]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TRD/AliTRDseedV1.cxx
extend debug stream to prepare studies of bremsstrahlung detection in
[u/mrichter/AliRoot.git] / TRD / AliTRDseedV1.cxx
CommitLineData
e4f2f73d 1/**************************************************************************
29b87567 2* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3* *
4* Author: The ALICE Off-line Project. *
5* Contributors are mentioned in the code where appropriate. *
6* *
7* Permission to use, copy, modify and distribute this software and its *
8* documentation strictly for non-commercial purposes is hereby granted *
9* without fee, provided that the above copyright notice appears in all *
10* copies and that both the copyright notice and this permission notice *
11* appear in the supporting documentation. The authors make no claims *
12* about the suitability of this software for any purpose. It is *
13* provided "as is" without express or implied warranty. *
14**************************************************************************/
e4f2f73d 15
16/* $Id$ */
17
18////////////////////////////////////////////////////////////////////////////
dd8059a8 19////
20// The TRD offline tracklet
21//
22// The running horse of the TRD reconstruction. The following tasks are preformed:
23// 1. Clusters attachment to tracks based on prior information stored at tracklet level (see AttachClusters)
24// 2. Clusters position recalculation based on track information (see GetClusterXY and Fit)
25// 3. Cluster error parametrization recalculation (see Fit)
26// 4. Linear track approximation (Fit)
27// 5. Optimal position (including z estimate for pad row cross tracklets) and covariance matrix of the track fit inside one TRD chamber (Fit)
28// 6. Tilt pad correction and systematic effects (GetCovAt)
29// 7. dEdx calculation (CookdEdx)
30// 8. PID probabilities estimation (CookPID)
31//
e4f2f73d 32// Authors: //
33// Alex Bercuci <A.Bercuci@gsi.de> //
34// Markus Fasel <M.Fasel@gsi.de> //
35// //
36////////////////////////////////////////////////////////////////////////////
37
38#include "TMath.h"
39#include "TLinearFitter.h"
eb38ed55 40#include "TClonesArray.h" // tmp
41#include <TTreeStream.h>
e4f2f73d 42
43#include "AliLog.h"
44#include "AliMathBase.h"
d937ad7a 45#include "AliCDBManager.h"
46#include "AliTracker.h"
e4f2f73d 47
03cef9b2 48#include "AliTRDpadPlane.h"
e4f2f73d 49#include "AliTRDcluster.h"
f3d3af1b 50#include "AliTRDseedV1.h"
51#include "AliTRDtrackV1.h"
e4f2f73d 52#include "AliTRDcalibDB.h"
eb38ed55 53#include "AliTRDchamberTimeBin.h"
54#include "AliTRDtrackingChamber.h"
55#include "AliTRDtrackerV1.h"
56#include "AliTRDReconstructor.h"
e4f2f73d 57#include "AliTRDrecoParam.h"
a076fc2f 58#include "AliTRDCommonParam.h"
d937ad7a 59
0906e73e 60#include "Cal/AliTRDCalPID.h"
d937ad7a 61#include "Cal/AliTRDCalROC.h"
62#include "Cal/AliTRDCalDet.h"
e4f2f73d 63
e4f2f73d 64ClassImp(AliTRDseedV1)
65
66//____________________________________________________________________
ae4e8b84 67AliTRDseedV1::AliTRDseedV1(Int_t det)
3e778975 68 :AliTRDtrackletBase()
3a039a31 69 ,fReconstructor(0x0)
ae4e8b84 70 ,fClusterIter(0x0)
e3cf3d02 71 ,fExB(0.)
72 ,fVD(0.)
73 ,fT0(0.)
74 ,fS2PRF(0.)
75 ,fDiffL(0.)
76 ,fDiffT(0.)
ae4e8b84 77 ,fClusterIdx(0)
3e778975 78 ,fN(0)
ae4e8b84 79 ,fDet(det)
b25a5e9e 80 ,fPt(0.)
bcb6fb78 81 ,fdX(0.)
e3cf3d02 82 ,fX0(0.)
83 ,fX(0.)
84 ,fY(0.)
85 ,fZ(0.)
86 ,fS2Y(0.)
87 ,fS2Z(0.)
88 ,fC(0.)
89 ,fChi2(0.)
e4f2f73d 90{
91 //
92 // Constructor
93 //
8d2bec9e 94 for(Int_t ic=kNclusters; ic--;) fIndexes[ic] = -1;
95 memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*));
dd8059a8 96 memset(fPad, 0, 3*sizeof(Float_t));
e3cf3d02 97 fYref[0] = 0.; fYref[1] = 0.;
98 fZref[0] = 0.; fZref[1] = 0.;
99 fYfit[0] = 0.; fYfit[1] = 0.;
100 fZfit[0] = 0.; fZfit[1] = 0.;
8d2bec9e 101 memset(fdEdx, 0, kNslices*sizeof(Float_t));
29b87567 102 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++) fProb[ispec] = -1.;
e3cf3d02 103 fLabels[0]=-1; fLabels[1]=-1; // most freq MC labels
104 fLabels[2]=0; // number of different labels for tracklet
16cca13f 105 memset(fRefCov, 0, 7*sizeof(Double_t));
d937ad7a 106 // covariance matrix [diagonal]
107 // default sy = 200um and sz = 2.3 cm
108 fCov[0] = 4.e-4; fCov[1] = 0.; fCov[2] = 5.3;
f29f13a6 109 SetStandAlone(kFALSE);
e4f2f73d 110}
111
112//____________________________________________________________________
0906e73e 113AliTRDseedV1::AliTRDseedV1(const AliTRDseedV1 &ref)
3e778975 114 :AliTRDtrackletBase((AliTRDtrackletBase&)ref)
e3cf3d02 115 ,fReconstructor(0x0)
ae4e8b84 116 ,fClusterIter(0x0)
e3cf3d02 117 ,fExB(0.)
118 ,fVD(0.)
119 ,fT0(0.)
120 ,fS2PRF(0.)
121 ,fDiffL(0.)
122 ,fDiffT(0.)
ae4e8b84 123 ,fClusterIdx(0)
3e778975 124 ,fN(0)
e3cf3d02 125 ,fDet(-1)
b25a5e9e 126 ,fPt(0.)
e3cf3d02 127 ,fdX(0.)
128 ,fX0(0.)
129 ,fX(0.)
130 ,fY(0.)
131 ,fZ(0.)
132 ,fS2Y(0.)
133 ,fS2Z(0.)
134 ,fC(0.)
135 ,fChi2(0.)
e4f2f73d 136{
137 //
138 // Copy Constructor performing a deep copy
139 //
e3cf3d02 140 if(this != &ref){
141 ref.Copy(*this);
142 }
29b87567 143 SetBit(kOwner, kFALSE);
f29f13a6 144 SetStandAlone(ref.IsStandAlone());
fbb2ea06 145}
d9950a5a 146
0906e73e 147
e4f2f73d 148//____________________________________________________________________
149AliTRDseedV1& AliTRDseedV1::operator=(const AliTRDseedV1 &ref)
150{
151 //
152 // Assignment Operator using the copy function
153 //
154
29b87567 155 if(this != &ref){
156 ref.Copy(*this);
157 }
221ab7e0 158 SetBit(kOwner, kFALSE);
159
29b87567 160 return *this;
e4f2f73d 161}
162
163//____________________________________________________________________
164AliTRDseedV1::~AliTRDseedV1()
165{
166 //
167 // Destructor. The RecoParam object belongs to the underlying tracker.
168 //
169
29b87567 170 //printf("I-AliTRDseedV1::~AliTRDseedV1() : Owner[%s]\n", IsOwner()?"YES":"NO");
e4f2f73d 171
e3cf3d02 172 if(IsOwner()) {
8d2bec9e 173 for(int itb=0; itb<kNclusters; itb++){
29b87567 174 if(!fClusters[itb]) continue;
175 //AliInfo(Form("deleting c %p @ %d", fClusters[itb], itb));
176 delete fClusters[itb];
177 fClusters[itb] = 0x0;
178 }
e3cf3d02 179 }
e4f2f73d 180}
181
182//____________________________________________________________________
183void AliTRDseedV1::Copy(TObject &ref) const
184{
185 //
186 // Copy function
187 //
188
29b87567 189 //AliInfo("");
190 AliTRDseedV1 &target = (AliTRDseedV1 &)ref;
191
e3cf3d02 192 target.fReconstructor = fReconstructor;
ae4e8b84 193 target.fClusterIter = 0x0;
e3cf3d02 194 target.fExB = fExB;
195 target.fVD = fVD;
196 target.fT0 = fT0;
197 target.fS2PRF = fS2PRF;
198 target.fDiffL = fDiffL;
199 target.fDiffT = fDiffT;
ae4e8b84 200 target.fClusterIdx = 0;
3e778975 201 target.fN = fN;
ae4e8b84 202 target.fDet = fDet;
b25a5e9e 203 target.fPt = fPt;
29b87567 204 target.fdX = fdX;
e3cf3d02 205 target.fX0 = fX0;
206 target.fX = fX;
207 target.fY = fY;
208 target.fZ = fZ;
209 target.fS2Y = fS2Y;
210 target.fS2Z = fS2Z;
211 target.fC = fC;
212 target.fChi2 = fChi2;
29b87567 213
8d2bec9e 214 memcpy(target.fIndexes, fIndexes, kNclusters*sizeof(Int_t));
215 memcpy(target.fClusters, fClusters, kNclusters*sizeof(AliTRDcluster*));
dd8059a8 216 memcpy(target.fPad, fPad, 3*sizeof(Float_t));
e3cf3d02 217 target.fYref[0] = fYref[0]; target.fYref[1] = fYref[1];
218 target.fZref[0] = fZref[0]; target.fZref[1] = fZref[1];
219 target.fYfit[0] = fYfit[0]; target.fYfit[1] = fYfit[1];
220 target.fZfit[0] = fZfit[0]; target.fZfit[1] = fZfit[1];
8d2bec9e 221 memcpy(target.fdEdx, fdEdx, kNslices*sizeof(Float_t));
e3cf3d02 222 memcpy(target.fProb, fProb, AliPID::kSPECIES*sizeof(Float_t));
223 memcpy(target.fLabels, fLabels, 3*sizeof(Int_t));
16cca13f 224 memcpy(target.fRefCov, fRefCov, 7*sizeof(Double_t));
e3cf3d02 225 memcpy(target.fCov, fCov, 3*sizeof(Double_t));
29b87567 226
e3cf3d02 227 TObject::Copy(ref);
e4f2f73d 228}
229
0906e73e 230
231//____________________________________________________________
f3d3af1b 232Bool_t AliTRDseedV1::Init(AliTRDtrackV1 *track)
0906e73e 233{
234// Initialize this tracklet using the track information
235//
236// Parameters:
237// track - the TRD track used to initialize the tracklet
238//
239// Detailed description
240// The function sets the starting point and direction of the
241// tracklet according to the information from the TRD track.
242//
243// Caution
244// The TRD track has to be propagated to the beginning of the
245// chamber where the tracklet will be constructed
246//
247
29b87567 248 Double_t y, z;
249 if(!track->GetProlongation(fX0, y, z)) return kFALSE;
16cca13f 250 Update(track);
29b87567 251 return kTRUE;
0906e73e 252}
253
bcb6fb78 254
e3cf3d02 255//_____________________________________________________________________________
256void AliTRDseedV1::Reset()
257{
258 //
259 // Reset seed
260 //
261 fExB=0.;fVD=0.;fT0=0.;fS2PRF=0.;
262 fDiffL=0.;fDiffT=0.;
3e778975 263 fClusterIdx=0;
264 fN=0;
dd8059a8 265 fDet=-1;
b25a5e9e 266 fPt=0.;
e3cf3d02 267 fdX=0.;fX0=0.; fX=0.; fY=0.; fZ=0.;
268 fS2Y=0.; fS2Z=0.;
269 fC=0.; fChi2 = 0.;
270
8d2bec9e 271 for(Int_t ic=kNclusters; ic--;) fIndexes[ic] = -1;
272 memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*));
dd8059a8 273 memset(fPad, 0, 3*sizeof(Float_t));
e3cf3d02 274 fYref[0] = 0.; fYref[1] = 0.;
275 fZref[0] = 0.; fZref[1] = 0.;
276 fYfit[0] = 0.; fYfit[1] = 0.;
277 fZfit[0] = 0.; fZfit[1] = 0.;
8d2bec9e 278 memset(fdEdx, 0, kNslices*sizeof(Float_t));
e3cf3d02 279 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++) fProb[ispec] = -1.;
280 fLabels[0]=-1; fLabels[1]=-1; // most freq MC labels
281 fLabels[2]=0; // number of different labels for tracklet
16cca13f 282 memset(fRefCov, 0, 7*sizeof(Double_t));
e3cf3d02 283 // covariance matrix [diagonal]
284 // default sy = 200um and sz = 2.3 cm
285 fCov[0] = 4.e-4; fCov[1] = 0.; fCov[2] = 5.3;
286}
287
b1957d3c 288//____________________________________________________________________
16cca13f 289void AliTRDseedV1::Update(const AliTRDtrackV1 *trk)
b1957d3c 290{
291 // update tracklet reference position from the TRD track
b1957d3c 292
e3cf3d02 293 Double_t fSnp = trk->GetSnp();
294 Double_t fTgl = trk->GetTgl();
b25a5e9e 295 fPt = trk->Pt();
1fd9389f 296 Double_t norm =1./TMath::Sqrt(1. - fSnp*fSnp);
297 fYref[1] = fSnp*norm;
298 fZref[1] = fTgl*norm;
b1957d3c 299 SetCovRef(trk->GetCovariance());
300
301 Double_t dx = trk->GetX() - fX0;
302 fYref[0] = trk->GetY() - dx*fYref[1];
303 fZref[0] = trk->GetZ() - dx*fZref[1];
304}
305
e3cf3d02 306//_____________________________________________________________________________
307void AliTRDseedV1::UpdateUsed()
308{
309 //
f29f13a6 310 // Calculate number of used clusers in the tracklet
e3cf3d02 311 //
312
3e778975 313 Int_t nused = 0, nshared = 0;
8d2bec9e 314 for (Int_t i = kNclusters; i--; ) {
e3cf3d02 315 if (!fClusters[i]) continue;
3e778975 316 if(fClusters[i]->IsUsed()){
317 nused++;
318 } else if(fClusters[i]->IsShared()){
319 if(IsStandAlone()) nused++;
320 else nshared++;
321 }
e3cf3d02 322 }
3e778975 323 SetNUsed(nused);
324 SetNShared(nshared);
e3cf3d02 325}
326
327//_____________________________________________________________________________
328void AliTRDseedV1::UseClusters()
329{
330 //
331 // Use clusters
332 //
f29f13a6 333 // In stand alone mode:
334 // Clusters which are marked as used or shared from another track are
335 // removed from the tracklet
336 //
337 // In barrel mode:
338 // - Clusters which are used by another track become shared
339 // - Clusters which are attached to a kink track become shared
340 //
e3cf3d02 341 AliTRDcluster **c = &fClusters[0];
8d2bec9e 342 for (Int_t ic=kNclusters; ic--; c++) {
e3cf3d02 343 if(!(*c)) continue;
f29f13a6 344 if(IsStandAlone()){
345 if((*c)->IsShared() || (*c)->IsUsed()){
b82b4de1 346 if((*c)->IsShared()) SetNShared(GetNShared()-1);
347 else SetNUsed(GetNUsed()-1);
3e778975 348 (*c) = 0x0;
f29f13a6 349 fIndexes[ic] = -1;
3e778975 350 SetN(GetN()-1);
3e778975 351 continue;
f29f13a6 352 }
3e778975 353 } else {
f29f13a6 354 if((*c)->IsUsed() || IsKink()){
3e778975 355 (*c)->SetShared();
356 continue;
f29f13a6 357 }
358 }
359 (*c)->Use();
e3cf3d02 360 }
361}
362
363
f29f13a6 364
bcb6fb78 365//____________________________________________________________________
366void AliTRDseedV1::CookdEdx(Int_t nslices)
367{
368// Calculates average dE/dx for all slices and store them in the internal array fdEdx.
369//
370// Parameters:
371// nslices : number of slices for which dE/dx should be calculated
372// Output:
373// store results in the internal array fdEdx. This can be accessed with the method
374// AliTRDseedV1::GetdEdx()
375//
376// Detailed description
377// Calculates average dE/dx for all slices. Depending on the PID methode
378// the number of slices can be 3 (LQ) or 8(NN).
3ee48d6e 379// The calculation of dQ/dl are done using the tracklet fit results (see AliTRDseedV1::GetdQdl(Int_t))
bcb6fb78 380//
381// The following effects are included in the calculation:
382// 1. calibration values for t0 and vdrift (using x coordinate to calculate slice)
383// 2. cluster sharing (optional see AliTRDrecoParam::SetClusterSharing())
384// 3. cluster size
385//
386
8d2bec9e 387 Int_t nclusters[kNslices];
388 memset(nclusters, 0, kNslices*sizeof(Int_t));
389 memset(fdEdx, 0, kNslices*sizeof(Float_t));
e3cf3d02 390
e73abf77 391 const Double_t kDriftLength = (.5 * AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick());
29b87567 392
3ee48d6e 393 AliTRDcluster *c = 0x0;
29b87567 394 for(int ic=0; ic<AliTRDtrackerV1::GetNTimeBins(); ic++){
8e709c82 395 if(!(c = fClusters[ic]) && !(c = fClusters[ic+kNtb])) continue;
e73abf77 396 Float_t dx = TMath::Abs(fX0 - c->GetX());
29b87567 397
398 // Filter clusters for dE/dx calculation
399
400 // 1.consider calibration effects for slice determination
e73abf77 401 Int_t slice;
402 if(dx<kDriftLength){ // TODO should be replaced by c->IsInChamber()
403 slice = Int_t(dx * nslices / kDriftLength);
404 } else slice = c->GetX() < fX0 ? nslices-1 : 0;
405
406
29b87567 407 // 2. take sharing into account
3e778975 408 Float_t w = /*c->IsShared() ? .5 :*/ 1.;
29b87567 409
410 // 3. take into account large clusters TODO
411 //w *= c->GetNPads() > 3 ? .8 : 1.;
412
413 //CHECK !!!
414 fdEdx[slice] += w * GetdQdl(ic); //fdQdl[ic];
415 nclusters[slice]++;
416 } // End of loop over clusters
417
cd40b287 418 //if(fReconstructor->GetPIDMethod() == AliTRDReconstructor::kLQPID){
0d83b3a5 419 if(nslices == AliTRDpidUtil::kLQslices){
29b87567 420 // calculate mean charge per slice (only LQ PID)
421 for(int is=0; is<nslices; is++){
422 if(nclusters[is]) fdEdx[is] /= nclusters[is];
423 }
424 }
bcb6fb78 425}
426
e3cf3d02 427//_____________________________________________________________________________
428void AliTRDseedV1::CookLabels()
429{
430 //
431 // Cook 2 labels for seed
432 //
433
434 Int_t labels[200];
435 Int_t out[200];
436 Int_t nlab = 0;
8d2bec9e 437 for (Int_t i = 0; i < kNclusters; i++) {
e3cf3d02 438 if (!fClusters[i]) continue;
439 for (Int_t ilab = 0; ilab < 3; ilab++) {
440 if (fClusters[i]->GetLabel(ilab) >= 0) {
441 labels[nlab] = fClusters[i]->GetLabel(ilab);
442 nlab++;
443 }
444 }
445 }
446
fac58f00 447 fLabels[2] = AliMathBase::Freq(nlab,labels,out,kTRUE);
e3cf3d02 448 fLabels[0] = out[0];
449 if ((fLabels[2] > 1) && (out[3] > 1)) fLabels[1] = out[2];
450}
451
452
bcb6fb78 453//____________________________________________________________________
0b433f72 454Float_t AliTRDseedV1::GetdQdl(Int_t ic, Float_t *dl) const
bcb6fb78 455{
3ee48d6e 456// Using the linear approximation of the track inside one TRD chamber (TRD tracklet)
457// the charge per unit length can be written as:
458// BEGIN_LATEX
500851ab 459// #frac{dq}{dl} = #frac{q_{c}}{dx * #sqrt{1 + #(){#frac{dy}{dx}}^{2}_{fit} + #(){#frac{dz}{dx}}^{2}_{ref}}}
3ee48d6e 460// END_LATEX
461// where qc is the total charge collected in the current time bin and dx is the length
0b433f72 462// of the time bin.
463// The following correction are applied :
464// - charge : pad row cross corrections
465// [diffusion and TRF assymetry] TODO
466// - dx : anisochronity, track inclination - see Fit and AliTRDcluster::GetXloc()
467// and AliTRDcluster::GetYloc() for the effects taken into account
3ee48d6e 468//
0fa1a8ee 469//Begin_Html
470//<img src="TRD/trackletDQDT.gif">
471//End_Html
472// In the picture the energy loss measured on the tracklet as a function of drift time [left] and respectively
473// drift length [right] for different particle species is displayed.
3ee48d6e 474// Author : Alex Bercuci <A.Bercuci@gsi.de>
475//
476 Float_t dq = 0.;
5d401b45 477 // check whether both clusters are inside the chamber
478 Bool_t hasClusterInChamber = kFALSE;
479 if(fClusters[ic] && fClusters[ic]->IsInChamber()){
480 hasClusterInChamber = kTRUE;
1742f24c 481 dq += TMath::Abs(fClusters[ic]->GetQ());
5d401b45 482 }else if(fClusters[ic+kNtb] && fClusters[ic+kNtb]->IsInChamber()){
483 hasClusterInChamber = kTRUE;
484 dq += TMath::Abs(fClusters[ic+kNtb]->GetQ());
1742f24c 485 }
5d401b45 486 if(!hasClusterInChamber) return 0.;
0b433f72 487 if(dq<1.e-3) return 0.;
3ee48d6e 488
a2abcbc5 489 Double_t dx = fdX;
490 if(ic-1>=0 && ic+1<kNtb){
491 Float_t x2(0.), x1(0.);
5d401b45 492 // try to estimate upper radial position (find the cluster which is inside the chamber)
493 if(fClusters[ic-1] && fClusters[ic-1]->IsInChamber()) x2 = fClusters[ic-1]->GetX();
494 else if(fClusters[ic-1+kNtb] && fClusters[ic-1+kNtb]->IsInChamber()) x2 = fClusters[ic-1+kNtb]->GetX();
495 else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x2 = fClusters[ic]->GetX()+fdX;
a2abcbc5 496 else x2 = fClusters[ic+kNtb]->GetX()+fdX;
5d401b45 497 // try to estimate lower radial position (find the cluster which is inside the chamber)
498 if(fClusters[ic+1] && fClusters[ic+1]->IsInChamber()) x1 = fClusters[ic+1]->GetX();
499 else if(fClusters[ic+1+kNtb] && fClusters[ic+1+kNtb]->IsInChamber()) x1 = fClusters[ic+1+kNtb]->GetX();
500 else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x1 = fClusters[ic]->GetX()-fdX;
a2abcbc5 501 else x1 = fClusters[ic+kNtb]->GetX()-fdX;
502
503 dx = .5*(x2 - x1);
504 }
0b433f72 505 dx *= TMath::Sqrt(1. + fYfit[1]*fYfit[1] + fZref[1]*fZref[1]);
0b433f72 506 if(dl) (*dl) = dx;
507 return dq/dx;
bcb6fb78 508}
509
0b433f72 510//____________________________________________________________
511Float_t AliTRDseedV1::GetMomentum(Float_t *err) const
512{
513// Returns momentum of the track after update with the current tracklet as:
514// BEGIN_LATEX
515// p=#frac{1}{1/p_{t}} #sqrt{1+tgl^{2}}
516// END_LATEX
517// and optionally the momentum error (if err is not null).
518// The estimated variance of the momentum is given by:
519// BEGIN_LATEX
520// #sigma_{p}^{2} = (#frac{dp}{dp_{t}})^{2} #sigma_{p_{t}}^{2}+(#frac{dp}{dtgl})^{2} #sigma_{tgl}^{2}+2#frac{dp}{dp_{t}}#frac{dp}{dtgl} cov(tgl,1/p_{t})
521// END_LATEX
522// which can be simplified to
523// BEGIN_LATEX
524// #sigma_{p}^{2} = p^{2}p_{t}^{4}tgl^{2}#sigma_{tgl}^{2}-2p^{2}p_{t}^{3}tgl cov(tgl,1/p_{t})+p^{2}p_{t}^{2}#sigma_{1/p_{t}}^{2}
525// END_LATEX
526//
527
528 Double_t p = fPt*TMath::Sqrt(1.+fZref[1]*fZref[1]);
529 Double_t p2 = p*p;
530 Double_t tgl2 = fZref[1]*fZref[1];
531 Double_t pt2 = fPt*fPt;
532 if(err){
533 Double_t s2 =
534 p2*tgl2*pt2*pt2*fRefCov[4]
535 -2.*p2*fZref[1]*fPt*pt2*fRefCov[5]
536 +p2*pt2*fRefCov[6];
537 (*err) = TMath::Sqrt(s2);
538 }
539 return p;
540}
541
542
0906e73e 543//____________________________________________________________________
3e778975 544Float_t* AliTRDseedV1::GetProbability(Bool_t force)
0906e73e 545{
3e778975 546 if(!force) return &fProb[0];
547 if(!CookPID()) return 0x0;
548 return &fProb[0];
549}
550
551//____________________________________________________________
552Bool_t AliTRDseedV1::CookPID()
553{
0906e73e 554// Fill probability array for tracklet from the DB.
555//
556// Parameters
557//
558// Output
559// returns pointer to the probability array and 0x0 if missing DB access
560//
2a3191bb 561// Retrieve PID probabilities for e+-, mu+-, K+-, pi+- and p+- from the DB according to tracklet information:
562// - estimated momentum at tracklet reference point
563// - dE/dx measurements
564// - tracklet length
565// - TRD layer
566// According to the steering settings specified in the reconstruction one of the following methods are used
567// - Neural Network [default] - option "nn"
568// - 2D Likelihood - option "!nn"
0906e73e 569
0906e73e 570 AliTRDcalibDB *calibration = AliTRDcalibDB::Instance();
571 if (!calibration) {
572 AliError("No access to calibration data");
3e778975 573 return kFALSE;
0906e73e 574 }
575
3a039a31 576 if (!fReconstructor) {
577 AliError("Reconstructor not set.");
3e778975 578 return kFALSE;
4ba1d6ae 579 }
580
0906e73e 581 // Retrieve the CDB container class with the parametric detector response
3a039a31 582 const AliTRDCalPID *pd = calibration->GetPIDObject(fReconstructor->GetPIDMethod());
0906e73e 583 if (!pd) {
584 AliError("No access to AliTRDCalPID object");
3e778975 585 return kFALSE;
0906e73e 586 }
29b87567 587 //AliInfo(Form("Method[%d] : %s", fReconstructor->GetRecoParam() ->GetPIDMethod(), pd->IsA()->GetName()));
10f75631 588
29b87567 589 // calculate tracklet length TO DO
0906e73e 590 Float_t length = (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick());
591 /// TMath::Sqrt((1.0 - fSnp[iPlane]*fSnp[iPlane]) / (1.0 + fTgl[iPlane]*fTgl[iPlane]));
592
593 //calculate dE/dx
3a039a31 594 CookdEdx(fReconstructor->GetNdEdxSlices());
0906e73e 595
596 // Sets the a priori probabilities
597 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++) {
b25a5e9e 598 fProb[ispec] = pd->GetProbability(ispec, GetMomentum(), &fdEdx[0], length, GetPlane());
0906e73e 599 }
600
3e778975 601 return kTRUE;
0906e73e 602}
603
e4f2f73d 604//____________________________________________________________________
605Float_t AliTRDseedV1::GetQuality(Bool_t kZcorr) const
606{
607 //
608 // Returns a quality measurement of the current seed
609 //
610
dd8059a8 611 Float_t zcorr = kZcorr ? GetTilt() * (fZfit[0] - fZref[0]) : 0.;
29b87567 612 return
3e778975 613 .5 * TMath::Abs(18.0 - GetN())
29b87567 614 + 10.* TMath::Abs(fYfit[1] - fYref[1])
615 + 5. * TMath::Abs(fYfit[0] - fYref[0] + zcorr)
dd8059a8 616 + 2. * TMath::Abs(fZfit[0] - fZref[0]) / GetPadLength();
e4f2f73d 617}
618
0906e73e 619//____________________________________________________________________
d937ad7a 620void AliTRDseedV1::GetCovAt(Double_t x, Double_t *cov) const
0906e73e 621{
d937ad7a 622// Computes covariance in the y-z plane at radial point x (in tracking coordinates)
623// and returns the results in the preallocated array cov[3] as :
624// cov[0] = Var(y)
625// cov[1] = Cov(yz)
626// cov[2] = Var(z)
627//
628// Details
629//
630// For the linear transformation
631// BEGIN_LATEX
632// Y = T_{x} X^{T}
633// END_LATEX
634// The error propagation has the general form
635// BEGIN_LATEX
636// C_{Y} = T_{x} C_{X} T_{x}^{T}
637// END_LATEX
638// We apply this formula 2 times. First to calculate the covariance of the tracklet
639// at point x we consider:
640// BEGIN_LATEX
641// T_{x} = (1 x); X=(y0 dy/dx); C_{X}=#(){#splitline{Var(y0) Cov(y0, dy/dx)}{Cov(y0, dy/dx) Var(dy/dx)}}
642// END_LATEX
643// and secondly to take into account the tilt angle
644// BEGIN_LATEX
645// T_{#alpha} = #(){#splitline{cos(#alpha) __ sin(#alpha)}{-sin(#alpha) __ cos(#alpha)}}; X=(y z); C_{X}=#(){#splitline{Var(y) 0}{0 Var(z)}}
646// END_LATEX
647//
648// using simple trigonometrics one can write for this last case
649// BEGIN_LATEX
650// C_{Y}=#frac{1}{1+tg^{2}#alpha} #(){#splitline{(#sigma_{y}^{2}+tg^{2}#alpha#sigma_{z}^{2}) __ tg#alpha(#sigma_{z}^{2}-#sigma_{y}^{2})}{tg#alpha(#sigma_{z}^{2}-#sigma_{y}^{2}) __ (#sigma_{z}^{2}+tg^{2}#alpha#sigma_{y}^{2})}}
651// END_LATEX
652// which can be aproximated for small alphas (2 deg) with
653// BEGIN_LATEX
654// C_{Y}=#(){#splitline{#sigma_{y}^{2} __ (#sigma_{z}^{2}-#sigma_{y}^{2})tg#alpha}{((#sigma_{z}^{2}-#sigma_{y}^{2})tg#alpha __ #sigma_{z}^{2}}}
655// END_LATEX
656//
657// before applying the tilt rotation we also apply systematic uncertainties to the tracklet
658// position which can be tunned from outside via the AliTRDrecoParam::SetSysCovMatrix(). They might
659// account for extra misalignment/miscalibration uncertainties.
660//
661// Author :
662// Alex Bercuci <A.Bercuci@gsi.de>
663// Date : Jan 8th 2009
664//
b1957d3c 665
666
d937ad7a 667 Double_t xr = fX0-x;
668 Double_t sy2 = fCov[0] +2.*xr*fCov[1] + xr*xr*fCov[2];
b72f4eaf 669 Double_t sz2 = fS2Z;
670 //GetPadLength()*GetPadLength()/12.;
0906e73e 671
d937ad7a 672 // insert systematic uncertainties
bb2db46c 673 if(fReconstructor){
674 Double_t sys[15]; memset(sys, 0, 15*sizeof(Double_t));
675 fReconstructor->GetRecoParam()->GetSysCovMatrix(sys);
676 sy2 += sys[0];
677 sz2 += sys[1];
678 }
d937ad7a 679 // rotate covariance matrix
dd8059a8 680 Double_t t2 = GetTilt()*GetTilt();
d937ad7a 681 Double_t correction = 1./(1. + t2);
682 cov[0] = (sy2+t2*sz2)*correction;
dd8059a8 683 cov[1] = GetTilt()*(sz2 - sy2)*correction;
d937ad7a 684 cov[2] = (t2*sy2+sz2)*correction;
b72f4eaf 685
686 //printf("C(%6.1f %+6.3f %6.1f) [%s]\n", 1.e4*TMath::Sqrt(cov[0]), cov[1], 1.e4*TMath::Sqrt(cov[2]), IsRowCross()?" RC ":"-");
d937ad7a 687}
eb38ed55 688
bb2db46c 689//____________________________________________________________
690Double_t AliTRDseedV1::GetCovSqrt(Double_t *c, Double_t *d)
691{
692// Helper function to calculate the square root of the covariance matrix.
693// The input matrix is stored in the vector c and the result in the vector d.
41b7c7b6 694// Both arrays have to be initialized by the user with at least 3 elements. Return negative in case of failure.
bb2db46c 695//
ec3f0161 696// For calculating the square root of the symmetric matrix c
697// the following relation is used:
bb2db46c 698// BEGIN_LATEX
ec3f0161 699// C^{1/2} = VD^{1/2}V^{-1}
bb2db46c 700// END_LATEX
41b7c7b6 701// with V being the matrix with the n eigenvectors as columns.
ec3f0161 702// In case C is symmetric the followings are true:
703// - matrix D is diagonal with the diagonal given by the eigenvalues of C
41b7c7b6 704// - V = V^{-1}
bb2db46c 705//
706// Author A.Bercuci <A.Bercuci@gsi.de>
707// Date Mar 19 2009
708
41b7c7b6 709 Double_t L[2], // eigenvalues
710 V[3]; // eigenvectors
bb2db46c 711 // the secular equation and its solution :
712 // (c[0]-L)(c[2]-L)-c[1]^2 = 0
713 // L^2 - L*Tr(c)+DET(c) = 0
714 // L12 = [Tr(c) +- sqrt(Tr(c)^2-4*DET(c))]/2
715 Double_t Tr = c[0]+c[2], // trace
716 DET = c[0]*c[2]-c[1]*c[1]; // determinant
41b7c7b6 717 if(TMath::Abs(DET)<1.e-20) return -1.;
bb2db46c 718 Double_t DD = TMath::Sqrt(Tr*Tr - 4*DET);
719 L[0] = .5*(Tr + DD);
720 L[1] = .5*(Tr - DD);
41b7c7b6 721 if(L[0]<0. || L[1]<0.) return -1.;
722
723 // the sym V matrix
724 // | v00 v10|
725 // | v10 v11|
726 Double_t tmp = (L[0]-c[0])/c[1];
727 V[0] = TMath::Sqrt(1./(tmp*tmp+1));
728 V[1] = tmp*V[0];
729 V[2] = V[1]*c[1]/(L[1]-c[2]);
730 // the VD^{1/2}V is:
731 L[0] = TMath::Sqrt(L[0]); L[1] = TMath::Sqrt(L[1]);
732 d[0] = V[0]*V[0]*L[0]+V[1]*V[1]*L[1];
733 d[1] = V[0]*V[1]*L[0]+V[1]*V[2]*L[1];
734 d[2] = V[1]*V[1]*L[0]+V[2]*V[2]*L[1];
bb2db46c 735
736 return 1.;
737}
738
739//____________________________________________________________
740Double_t AliTRDseedV1::GetCovInv(Double_t *c, Double_t *d)
741{
742// Helper function to calculate the inverse of the covariance matrix.
743// The input matrix is stored in the vector c and the result in the vector d.
744// Both arrays have to be initialized by the user with at least 3 elements
745// The return value is the determinant or 0 in case of singularity.
746//
747// Author A.Bercuci <A.Bercuci@gsi.de>
748// Date Mar 19 2009
749
750 Double_t Det = c[0]*c[2] - c[1]*c[1];
751 if(TMath::Abs(Det)<1.e-20) return 0.;
752 Double_t InvDet = 1./Det;
753 d[0] = c[2]*InvDet;
754 d[1] =-c[1]*InvDet;
755 d[2] = c[0]*InvDet;
756 return Det;
757}
0906e73e 758
b72f4eaf 759//____________________________________________________________________
760UShort_t AliTRDseedV1::GetVolumeId() const
761{
762 Int_t ic=0;
763 while(ic<kNclusters && !fClusters[ic]) ic++;
764 return fClusters[ic] ? fClusters[ic]->GetVolumeId() : 0;
765}
766
767
d937ad7a 768//____________________________________________________________________
e3cf3d02 769void AliTRDseedV1::Calibrate()
d937ad7a 770{
e3cf3d02 771// Retrieve calibration and position parameters from OCDB.
772// The following information are used
d937ad7a 773// - detector index
e3cf3d02 774// - column and row position of first attached cluster. If no clusters are attached
775// to the tracklet a random central chamber position (c=70, r=7) will be used.
776//
777// The following information is cached in the tracklet
778// t0 (trigger delay)
779// drift velocity
780// PRF width
781// omega*tau = tg(a_L)
782// diffusion coefficients (longitudinal and transversal)
d937ad7a 783//
784// Author :
785// Alex Bercuci <A.Bercuci@gsi.de>
786// Date : Jan 8th 2009
787//
eb38ed55 788
d937ad7a 789 AliCDBManager *cdb = AliCDBManager::Instance();
790 if(cdb->GetRun() < 0){
791 AliError("OCDB manager not properly initialized");
792 return;
793 }
0906e73e 794
e3cf3d02 795 AliTRDcalibDB *calib = AliTRDcalibDB::Instance();
796 AliTRDCalROC *vdROC = calib->GetVdriftROC(fDet),
797 *t0ROC = calib->GetT0ROC(fDet);;
798 const AliTRDCalDet *vdDet = calib->GetVdriftDet();
799 const AliTRDCalDet *t0Det = calib->GetT0Det();
d937ad7a 800
801 Int_t col = 70, row = 7;
802 AliTRDcluster **c = &fClusters[0];
3e778975 803 if(GetN()){
d937ad7a 804 Int_t ic = 0;
8d2bec9e 805 while (ic<kNclusters && !(*c)){ic++; c++;}
d937ad7a 806 if(*c){
807 col = (*c)->GetPadCol();
808 row = (*c)->GetPadRow();
809 }
810 }
3a039a31 811
e3cf3d02 812 fT0 = t0Det->GetValue(fDet) + t0ROC->GetValue(col,row);
813 fVD = vdDet->GetValue(fDet) * vdROC->GetValue(col, row);
814 fS2PRF = calib->GetPRFWidth(fDet, col, row); fS2PRF *= fS2PRF;
815 fExB = AliTRDCommonParam::Instance()->GetOmegaTau(fVD);
816 AliTRDCommonParam::Instance()->GetDiffCoeff(fDiffL,
817 fDiffT, fVD);
818 SetBit(kCalib, kTRUE);
0906e73e 819}
820
0906e73e 821//____________________________________________________________________
29b87567 822void AliTRDseedV1::SetOwner()
0906e73e 823{
29b87567 824 //AliInfo(Form("own [%s] fOwner[%s]", own?"YES":"NO", fOwner?"YES":"NO"));
825
826 if(TestBit(kOwner)) return;
8d2bec9e 827 for(int ic=0; ic<kNclusters; ic++){
29b87567 828 if(!fClusters[ic]) continue;
829 fClusters[ic] = new AliTRDcluster(*fClusters[ic]);
830 }
831 SetBit(kOwner);
0906e73e 832}
833
eb2b4f91 834//____________________________________________________________
835void AliTRDseedV1::SetPadPlane(AliTRDpadPlane *p)
836{
837// Shortcut method to initialize pad geometry.
838 if(!p) return;
839 SetTilt(TMath::Tan(TMath::DegToRad()*p->GetTiltingAngle()));
840 SetPadLength(p->GetLengthIPad());
841 SetPadWidth(p->GetWidthIPad());
842}
843
844
e4f2f73d 845//____________________________________________________________________
b1957d3c 846Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *chamber, Bool_t tilt)
e4f2f73d 847{
1fd9389f 848//
849// Projective algorithm to attach clusters to seeding tracklets. The following steps are performed :
850// 1. Collapse x coordinate for the full detector plane
851// 2. truncated mean on y (r-phi) direction
852// 3. purge clusters
853// 4. truncated mean on z direction
854// 5. purge clusters
855//
856// Parameters
857// - chamber : pointer to tracking chamber container used to search the tracklet
858// - tilt : switch for tilt correction during road building [default true]
859// Output
860// - true : if tracklet found successfully. Failure can happend because of the following:
861// -
862// Detailed description
863//
864// We start up by defining the track direction in the xy plane and roads. The roads are calculated based
8a7ff53c 865// on tracking information (variance in the r-phi direction) and estimated variance of the standard
866// clusters (see AliTRDcluster::SetSigmaY2()) corrected for tilt (see GetCovAt()). From this the road is
867// BEGIN_LATEX
500851ab 868// r_{y} = 3*#sqrt{12*(#sigma^{2}_{Trk}(y) + #frac{#sigma^{2}_{cl}(y) + tg^{2}(#alpha_{L})#sigma^{2}_{cl}(z)}{1+tg^{2}(#alpha_{L})})}
8a7ff53c 869// r_{z} = 1.5*L_{pad}
870// END_LATEX
1fd9389f 871//
4b755889 872// Author : Alexandru Bercuci <A.Bercuci@gsi.de>
873// Debug : level >3
1fd9389f 874
b1957d3c 875 Bool_t kPRINT = kFALSE;
29b87567 876 if(!fReconstructor->GetRecoParam() ){
877 AliError("Seed can not be used without a valid RecoParam.");
878 return kFALSE;
879 }
b1957d3c 880 // Initialize reco params for this tracklet
881 // 1. first time bin in the drift region
a2abcbc5 882 Int_t t0 = 14;
b1957d3c 883 Int_t kClmin = Int_t(fReconstructor->GetRecoParam() ->GetFindableClusters()*AliTRDtrackerV1::GetNTimeBins());
29b87567 884
8a7ff53c 885 Double_t s2yTrk= fRefCov[0],
886 s2yCl = 0.,
887 s2zCl = GetPadLength()*GetPadLength()/12.,
888 syRef = TMath::Sqrt(s2yTrk),
889 t2 = GetTilt()*GetTilt();
29b87567 890 //define roads
8a7ff53c 891 Double_t kroady = 1., //fReconstructor->GetRecoParam() ->GetRoad1y();
892 kroadz = GetPadLength() * 1.5 + 1.;
893 // define probing cluster (the perfect cluster) and default calibration
894 Short_t sig[] = {0, 0, 10, 30, 10, 0,0};
895 AliTRDcluster cp(fDet, 6, 75, 0, sig, 0);
896 Calibrate();
897
b1957d3c 898 if(kPRINT) printf("AttachClusters() sy[%f] road[%f]\n", syRef, kroady);
29b87567 899
900 // working variables
b1957d3c 901 const Int_t kNrows = 16;
4b755889 902 const Int_t kNcls = 3*kNclusters; // buffer size
903 AliTRDcluster *clst[kNrows][kNcls];
904 Double_t cond[4], dx, dy, yt, zt, yres[kNrows][kNcls];
905 Int_t idxs[kNrows][kNcls], ncl[kNrows], ncls = 0;
b1957d3c 906 memset(ncl, 0, kNrows*sizeof(Int_t));
4b755889 907 memset(yres, 0, kNrows*kNcls*sizeof(Double_t));
908 memset(clst, 0, kNrows*kNcls*sizeof(AliTRDcluster*));
b1957d3c 909
29b87567 910 // Do cluster projection
b1957d3c 911 AliTRDcluster *c = 0x0;
29b87567 912 AliTRDchamberTimeBin *layer = 0x0;
b1957d3c 913 Bool_t kBUFFER = kFALSE;
4b755889 914 for (Int_t it = 0; it < kNtb; it++) {
b1957d3c 915 if(!(layer = chamber->GetTB(it))) continue;
29b87567 916 if(!Int_t(*layer)) continue;
8a7ff53c 917 // get track projection at layers position
b1957d3c 918 dx = fX0 - layer->GetX();
919 yt = fYref[0] - fYref[1] * dx;
920 zt = fZref[0] - fZref[1] * dx;
8a7ff53c 921 // get standard cluster error corrected for tilt
922 cp.SetLocalTimeBin(it);
923 cp.SetSigmaY2(0.02, fDiffT, fExB, dx, -1./*zt*/, fYref[1]);
924 s2yCl = (cp.GetSigmaY2() + t2*s2zCl)/(1.+t2);
925 // get estimated road
926 kroady = 3.*TMath::Sqrt(12.*(s2yTrk + s2yCl));
927
928 if(kPRINT) printf(" %2d dx[%f] yt[%f] zt[%f] sT[um]=%6.2f sy[um]=%6.2f syTilt[um]=%6.2f yRoad[mm]=%f\n", it, dx, yt, zt, 1.e4*TMath::Sqrt(s2yTrk), 1.e4*TMath::Sqrt(cp.GetSigmaY2()), 1.e4*TMath::Sqrt(s2yCl), 1.e1*kroady);
b1957d3c 929
8a7ff53c 930 // select clusters
b1957d3c 931 cond[0] = yt; cond[2] = kroady;
932 cond[1] = zt; cond[3] = kroadz;
933 Int_t n=0, idx[6];
934 layer->GetClusters(cond, idx, n, 6);
935 for(Int_t ic = n; ic--;){
936 c = (*layer)[idx[ic]];
937 dy = yt - c->GetY();
dd8059a8 938 dy += tilt ? GetTilt() * (c->GetZ() - zt) : 0.;
b1957d3c 939 // select clusters on a 3 sigmaKalman level
940/* if(tilt && TMath::Abs(dy) > 3.*syRef){
941 printf("too large !!!\n");
942 continue;
943 }*/
944 Int_t r = c->GetPadRow();
945 if(kPRINT) printf("\t\t%d dy[%f] yc[%f] r[%d]\n", ic, TMath::Abs(dy), c->GetY(), r);
946 clst[r][ncl[r]] = c;
947 idxs[r][ncl[r]] = idx[ic];
948 yres[r][ncl[r]] = dy;
949 ncl[r]++; ncls++;
950
4b755889 951 if(ncl[r] >= kNcls) {
952 AliWarning(Form("Cluster candidates reached buffer limit %d. Some may be lost.", kNcls));
b1957d3c 953 kBUFFER = kTRUE;
29b87567 954 break;
955 }
956 }
b1957d3c 957 if(kBUFFER) break;
29b87567 958 }
b1957d3c 959 if(kPRINT) printf("Found %d clusters\n", ncls);
960 if(ncls<kClmin) return kFALSE;
961
962 // analyze each row individualy
963 Double_t mean, syDis;
964 Int_t nrow[] = {0, 0, 0}, nr = 0, lr=-1;
965 for(Int_t ir=kNrows; ir--;){
966 if(!(ncl[ir])) continue;
967 if(lr>0 && lr-ir != 1){
968 if(kPRINT) printf("W - gap in rows attached !!\n");
29b87567 969 }
b1957d3c 970 if(kPRINT) printf("\tir[%d] lr[%d] n[%d]\n", ir, lr, ncl[ir]);
971 // Evaluate truncated mean on the y direction
972 if(ncl[ir] > 3) AliMathBase::EvaluateUni(ncl[ir], yres[ir], mean, syDis, Int_t(ncl[ir]*.8));
973 else {
974 mean = 0.; syDis = 0.;
8a7ff53c 975 continue;
b1957d3c 976 }
977
4b755889 978 if(fReconstructor->GetStreamLevel(AliTRDReconstructor::kTracker) > 3){
979 TTreeSRedirector &cstreamer = *fReconstructor->GetDebugStream(AliTRDReconstructor::kTracker);
980 TVectorD dy(ncl[ir], yres[ir]);
21a6e3ac 981 UChar_t stat(0);
982 if(IsKink()) SETBIT(stat, 0);
983 if(IsStandAlone()) SETBIT(stat, 1);
4b755889 984 cstreamer << "AttachClusters"
21a6e3ac 985 << "stat=" << stat
986 << "det=" << fDet
987 << "pt=" << fPt
988 << "s2y=" << s2yTrk
989 << "dy=" << &dy
990 << "m=" << mean
991 << "s=" << syDis
4b755889 992 << "\n";
993 }
994
b1957d3c 995 // TODO check mean and sigma agains cluster resolution !!
8a7ff53c 996 if(kPRINT) printf("\tr[%2d] m[%f %5.3fsigma] s[%f]\n", ir, mean, TMath::Abs(mean/syDis), syDis);
b1957d3c 997 // select clusters on a 3 sigmaDistr level
998 Bool_t kFOUND = kFALSE;
999 for(Int_t ic = ncl[ir]; ic--;){
1000 if(yres[ir][ic] - mean > 3. * syDis){
1001 clst[ir][ic] = 0x0; continue;
1002 }
1003 nrow[nr]++; kFOUND = kTRUE;
1004 }
1005 // exit loop
1006 if(kFOUND) nr++;
1007 lr = ir; if(nr>=3) break;
29b87567 1008 }
b1957d3c 1009 if(kPRINT) printf("lr[%d] nr[%d] nrow[0]=%d nrow[1]=%d nrow[2]=%d\n", lr, nr, nrow[0], nrow[1], nrow[2]);
1010
1011 // classify cluster rows
1012 Int_t row = -1;
1013 switch(nr){
1014 case 1:
1015 row = lr;
1016 break;
1017 case 2:
1018 SetBit(kRowCross, kTRUE); // mark pad row crossing
1019 if(nrow[0] > nrow[1]){ row = lr+1; lr = -1;}
1020 else{
1021 row = lr; lr = 1;
1022 nrow[2] = nrow[1];
1023 nrow[1] = nrow[0];
1024 nrow[0] = nrow[2];
29b87567 1025 }
b1957d3c 1026 break;
1027 case 3:
1028 SetBit(kRowCross, kTRUE); // mark pad row crossing
1029 break;
29b87567 1030 }
b1957d3c 1031 if(kPRINT) printf("\trow[%d] n[%d]\n\n", row, nrow[0]);
1032 if(row<0) return kFALSE;
29b87567 1033
b1957d3c 1034 // Select and store clusters
1035 // We should consider here :
1036 // 1. How far is the chamber boundary
1037 // 2. How big is the mean
3e778975 1038 Int_t n = 0;
b1957d3c 1039 for (Int_t ir = 0; ir < nr; ir++) {
1040 Int_t jr = row + ir*lr;
1041 if(kPRINT) printf("\tattach %d clusters for row %d\n", ncl[jr], jr);
1042 for (Int_t ic = 0; ic < ncl[jr]; ic++) {
1043 if(!(c = clst[jr][ic])) continue;
1044 Int_t it = c->GetPadTime();
1045 // TODO proper indexing of clusters !!
e3cf3d02 1046 fIndexes[it+kNtb*ir] = chamber->GetTB(it)->GetGlobalIndex(idxs[jr][ic]);
1047 fClusters[it+kNtb*ir] = c;
29b87567 1048
b1957d3c 1049 //printf("\tid[%2d] it[%d] idx[%d]\n", ic, it, fIndexes[it]);
1050
3e778975 1051 n++;
b1957d3c 1052 }
1053 }
1054
29b87567 1055 // number of minimum numbers of clusters expected for the tracklet
3e778975 1056 if (n < kClmin){
1057 //AliWarning(Form("Not enough clusters to fit the tracklet %d [%d].", n, kClmin));
e4f2f73d 1058 return kFALSE;
1059 }
3e778975 1060 SetN(n);
0906e73e 1061
e3cf3d02 1062 // Load calibration parameters for this tracklet
1063 Calibrate();
b1957d3c 1064
1065 // calculate dx for time bins in the drift region (calibration aware)
a2abcbc5 1066 Float_t x[2] = {0.,0.}; Int_t tb[2]={0,0};
1067 for (Int_t it = t0, irp=0; irp<2 && it < AliTRDtrackerV1::GetNTimeBins(); it++) {
b1957d3c 1068 if(!fClusters[it]) continue;
1069 x[irp] = fClusters[it]->GetX();
a2abcbc5 1070 tb[irp] = fClusters[it]->GetLocalTimeBin();
b1957d3c 1071 irp++;
e3cf3d02 1072 }
d86ed84c 1073 Int_t dtb = tb[1] - tb[0];
1074 fdX = dtb ? (x[0] - x[1]) / dtb : 0.15;
29b87567 1075 return kTRUE;
e4f2f73d 1076}
1077
03cef9b2 1078//____________________________________________________________
1079void AliTRDseedV1::Bootstrap(const AliTRDReconstructor *rec)
1080{
1081// Fill in all derived information. It has to be called after recovery from file or HLT.
1082// The primitive data are
1083// - list of clusters
1084// - detector (as the detector will be removed from clusters)
1085// - position of anode wire (fX0) - temporary
1086// - track reference position and direction
1087// - momentum of the track
1088// - time bin length [cm]
1089//
1090// A.Bercuci <A.Bercuci@gsi.de> Oct 30th 2008
1091//
1092 fReconstructor = rec;
1093 AliTRDgeometry g;
1094 AliTRDpadPlane *pp = g.GetPadPlane(fDet);
dd8059a8 1095 fPad[0] = pp->GetLengthIPad();
1096 fPad[1] = pp->GetWidthIPad();
1097 fPad[3] = TMath::Tan(TMath::DegToRad()*pp->GetTiltingAngle());
e3cf3d02 1098 //fSnp = fYref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]);
1099 //fTgl = fZref[1];
3e778975 1100 Int_t n = 0, nshare = 0, nused = 0;
03cef9b2 1101 AliTRDcluster **cit = &fClusters[0];
8d2bec9e 1102 for(Int_t ic = kNclusters; ic--; cit++){
03cef9b2 1103 if(!(*cit)) return;
3e778975 1104 n++;
1105 if((*cit)->IsShared()) nshare++;
1106 if((*cit)->IsUsed()) nused++;
03cef9b2 1107 }
3e778975 1108 SetN(n); SetNUsed(nused); SetNShared(nshare);
e3cf3d02 1109 Fit();
03cef9b2 1110 CookLabels();
1111 GetProbability();
1112}
1113
1114
e4f2f73d 1115//____________________________________________________________________
b72f4eaf 1116Bool_t AliTRDseedV1::Fit(Bool_t tilt, Bool_t zcorr)
e4f2f73d 1117{
16cca13f 1118//
1119// Linear fit of the clusters attached to the tracklet
1120//
1121// Parameters :
1122// - tilt : switch for tilt pad correction of cluster y position based on
1123// the z, dzdx info from outside [default false].
1124// - zcorr : switch for using z information to correct for anisochronity
1fd9389f 1125// and a finner error parameterization estimation [default false]
16cca13f 1126// Output :
1127// True if successful
1128//
1129// Detailed description
1130//
1131// Fit in the xy plane
1132//
1fd9389f 1133// The fit is performed to estimate the y position of the tracklet and the track
1134// angle in the bending plane. The clusters are represented in the chamber coordinate
1135// system (with respect to the anode wire - see AliTRDtrackerV1::FollowBackProlongation()
1136// on how this is set). The x and y position of the cluster and also their variances
1137// are known from clusterizer level (see AliTRDcluster::GetXloc(), AliTRDcluster::GetYloc(),
1138// AliTRDcluster::GetSX() and AliTRDcluster::GetSY()).
1139// If gaussian approximation is used to calculate y coordinate of the cluster the position
1140// is recalculated taking into account the track angle. The general formula to calculate the
1141// error of cluster position in the gaussian approximation taking into account diffusion and track
1142// inclination is given for TRD by:
1143// BEGIN_LATEX
1144// #sigma^{2}_{y} = #sigma^{2}_{PRF} + #frac{x#delta_{t}^{2}}{(1+tg(#alpha_{L}))^{2}} + #frac{x^{2}tg^{2}(#phi-#alpha_{L})tg^{2}(#alpha_{L})}{12}
1145// END_LATEX
1146//
1147// Since errors are calculated only in the y directions, radial errors (x direction) are mapped to y
1148// by projection i.e.
1149// BEGIN_LATEX
1150// #sigma_{x|y} = tg(#phi) #sigma_{x}
1151// END_LATEX
1152// and also by the lorentz angle correction
1153//
1154// Fit in the xz plane
1155//
1156// The "fit" is performed to estimate the radial position (x direction) where pad row cross happens.
1157// If no pad row crossing the z position is taken from geometry and radial position is taken from the xy
1158// fit (see below).
1159//
1160// There are two methods to estimate the radial position of the pad row cross:
1161// 1. leading cluster radial position : Here the lower part of the tracklet is considered and the last
1162// cluster registered (at radial x0) on this segment is chosen to mark the pad row crossing. The error
1163// of the z estimate is given by :
1164// BEGIN_LATEX
1165// #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12
1166// END_LATEX
1167// The systematic errors for this estimation are generated by the following sources:
1168// - no charge sharing between pad rows is considered (sharp cross)
1169// - missing cluster at row cross (noise peak-up, under-threshold signal etc.).
1170//
1171// 2. charge fit over the crossing point : Here the full energy deposit along the tracklet is considered
1172// to estimate the position of the crossing by a fit in the qx plane. The errors in the q directions are
1173// parameterized as s_q = q^2. The systematic errors for this estimation are generated by the following sources:
1174// - no general model for the qx dependence
1175// - physical fluctuations of the charge deposit
1176// - gain calibration dependence
1177//
1178// Estimation of the radial position of the tracklet
16cca13f 1179//
1fd9389f 1180// For pad row cross the radial position is taken from the xz fit (see above). Otherwise it is taken as the
1181// interpolation point of the tracklet i.e. the point where the error in y of the fit is minimum. The error
1182// in the y direction of the tracklet is (see AliTRDseedV1::GetCovAt()):
1183// BEGIN_LATEX
1184// #sigma_{y} = #sigma^{2}_{y_{0}} + 2xcov(y_{0}, dy/dx) + #sigma^{2}_{dy/dx}
1185// END_LATEX
1186// and thus the radial position is:
1187// BEGIN_LATEX
1188// x = - cov(y_{0}, dy/dx)/#sigma^{2}_{dy/dx}
1189// END_LATEX
1190//
1191// Estimation of tracklet position error
1192//
1193// The error in y direction is the error of the linear fit at the radial position of the tracklet while in the z
1194// direction is given by the cluster error or pad row cross error. In case of no pad row cross this is given by:
1195// BEGIN_LATEX
1196// #sigma_{y} = #sigma^{2}_{y_{0}} - 2cov^{2}(y_{0}, dy/dx)/#sigma^{2}_{dy/dx} + #sigma^{2}_{dy/dx}
1197// #sigma_{z} = Pad_{length}/12
1198// END_LATEX
1199// For pad row cross the full error is calculated at the radial position of the crossing (see above) and the error
1200// in z by the width of the crossing region - being a matter of parameterization.
1201// BEGIN_LATEX
1202// #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12
1203// END_LATEX
1204// In case of no tilt correction (default in the barrel tracking) the tilt is taken into account by the rotation of
1205// the covariance matrix. See AliTRDseedV1::GetCovAt() for details.
1206//
1207// Author
1208// A.Bercuci <A.Bercuci@gsi.de>
e4f2f73d 1209
b72f4eaf 1210 if(!IsCalibrated()) Calibrate();
e3cf3d02 1211
29b87567 1212 const Int_t kClmin = 8;
010d62b0 1213
2f7d6ac8 1214 // get track direction
1215 Double_t y0 = fYref[0];
1216 Double_t dydx = fYref[1];
1217 Double_t z0 = fZref[0];
1218 Double_t dzdx = fZref[1];
1219 Double_t yt, zt;
ae4e8b84 1220
b1957d3c 1221 //AliTRDtrackerV1::AliTRDLeastSquare fitterZ;
24d8660e 1222 TLinearFitter fitterY(1, "pol1");
b72f4eaf 1223 TLinearFitter fitterZ(1, "pol1");
ae4e8b84 1224
29b87567 1225 // book cluster information
8d2bec9e 1226 Double_t qc[kNclusters], xc[kNclusters], yc[kNclusters], zc[kNclusters], sy[kNclusters];
e3cf3d02 1227
dd8059a8 1228 Int_t n = 0;
9eb2d46c 1229 AliTRDcluster *c=0x0, **jc = &fClusters[0];
9eb2d46c 1230 for (Int_t ic=0; ic<kNtb; ic++, ++jc) {
29b87567 1231 xc[ic] = -1.;
1232 yc[ic] = 999.;
1233 zc[ic] = 999.;
1234 sy[ic] = 0.;
9eb2d46c 1235 if(!(c = (*jc))) continue;
29b87567 1236 if(!c->IsInChamber()) continue;
9462866a 1237
29b87567 1238 Float_t w = 1.;
1239 if(c->GetNPads()>4) w = .5;
1240 if(c->GetNPads()>5) w = .2;
010d62b0 1241
1fd9389f 1242 // cluster charge
dd8059a8 1243 qc[n] = TMath::Abs(c->GetQ());
1fd9389f 1244 // pad row of leading
1245
b72f4eaf 1246 // Radial cluster position
e3cf3d02 1247 //Int_t jc = TMath::Max(fN-3, 0);
1248 //xc[fN] = c->GetXloc(fT0, fVD, &qc[jc], &xc[jc]/*, z0 - c->GetX()*dzdx*/);
b72f4eaf 1249 xc[n] = fX0 - c->GetX();
1250
1fd9389f 1251 // extrapolated track to cluster position
dd8059a8 1252 yt = y0 - xc[n]*dydx;
dd8059a8 1253 zt = z0 - xc[n]*dzdx;
1fd9389f 1254
1255 // Recalculate cluster error based on tracking information
1256 c->SetSigmaY2(fS2PRF, fDiffT, fExB, xc[n], zcorr?zt:-1., dydx);
1257 sy[n] = TMath::Sqrt(c->GetSigmaY2());
1258
1259 yc[n] = fReconstructor->UseGAUS() ?
1260 c->GetYloc(y0, sy[n], GetPadWidth()): c->GetY();
1261 zc[n] = c->GetZ();
1262 //optional tilt correction
1263 if(tilt) yc[n] -= (GetTilt()*(zc[n] - zt));
1264
1265 fitterY.AddPoint(&xc[n], yc[n], TMath::Sqrt(sy[n]));
b72f4eaf 1266 fitterZ.AddPoint(&xc[n], qc[n], 1.);
dd8059a8 1267 n++;
29b87567 1268 }
47d5d320 1269 // to few clusters
dd8059a8 1270 if (n < kClmin) return kFALSE;
2f7d6ac8 1271
d937ad7a 1272 // fit XY
2f7d6ac8 1273 fitterY.Eval();
d937ad7a 1274 fYfit[0] = fitterY.GetParameter(0);
1275 fYfit[1] = -fitterY.GetParameter(1);
1276 // store covariance
1277 Double_t *p = fitterY.GetCovarianceMatrix();
1278 fCov[0] = p[0]; // variance of y0
1279 fCov[1] = p[1]; // covariance of y0, dydx
1280 fCov[2] = p[3]; // variance of dydx
b1957d3c 1281 // the ref radial position is set at the minimum of
1282 // the y variance of the tracklet
b72f4eaf 1283 fX = -fCov[1]/fCov[2];
b1957d3c 1284
1285 // fit XZ
b72f4eaf 1286 if(IsRowCross()){
e355f67a 1287/* // THE LEADING CLUSTER METHOD
1fd9389f 1288 Float_t xMin = fX0;
b72f4eaf 1289 Int_t ic=n=kNclusters-1; jc = &fClusters[ic];
1fd9389f 1290 AliTRDcluster *c0 =0x0, **kc = &fClusters[kNtb-1];
1291 for(; ic>kNtb; ic--, --jc, --kc){
1292 if((c0 = (*kc)) && c0->IsInChamber() && (xMin>c0->GetX())) xMin = c0->GetX();
1293 if(!(c = (*jc))) continue;
1294 if(!c->IsInChamber()) continue;
1295 zc[kNclusters-1] = c->GetZ();
1296 fX = fX0 - c->GetX();
1297 }
1298 fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.;
1299 // Error parameterization
1300 fS2Z = fdX*fZref[1];
e355f67a 1301 fS2Z *= fS2Z; fS2Z *= 0.2887; // 1/sqrt(12)*/
1302
1fd9389f 1303 // THE FIT X-Q PLANE METHOD
e355f67a 1304 Int_t ic=n=kNclusters-1; jc = &fClusters[ic];
b72f4eaf 1305 for(; ic>kNtb; ic--, --jc){
1306 if(!(c = (*jc))) continue;
1307 if(!c->IsInChamber()) continue;
1308 qc[n] = TMath::Abs(c->GetQ());
1309 xc[n] = fX0 - c->GetX();
1310 zc[n] = c->GetZ();
1311 fitterZ.AddPoint(&xc[n], -qc[n], 1.);
1312 n--;
1313 }
1314 // fit XZ
1315 fitterZ.Eval();
1316 if(fitterZ.GetParameter(1)!=0.){
1317 fX = -fitterZ.GetParameter(0)/fitterZ.GetParameter(1);
1318 fX=(fX<0.)?0.:fX;
1319 Float_t dl = .5*AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght();
1320 fX=(fX> dl)?dl:fX;
07bbc13c 1321 fX-=.055; // TODO to be understood
b72f4eaf 1322 }
1323
1324 fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.;
c850c351 1325 // temporary external error parameterization
1326 fS2Z = 0.05+0.4*TMath::Abs(fZref[1]); fS2Z *= fS2Z;
1327 // TODO correct formula
1328 //fS2Z = sigma_x*TMath::Abs(fZref[1]);
b1957d3c 1329 } else {
1330 fZfit[0] = zc[0]; fZfit[1] = 0.;
dd8059a8 1331 fS2Z = GetPadLength()*GetPadLength()/12.;
29b87567 1332 }
b72f4eaf 1333 fS2Y = fCov[0] +2.*fX*fCov[1] + fX*fX*fCov[2];
29b87567 1334 return kTRUE;
e4f2f73d 1335}
1336
e4f2f73d 1337
f29f13a6 1338/*
e3cf3d02 1339//_____________________________________________________________________________
1340void AliTRDseedV1::FitMI()
1341{
1342//
1343// Fit the seed.
1344// Marian Ivanov's version
1345//
1346// linear fit on the y direction with respect to the reference direction.
1347// The residuals for each x (x = xc - x0) are deduced from:
1348// dy = y - yt (1)
1349// the tilting correction is written :
1350// y = yc + h*(zc-zt) (2)
1351// yt = y0+dy/dx*x (3)
1352// zt = z0+dz/dx*x (4)
1353// from (1),(2),(3) and (4)
1354// dy = yc - y0 - (dy/dx + h*dz/dx)*x + h*(zc-z0)
1355// the last term introduces the correction on y direction due to tilting pads. There are 2 ways to account for this:
1356// 1. use tilting correction for calculating the y
1357// 2. neglect tilting correction here and account for it in the error parametrization of the tracklet.
1358 const Float_t kRatio = 0.8;
1359 const Int_t kClmin = 5;
1360 const Float_t kmaxtan = 2;
1361
1362 if (TMath::Abs(fYref[1]) > kmaxtan){
1363 //printf("Exit: Abs(fYref[1]) = %3.3f, kmaxtan = %3.3f\n", TMath::Abs(fYref[1]), kmaxtan);
1364 return; // Track inclined too much
1365 }
1366
1367 Float_t sigmaexp = 0.05 + TMath::Abs(fYref[1] * 0.25); // Expected r.m.s in y direction
dd8059a8 1368 Float_t ycrosscor = GetPadLength() * GetTilt() * 0.5; // Y correction for crossing
e3cf3d02 1369 Int_t fNChange = 0;
1370
1371 Double_t sumw;
1372 Double_t sumwx;
1373 Double_t sumwx2;
1374 Double_t sumwy;
1375 Double_t sumwxy;
1376 Double_t sumwz;
1377 Double_t sumwxz;
1378
1379 // Buffering: Leave it constant fot Performance issues
1380 Int_t zints[kNtb]; // Histograming of the z coordinate
1381 // Get 1 and second max probable coodinates in z
1382 Int_t zouts[2*kNtb];
1383 Float_t allowedz[kNtb]; // Allowed z for given time bin
1384 Float_t yres[kNtb]; // Residuals from reference
dd8059a8 1385 //Float_t anglecor = GetTilt() * fZref[1]; // Correction to the angle
e3cf3d02 1386
1387 Float_t pos[3*kNtb]; memset(pos, 0, 3*kNtb*sizeof(Float_t));
1388 Float_t *fX = &pos[0], *fY = &pos[kNtb], *fZ = &pos[2*kNtb];
1389
1390 Int_t fN = 0; AliTRDcluster *c = 0x0;
1391 fN2 = 0;
1392 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) {
1393 yres[i] = 10000.0;
1394 if (!(c = fClusters[i])) continue;
1395 if(!c->IsInChamber()) continue;
1396 // Residual y
dd8059a8 1397 //yres[i] = fY[i] - fYref[0] - (fYref[1] + anglecor) * fX[i] + GetTilt()*(fZ[i] - fZref[0]);
e3cf3d02 1398 fX[i] = fX0 - c->GetX();
1399 fY[i] = c->GetY();
1400 fZ[i] = c->GetZ();
dd8059a8 1401 yres[i] = fY[i] - GetTilt()*(fZ[i] - (fZref[0] - fX[i]*fZref[1]));
e3cf3d02 1402 zints[fN] = Int_t(fZ[i]);
1403 fN++;
1404 }
1405
1406 if (fN < kClmin){
1407 //printf("Exit fN < kClmin: fN = %d\n", fN);
1408 return;
1409 }
1410 Int_t nz = AliTRDtrackerV1::Freq(fN, zints, zouts, kFALSE);
1411 Float_t fZProb = zouts[0];
1412 if (nz <= 1) zouts[3] = 0;
1413 if (zouts[1] + zouts[3] < kClmin) {
1414 //printf("Exit zouts[1] = %d, zouts[3] = %d\n",zouts[1],zouts[3]);
1415 return;
1416 }
1417
1418 // Z distance bigger than pad - length
1419 if (TMath::Abs(zouts[0]-zouts[2]) > 12.0) zouts[3] = 0;
1420
1421 Int_t breaktime = -1;
1422 Bool_t mbefore = kFALSE;
1423 Int_t cumul[kNtb][2];
1424 Int_t counts[2] = { 0, 0 };
1425
1426 if (zouts[3] >= 3) {
1427
1428 //
1429 // Find the break time allowing one chage on pad-rows
1430 // with maximal number of accepted clusters
1431 //
1432 fNChange = 1;
1433 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) {
1434 cumul[i][0] = counts[0];
1435 cumul[i][1] = counts[1];
1436 if (TMath::Abs(fZ[i]-zouts[0]) < 2) counts[0]++;
1437 if (TMath::Abs(fZ[i]-zouts[2]) < 2) counts[1]++;
1438 }
1439 Int_t maxcount = 0;
1440 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) {
1441 Int_t after = cumul[AliTRDtrackerV1::GetNTimeBins()][0] - cumul[i][0];
1442 Int_t before = cumul[i][1];
1443 if (after + before > maxcount) {
1444 maxcount = after + before;
1445 breaktime = i;
1446 mbefore = kFALSE;
1447 }
1448 after = cumul[AliTRDtrackerV1::GetNTimeBins()-1][1] - cumul[i][1];
1449 before = cumul[i][0];
1450 if (after + before > maxcount) {
1451 maxcount = after + before;
1452 breaktime = i;
1453 mbefore = kTRUE;
1454 }
1455 }
1456 breaktime -= 1;
1457 }
1458
1459 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1460 if (i > breaktime) allowedz[i] = mbefore ? zouts[2] : zouts[0];
1461 if (i <= breaktime) allowedz[i] = (!mbefore) ? zouts[2] : zouts[0];
1462 }
1463
1464 if (((allowedz[0] > allowedz[AliTRDtrackerV1::GetNTimeBins()]) && (fZref[1] < 0)) ||
1465 ((allowedz[0] < allowedz[AliTRDtrackerV1::GetNTimeBins()]) && (fZref[1] > 0))) {
1466 //
1467 // Tracklet z-direction not in correspondance with track z direction
1468 //
1469 fNChange = 0;
1470 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1471 allowedz[i] = zouts[0]; // Only longest taken
1472 }
1473 }
1474
1475 if (fNChange > 0) {
1476 //
1477 // Cross pad -row tracklet - take the step change into account
1478 //
1479 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1480 if (!fClusters[i]) continue;
1481 if(!fClusters[i]->IsInChamber()) continue;
1482 if (TMath::Abs(fZ[i] - allowedz[i]) > 2) continue;
1483 // Residual y
dd8059a8 1484 //yres[i] = fY[i] - fYref[0] - (fYref[1] + anglecor) * fX[i] + GetTilt()*(fZ[i] - fZref[0]);
1485 yres[i] = fY[i] - GetTilt()*(fZ[i] - (fZref[0] - fX[i]*fZref[1]));
f29f13a6 1486// if (TMath::Abs(fZ[i] - fZProb) > 2) {
dd8059a8 1487// if (fZ[i] > fZProb) yres[i] += GetTilt() * GetPadLength();
1488// if (fZ[i] < fZProb) yres[i] -= GetTilt() * GetPadLength();
f29f13a6 1489 }
e3cf3d02 1490 }
1491 }
1492
1493 Double_t yres2[kNtb];
1494 Double_t mean;
1495 Double_t sigma;
1496 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1497 if (!fClusters[i]) continue;
1498 if(!fClusters[i]->IsInChamber()) continue;
1499 if (TMath::Abs(fZ[i] - allowedz[i]) > 2) continue;
1500 yres2[fN2] = yres[i];
1501 fN2++;
1502 }
1503 if (fN2 < kClmin) {
1504 //printf("Exit fN2 < kClmin: fN2 = %d\n", fN2);
1505 fN2 = 0;
1506 return;
1507 }
1508 AliMathBase::EvaluateUni(fN2,yres2,mean,sigma, Int_t(fN2*kRatio-2.));
1509 if (sigma < sigmaexp * 0.8) {
1510 sigma = sigmaexp;
1511 }
1512 //Float_t fSigmaY = sigma;
1513
1514 // Reset sums
1515 sumw = 0;
1516 sumwx = 0;
1517 sumwx2 = 0;
1518 sumwy = 0;
1519 sumwxy = 0;
1520 sumwz = 0;
1521 sumwxz = 0;
1522
1523 fN2 = 0;
1524 Float_t fMeanz = 0;
1525 Float_t fMPads = 0;
1526 fUsable = 0;
1527 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1528 if (!fClusters[i]) continue;
1529 if (!fClusters[i]->IsInChamber()) continue;
1530 if (TMath::Abs(fZ[i] - allowedz[i]) > 2){fClusters[i] = 0x0; continue;}
1531 if (TMath::Abs(yres[i] - mean) > 4.0 * sigma){fClusters[i] = 0x0; continue;}
1532 SETBIT(fUsable,i);
1533 fN2++;
1534 fMPads += fClusters[i]->GetNPads();
1535 Float_t weight = 1.0;
1536 if (fClusters[i]->GetNPads() > 4) weight = 0.5;
1537 if (fClusters[i]->GetNPads() > 5) weight = 0.2;
1538
1539
1540 Double_t x = fX[i];
1541 //printf("x = %7.3f dy = %7.3f fit %7.3f\n", x, yres[i], fY[i]-yres[i]);
1542
1543 sumw += weight;
1544 sumwx += x * weight;
1545 sumwx2 += x*x * weight;
1546 sumwy += weight * yres[i];
1547 sumwxy += weight * (yres[i]) * x;
1548 sumwz += weight * fZ[i];
1549 sumwxz += weight * fZ[i] * x;
1550
1551 }
1552
1553 if (fN2 < kClmin){
1554 //printf("Exit fN2 < kClmin(2): fN2 = %d\n",fN2);
1555 fN2 = 0;
1556 return;
1557 }
1558 fMeanz = sumwz / sumw;
1559 Float_t correction = 0;
1560 if (fNChange > 0) {
1561 // Tracklet on boundary
1562 if (fMeanz < fZProb) correction = ycrosscor;
1563 if (fMeanz > fZProb) correction = -ycrosscor;
1564 }
1565
1566 Double_t det = sumw * sumwx2 - sumwx * sumwx;
1567 fYfit[0] = (sumwx2 * sumwy - sumwx * sumwxy) / det;
1568 fYfit[1] = (sumw * sumwxy - sumwx * sumwy) / det;
1569
1570 fS2Y = 0;
1571 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1572 if (!TESTBIT(fUsable,i)) continue;
1573 Float_t delta = yres[i] - fYfit[0] - fYfit[1] * fX[i];
1574 fS2Y += delta*delta;
1575 }
1576 fS2Y = TMath::Sqrt(fS2Y / Float_t(fN2-2));
1577 // TEMPORARY UNTIL covariance properly calculated
1578 fS2Y = TMath::Max(fS2Y, Float_t(.1));
1579
1580 fZfit[0] = (sumwx2 * sumwz - sumwx * sumwxz) / det;
1581 fZfit[1] = (sumw * sumwxz - sumwx * sumwz) / det;
1582// fYfitR[0] += fYref[0] + correction;
1583// fYfitR[1] += fYref[1];
1584// fYfit[0] = fYfitR[0];
1585 fYfit[1] = -fYfit[1];
1586
1587 UpdateUsed();
f29f13a6 1588}*/
e3cf3d02 1589
e4f2f73d 1590//___________________________________________________________________
203967fc 1591void AliTRDseedV1::Print(Option_t *o) const
e4f2f73d 1592{
1593 //
1594 // Printing the seedstatus
1595 //
1596
b72f4eaf 1597 AliInfo(Form("Det[%3d] X0[%7.2f] Pad{L[%5.2f] W[%5.2f] Tilt[%+6.2f]}", fDet, fX0, GetPadLength(), GetPadWidth(), GetTilt()));
dd8059a8 1598 AliInfo(Form("N[%2d] Nused[%2d] Nshared[%2d] [%d]", GetN(), GetNUsed(), GetNShared(), fN));
b72f4eaf 1599 AliInfo(Form("FLAGS : RC[%c] Kink[%c] SA[%c]", IsRowCross()?'y':'n', IsKink()?'y':'n', IsStandAlone()?'y':'n'));
dd8059a8 1600
1601 Double_t cov[3], x=GetX();
1602 GetCovAt(x, cov);
1603 AliInfo(" | x[cm] | y[cm] | z[cm] | dydx | dzdx |");
1604 AliInfo(Form("Fit | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | ----- |", x, GetY(), TMath::Sqrt(cov[0]), GetZ(), TMath::Sqrt(cov[2]), fYfit[1]));
16cca13f 1605 AliInfo(Form("Ref | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | %5.2f |", x, fYref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[0]), fZref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[2]), fYref[1], fZref[1]))
203967fc 1606
1607
1608 if(strcmp(o, "a")!=0) return;
1609
4dc4dc2e 1610 AliTRDcluster* const* jc = &fClusters[0];
8d2bec9e 1611 for(int ic=0; ic<kNclusters; ic++, jc++) {
4dc4dc2e 1612 if(!(*jc)) continue;
203967fc 1613 (*jc)->Print(o);
4dc4dc2e 1614 }
e4f2f73d 1615}
47d5d320 1616
203967fc 1617
1618//___________________________________________________________________
1619Bool_t AliTRDseedV1::IsEqual(const TObject *o) const
1620{
1621 // Checks if current instance of the class has the same essential members
1622 // as the given one
1623
1624 if(!o) return kFALSE;
1625 const AliTRDseedV1 *inTracklet = dynamic_cast<const AliTRDseedV1*>(o);
1626 if(!inTracklet) return kFALSE;
1627
1628 for (Int_t i = 0; i < 2; i++){
e3cf3d02 1629 if ( fYref[i] != inTracklet->fYref[i] ) return kFALSE;
1630 if ( fZref[i] != inTracklet->fZref[i] ) return kFALSE;
203967fc 1631 }
1632
e3cf3d02 1633 if ( fS2Y != inTracklet->fS2Y ) return kFALSE;
dd8059a8 1634 if ( GetTilt() != inTracklet->GetTilt() ) return kFALSE;
1635 if ( GetPadLength() != inTracklet->GetPadLength() ) return kFALSE;
203967fc 1636
8d2bec9e 1637 for (Int_t i = 0; i < kNclusters; i++){
e3cf3d02 1638// if ( fX[i] != inTracklet->GetX(i) ) return kFALSE;
1639// if ( fY[i] != inTracklet->GetY(i) ) return kFALSE;
1640// if ( fZ[i] != inTracklet->GetZ(i) ) return kFALSE;
1641 if ( fIndexes[i] != inTracklet->fIndexes[i] ) return kFALSE;
203967fc 1642 }
f29f13a6 1643// if ( fUsable != inTracklet->fUsable ) return kFALSE;
203967fc 1644
1645 for (Int_t i=0; i < 2; i++){
e3cf3d02 1646 if ( fYfit[i] != inTracklet->fYfit[i] ) return kFALSE;
1647 if ( fZfit[i] != inTracklet->fZfit[i] ) return kFALSE;
1648 if ( fLabels[i] != inTracklet->fLabels[i] ) return kFALSE;
203967fc 1649 }
1650
e3cf3d02 1651/* if ( fMeanz != inTracklet->GetMeanz() ) return kFALSE;
1652 if ( fZProb != inTracklet->GetZProb() ) return kFALSE;*/
3e778975 1653 if ( fN != inTracklet->fN ) return kFALSE;
1654 //if ( fNUsed != inTracklet->fNUsed ) return kFALSE;
e3cf3d02 1655 //if ( fFreq != inTracklet->GetFreq() ) return kFALSE;
1656 //if ( fNChange != inTracklet->GetNChange() ) return kFALSE;
203967fc 1657
e3cf3d02 1658 if ( fC != inTracklet->fC ) return kFALSE;
1659 //if ( fCC != inTracklet->GetCC() ) return kFALSE;
1660 if ( fChi2 != inTracklet->fChi2 ) return kFALSE;
203967fc 1661 // if ( fChi2Z != inTracklet->GetChi2Z() ) return kFALSE;
1662
e3cf3d02 1663 if ( fDet != inTracklet->fDet ) return kFALSE;
b25a5e9e 1664 if ( fPt != inTracklet->fPt ) return kFALSE;
e3cf3d02 1665 if ( fdX != inTracklet->fdX ) return kFALSE;
203967fc 1666
8d2bec9e 1667 for (Int_t iCluster = 0; iCluster < kNclusters; iCluster++){
203967fc 1668 AliTRDcluster *curCluster = fClusters[iCluster];
e3cf3d02 1669 AliTRDcluster *inCluster = inTracklet->fClusters[iCluster];
203967fc 1670 if (curCluster && inCluster){
1671 if (! curCluster->IsEqual(inCluster) ) {
1672 curCluster->Print();
1673 inCluster->Print();
1674 return kFALSE;
1675 }
1676 } else {
1677 // if one cluster exists, and corresponding
1678 // in other tracklet doesn't - return kFALSE
1679 if(curCluster || inCluster) return kFALSE;
1680 }
1681 }
1682 return kTRUE;
1683}
5d401b45 1684