]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TRD/AliTRDv0.cxx
Drawing macros added.
[u/mrichter/AliRoot.git] / TRD / AliTRDv0.cxx
CommitLineData
fe4da5cc 1///////////////////////////////////////////////////////////////////////////////
2// //
3// Transition Radiation Detector version 0 -- coarse simulation //
4// //
5//Begin_Html
6/*
7<img src="gif/AliTRDv0Class.gif">
8*/
9//End_Html
10// //
11// //
12///////////////////////////////////////////////////////////////////////////////
13
14#include <TMath.h>
15#include <TRandom.h>
16#include <TVector.h>
fe4da5cc 17
fe4da5cc 18#include "AliTRDv0.h"
19#include "AliRun.h"
20#include "AliMC.h"
21#include "AliConst.h"
22
23ClassImp(AliTRDv0)
24
25//_____________________________________________________________________________
26AliTRDv0::AliTRDv0(const char *name, const char *title)
27 :AliTRD(name, title)
28{
29 //
30 // Standard constructor for Transition Radiation Detector version 0
31 //
d3f347ff 32 fIdSens1 = fIdSens2 = fIdSens3 = 0;
fe4da5cc 33}
34
35//_____________________________________________________________________________
36void AliTRDv0::CreateGeometry()
37{
38 //
39 // Create the GEANT geometry for the Transition Radiation Detector
40 // --- The coarse geometry of the TRD, that can be used for background
41 // studies. This version covers the full azimuth.
d3f347ff 42 // --- Author : Christoph Blume (GSI) 17/5/99
43 //
44 // --- Volume names :
45 // TRD --> Mother TRD volume (Al)
46 // UTRS --> Sectors of the sub-detector (Al)
47 // UTRI --> Inner part of the detector frame (Air)
48 // UTCI(N,O) --> Frames of the inner, neighbouring and outer chambers (C)
49 // UTII(N,O) --> Inner part of the chambers (Air)
50 // UTMI(N,O) --> Modules in the chambers (Air)
51 // UT0I(N,O) --> Radiator seal (G10)
52 // UT1I(N,O) --> Radiator (CO2)
53 // UT2I(N,O) --> Polyethylene of radiator (PE)
54 // UT3I(N,O) --> Entrance window (Mylar)
55 // UT4I(N,O) --> Gas volume (sensitive) (Xe/Isobutane)
56 // UT5I(N,O) --> Pad plane (Cu)
57 // UT6I(N,O) --> Support structure (G10)
58 // UT7I(N,O) --> FEE + signal lines (Cu)
59 // UT8I(N,O) --> Polyethylene of cooling device (PE)
60 // UT9I(N,O) --> Cooling water (Water)
fe4da5cc 61 //
62 //Begin_Html
63 /*
64 <img src="gif/AliTRDv0.gif">
65 */
66 //End_Html
67 //Begin_Html
68 /*
69 <img src="gif/AliTRDv0Tree.gif">
70 */
71 //End_Html
72
73 Float_t xpos, ypos, zpos, f;
d3f347ff 74 Int_t idmat[2];
75
76 const Int_t nparmo = 10;
77 const Int_t nparfr = 4;
78 const Int_t nparic = 4;
79 const Int_t nparnc = 4;
80 const Int_t nparoc = 11;
81
82 Float_t par_mo[nparmo];
83 Float_t par_fr[nparfr];
84 Float_t par_ic[nparic];
85 Float_t par_nc[nparnc];
86 Float_t par_oc[nparoc];
87
fe4da5cc 88 Int_t *idtmed = gAlice->Idtmed();
89
fe4da5cc 90 AliMC* pMC = AliMC::GetMC();
d3f347ff 91
92 //////////////////////////////////////////////////////////////////////////
fe4da5cc 93 // Definition of Volumes
d3f347ff 94 //////////////////////////////////////////////////////////////////////////
fe4da5cc 95
d3f347ff 96 // Definition of the mother volume for the TRD (Al)
97 par_mo[0] = 0.;
fe4da5cc 98 par_mo[1] = 360.;
99 par_mo[2] = nsect;
100 par_mo[3] = 2.;
101 par_mo[4] = -zmax1;
102 par_mo[5] = rmin;
103 par_mo[6] = rmax;
d3f347ff 104 par_mo[7] = zmax1;
fe4da5cc 105 par_mo[8] = rmin;
106 par_mo[9] = rmax;
d3f347ff 107 pMC->Gsvolu("TRD ", "PGON", idtmed[1301-1], par_mo, nparmo);
108 pMC->Gsdvn("UTRS", "TRD ", nsect, 2);
109
110 // The minimal width of a sector in rphi-direction
111 Float_t widmi = rmin * TMath::Sin(kPI/nsect);
112 // The maximal width of a sector in rphi-direction
113 Float_t widma = rmax * TMath::Sin(kPI/nsect);
114 // The total thickness of the spaceframe (Al + Air)
115 Float_t frame = widmi - (widpl1 / 2);
116
117 // Definition of the inner part of the detector frame (Air)
118 par_fr[0] = widmi - alframe / 2.;
119 par_fr[1] = widma - alframe / 2.;
120 par_fr[2] = zmax1;
121 par_fr[3] = (rmax - rmin) / 2;
122 pMC->Gsvolu("UTRI", "TRD1", idtmed[1302-1], par_fr, nparfr);
123
124 //
125 // The outer chambers
126 //
127
128 // Calculate some shape-parameter
129 Float_t tanzr = (zmax1 - zmax2) / (rmax - rmin);
130 Float_t theoc = -kRaddeg * TMath::ATan(tanzr / 2);
131
132 // The carbon frame (C)
133 par_oc[0] = (rmax - rmin) / 2;
134 par_oc[1] = theoc;
135 par_oc[2] = 90.;
136 par_oc[3] = (zmax2 - zlenn - zleni/2) / 2;
137 par_oc[4] = widmi - frame;
138 par_oc[5] = widmi - frame;
139 par_oc[6] = 0.;
140 par_oc[7] = (zmax1 - zlenn - zleni/2) / 2;
141 par_oc[8] = widma - frame;
142 par_oc[9] = widma - frame;
fe4da5cc 143 par_oc[10] = 0.;
d3f347ff 144 pMC->Gsvolu("UTCO", "TRAP", idtmed[1307-1], par_oc, nparoc);
145
146 // The inner part (Air)
fe4da5cc 147 par_oc[3] -= ccframe;
148 par_oc[4] -= ccframe;
d3f347ff 149 par_oc[5] -= ccframe;
fe4da5cc 150 par_oc[7] -= ccframe;
151 par_oc[8] -= ccframe;
152 par_oc[9] -= ccframe;
d3f347ff 153 pMC->Gsvolu("UTIO", "TRAP", idtmed[1302-1], par_oc, nparoc);
154
155 // Definition of the six modules within each chamber
fe4da5cc 156 pMC->Gsdvn("UTMO", "UTIO", nmodul, 3);
d3f347ff 157
158 // Definition of the layers of each chamber
159 par_oc[1] = theoc;
160 par_oc[2] = 90.;
161 par_oc[3] = -1.;
162 par_oc[4] = -1.;
163 par_oc[5] = -1.;
164 par_oc[6] = 0.;
165 par_oc[7] = -1.;
166 par_oc[8] = -1.;
167 par_oc[9] = -1.;
168 par_oc[10] = 0.;
169 // G10 layer (radiator layer)
170 par_oc[0] = sethick / 2;
171 pMC->Gsvolu("UT0O", "TRAP", idtmed[1313-1], par_oc, nparoc);
172 // CO2 layer (radiator)
173 par_oc[0] = rathick / 2;
174 pMC->Gsvolu("UT1O", "TRAP", idtmed[1312-1], par_oc, nparoc);
175 // PE layer (radiator)
176 par_oc[0] = pethick / 2;
177 pMC->Gsvolu("UT2O", "TRAP", idtmed[1303-1], par_oc, nparoc);
178 // Mylar layer (entrance window + HV cathode)
179 par_oc[0] = mythick / 2;
180 pMC->Gsvolu("UT3O", "TRAP", idtmed[1308-1], par_oc, nparoc);
181 // Xe/Isobutane layer (gasvolume)
182 par_oc[0] = xethick / 2;
183 pMC->Gsvolu("UT4O", "TRAP", idtmed[1309-1], par_oc, nparoc);
184 // Cu layer (pad plane)
185 par_oc[0] = cuthick / 2;
186 pMC->Gsvolu("UT5O", "TRAP", idtmed[1305-1], par_oc, nparoc);
187 // G10 layer (support structure)
188 par_oc[0] = suthick / 2;
189 pMC->Gsvolu("UT6O", "TRAP", idtmed[1313-1], par_oc, nparoc);
190 // Cu layer (FEE + signal lines)
191 par_oc[0] = fethick / 2;
192 pMC->Gsvolu("UT7O", "TRAP", idtmed[1305-1], par_oc, nparoc);
193 // PE layer (cooling devices)
194 par_oc[0] = cothick / 2;
195 pMC->Gsvolu("UT8O", "TRAP", idtmed[1303-1], par_oc, nparoc);
196 // Water layer (cooling)
197 par_oc[0] = wathick / 2;
198 pMC->Gsvolu("UT9O", "TRAP", idtmed[1314-1], par_oc, nparoc);
199
200 //
201 // The neighbouring chambers
202 //
203
204 // The carbon frame (C)
205 par_nc[0] = widmi - frame;
206 par_nc[1] = widma - frame;
207 par_nc[2] = zlenn / 2;
208 par_nc[3] = (rmax - rmin) / 2;
209 pMC->Gsvolu("UTCN", "TRD1", idtmed[1307-1], par_nc, nparnc);
210
211 // The inner part (Air)
212 par_nc[0] -= ccframe;
213 par_nc[1] -= ccframe;
214 par_nc[2] -= ccframe;
215 pMC->Gsvolu("UTIN", "TRD1", idtmed[1302-1], par_nc, nparnc);
216
217 // Definition of the six modules within each outer chamber
218 pMC->Gsdvn("UTMN", "UTIN", nmodul, 3);
219
220 // Definition of the layers of each chamber
221 par_nc[0] = -1.;
222 par_nc[1] = -1.;
223 par_nc[2] = -1.;
224 // G10 layer (radiator layer)
225 par_nc[3] = sethick / 2;
226 pMC->Gsvolu("UT0N", "TRD1", idtmed[1313-1], par_nc, nparnc);
227 // CO2 layer (radiator)
228 par_nc[3] = rathick / 2;
229 pMC->Gsvolu("UT1N", "TRD1", idtmed[1312-1], par_nc, nparnc);
230 // PE layer (radiator)
231 par_nc[3] = pethick / 2;
232 pMC->Gsvolu("UT2N", "TRD1", idtmed[1303-1], par_nc, nparnc);
233 // Mylar layer (entrance window + HV cathode)
234 par_nc[3] = mythick / 2;
235 pMC->Gsvolu("UT3N", "TRD1", idtmed[1308-1], par_nc, nparnc);
236 // Xe/Isobutane layer (gasvolume)
237 par_nc[3] = xethick / 2;
238 pMC->Gsvolu("UT4N", "TRD1", idtmed[1309-1], par_nc, nparnc);
239 // Cu layer (pad plane)
240 par_nc[3] = cuthick / 2;
241 pMC->Gsvolu("UT5N", "TRD1", idtmed[1305-1], par_nc, nparnc);
242 // G10 layer (support structure)
243 par_nc[3] = suthick / 2;
244 pMC->Gsvolu("UT6N", "TRD1", idtmed[1313-1], par_nc, nparnc);
245 // Cu layer (FEE + signal lines)
246 par_nc[3] = fethick / 2;
247 pMC->Gsvolu("UT7N", "TRD1", idtmed[1305-1], par_nc, nparnc);
248 // PE layer (cooling devices)
249 par_nc[3] = cothick / 2;
250 pMC->Gsvolu("UT8N", "TRD1", idtmed[1303-1], par_nc, nparnc);
251 // Water layer (cooling)
252 par_nc[3] = wathick / 2;
253 pMC->Gsvolu("UT9N", "TRD1", idtmed[1314-1], par_nc, nparnc);
254
255 //
256 // The inner chamber
257 //
258
259 // The carbon frame (C)
260 par_ic[0] = widmi - frame;
261 par_ic[1] = widma - frame;
262 par_ic[2] = zleni / 2;
263 par_ic[3] = (rmax - rmin) / 2;
264 pMC->Gsvolu("UTCI", "TRD1", idtmed[1307-1], par_ic, nparic);
265
266 // The inner part (Air)
fe4da5cc 267 par_ic[0] -= ccframe;
268 par_ic[1] -= ccframe;
269 par_ic[2] -= ccframe;
d3f347ff 270 pMC->Gsvolu("UTII", "TRD1", idtmed[1302-1], par_ic, nparic);
271
272 // Definition of the six modules within each outer chamber
fe4da5cc 273 pMC->Gsdvn("UTMI", "UTII", nmodul, 3);
d3f347ff 274
275 // Definition of the layers of each inner chamber
fe4da5cc 276 par_ic[0] = -1.;
277 par_ic[1] = -1.;
278 par_ic[2] = -1.;
d3f347ff 279 // G10 layer (radiator layer)
280 par_ic[3] = sethick / 2;
281 pMC->Gsvolu("UT0I", "TRD1", idtmed[1313-1], par_ic, nparic);
282 // CO2 layer (radiator)
283 par_ic[3] = rathick / 2;
284 pMC->Gsvolu("UT1I", "TRD1", idtmed[1312-1], par_ic, nparic);
285 // PE layer (radiator)
286 par_ic[3] = pethick / 2;
287 pMC->Gsvolu("UT2I", "TRD1", idtmed[1303-1], par_ic, nparic);
288 // Mylar layer (entrance window + HV cathode)
289 par_ic[3] = mythick / 2;
290 pMC->Gsvolu("UT3I", "TRD1", idtmed[1308-1], par_ic, nparic);
291 // Xe/Isobutane layer (gasvolume)
292 par_ic[3] = xethick / 2;
293 pMC->Gsvolu("UT4I", "TRD1", idtmed[1309-1], par_ic, nparic);
294 // Cu layer (pad plane)
295 par_ic[3] = cuthick / 2;
296 pMC->Gsvolu("UT5I", "TRD1", idtmed[1305-1], par_ic, nparic);
297 // G10 layer (support structure)
298 par_ic[3] = suthick / 2;
299 pMC->Gsvolu("UT6I", "TRD1", idtmed[1313-1], par_ic, nparic);
300 // Cu layer (FEE + signal lines)
301 par_ic[3] = fethick / 2;
302 pMC->Gsvolu("UT7I", "TRD1", idtmed[1305-1], par_ic, nparic);
303 // PE layer (cooling devices)
304 par_ic[3] = cothick / 2;
305 pMC->Gsvolu("UT8I", "TRD1", idtmed[1303-1], par_ic, nparic);
306 // Water layer (cooling)
307 par_ic[3] = wathick / 2;
308 pMC->Gsvolu("UT9I", "TRD1", idtmed[1314-1], par_ic, nparic);
309
310 //////////////////////////////////////////////////////////////////////////
311 // Positioning of Volumes
312 //////////////////////////////////////////////////////////////////////////
313
314 // The rotation matrices
315 AliMatrix(idmat[0], 90., 90., 180., 0., 90., 0.);
316 AliMatrix(idmat[1], 90., 180., 90., 270., 0., 0.);
317
318 // Position of the layers in a TRD module
fe4da5cc 319 f = TMath::Tan(theoc * kDegrad);
d3f347ff 320 pMC->Gspos("UT9O", 1, "UTMO", 0., f*wazpos, wazpos, 0, "ONLY");
321 pMC->Gspos("UT8O", 1, "UTMO", 0., f*cozpos, cozpos, 0, "ONLY");
322 pMC->Gspos("UT7O", 1, "UTMO", 0., f*fezpos, fezpos, 0, "ONLY");
323 pMC->Gspos("UT6O", 1, "UTMO", 0., f*suzpos, suzpos, 0, "ONLY");
fe4da5cc 324 pMC->Gspos("UT5O", 1, "UTMO", 0., f*cuzpos, cuzpos, 0, "ONLY");
325 pMC->Gspos("UT4O", 1, "UTMO", 0., f*xezpos, xezpos, 0, "ONLY");
326 pMC->Gspos("UT3O", 1, "UTMO", 0., f*myzpos, myzpos, 0, "ONLY");
327 pMC->Gspos("UT1O", 1, "UTMO", 0., f*razpos, razpos, 0, "ONLY");
d3f347ff 328 pMC->Gspos("UT0O", 1, "UTMO", 0., f*sezpos, sezpos, 0, "ONLY");
fe4da5cc 329 pMC->Gspos("UT2O", 1, "UT1O", 0., f*pezpos, pezpos, 0, "ONLY");
d3f347ff 330
331 pMC->Gspos("UT9N", 1, "UTMN", 0., 0., wazpos, 0, "ONLY");
332 pMC->Gspos("UT8N", 1, "UTMN", 0., 0., cozpos, 0, "ONLY");
333 pMC->Gspos("UT7N", 1, "UTMN", 0., 0., fezpos, 0, "ONLY");
334 pMC->Gspos("UT6N", 1, "UTMN", 0., 0., suzpos, 0, "ONLY");
335 pMC->Gspos("UT5N", 1, "UTMN", 0., 0., cuzpos, 0, "ONLY");
336 pMC->Gspos("UT4N", 1, "UTMN", 0., 0., xezpos, 0, "ONLY");
337 pMC->Gspos("UT3N", 1, "UTMN", 0., 0., myzpos, 0, "ONLY");
338 pMC->Gspos("UT1N", 1, "UTMN", 0., 0., razpos, 0, "ONLY");
339 pMC->Gspos("UT0N", 1, "UTMN", 0., 0., sezpos, 0, "ONLY");
340 pMC->Gspos("UT2N", 1, "UT1N", 0., 0., pezpos, 0, "ONLY");
341
342 pMC->Gspos("UT9I", 1, "UTMI", 0., 0., wazpos, 0, "ONLY");
343 pMC->Gspos("UT8I", 1, "UTMI", 0., 0., cozpos, 0, "ONLY");
344 pMC->Gspos("UT7I", 1, "UTMI", 0., 0., fezpos, 0, "ONLY");
345 pMC->Gspos("UT6I", 1, "UTMI", 0., 0., suzpos, 0, "ONLY");
346 pMC->Gspos("UT5I", 1, "UTMI", 0., 0., cuzpos, 0, "ONLY");
347 pMC->Gspos("UT4I", 1, "UTMI", 0., 0., xezpos, 0, "ONLY");
348 pMC->Gspos("UT3I", 1, "UTMI", 0., 0., myzpos, 0, "ONLY");
349 pMC->Gspos("UT1I", 1, "UTMI", 0., 0., razpos, 0, "ONLY");
350 pMC->Gspos("UT0I", 1, "UTMI", 0., 0., sezpos, 0, "ONLY");
351 pMC->Gspos("UT2I", 1, "UT1I", 0., 0., pezpos, 0, "ONLY");
352
353 // Position of the inner part of the chambers
354 xpos = 0.;
355 ypos = 0.;
356 zpos = 0.;
357 pMC->Gspos("UTII", 1, "UTCI", xpos, ypos, zpos, 0, "ONLY");
358 pMC->Gspos("UTIN", 1, "UTCN", xpos, ypos, zpos, 0, "ONLY");
359 pMC->Gspos("UTIO", 1, "UTCO", xpos, ypos, zpos, 0, "ONLY");
360
361 // Position of the chambers in the support frame
362 xpos = 0.;
363 ypos = ((zmax1 + zmax2) / 2 + zlenn + zleni / 2) / 2;
364 zpos = 0.;
365 pMC->Gspos("UTCO", 1, "UTRI", xpos, ypos, zpos, idmat[1], "ONLY");
366 pMC->Gspos("UTCO", 2, "UTRI", xpos,-ypos, zpos, 0 , "ONLY");
fe4da5cc 367 xpos = 0.;
d3f347ff 368 ypos = (zlenn + zleni) / 2;
fe4da5cc 369 zpos = 0.;
d3f347ff 370 pMC->Gspos("UTCN", 1, "UTRI", xpos, ypos, zpos, 0 , "ONLY");
371 pMC->Gspos("UTCN", 2, "UTRI", xpos,-ypos, zpos, 0 , "ONLY");
fe4da5cc 372 xpos = 0.;
373 ypos = 0.;
374 zpos = 0.;
d3f347ff 375 pMC->Gspos("UTCI", 1, "UTRI", xpos, ypos, zpos, 0 , "ONLY");
376
377 // Position of the inner part of the detector frame
378 xpos = (rmax + rmin) / 2;
fe4da5cc 379 ypos = 0.;
d3f347ff 380 zpos = 0.;
381 pMC->Gspos("UTRI", 1, "UTRS", xpos, ypos, zpos, idmat[0], "ONLY");
382
383 // Position of the TRD mother volume in the ALICE experiment
384 xpos = 0.;
fe4da5cc 385 ypos = 0.;
d3f347ff 386 zpos = 0.;
387 pMC->Gspos("TRD ", 1, "ALIC", xpos, ypos, zpos, 0, "ONLY");
388
fe4da5cc 389}
390
391//_____________________________________________________________________________
05e51f55 392void AliTRDv0::DrawModule()
fe4da5cc 393{
d3f347ff 394
fe4da5cc 395 //
396 // Draw a shaded view of the Transition Radiation Detector version 0
397 //
398
399 AliMC* pMC = AliMC::GetMC();
400
401 // Set everything unseen
402 pMC->Gsatt("*", "seen", -1);
403 //
404 // Set ALIC mother transparent
405 pMC->Gsatt("ALIC","SEEN",0);
406 //
407 // Set the volumes visible
d3f347ff 408 pMC->Gsatt("TRD" ,"SEEN",0);
fe4da5cc 409 pMC->Gsatt("UTRS","SEEN",0);
d3f347ff 410 pMC->Gsatt("UTRI","SEEN",0);
fe4da5cc 411 pMC->Gsatt("UTCO","SEEN",0);
412 pMC->Gsatt("UTIO","SEEN",0);
413 pMC->Gsatt("UTMO","SEEN",0);
d3f347ff 414 pMC->Gsatt("UTCN","SEEN",0);
415 pMC->Gsatt("UTIN","SEEN",0);
416 pMC->Gsatt("UTMN","SEEN",0);
fe4da5cc 417 pMC->Gsatt("UTCI","SEEN",0);
418 pMC->Gsatt("UTII","SEEN",0);
419 pMC->Gsatt("UTMI","SEEN",0);
d3f347ff 420 pMC->Gsatt("UT1O","SEEN",1);
421 pMC->Gsatt("UT4O","SEEN",1);
422 pMC->Gsatt("UT1N","SEEN",1);
423 pMC->Gsatt("UT4N","SEEN",1);
fe4da5cc 424 pMC->Gsatt("UT1I","SEEN",1);
425 pMC->Gsatt("UT4I","SEEN",1);
426 //
427 pMC->Gdopt("hide", "on");
428 pMC->Gdopt("shad", "on");
429 pMC->Gsatt("*", "fill", 7);
430 pMC->SetClipBox(".");
431 pMC->SetClipBox("*", 0, 2000, -2000, 2000, -2000, 2000);
432 pMC->DefaultRange();
433 pMC->Gdraw("alic", 40, 30, 0, 12, 9.4, .021, .021);
434 pMC->Gdhead(1111, "Transition Radiation Detector Version 0");
435 pMC->Gdman(18, 4, "MAN");
d3f347ff 436
fe4da5cc 437}
438
439//_____________________________________________________________________________
440void AliTRDv0::CreateMaterials()
441{
442 //
443 // Create materials for the Transition Radiation Detector
444 //
fe4da5cc 445 AliTRD::CreateMaterials();
446}
447
448//_____________________________________________________________________________
449void AliTRDv0::Init()
450{
451 //
452 // Initialise Transition Radiation Detector after geometry is built
453 //
454 AliTRD::Init();
455 AliMC* pMC = AliMC::GetMC();
456 //
d3f347ff 457 // Retrieve the numeric identifier of the sensitive volumes (gas volume)
458 fIdSens1 = pMC->VolId("UT4I");
459 fIdSens2 = pMC->VolId("UT4N");
460 fIdSens3 = pMC->VolId("UT4O");
fe4da5cc 461}
462
463//_____________________________________________________________________________
464void AliTRDv0::StepManager()
465{
466 //
467 // Procedure called at every step in the TRD
468 //
469
470 Int_t vol[3];
471 Int_t icopy, idSens, icSens;
472
473 Float_t hits[4];
474
475 TClonesArray &lhits = *fHits;
476
477 AliMC* pMC = AliMC::GetMC();
478
479 // Use only charged tracks and count them only once per volume
d3f347ff 480 if (pMC->TrackCharge() && pMC->TrackExiting()) {
fe4da5cc 481
482 // Check on sensitive volume
483 idSens = pMC->CurrentVol(0,icSens);
d3f347ff 484 if ((idSens == fIdSens1) ||
485 (idSens == fIdSens2) ||
486 (idSens == fIdSens3)) {
fe4da5cc 487
488 // The sector number
489 pMC->CurrentVolOff(5,0,icopy);
490 vol[0] = icopy;
491
d3f347ff 492 // The chamber number
493 // 1: outer left
494 // 2: neighbouring left
495 // 3: inner
496 // 4: neighbouring right
497 // 5: outer right
498 pMC->CurrentVolOff(3,0,icopy);
499 if (idSens == fIdSens3)
500 vol[1] = 4 * icopy - 3;
501 else if (idSens == fIdSens2)
502 vol[1] = 2 * icopy;
503 else
504 vol[1] = 3;
fe4da5cc 505
506 // The plane number
507 pMC->CurrentVolOff(1,0,icopy);
508 vol[2] = icopy;
d3f347ff 509
510 if (fSensSelect) {
511 Int_t addthishit = 1;
512 if ((fSensPlane) && (vol[2] != fSensPlane )) addthishit = 0;
513 if ((fSensChamber) && (vol[1] != fSensChamber)) addthishit = 0;
514 if ((fSensSector) && (vol[0] != fSensSector )) addthishit = 0;
515 if (addthishit) {
516 pMC->TrackPosition(hits);
517 hits[3] = 0;
518 new(lhits[fNhits++]) AliTRDhit(fIshunt,gAlice->CurrentTrack(),vol,hits);
519 }
520 }
521 else {
522 pMC->TrackPosition(hits);
523 hits[3] = 0;
524 new(lhits[fNhits++]) AliTRDhit(fIshunt,gAlice->CurrentTrack(),vol,hits);
525 }
526
fe4da5cc 527 }
d3f347ff 528
fe4da5cc 529 }
d3f347ff 530
fe4da5cc 531}