 681 if( !CheckInitialized() )
682 return -1;
dfd03fc3 683
ce4786b9 684 Int_t col = fFeeParam->GetPadColFromADC(fRobPos, fMcmPos, adc);
a6d08b7f 685 if (col < 0 || col >= fFeeParam->GetNcol())
686 return -1;
687 else
688 return col;
dfd03fc3 689}
690
ce4786b9 691Int_t AliTRDmcmSim::ProduceRawStream( UInt_t *buf, Int_t bufSize, UInt_t iEv) const
dfd03fc3 692{
0c349049 693 //
dfd03fc3 694 // Produce raw data stream from this MCM and put in buf
0c349049 695 // Returns number of words filled, or negative value
696 // with -1 * number of overflowed words
697 //
dfd03fc3 698
ce4786b9 699 if( !CheckInitialized() )
700 return 0;
701
dfd03fc3 702 UInt_t x;
dfd03fc3 703 Int_t nw = 0; // Number of written words
704 Int_t of = 0; // Number of overflowed words
705 Int_t rawVer = fFeeParam->GetRAWversion();
706 Int_t **adc;
b0a41e80 707 Int_t nActiveADC = 0; // number of activated ADC bits in a word
dfd03fc3 708
ce4786b9 709 if( !CheckInitialized() )
710 return 0;
ecf39416 711
ce4786b9 712 if (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kEBSF) != 0) // store unfiltered data
dfd03fc3 713 adc = fADCR;
ce4786b9 714 else
dfd03fc3 715 adc = fADCF;
ce4786b9 716
dfd03fc3 717 // Produce MCM header
b0a41e80 718 x = (1<<31) | (fRobPos << 28) | (fMcmPos << 24) | ((iEv % 0x100000) << 4) | 0xC;
719
ce4786b9 720 if (nw < bufSize) {
dfd03fc3 721 buf[nw++] = x;
722 }
723 else {
724 of++;
725 }
726
b0a41e80 727 // Produce ADC mask : nncc cccm mmmm mmmm mmmm mmmm mmmm 1100
728 // n : unused , c : ADC count, m : selected ADCs
dfd03fc3 729 if( rawVer >= 3 ) {
730 x = 0;
ce4786b9 731 for( Int_t iAdc = 0 ; iAdc < fgkNADC ; iAdc++ ) {
732 if( ~fZSMap[iAdc] != 0 ) { // 0 means not suppressed
b0a41e80 733 x = x | (1 << (iAdc+4) ); // last 4 digit reserved for 1100=0xc
734 nActiveADC++; // number of 1 in mmm....m
dfd03fc3 735 }
736 }
b0a41e80 737 x = x | (1 << 30) | ( ( 0x3FFFFFFC ) & (~(nActiveADC) << 25) ) | 0xC; // nn = 01, ccccc are inverted, 0xc=1100
b0a41e80 738
ce4786b9 739 if (nw < bufSize) {
dfd03fc3 740 buf[nw++] = x;
741 }
742 else {
743 of++;
744 }
745 }
746
747 // Produce ADC data. 3 timebins are packed into one 32 bits word
748 // In this version, different ADC channel will NOT share the same word
749
750 UInt_t aa=0, a1=0, a2=0, a3=0;
751
752 for (Int_t iAdc = 0; iAdc < 21; iAdc++ ) {
ce4786b9 753 if( rawVer>= 3 && ~fZSMap[iAdc] == 0 ) continue; // Zero Suppression, 0 means not suppressed
dfd03fc3 754 aa = !(iAdc & 1) + 2;
755 for (Int_t iT = 0; iT < fNTimeBin; iT+=3 ) {
b0a41e80 756 a1 = ((iT ) < fNTimeBin ) ? adc[iAdc][iT ] >> fgkAddDigits : 0;
757 a2 = ((iT + 1) < fNTimeBin ) ? adc[iAdc][iT+1] >> fgkAddDigits : 0;
758 a3 = ((iT + 2) < fNTimeBin ) ? adc[iAdc][iT+2] >> fgkAddDigits : 0;
ecf39416 759 x = (a3 << 22) | (a2 << 12) | (a1 << 2) | aa;
ce4786b9 760 if (nw < bufSize) {
b0a41e80 761 buf[nw++] = x;
ecf39416 762 }
763 else {
b0a41e80 764 of++;
ecf39416 765 }
dfd03fc3 766 }
767 }
768
769 if( of != 0 ) return -of; else return nw;
770}
771
ce4786b9 772Int_t AliTRDmcmSim::ProduceTrackletStream( UInt_t *buf, Int_t bufSize )
987ba9a3 773{
774 //
b0a41e80 775 // Produce tracklet data stream from this MCM and put in buf
987ba9a3 776 // Returns number of words filled, or negative value
777 // with -1 * number of overflowed words
778 //
779
ce4786b9 780 if( !CheckInitialized() )
781 return 0;
782
987ba9a3 783 Int_t nw = 0; // Number of written words
784 Int_t of = 0; // Number of overflowed words
b0a41e80 785
b0a41e80 786 // Produce tracklet data. A maximum of four 32 Bit words will be written per MCM
787 // fMCMT is filled continuously until no more tracklet words available
987ba9a3 788
f793c83d 789 for (Int_t iTracklet = 0; iTracklet < fTrackletArray->GetEntriesFast(); iTracklet++) {
ce4786b9 790 if (nw < bufSize)
f793c83d 791 buf[nw++] = ((AliTRDtrackletMCM*) (*fTrackletArray)[iTracklet])->GetTrackletWord();
792 else
793 of++;
987ba9a3 794 }
b0a41e80 795
796 if( of != 0 ) return -of; else return nw;
797}
987ba9a3 798
b0a41e80 799void AliTRDmcmSim::Filter()
800{
801 //
802 // Filter the raw ADC values. The active filter stages and their
803 // parameters are taken from AliTRDtrapConfig.
804 // The raw data is stored separate from the filtered data. Thus,
805 // it is possible to run the filters on a set of raw values
806 // sequentially for parameter tuning.
807 //
987ba9a3 808
ce4786b9 809 if( !CheckInitialized() )
b0a41e80 810 return;
987ba9a3 811
b0a41e80 812 // Apply filters sequentially. Bypass is handled by filters
813 // since counters and internal registers may be updated even
814 // if the filter is bypassed.
815 // The first filter takes the data from fADCR and
816 // outputs to fADCF.
817
818 // Non-linearity filter not implemented.
819 FilterPedestal();
820 FilterGain();
821 FilterTail();
822 // Crosstalk filter not implemented.
823}
987ba9a3 824
ce4786b9 825void AliTRDmcmSim::FilterPedestalInit(Int_t baseline)
b0a41e80 826{
827 // Initializes the pedestal filter assuming that the input has
828 // been constant for a long time (compared to the time constant).
987ba9a3 829
b0a41e80 830 UShort_t fptc = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPTC); // 0..3, 0 - fastest, 3 - slowest
987ba9a3 831
ce4786b9 832 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++)
833 fPedAcc[iAdc] = (baseline << 2) * (1 << fgkFPshifts[fptc]);
987ba9a3 834}
835
b0a41e80 836UShort_t AliTRDmcmSim::FilterPedestalNextSample(Int_t adc, Int_t timebin, UShort_t value)
1d93b218 837{
b0a41e80 838 // Returns the output of the pedestal filter given the input value.
839 // The output depends on the internal registers and, thus, the
840 // history of the filter.
1d93b218 841
b0a41e80 842 UShort_t fpnp = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPNP); // 0..511 -> 0..127.75, pedestal at the output
843 UShort_t fptc = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPTC); // 0..3, 0 - fastest, 3 - slowest
ce4786b9 844 UShort_t fpby = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPBY); // 0..1 bypass, active low
1d93b218 845
b0a41e80 846 UShort_t accumulatorShifted;
847 Int_t correction;
848 UShort_t inpAdd;
849
850 inpAdd = value + fpnp;
1d93b218 851
ce4786b9 852 accumulatorShifted = (fPedAcc[adc] >> fgkFPshifts[fptc]) & 0x3FF; // 10 bits
b0a41e80 853 if (timebin == 0) // the accumulator is disabled in the drift time
854 {
855 correction = (value & 0x3FF) - accumulatorShifted;
856 fPedAcc[adc] = (fPedAcc[adc] + correction) & 0x7FFFFFFF; // 31 bits
1d93b218 857 }
858
ce4786b9 859 if (fpby == 0)
860 return value;
861
b0a41e80 862 if (inpAdd <= accumulatorShifted)
863 return 0;
864 else
865 {
866 inpAdd = inpAdd - accumulatorShifted;
867 if (inpAdd > 0xFFF)
868 return 0xFFF;
869 else
870 return inpAdd;
871 }
1d93b218 872}
873
b0a41e80 874void AliTRDmcmSim::FilterPedestal()
dfd03fc3 875{
0c349049 876 //
b0a41e80 877 // Apply pedestal filter
0c349049 878 //
b0a41e80 879 // As the first filter in the chain it reads data from fADCR
880 // and outputs to fADCF.
881 // It has only an effect if previous samples have been fed to
882 // find the pedestal. Currently, the simulation assumes that
883 // the input has been stable for a sufficiently long time.
dfd03fc3 884
b0a41e80 885 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 886 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
b0a41e80 887 fADCF[iAdc][iTimeBin] = FilterPedestalNextSample(iAdc, iTimeBin, fADCR[iAdc][iTimeBin]);
dfd03fc3 888 }
889 }
b0a41e80 890}
891
892void AliTRDmcmSim::FilterGainInit()
893{
894 // Initializes the gain filter. In this case, only threshold
895 // counters are reset.
dfd03fc3 896
ce4786b9 897 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
b0a41e80 898 // these are counters which in hardware continue
899 // until maximum or reset
900 fGainCounterA[iAdc] = 0;
901 fGainCounterB[iAdc] = 0;
902 }
dfd03fc3 903}
904
b0a41e80 905UShort_t AliTRDmcmSim::FilterGainNextSample(Int_t adc, UShort_t value)
dfd03fc3 906{
b0a41e80 907 // Apply the gain filter to the given value.
908 // BEGIN_LATEX O_{i}(t) = #gamma_{i} * I_{i}(t) + a_{i} END_LATEX
909 // The output depends on the internal registers and, thus, the
910 // history of the filter.
23200400 911
b0a41e80 912 UShort_t fgby = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFGBY); // bypass, active low
913 UShort_t fgf = fTrapConfig->GetTrapReg(AliTRDtrapConfig::TrapReg_t(AliTRDtrapConfig::kFGF0 + adc)); // 0x700 + (0 & 0x1ff);
914 UShort_t fga = fTrapConfig->GetTrapReg(AliTRDtrapConfig::TrapReg_t(AliTRDtrapConfig::kFGA0 + adc)); // 40;
915 UShort_t fgta = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFGTA); // 20;
916 UShort_t fgtb = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFGTB); // 2060;
dfd03fc3 917
ce4786b9 918 UInt_t corr; // corrected value
dfd03fc3 919
b0a41e80 920 value &= 0xFFF;
ce4786b9 921 corr = (value * fgf) >> 11;
922 corr = corr > 0xfff ? 0xfff : corr;
923 corr = AddUintClipping(corr, fga, 12);
b0a41e80 924
925 // Update threshold counters
926 // not really useful as they are cleared with every new event
ce4786b9 927 if (!((fGainCounterA[adc] == 0x3FFFFFF) || (fGainCounterB[adc] == 0x3FFFFFF)))
928 // stop when full
b0a41e80 929 {
ce4786b9 930 if (corr >= fgtb)
b0a41e80 931 fGainCounterB[adc]++;
ce4786b9 932 else if (corr >= fgta)
b0a41e80 933 fGainCounterA[adc]++;
dfd03fc3 934 }
b0a41e80 935
ce4786b9 936 if (fgby == 1)
937 return corr;
938 else
939 return value;
dfd03fc3 940}
941
dfd03fc3 942void AliTRDmcmSim::FilterGain()
943{
b0a41e80 944 // Read data from fADCF and apply gain filter.
0c349049 945
ce4786b9 946 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
b0a41e80 947 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
948 fADCF[iAdc][iTimeBin] = FilterGainNextSample(iAdc, fADCF[iAdc][iTimeBin]);
949 }
950 }
dfd03fc3 951}
952
b0a41e80 953void AliTRDmcmSim::FilterTailInit(Int_t baseline)
dfd03fc3 954{
b0a41e80 955 // Initializes the tail filter assuming that the input has
956 // been at the baseline value (configured by FTFP) for a
957 // sufficiently long time.
958
959 // exponents and weight calculated from configuration
960 UShort_t alphaLong = 0x3ff & fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFTAL); // the weight of the long component
961 UShort_t lambdaLong = (1 << 10) | (1 << 9) | (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFTLL) & 0x1FF); // the multiplier
962 UShort_t lambdaShort = (0 << 10) | (1 << 9) | (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFTLS) & 0x1FF); // the multiplier
963
964 Float_t lambdaL = lambdaLong * 1.0 / (1 << 11);
965 Float_t lambdaS = lambdaShort * 1.0 / (1 << 11);
966 Float_t alphaL = alphaLong * 1.0 / (1 << 11);
967 Float_t qup, qdn;
968 qup = (1 - lambdaL) * (1 - lambdaS);
969 qdn = 1 - lambdaS * alphaL - lambdaL * (1 - alphaL);
970 Float_t kdc = qup/qdn;
971
972 Float_t kt, ql, qs;
973 UShort_t aout;
ce4786b9 974
975 if (baseline < 0)
976 baseline = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFPNP);
b0a41e80 977
b0a41e80 978 ql = lambdaL * (1 - lambdaS) * alphaL;
979 qs = lambdaS * (1 - lambdaL) * (1 - alphaL);
980
ce4786b9 981 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
982 Int_t value = baseline & 0xFFF;
983 Int_t corr = (value * fTrapConfig->GetTrapReg(AliTRDtrapConfig::TrapReg_t(AliTRDtrapConfig::kFGF0 + iAdc))) >> 11;
984 corr = corr > 0xfff ? 0xfff : corr;
985 corr = AddUintClipping(corr, fTrapConfig->GetTrapReg(AliTRDtrapConfig::TrapReg_t(AliTRDtrapConfig::kFGA0 + iAdc)), 12);
986
987 kt = kdc * baseline;
988 aout = baseline - (UShort_t) kt;
989
b0a41e80 990 fTailAmplLong[iAdc] = (UShort_t) (aout * ql / (ql + qs));
991 fTailAmplShort[iAdc] = (UShort_t) (aout * qs / (ql + qs));
992 }
993}
dfd03fc3 994
b0a41e80 995UShort_t AliTRDmcmSim::FilterTailNextSample(Int_t adc, UShort_t value)
996{
997 // Returns the output of the tail filter for the given input value.
998 // The output depends on the internal registers and, thus, the
999 // history of the filter.
1000
1001 // exponents and weight calculated from configuration
ce4786b9 1002 UShort_t alphaLong = 0x3ff & fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFTAL); // the weight of the long component
1003 UShort_t lambdaLong = (1 << 10) | (1 << 9) | (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFTLL) & 0x1FF); // the multiplier of the long component
1004 UShort_t lambdaShort = (0 << 10) | (1 << 9) | (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFTLS) & 0x1FF); // the multiplier of the short component
b0a41e80 1005
ce4786b9 1006 // intermediate signals
1007 UInt_t aDiff;
1008 UInt_t alInpv;
b0a41e80 1009 UShort_t aQ;
ce4786b9 1010 UInt_t tmp;
b0a41e80 1011
ab9f7002 1012 UShort_t inpVolt = value & 0xFFF; // 12 bits
b0a41e80 1013
ce4786b9 1014 // add the present generator outputs
1015 aQ = AddUintClipping(fTailAmplLong[adc], fTailAmplShort[adc], 12);
1016
1017 // calculate the difference between the input and the generated signal
1018 if (inpVolt > aQ)
1019 aDiff = inpVolt - aQ;
1020 else
1021 aDiff = 0;
1022
1023 // the inputs to the two generators, weighted
1024 alInpv = (aDiff * alphaLong) >> 11;
1025
1026 // the new values of the registers, used next time
1027 // long component
1028 tmp = AddUintClipping(fTailAmplLong[adc], alInpv, 12);
1029 tmp = (tmp * lambdaLong) >> 11;
1030 fTailAmplLong[adc] = tmp & 0xFFF;
1031 // short component
1032 tmp = AddUintClipping(fTailAmplShort[adc], aDiff - alInpv, 12);
1033 tmp = (tmp * lambdaShort) >> 11;
1034 fTailAmplShort[adc] = tmp & 0xFFF;
1035
1036 // the output of the filter
b0a41e80 1037 if (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kFTBY) == 0) // bypass mode, active low
1038 return value;
1039 else
b0a41e80 1040 return aDiff;
b0a41e80 1041}
dfd03fc3 1042
b0a41e80 1043void AliTRDmcmSim::FilterTail()
1044{
ce4786b9 1045 // Apply tail cancellation filter to all data.
dfd03fc3 1046
b0a41e80 1047 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 1048 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
b0a41e80 1049 fADCF[iAdc][iTimeBin] = FilterTailNextSample(iAdc, fADCF[iAdc][iTimeBin]);
dfd03fc3 1050 }
dfd03fc3 1051 }
dfd03fc3 1052}
1053
dfd03fc3 1054void AliTRDmcmSim::ZSMapping()
1055{
0c349049 1056 //
dfd03fc3 1057 // Zero Suppression Mapping implemented in TRAP chip
ce4786b9 1058 // only implemented for up to 30 timebins
dfd03fc3 1059 //
1060 // See detail TRAP manual "Data Indication" section:
1061 // http://www.kip.uni-heidelberg.de/ti/TRD/doc/trap/TRAP-UserManual.pdf
0c349049 1062 //
dfd03fc3 1063
ce4786b9 1064 if( !CheckInitialized() )
1065 return;
1066
1067 Int_t eBIS = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kEBIS);
1068 Int_t eBIT = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kEBIT);
1069 Int_t eBIL = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kEBIL);
1070 Int_t eBIN = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kEBIN);
ecf39416 1071
b0a41e80 1072 Int_t **adc = fADCF;
dfd03fc3 1073
ce4786b9 1074 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++)
1075 fZSMap[iAdc] = -1;
b0a41e80 1076
1077 for( Int_t it = 0 ; it < fNTimeBin ; it++ ) {
ce4786b9 1078 Int_t iAdc; // current ADC channel
1079 Int_t ap;
1080 Int_t ac;
1081 Int_t an;
1082 Int_t mask;
1083 Int_t supp; // suppression of the current channel (low active)
1084
1085 // ----- first channel -----
1086 iAdc = 0;
1087
1088 ap = 0; // previous
1089 ac = adc[iAdc ][it]; // current
1090 an = adc[iAdc+1][it]; // next
1091
1092 mask = ( ac >= ap && ac >= an ) ? 0 : 0x1; // peak center detection
1093 mask += ( ap + ac + an > eBIT ) ? 0 : 0x2; // cluster
1094 mask += ( ac > eBIS ) ? 0 : 0x4; // absolute large peak
1095
1096 supp = (eBIL >> mask) & 1;
1097
1098 fZSMap[iAdc] &= ~((1-supp) << it);
1099 if( eBIN == 0 ) { // neighbour sensitivity
1100 fZSMap[iAdc+1] &= ~((1-supp) << it);
dfd03fc3 1101 }
ce4786b9 1102
1103 // ----- last channel -----
1104 iAdc = fgkNADC - 1;
1105
1106 ap = adc[iAdc-1][it]; // previous
1107 ac = adc[iAdc ][it]; // current
1108 an = 0; // next
1109
1110 mask = ( ac >= ap && ac >= an ) ? 0 : 0x1; // peak center detection
1111 mask += ( ap + ac + an > eBIT ) ? 0 : 0x2; // cluster
1112 mask += ( ac > eBIS ) ? 0 : 0x4; // absolute large peak
1113
1114 supp = (eBIL >> mask) & 1;
1115
1116 fZSMap[iAdc] &= ~((1-supp) << it);
1117 if( eBIN == 0 ) { // neighbour sensitivity
1118 fZSMap[iAdc-1] &= ~((1-supp) << it);
ecf39416 1119 }
ce4786b9 1120
1121 // ----- middle channels -----
1122 for( iAdc = 1 ; iAdc < fgkNADC-1; iAdc++ ) {
1123 ap = adc[iAdc-1][it]; // previous
1124 ac = adc[iAdc ][it]; // current
1125 an = adc[iAdc+1][it]; // next
1126
1127 mask = ( ac >= ap && ac >= an ) ? 0 : 0x1; // peak center detection
1128 mask += ( ap + ac + an > eBIT ) ? 0 : 0x2; // cluster
1129 mask += ( ac > eBIS ) ? 0 : 0x4; // absolute large peak
1130
1131 supp = (eBIL >> mask) & 1;
1132
1133 fZSMap[iAdc] &= ~((1-supp) << it);
1134 if( eBIN == 0 ) { // neighbour sensitivity
1135 fZSMap[iAdc-1] &= ~((1-supp) << it);
1136 fZSMap[iAdc+1] &= ~((1-supp) << it);
ecf39416 1137 }
dfd03fc3 1138 }
ce4786b9 1139
dfd03fc3 1140 }
1141}
1142
b0a41e80 1143void AliTRDmcmSim::AddHitToFitreg(Int_t adc, UShort_t timebin, UShort_t qtot, Short_t ypos, Int_t label)
dfd03fc3 1144{
b0a41e80 1145 // Add the given hit to the fit register which is lateron used for
1146 // the tracklet calculation.
1147 // In addition to the fit sums in the fit register MC information
1148 // is stored.
1149
1150 if ((timebin >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQS0)) &&
1151 (timebin < fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQE0)))
ab9f7002 1152 fFitReg[adc].fQ0 += qtot;
b0a41e80 1153
1154 if ((timebin >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQS1)) &&
1155 (timebin < fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQE1)))
ab9f7002 1156 fFitReg[adc].fQ1 += qtot;
b0a41e80 1157
1158 if ((timebin >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFS) ) &&
1159 (timebin < fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFE)))
1160 {
ab9f7002 1161 fFitReg[adc].fSumX += timebin;
1162 fFitReg[adc].fSumX2 += timebin*timebin;
1163 fFitReg[adc].fNhits++;
1164 fFitReg[adc].fSumY += ypos;
1165 fFitReg[adc].fSumY2 += ypos*ypos;
1166 fFitReg[adc].fSumXY += timebin*ypos;
b0a41e80 1167 }
1168
1169 // register hits (MC info)
ab9f7002 1170 fHits[fNHits].fChannel = adc;
1171 fHits[fNHits].fQtot = qtot;
1172 fHits[fNHits].fYpos = ypos;
1173 fHits[fNHits].fTimebin = timebin;
1174 fHits[fNHits].fLabel = label;
b0a41e80 1175 fNHits++;
1176}
dfd03fc3 1177
b0a41e80 1178void AliTRDmcmSim::CalcFitreg()
1179{
1180 // Preprocessing.
1181 // Detect the hits and fill the fit registers.
1182 // Requires 12-bit data from fADCF which means Filter()
1183 // has to be called before even if all filters are bypassed.
1184
b0a41e80 1185 //??? to be clarified:
64e3d742 1186 UInt_t adcMask = 0xffffffff;
b0a41e80 1187
ab9f7002 1188 UShort_t timebin, adcch, adcLeft, adcCentral, adcRight, hitQual, timebin1, timebin2, qtotTemp;
b0a41e80 1189 Short_t ypos, fromLeft, fromRight, found;
ab9f7002 1190 UShort_t qTotal[19]; // the last is dummy
1191 UShort_t marked[6], qMarked[6], worse1, worse2;
b0a41e80 1192
1193 timebin1 = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFS);
1194 if (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQS0)
1195 < timebin1)
1196 timebin1 = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQS0);
1197 timebin2 = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFE);
1198 if (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQE1)
1199 > timebin2)
1200 timebin2 = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQE1);
1201
1202 // reset the fit registers
1203 fNHits = 0;
ce4786b9 1204 for (adcch = 0; adcch < fgkNADC-2; adcch++) // due to border channels
b0a41e80 1205 {
ab9f7002 1206 fFitReg[adcch].fNhits = 0;
1207 fFitReg[adcch].fQ0 = 0;
1208 fFitReg[adcch].fQ1 = 0;
1209 fFitReg[adcch].fSumX = 0;
1210 fFitReg[adcch].fSumY = 0;
1211 fFitReg[adcch].fSumX2 = 0;
1212 fFitReg[adcch].fSumY2 = 0;
1213 fFitReg[adcch].fSumXY = 0;
b0a41e80 1214 }
1215
1216 for (timebin = timebin1; timebin < timebin2; timebin++)
1217 {
ab9f7002 1218 // first find the hit candidates and store the total cluster charge in qTotal array
b0a41e80 1219 // in case of not hit store 0 there.
ce4786b9 1220 for (adcch = 0; adcch < fgkNADC-2; adcch++) {
ab9f7002 1221 if ( ( (adcMask >> adcch) & 7) == 7) //??? all 3 channels are present in case of ZS
b0a41e80 1222 {
ab9f7002 1223 adcLeft = fADCF[adcch ][timebin];
1224 adcCentral = fADCF[adcch+1][timebin];
1225 adcRight = fADCF[adcch+2][timebin];
b0a41e80 1226 if (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPVBY) == 1)
ab9f7002 1227 hitQual = ( (adcLeft * adcRight) <
1228 (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPVT) * adcCentral) );
b0a41e80 1229 else
ab9f7002 1230 hitQual = 1;
b0a41e80 1231 // The accumulated charge is with the pedestal!!!
ab9f7002 1232 qtotTemp = adcLeft + adcCentral + adcRight;
1233 if ( (hitQual) &&
1234 (qtotTemp >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPHT)) &&
1235 (adcLeft <= adcCentral) &&
1236 (adcCentral > adcRight) )
1237 qTotal[adcch] = qtotTemp;
b0a41e80 1238 else
ab9f7002 1239 qTotal[adcch] = 0;
b0a41e80 1240 }
1241 else
ab9f7002 1242 qTotal[adcch] = 0; //jkl
ce4786b9 1243 if (qTotal[adcch] != 0)
1244 AliDebug(10,Form("ch %2d qTotal %5d",adcch, qTotal[adcch]));
b0a41e80 1245 }
dfd03fc3 1246
b0a41e80 1247 fromLeft = -1;
1248 adcch = 0;
1249 found = 0;
1250 marked[4] = 19; // invalid channel
1251 marked[5] = 19; // invalid channel
ab9f7002 1252 qTotal[19] = 0;
b0a41e80 1253 while ((adcch < 16) && (found < 3))
1254 {
ab9f7002 1255 if (qTotal[adcch] > 0)
b0a41e80 1256 {
1257 fromLeft = adcch;
1258 marked[2*found+1]=adcch;
1259 found++;
1260 }
1261 adcch++;
1262 }
dfd03fc3 1263
b0a41e80 1264 fromRight = -1;
1265 adcch = 18;
1266 found = 0;
1267 while ((adcch > 2) && (found < 3))
1268 {
ab9f7002 1269 if (qTotal[adcch] > 0)
b0a41e80 1270 {
1271 marked[2*found]=adcch;
1272 found++;
1273 fromRight = adcch;
1274 }
1275 adcch--;
1276 }
dfd03fc3 1277
4ff7ed2b 1278 AliDebug(10,Form("Fromleft=%d, Fromright=%d",fromLeft, fromRight));
b0a41e80 1279 // here mask the hit candidates in the middle, if any
1280 if ((fromLeft >= 0) && (fromRight >= 0) && (fromLeft < fromRight))
1281 for (adcch = fromLeft+1; adcch < fromRight; adcch++)
ab9f7002 1282 qTotal[adcch] = 0;
dfd03fc3 1283
b0a41e80 1284 found = 0;
1285 for (adcch = 0; adcch < 19; adcch++)
ab9f7002 1286 if (qTotal[adcch] > 0) found++;
b0a41e80 1287 // NOT READY
1288
1289 if (found > 4) // sorting like in the TRAP in case of 5 or 6 candidates!
1290 {
1291 if (marked[4] == marked[5]) marked[5] = 19;
1292 for (found=0; found<6; found++)
1293 {
ab9f7002 1294 qMarked[found] = qTotal[marked[found]] >> 4;
4ff7ed2b 1295 AliDebug(10,Form("ch_%d qTotal %d qTotals %d",marked[found],qTotal[marked[found]],qMarked[found]));
b0a41e80 1296 }
dfd03fc3 1297
b0a41e80 1298 Sort6To2Worst(marked[0], marked[3], marked[4], marked[1], marked[2], marked[5],
ab9f7002 1299 qMarked[0],
1300 qMarked[3],
1301 qMarked[4],
1302 qMarked[1],
1303 qMarked[2],
1304 qMarked[5],
b0a41e80 1305 &worse1, &worse2);
1306 // Now mask the two channels with the smallest charge
1307 if (worse1 < 19)
1308 {
ab9f7002 1309 qTotal[worse1] = 0;
4ff7ed2b 1310 AliDebug(10,Form("Kill ch %d\n",worse1));
b0a41e80 1311 }
1312 if (worse2 < 19)
1313 {
ab9f7002 1314 qTotal[worse2] = 0;
4ff7ed2b 1315 AliDebug(10,Form("Kill ch %d\n",worse2));
b0a41e80 1316 }
1317 }
1318
1319 for (adcch = 0; adcch < 19; adcch++) {
ab9f7002 1320 if (qTotal[adcch] > 0) // the channel is marked for processing
b0a41e80 1321 {
ab9f7002 1322 adcLeft = fADCF[adcch ][timebin];
1323 adcCentral = fADCF[adcch+1][timebin];
1324 adcRight = fADCF[adcch+2][timebin];
b0a41e80 1325 // hit detected, in TRAP we have 4 units and a hit-selection, here we proceed all channels!
1326 // subtract the pedestal TPFP, clipping instead of wrapping
1327
ab9f7002 1328 Int_t regTPFP = fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPFP);
4ff7ed2b 1329 AliDebug(10, Form("Hit found, time=%d, adcch=%d/%d/%d, adc values=%d/%d/%d, regTPFP=%d, TPHT=%d\n",
1330 timebin, adcch, adcch+1, adcch+2, adcLeft, adcCentral, adcRight, regTPFP,
1331 fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPHT)));
b0a41e80 1332
ab9f7002 1333 if (adcLeft < regTPFP) adcLeft = 0; else adcLeft -= regTPFP;
1334 if (adcCentral < regTPFP) adcCentral = 0; else adcCentral -= regTPFP;
1335 if (adcRight < regTPFP) adcRight = 0; else adcRight -= regTPFP;
f793c83d 1336
b0a41e80 1337 // Calculate the center of gravity
f793c83d 1338 // checking for adcCentral != 0 (in case of "bad" configuration)
1339 if (adcCentral == 0)
1340 continue;
ab9f7002 1341 ypos = 128*(adcLeft - adcRight) / adcCentral;
b0a41e80 1342 if (ypos < 0) ypos = -ypos;
ce4786b9 1343 // make the correction using the position LUT
1344 ypos = ypos + fTrapConfig->GetTrapReg((AliTRDtrapConfig::TrapReg_t) (AliTRDtrapConfig::kTPL00 + (ypos & 0x7F)));
ab9f7002 1345 if (adcLeft > adcRight) ypos = -ypos;
40bd6ee4 1346
1347 // label calculation
1348 Int_t mcLabel = -1;
1349 if (fDigitsManager) {
1350 Int_t label[9] = { 0 }; // up to 9 different labels possible
1351 Int_t count[9] = { 0 };
1352 Int_t maxIdx = -1;
1353 Int_t maxCount = 0;
1354 Int_t nLabels = 0;
1355 Int_t padcol[3];
1356 padcol[0] = fFeeParam->GetPadColFromADC(fRobPos, fMcmPos, adcch);
1357 padcol[1] = fFeeParam->GetPadColFromADC(fRobPos, fMcmPos, adcch+1);
1358 padcol[2] = fFeeParam->GetPadColFromADC(fRobPos, fMcmPos, adcch+2);
1359 Int_t padrow = fFeeParam->GetPadRowFromMCM(fRobPos, fMcmPos);
1360 for (Int_t iDict = 0; iDict < 3; iDict++) {
ce4786b9 1361 if (!fDict[iDict])
40bd6ee4 1362 continue;
40bd6ee4 1363 for (Int_t iPad = 0; iPad < 3; iPad++) {
1364 if (padcol[iPad] < 0)
1365 continue;
ce4786b9 1366 Int_t currLabel = fDict[iDict]->GetData(padrow, padcol[iPad], timebin); //fDigitsManager->GetTrack(iDict, padrow, padcol, timebin, fDetector);
4ff7ed2b 1367 AliDebug(10, Form("Read label: %4i for det: %3i, row: %i, col: %i, tb: %i\n", currLabel, fDetector, padrow, padcol[iPad], timebin));
40bd6ee4 1368 for (Int_t iLabel = 0; iLabel < nLabels; iLabel++) {
1369 if (currLabel == label[iLabel]) {
1370 count[iLabel]++;
1371 if (count[iLabel] > maxCount) {
1372 maxCount = count[iLabel];
1373 maxIdx = iLabel;
1374 }
ce51199c 1375 currLabel = -1;
40bd6ee4 1376 break;
1377 }
1378 }
ce51199c 1379 if (currLabel >= 0) {
40bd6ee4 1380 label[nLabels++] = currLabel;
1381 }
1382 }
1383 }
1384 if (maxIdx >= 0)
1385 mcLabel = label[maxIdx];
1386 }
1387
1388 // add the hit to the fitregister
1389 AddHitToFitreg(adcch, timebin, qTotal[adcch], ypos, mcLabel);
b0a41e80 1390 }
dfd03fc3 1391 }
1392 }
ce4786b9 1393
1394 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
1395 if (fFitReg[iAdc].fNhits != 0) {
1396 AliDebug(2, Form("fitreg[%i]: nHits = %i, sumX = %i, sumY = %i, sumX2 = %i, sumY2 = %i, sumXY = %i", iAdc,
1397 fFitReg[iAdc].fNhits,
1398 fFitReg[iAdc].fSumX,
1399 fFitReg[iAdc].fSumY,
1400 fFitReg[iAdc].fSumX2,
1401 fFitReg[iAdc].fSumY2,
1402 fFitReg[iAdc].fSumXY
1403 ));
1404 }
1405 }
dfd03fc3 1406}
1407
b0a41e80 1408void AliTRDmcmSim::TrackletSelection()
dfd03fc3 1409{
b0a41e80 1410 // Select up to 4 tracklet candidates from the fit registers
1411 // and assign them to the CPUs.
1412
ab9f7002 1413 UShort_t adcIdx, i, j, ntracks, tmp;
1414 UShort_t trackletCand[18][2]; // store the adcch[0] and number of hits[1] for all tracklet candidates
b0a41e80 1415
1416 ntracks = 0;
ab9f7002 1417 for (adcIdx = 0; adcIdx < 18; adcIdx++) // ADCs
1418 if ( (fFitReg[adcIdx].fNhits
b0a41e80 1419 >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPCL)) &&
ab9f7002 1420 (fFitReg[adcIdx].fNhits+fFitReg[adcIdx+1].fNhits
b0a41e80 1421 >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPCT)))
1422 {
ab9f7002 1423 trackletCand[ntracks][0] = adcIdx;
1424 trackletCand[ntracks][1] = fFitReg[adcIdx].fNhits+fFitReg[adcIdx+1].fNhits;
4ff7ed2b 1425 AliDebug(10,Form("%d %2d %4d\n", ntracks, trackletCand[ntracks][0], trackletCand[ntracks][1]));
b0a41e80 1426 ntracks++;
1427 };
1428
4ff7ed2b 1429 for (i=0; i<ntracks;i++)
1430 AliDebug(10,Form("%d %d %d\n",i,trackletCand[i][0], trackletCand[i][1]));
b0a41e80 1431
1432 if (ntracks > 4)
1433 {
1434 // primitive sorting according to the number of hits
1435 for (j = 0; j < (ntracks-1); j++)
1436 {
1437 for (i = j+1; i < ntracks; i++)
1438 {
ab9f7002 1439 if ( (trackletCand[j][1] < trackletCand[i][1]) ||
1440 ( (trackletCand[j][1] == trackletCand[i][1]) && (trackletCand[j][0] < trackletCand[i][0]) ) )
b0a41e80 1441 {
1442 // swap j & i
ab9f7002 1443 tmp = trackletCand[j][1];
1444 trackletCand[j][1] = trackletCand[i][1];
1445 trackletCand[i][1] = tmp;
1446 tmp = trackletCand[j][0];
1447 trackletCand[j][0] = trackletCand[i][0];
1448 trackletCand[i][0] = tmp;
b0a41e80 1449 }
1450 }
1451 }
1452 ntracks = 4; // cut the rest, 4 is the max
dfd03fc3 1453 }
b0a41e80 1454 // else is not necessary to sort
dfd03fc3 1455
b0a41e80 1456 // now sort, so that the first tracklet going to CPU0 corresponds to the highest adc channel - as in the TRAP
1457 for (j = 0; j < (ntracks-1); j++)
1458 {
1459 for (i = j+1; i < ntracks; i++)
1460 {
ab9f7002 1461 if (trackletCand[j][0] < trackletCand[i][0])
b0a41e80 1462 {
1463 // swap j & i
ab9f7002 1464 tmp = trackletCand[j][1];
1465 trackletCand[j][1] = trackletCand[i][1];
1466 trackletCand[i][1] = tmp;
1467 tmp = trackletCand[j][0];
1468 trackletCand[j][0] = trackletCand[i][0];
1469 trackletCand[i][0] = tmp;
b0a41e80 1470 }
dfd03fc3 1471 }
b0a41e80 1472 }
1473 for (i = 0; i < ntracks; i++) // CPUs with tracklets.
ab9f7002 1474 fFitPtr[i] = trackletCand[i][0]; // pointer to the left channel with tracklet for CPU[i]
b0a41e80 1475 for (i = ntracks; i < 4; i++) // CPUs without tracklets
1476 fFitPtr[i] = 31; // pointer to the left channel with tracklet for CPU[i] = 31 (invalid)
4ff7ed2b 1477 AliDebug(10,Form("found %i tracklet candidates\n", ntracks));
1478 for (i = 0; i < 4; i++)
1479 AliDebug(10,Form("fitPtr[%i]: %i\n", i, fFitPtr[i]));
b0a41e80 1480}
dfd03fc3 1481
b0a41e80 1482void AliTRDmcmSim::FitTracklet()
1483{
1484 // Perform the actual tracklet fit based on the fit sums
1485 // which have been filled in the fit registers.
1486
1487 // parameters in fitred.asm (fit program)
1488 Int_t decPlaces = 5;
1489 Int_t rndAdd = 0;
1490 if (decPlaces > 1)
1491 rndAdd = (1 << (decPlaces-1)) + 1;
1492 else if (decPlaces == 1)
1493 rndAdd = 1;
4ff7ed2b 1494 Int_t ndriftDp = 5; // decimal places for drift time
1495 Long64_t shift = ((Long64_t) 1 << 32);
1496
4ff7ed2b 1497 // calculated in fitred.asm
1498 Int_t padrow = ((fRobPos >> 1) << 2) | (fMcmPos >> 2);
1499 Int_t yoffs = (((((fRobPos & 0x1) << 2) + (fMcmPos & 0x3)) * 18) << 8) -
1500 ((18*4*2 - 18*2 - 1) << 7);
1501 yoffs = yoffs << decPlaces; // holds position of ADC channel 1
1502 Int_t layer = fDetector % 6;
1503 UInt_t scaleY = (UInt_t) ((0.635 + 0.03 * layer)/(256.0 * 160.0e-4) * shift);
1504 UInt_t scaleD = (UInt_t) ((0.635 + 0.03 * layer)/(256.0 * 140.0e-4) * shift);
4ff7ed2b 1505
ce4786b9 1506 Int_t deflCorr = fTrapConfig->GetDmem(0xc022, fDetector, fRobPos, fMcmPos);
1507 Int_t ndrift = fTrapConfig->GetDmem(0xc025, fDetector, fRobPos, fMcmPos);
b0a41e80 1508
1509 // local variables for calculation
1510 Long64_t mult, temp, denom; //???
1511 UInt_t q0, q1, qTotal; // charges in the two windows and total charge
1512 UShort_t nHits; // number of hits
1513 Int_t slope, offset; // slope and offset of the tracklet
1514 Int_t sumX, sumY, sumXY, sumX2; // fit sums from fit registers
ce51199c 1515 Int_t sumY2; // not used in the current TRAP program, now used for error calculation (simulation only)
1516 Float_t fitError, fitSlope, fitOffset;
b0a41e80 1517 FitReg_t *fit0, *fit1; // pointers to relevant fit registers
1518
1519// const uint32_t OneDivN[32] = { // 2**31/N : exactly like in the TRAP, the simple division here gives the same result!
1520// 0x00000000, 0x80000000, 0x40000000, 0x2AAAAAA0, 0x20000000, 0x19999990, 0x15555550, 0x12492490,
1521// 0x10000000, 0x0E38E380, 0x0CCCCCC0, 0x0BA2E8B0, 0x0AAAAAA0, 0x09D89D80, 0x09249240, 0x08888880,
1522// 0x08000000, 0x07878780, 0x071C71C0, 0x06BCA1A0, 0x06666660, 0x06186180, 0x05D17450, 0x0590B210,
1523// 0x05555550, 0x051EB850, 0x04EC4EC0, 0x04BDA120, 0x04924920, 0x0469EE50, 0x04444440, 0x04210840};
1524
1525 for (Int_t cpu = 0; cpu < 4; cpu++) {
1526 if (fFitPtr[cpu] == 31)
1527 {
1528 fMCMT[cpu] = 0x10001000; //??? AliTRDfeeParam::GetTrackletEndmarker();
dfd03fc3 1529 }
b0a41e80 1530 else
1531 {
1532 fit0 = &fFitReg[fFitPtr[cpu] ];
1533 fit1 = &fFitReg[fFitPtr[cpu]+1]; // next channel
1534
1535 mult = 1;
1536 mult = mult << (32 + decPlaces);
1537 mult = -mult;
1538
1539 // Merging
ab9f7002 1540 nHits = fit0->fNhits + fit1->fNhits; // number of hits
1541 sumX = fit0->fSumX + fit1->fSumX;
1542 sumX2 = fit0->fSumX2 + fit1->fSumX2;
b0a41e80 1543 denom = nHits*sumX2 - sumX*sumX;
1544
1545 mult = mult / denom; // exactly like in the TRAP program
ab9f7002 1546 q0 = fit0->fQ0 + fit1->fQ0;
1547 q1 = fit0->fQ1 + fit1->fQ1;
1548 sumY = fit0->fSumY + fit1->fSumY + 256*fit1->fNhits;
1549 sumXY = fit0->fSumXY + fit1->fSumXY + 256*fit1->fSumX;
ce51199c 1550 sumY2 = fit0->fSumY2 + fit1->fSumY2 + 512*fit1->fSumY + 256*256*fit1->fNhits;
b0a41e80 1551
1552 slope = nHits*sumXY - sumX * sumY;
1553 offset = sumX2*sumY - sumX * sumXY;
1554 temp = mult * slope;
1555 slope = temp >> 32; // take the upper 32 bits
4ff7ed2b 1556 slope = -slope;
b0a41e80 1557 temp = mult * offset;
1558 offset = temp >> 32; // take the upper 32 bits
1559
4ff7ed2b 1560 offset = offset + yoffs;
ce4786b9 1561 AliDebug(10, Form("slope = %i, slope * ndrift = %i, deflCorr: %i",
1562 slope, slope * ndrift, deflCorr));
1563 slope = ((slope * ndrift) >> ndriftDp) + deflCorr;
b0a41e80 1564 offset = offset - (fFitPtr[cpu] << (8 + decPlaces));
1565
4ff7ed2b 1566 temp = slope;
1567 temp = temp * scaleD;
1568 slope = (temp >> 32);
4ff7ed2b 1569 temp = offset;
1570 temp = temp * scaleY;
1571 offset = (temp >> 32);
1572
1573 // rounding, like in the TRAP
1574 slope = (slope + rndAdd) >> decPlaces;
4ff7ed2b 1575 offset = (offset + rndAdd) >> decPlaces;
1576
ce4786b9 1577 AliDebug(5, Form("Det: %3i, ROB: %i, MCM: %2i: deflection: %i, min: %i, max: %i",
1578 fDetector, fRobPos, fMcmPos, slope,
1579 fTrapConfig->GetDmem(0xc030 + 2*fFitPtr[cpu], fDetector, fRobPos, fMcmPos),
1580 fTrapConfig->GetDmem(0xc031 + 2*fFitPtr[cpu], fDetector, fRobPos, fMcmPos)));
1581
ce51199c 1582 AliDebug(5, Form("Fit sums: x = %i, X = %i, y = %i, Y = %i, Z = %i",
1583 sumX, sumX2, sumY, sumY2, sumXY));
1584
1585 fitSlope = (Float_t) (nHits * sumXY - sumX * sumY) / (nHits * sumX2 - sumX*sumX);
1586
1587 fitOffset = (Float_t) (sumX2 * sumY - sumX * sumXY) / (nHits * sumX2 - sumX*sumX);
1588
1589 Float_t sx = (Float_t) sumX;
1590 Float_t sx2 = (Float_t) sumX2;
1591 Float_t sy = (Float_t) sumY;
1592 Float_t sy2 = (Float_t) sumY2;
1593 Float_t sxy = (Float_t) sumXY;
1594 fitError = sy2 - (sx2 * sy*sy - 2 * sx * sxy * sy + nHits * sxy*sxy) / (nHits * sx2 - sx*sx);
1595 //fitError = (Float_t) sumY2 - (Float_t) (sumY*sumY) / nHits - fitSlope * ((Float_t) (sumXY - sumX*sumY) / nHits);
1596
40bd6ee4 1597 Bool_t rejected = kFALSE;
ce4786b9 1598 // deflection range table from DMEM
1599 if ((slope < fTrapConfig->GetDmem(0xc030 + 2*fFitPtr[cpu], fDetector, fRobPos, fMcmPos)) ||
1600 (slope > fTrapConfig->GetDmem(0xc031 + 2*fFitPtr[cpu], fDetector, fRobPos, fMcmPos)))
40bd6ee4 1601 rejected = kTRUE;
4ff7ed2b 1602
1603 if (rejected && GetApplyCut())
b0a41e80 1604 {
1605 fMCMT[cpu] = 0x10001000; //??? AliTRDfeeParam::GetTrackletEndmarker();
1606 }
1607 else
1608 {
4ff7ed2b 1609 if (slope > 63 || slope < -64) { // wrapping in TRAP!
40bd6ee4 1610 AliError(Form("Overflow in slope: %i, tracklet discarded!", slope));
1611 fMCMT[cpu] = 0x10001000;
1612 continue;
1613 }
b0a41e80 1614
4ff7ed2b 1615 slope = slope & 0x7F; // 7 bit
1616
40bd6ee4 1617 if (offset > 0xfff || offset < -0xfff)
b0a41e80 1618 AliWarning("Overflow in offset");
1619 offset = offset & 0x1FFF; // 13 bit
1620
ce4786b9 1621 qTotal = 0; // set to zero as long as no reasonable PID calculation is available
1622 // before: GetPID(q0/length/fgChargeNorm, q1/length/fgChargeNorm);
4ff7ed2b 1623
b0a41e80 1624 if (qTotal > 0xff)
1625 AliWarning("Overflow in charge");
1626 qTotal = qTotal & 0xFF; // 8 bit, exactly like in the TRAP program
4ff7ed2b 1627
b0a41e80 1628 // assemble and store the tracklet word
1629 fMCMT[cpu] = (qTotal << 24) | (padrow << 20) | (slope << 13) | offset;
40bd6ee4 1630
1631 // calculate MC label
1632 Int_t mcLabel = -1;
4ff7ed2b 1633 Int_t nHits0 = 0;
1634 Int_t nHits1 = 0;
40bd6ee4 1635 if (fDigitsManager) {
1636 Int_t label[30] = {0}; // up to 30 different labels possible
1637 Int_t count[30] = {0};
1638 Int_t maxIdx = -1;
1639 Int_t maxCount = 0;
1640 Int_t nLabels = 0;
1641 for (Int_t iHit = 0; iHit < fNHits; iHit++) {
1642 if ((fHits[iHit].fChannel - fFitPtr[cpu] < 0) ||
1643 (fHits[iHit].fChannel - fFitPtr[cpu] > 1))
1644 continue;
4ff7ed2b 1645
1646 // counting contributing hits
1647 if (fHits[iHit].fTimebin >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQS0) &&
1648 fHits[iHit].fTimebin < fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQE0))
1649 nHits0++;
1650 if (fHits[iHit].fTimebin >= fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQS1) &&
1651 fHits[iHit].fTimebin < fTrapConfig->GetTrapReg(AliTRDtrapConfig::kTPQE1))
1652 nHits1++;
1653
40bd6ee4 1654 Int_t currLabel = fHits[iHit].fLabel;
1655 for (Int_t iLabel = 0; iLabel < nLabels; iLabel++) {
1656 if (currLabel == label[iLabel]) {
1657 count[iLabel]++;
1658 if (count[iLabel] > maxCount) {
1659 maxCount = count[iLabel];
1660 maxIdx = iLabel;
1661 }
ce51199c 1662 currLabel = -1;
40bd6ee4 1663 break;
1664 }
1665 }
ce51199c 1666 if (currLabel >= 0) {
40bd6ee4 1667 label[nLabels++] = currLabel;
1668 }
1669 }
1670 if (maxIdx >= 0)
1671 mcLabel = label[maxIdx];
1672 }
f793c83d 1673 new ((*fTrackletArray)[fTrackletArray->GetEntriesFast()]) AliTRDtrackletMCM((UInt_t) fMCMT[cpu], fDetector*2 + fRobPos%2, fRobPos, fMcmPos);
40bd6ee4 1674 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetLabel(mcLabel);
4ff7ed2b 1675
1676
1677 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetNHits(fit0->fNhits + fit1->fNhits);
1678 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetNHits0(nHits0);
1679 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetNHits1(nHits1);
48e5462a 1680 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetQ0(q0);
1681 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetQ1(q1);
ce51199c 1682 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetSlope(fitSlope);
1683 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetOffset(fitOffset);
1684 ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetError(TMath::Sqrt(TMath::Abs(fitError)/nHits));
1685
1686// // cluster information
1687// Float_t *res = new Float_t[nHits];
1688// Float_t *qtot = new Float_t[nHits];
1689// Int_t nCls = 0;
1690// for (Int_t iHit = 0; iHit < fNHits; iHit++) {
1691// // check if hit contributes
1692// if (fHits[iHit].fChannel == fFitPtr[cpu]) {
1693// res[nCls] = fHits[iHit].fYpos - (fitSlope * fHits[iHit].fTimebin + fitOffset);
1694// qtot[nCls] = fHits[iHit].fQtot;
1695// nCls++;
1696// }
1697// else if (fHits[iHit].fChannel == fFitPtr[cpu] + 1) {
1698// res[nCls] = fHits[iHit].fYpos + 256 - (fitSlope * fHits[iHit].fTimebin + fitOffset);
1699// qtot[nCls] = fHits[iHit].fQtot;
1700// nCls++;
1701// }
1702// }
1703// ((AliTRDtrackletMCM*) (*fTrackletArray)[fTrackletArray->GetEntriesFast()-1])->SetClusters(res, qtot, nCls);
1704// delete [] res;
1705// delete [] qtot;
1706
1707 if (fitError < 0)
1708 AliError(Form("Strange fit error: %f from Sx: %i, Sy: %i, Sxy: %i, Sx2: %i, Sy2: %i, nHits: %i",
1709 fitError, sumX, sumY, sumXY, sumX2, sumY2, nHits));
1710 AliDebug(3, Form("fit slope: %f, offset: %f, error: %f",
1711 fitSlope, fitOffset, TMath::Sqrt(TMath::Abs(fitError)/nHits)));
b0a41e80 1712 }
dfd03fc3 1713 }
dfd03fc3 1714 }
1715}
1716
b0a41e80 1717void AliTRDmcmSim::Tracklet()
dfd03fc3 1718{
ab9f7002 1719 // Run the tracklet calculation by calling sequentially:
1720 // CalcFitreg(); TrackletSelection(); FitTracklet()
1721 // and store the tracklets
1722
b0a41e80 1723 if (!fInitialized) {
ab9f7002 1724 AliError("Called uninitialized! Nothing done!");
b0a41e80 1725 return;
dfd03fc3 1726 }
1727
b0a41e80 1728 fTrackletArray->Delete();
dfd03fc3 1729
b0a41e80 1730 CalcFitreg();
40bd6ee4 1731 if (fNHits == 0)
1732 return;
b0a41e80 1733 TrackletSelection();
1734 FitTracklet();
c8b1590d 1735}
1736
1737Bool_t AliTRDmcmSim::StoreTracklets()
1738{
36dc3337 1739 // store the found tracklets via the loader
1740
40bd6ee4 1741 if (fTrackletArray->GetEntriesFast() == 0)
c8b1590d 1742 return kTRUE;
dfd03fc3 1743
b0a41e80 1744 AliRunLoader *rl = AliRunLoader::Instance();
1745 AliDataLoader *dl = 0x0;
1746 if (rl)
1747 dl = rl->GetLoader("TRDLoader")->GetDataLoader("tracklets");
1748 if (!dl) {
1749 AliError("Could not get the tracklets data loader!");
c8b1590d 1750 return kFALSE;
dfd03fc3 1751 }
b0a41e80 1752
c8b1590d 1753 TTree *trackletTree = dl->Tree();
1754 if (!trackletTree) {
1755 dl->MakeTree();
1756 trackletTree = dl->Tree();
1757 }
1758
1759 AliTRDtrackletMCM *trkl = 0x0;
1760 TBranch *trkbranch = trackletTree->GetBranch("mcmtrklbranch");
1761 if (!trkbranch)
1762 trkbranch = trackletTree->Branch("mcmtrklbranch", "AliTRDtrackletMCM", &trkl, 32000);
1763
1764 for (Int_t iTracklet = 0; iTracklet < fTrackletArray->GetEntriesFast(); iTracklet++) {
1765 trkl = ((AliTRDtrackletMCM*) (*fTrackletArray)[iTracklet]);
1766 trkbranch->SetAddress(&trkl);
c8b1590d 1767 trkbranch->Fill();
b0a41e80 1768 }
c8b1590d 1769
1770 return kTRUE;
dfd03fc3 1771}
1772
b0a41e80 1773void AliTRDmcmSim::WriteData(AliTRDarrayADC *digits)
dfd03fc3 1774{
b0a41e80 1775 // write back the processed data configured by EBSF
1776 // EBSF = 1: unfiltered data; EBSF = 0: filtered data
1777 // zero-suppressed valued are written as -1 to digits
dfd03fc3 1778
ce4786b9 1779 if( !CheckInitialized() )
b0a41e80 1780 return;
dfd03fc3 1781
ce4786b9 1782 Int_t offset = (fMcmPos % 4 + 1) * 21 + (fRobPos % 2) * 84 - 1;
dfd03fc3 1783
b0a41e80 1784 if (fTrapConfig->GetTrapReg(AliTRDtrapConfig::kEBSF) != 0) // store unfiltered data
1785 {
ce4786b9 1786 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
1787 if (~fZSMap[iAdc] == 0) {
b0a41e80 1788 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 1789 digits->SetDataByAdcCol(GetRow(), offset - iAdc, iTimeBin, -1);
b0a41e80 1790 }
1791 }
ce51199c 1792 else if (iAdc < 2 || iAdc == 20) {
1793 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
1794 digits->SetDataByAdcCol(GetRow(), offset - iAdc, iTimeBin, (fADCR[iAdc][iTimeBin] >> fgkAddDigits) - fgAddBaseline);
1795 }
1796 }
b0a41e80 1797 }
1798 }
1799 else {
ce4786b9 1800 for (Int_t iAdc = 0; iAdc < fgkNADC; iAdc++) {
1801 if (~fZSMap[iAdc] != 0) {
b0a41e80 1802 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 1803 digits->SetDataByAdcCol(GetRow(), offset - iAdc, iTimeBin, (fADCF[iAdc][iTimeBin] >> fgkAddDigits) - fgAddBaseline);
b0a41e80 1804 }
1805 }
1806 else {
1807 for (Int_t iTimeBin = 0; iTimeBin < fNTimeBin; iTimeBin++) {
ce4786b9 1808 digits->SetDataByAdcCol(GetRow(), offset - iAdc, iTimeBin, -1);
b0a41e80 1809 }
1810 }
1811 }
dfd03fc3 1812 }
b0a41e80 1813}
dfd03fc3 1814
b0a41e80 1815// help functions, to be cleaned up
1816
ab9f7002 1817UInt_t AliTRDmcmSim::AddUintClipping(UInt_t a, UInt_t b, UInt_t nbits) const
b0a41e80 1818{
1819 //
1820 // This function adds a and b (unsigned) and clips to
1821 // the specified number of bits.
1822 //
1823
1824 UInt_t sum = a + b;
1825 if (nbits < 32)
1826 {
1827 UInt_t maxv = (1 << nbits) - 1;;
1828 if (sum > maxv)
1829 sum = maxv;
1830 }
1831 else
1832 {
1833 if ((sum < a) || (sum < b))
1834 sum = 0xFFFFFFFF;
1835 }
1836 return sum;
dfd03fc3 1837}
1838
982869bc 1839void AliTRDmcmSim::Sort2(UShort_t idx1i, UShort_t idx2i, \
1840 UShort_t val1i, UShort_t val2i, \
1841 UShort_t *idx1o, UShort_t *idx2o, \
1842 UShort_t *val1o, UShort_t *val2o) const
dfd03fc3 1843{
ab9f7002 1844 // sorting for tracklet selection
dfd03fc3 1845
b0a41e80 1846 if (val1i > val2i)
1847 {
1848 *idx1o = idx1i;
1849 *idx2o = idx2i;
1850 *val1o = val1i;
1851 *val2o = val2i;
1852 }
1853 else
1854 {
1855 *idx1o = idx2i;
1856 *idx2o = idx1i;
1857 *val1o = val2i;
1858 *val2o = val1i;
1859 }
1860}
1861
982869bc 1862void AliTRDmcmSim::Sort3(UShort_t idx1i, UShort_t idx2i, UShort_t idx3i, \
1863 UShort_t val1i, UShort_t val2i, UShort_t val3i, \
1864 UShort_t *idx1o, UShort_t *idx2o, UShort_t *idx3o, \
1865 UShort_t *val1o, UShort_t *val2o, UShort_t *val3o)
b0a41e80 1866{
ab9f7002 1867 // sorting for tracklet selection
1868
4ff7ed2b 1869 Int_t sel;
dfd03fc3 1870
dfd03fc3 1871
b0a41e80 1872 if (val1i > val2i) sel=4; else sel=0;
1873 if (val2i > val3i) sel=sel + 2;
1874 if (val3i > val1i) sel=sel + 1;
b0a41e80 1875 switch(sel)
1876 {
1877 case 6 : // 1 > 2 > 3 => 1 2 3
1878 case 0 : // 1 = 2 = 3 => 1 2 3 : in this case doesn't matter, but so is in hardware!
1879 *idx1o = idx1i;
1880 *idx2o = idx2i;
1881 *idx3o = idx3i;
1882 *val1o = val1i;
1883 *val2o = val2i;
1884 *val3o = val3i;
1885 break;
1886
1887 case 4 : // 1 > 2, 2 <= 3, 3 <= 1 => 1 3 2
1888 *idx1o = idx1i;
1889 *idx2o = idx3i;
1890 *idx3o = idx2i;
1891 *val1o = val1i;
1892 *val2o = val3i;
1893 *val3o = val2i;
1894 break;
1895
1896 case 2 : // 1 <= 2, 2 > 3, 3 <= 1 => 2 1 3
1897 *idx1o = idx2i;
1898 *idx2o = idx1i;
1899 *idx3o = idx3i;
1900 *val1o = val2i;
1901 *val2o = val1i;
1902 *val3o = val3i;
1903 break;
1904
1905 case 3 : // 1 <= 2, 2 > 3, 3 > 1 => 2 3 1
1906 *idx1o = idx2i;
1907 *idx2o = idx3i;
1908 *idx3o = idx1i;
1909 *val1o = val2i;
1910 *val2o = val3i;
1911 *val3o = val1i;
1912 break;
1913
1914 case 1 : // 1 <= 2, 2 <= 3, 3 > 1 => 3 2 1
1915 *idx1o = idx3i;
1916 *idx2o = idx2i;
1917 *idx3o = idx1i;
1918 *val1o = val3i;
1919 *val2o = val2i;
1920 *val3o = val1i;
1921 break;
1922
1923 case 5 : // 1 > 2, 2 <= 3, 3 > 1 => 3 1 2
1924 *idx1o = idx3i;
1925 *idx2o = idx1i;
1926 *idx3o = idx2i;
1927 *val1o = val3i;
1928 *val2o = val1i;
1929 *val3o = val2i;
1930 break;
1931
1932 default: // the rest should NEVER happen!
40bd6ee4 1933 AliError("ERROR in Sort3!!!\n");
b0a41e80 1934 break;
1935 }
b0a41e80 1936}
dfd03fc3 1937
982869bc 1938void AliTRDmcmSim::Sort6To4(UShort_t idx1i, UShort_t idx2i, UShort_t idx3i, UShort_t idx4i, UShort_t idx5i, UShort_t idx6i, \
1939 UShort_t val1i, UShort_t val2i, UShort_t val3i, UShort_t val4i, UShort_t val5i, UShort_t val6i, \
1940 UShort_t *idx1o, UShort_t *idx2o, UShort_t *idx3o, UShort_t *idx4o, \
1941 UShort_t *val1o, UShort_t *val2o, UShort_t *val3o, UShort_t *val4o)
b0a41e80 1942{
ab9f7002 1943 // sorting for tracklet selection
dfd03fc3 1944
982869bc 1945 UShort_t idx21s, idx22s, idx23s, dummy;
1946 UShort_t val21s, val22s, val23s;
1947 UShort_t idx23as, idx23bs;
1948 UShort_t val23as, val23bs;
dfd03fc3 1949
b0a41e80 1950 Sort3(idx1i, idx2i, idx3i, val1i, val2i, val3i,
1951 idx1o, &idx21s, &idx23as,
1952 val1o, &val21s, &val23as);
dfd03fc3 1953
b0a41e80 1954 Sort3(idx4i, idx5i, idx6i, val4i, val5i, val6i,
1955 idx2o, &idx22s, &idx23bs,
1956 val2o, &val22s, &val23bs);
1957
1958 Sort2(idx23as, idx23bs, val23as, val23bs, &idx23s, &dummy, &val23s, &dummy);
1959
1960 Sort3(idx21s, idx22s, idx23s, val21s, val22s, val23s,
1961 idx3o, idx4o, &dummy,
1962 val3o, val4o, &dummy);
dfd03fc3 1963
dfd03fc3 1964}
1965
982869bc 1966void AliTRDmcmSim::Sort6To2Worst(UShort_t idx1i, UShort_t idx2i, UShort_t idx3i, UShort_t idx4i, UShort_t idx5i, UShort_t idx6i, \
1967 UShort_t val1i, UShort_t val2i, UShort_t val3i, UShort_t val4i, UShort_t val5i, UShort_t val6i, \
1968 UShort_t *idx5o, UShort_t *idx6o)
b0a41e80 1969{
ab9f7002 1970 // sorting for tracklet selection
1d93b218 1971
982869bc 1972 UShort_t idx21s, idx22s, idx23s, dummy1, dummy2, dummy3, dummy4, dummy5;
1973 UShort_t val21s, val22s, val23s;
1974 UShort_t idx23as, idx23bs;
1975 UShort_t val23as, val23bs;
1d93b218 1976
b0a41e80 1977 Sort3(idx1i, idx2i, idx3i, val1i, val2i, val3i,
1978 &dummy1, &idx21s, &idx23as,
1979 &dummy2, &val21s, &val23as);
1d93b218 1980
b0a41e80 1981 Sort3(idx4i, idx5i, idx6i, val4i, val5i, val6i,
1982 &dummy1, &idx22s, &idx23bs,
1983 &dummy2, &val22s, &val23bs);
1d93b218 1984
b0a41e80 1985 Sort2(idx23as, idx23bs, val23as, val23bs, &idx23s, idx5o, &val23s, &dummy1);
b65e5048 1986
b0a41e80 1987 Sort3(idx21s, idx22s, idx23s, val21s, val22s, val23s,
1988 &dummy1, &dummy2, idx6o,
1989 &dummy3, &dummy4, &dummy5);
0d64b05f 1990}
f793c83d 1991
1992
ce4786b9 1993// ----- I/O implementation -----
1994
59f78ad5 1995ostream& AliTRDmcmSim::Text(ostream& os)
ce4786b9 1996{
1997 // manipulator to activate output in text format (default)
1998
1999 os.iword(fgkFormatIndex) = 0;
2000 return os;
2001}
2002
59f78ad5 2003ostream& AliTRDmcmSim::Cfdat(ostream& os)
ce4786b9 2004{
2005 // manipulator to activate output in CFDAT format
2006 // to send to the FEE via SCSN
2007
2008 os.iword(fgkFormatIndex) = 1;
2009 return os;
2010}
2011
59f78ad5 2012ostream& AliTRDmcmSim::Raw(ostream& os)
ce4786b9 2013{
2014 // manipulator to activate output as raw data dump
2015
2016 os.iword(fgkFormatIndex) = 2;
2017 return os;
2018}
2019
2020ostream& operator<<(ostream& os, const AliTRDmcmSim& mcm)
2021{
2022 // output implementation
2023
2024 // no output for non-initialized MCM
2025 if (!mcm.CheckInitialized())
2026 return os;
2027
2028 // ----- human-readable output -----
2029 if (os.iword(AliTRDmcmSim::fgkFormatIndex) == 0) {
2030
2031 os << "MCM " << mcm.fMcmPos << " on ROB " << mcm.fRobPos <<
2032 " in detector " << mcm.fDetector << std::endl;
2033
2034 os << "----- Unfiltered ADC data (10 bit) -----" << std::endl;
2035 os << "ch ";
2036 for (Int_t iChannel = 0; iChannel < mcm.fgkNADC; iChannel++)
2037 os << std::setw(5) << iChannel;
2038 os << std::endl;
2039 for (Int_t iTimeBin = 0; iTimeBin < mcm.fNTimeBin; iTimeBin++) {
2040 os << "tb " << std::setw(2) << iTimeBin << ":";
2041 for (Int_t iChannel = 0; iChannel < mcm.fgkNADC; iChannel++) {
2042 os << std::setw(5) << (mcm.fADCR[iChannel][iTimeBin] >> mcm.fgkAddDigits);
2043 }
2044 os << std::endl;
2045 }
2046
2047 os << "----- Filtered ADC data (10+2 bit) -----" << std::endl;
2048 os << "ch ";
2049 for (Int_t iChannel = 0; iChannel < mcm.fgkNADC; iChannel++)
2050 os << std::setw(4) << iChannel
2051 << ((~mcm.fZSMap[iChannel] != 0) ? "!" : " ");
2052 os << std::endl;
2053 for (Int_t iTimeBin = 0; iTimeBin < mcm.fNTimeBin; iTimeBin++) {
2054 os << "tb " << std::setw(2) << iTimeBin << ":";
2055 for (Int_t iChannel = 0; iChannel < mcm.fgkNADC; iChannel++) {
2056 os << std::setw(4) << (mcm.fADCF[iChannel][iTimeBin])
2057 << (((mcm.fZSMap[iChannel] & (1 << iTimeBin)) == 0) ? "!" : " ");
2058 }
2059 os << std::endl;
2060 }
2061 }
2062
2063 // ----- CFDAT output -----
2064 else if(os.iword(AliTRDmcmSim::fgkFormatIndex) == 1) {
2065 Int_t dest = 127;
2066 Int_t addrOffset = 0x2000;
2067 Int_t addrStep = 0x80;
2068
2069 for (Int_t iTimeBin = 0; iTimeBin < mcm.fNTimeBin; iTimeBin++) {
2070 for (Int_t iChannel = 0; iChannel < mcm.fgkNADC; iChannel++) {
2071 os << std::setw(5) << 10
2072 << std::setw(5) << addrOffset + iChannel * addrStep + iTimeBin
2073 << std::setw(5) << (mcm.fADCF[iChannel][iTimeBin])
2074 << std::setw(5) << dest << std::endl;
2075 }
2076 os << std::endl;
2077 }
2078 }
2079
2080 // ----- raw data ouptut -----
2081 else if (os.iword(AliTRDmcmSim::fgkFormatIndex) == 2) {
2082 Int_t bufSize = 300;
2083 UInt_t *buf = new UInt_t[bufSize];
2084
2085 Int_t bufLength = mcm.ProduceRawStream(&buf[0], bufSize);
2086
2087 for (Int_t i = 0; i < bufLength; i++)
2088 std::cout << "0x" << std::hex << buf[i] << std::endl;
2089
2090 delete [] buf;
2091 }
2092
2093 else {
2094 os << "unknown format set" << std::endl;
2095 }
2096
2097 return os;
2098}