]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TRD/AliTRDv1.cxx
Fixed bug in calculating detector no. of extra hit
[u/mrichter/AliRoot.git] / TRD / AliTRDv1.cxx
CommitLineData
4c039060 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
990e4068 18Revision 1.24 2000/11/10 14:58:36 cblume
19Introduce additional hit with amplitude 0 at the chamber borders
20
769257f4 21Revision 1.23 2000/11/01 14:53:21 cblume
22Merge with TRD-develop
23
793ff80c 24Revision 1.17.2.5 2000/10/15 23:40:01 cblume
25Remove AliTRDconst
26
27Revision 1.17.2.4 2000/10/06 16:49:46 cblume
28Made Getters const
29
30Revision 1.17.2.3 2000/10/04 16:34:58 cblume
31Replace include files by forward declarations
32
33Revision 1.17.2.2 2000/09/18 13:50:17 cblume
34Include TR photon generation and adapt to new AliTRDhit
35
36Revision 1.22 2000/06/27 13:08:50 cblume
37Changed to Copy(TObject &A) to appease the HP-compiler
38
43da34c0 39Revision 1.21 2000/06/09 11:10:07 cblume
40Compiler warnings and coding conventions, next round
41
dd9a6ee3 42Revision 1.20 2000/06/08 18:32:58 cblume
43Make code compliant to coding conventions
44
8230f242 45Revision 1.19 2000/06/07 16:27:32 cblume
46Try to remove compiler warnings on Sun and HP
47
9d0b222b 48Revision 1.18 2000/05/08 16:17:27 cblume
49Merge TRD-develop
50
6f1e466d 51Revision 1.17.2.1 2000/05/08 14:59:16 cblume
52Made inline function non-virtual. Bug fix in setting sensitive chamber
53
54Revision 1.17 2000/02/28 19:10:26 cblume
55Include the new TRD classes
56
851d3db9 57Revision 1.16.4.1 2000/02/28 18:04:35 cblume
58Change to new hit version, introduce geometry class, and move digitization and clustering to AliTRDdigitizer/AliTRDclusterizerV1
59
60Revision 1.16 1999/11/05 22:50:28 fca
61Do not use Atan, removed from ROOT too
62
90f8d287 63Revision 1.15 1999/11/02 17:20:19 fca
64initialise nbytes before using it
65
036da493 66Revision 1.14 1999/11/02 17:15:54 fca
67Correct ansi scoping not accepted by HP compilers
68
0549c011 69Revision 1.13 1999/11/02 17:14:51 fca
70Correct ansi scoping not accepted by HP compilers
71
9c767df4 72Revision 1.12 1999/11/02 16:35:56 fca
73New version of TRD introduced
74
5c7f4665 75Revision 1.11 1999/11/01 20:41:51 fca
76Added protections against using the wrong version of FRAME
77
ab76897d 78Revision 1.10 1999/09/29 09:24:35 fca
79Introduction of the Copyright and cvs Log
80
4c039060 81*/
82
fe4da5cc 83///////////////////////////////////////////////////////////////////////////////
84// //
769257f4 85// Transition Radiation Detector version 1 -- slow simulator //
fe4da5cc 86// //
87//Begin_Html
88/*
5c7f4665 89<img src="picts/AliTRDfullClass.gif">
fe4da5cc 90*/
91//End_Html
92// //
93// //
94///////////////////////////////////////////////////////////////////////////////
95
769257f4 96#include <stdlib.h>
97
fe4da5cc 98#include <TMath.h>
fe4da5cc 99#include <TVector.h>
5c7f4665 100#include <TRandom.h>
793ff80c 101#include <TF1.h>
fe4da5cc 102
fe4da5cc 103#include "AliRun.h"
fe4da5cc 104#include "AliMC.h"
d3f347ff 105#include "AliConst.h"
5c7f4665 106
851d3db9 107#include "AliTRDv1.h"
793ff80c 108#include "AliTRDhit.h"
851d3db9 109#include "AliTRDmatrix.h"
110#include "AliTRDgeometry.h"
793ff80c 111#include "AliTRDsim.h"
851d3db9 112
fe4da5cc 113ClassImp(AliTRDv1)
8230f242 114
115//_____________________________________________________________________________
116AliTRDv1::AliTRDv1():AliTRD()
117{
118 //
119 // Default constructor
120 //
121
122 fIdSens = 0;
123
124 fIdChamber1 = 0;
125 fIdChamber2 = 0;
126 fIdChamber3 = 0;
127
128 fSensSelect = 0;
129 fSensPlane = -1;
130 fSensChamber = -1;
131 fSensSector = -1;
132 fSensSectorRange = 0;
133
134 fDeltaE = NULL;
793ff80c 135 fTR = NULL;
8230f242 136
137}
138
fe4da5cc 139//_____________________________________________________________________________
140AliTRDv1::AliTRDv1(const char *name, const char *title)
141 :AliTRD(name, title)
142{
143 //
851d3db9 144 // Standard constructor for Transition Radiation Detector version 1
fe4da5cc 145 //
82bbf98a 146
9d0b222b 147 fIdSens = 0;
82bbf98a 148
9d0b222b 149 fIdChamber1 = 0;
150 fIdChamber2 = 0;
151 fIdChamber3 = 0;
5c7f4665 152
9d0b222b 153 fSensSelect = 0;
154 fSensPlane = -1;
155 fSensChamber = -1;
156 fSensSector = -1;
8230f242 157 fSensSectorRange = 0;
5c7f4665 158
9d0b222b 159 fDeltaE = NULL;
793ff80c 160 fTR = NULL;
5c7f4665 161
162 SetBufferSize(128000);
163
164}
165
8230f242 166//_____________________________________________________________________________
dd9a6ee3 167AliTRDv1::AliTRDv1(const AliTRDv1 &trd)
8230f242 168{
169 //
170 // Copy constructor
171 //
172
dd9a6ee3 173 ((AliTRDv1 &) trd).Copy(*this);
8230f242 174
175}
176
5c7f4665 177//_____________________________________________________________________________
178AliTRDv1::~AliTRDv1()
179{
dd9a6ee3 180 //
181 // AliTRDv1 destructor
182 //
82bbf98a 183
5c7f4665 184 if (fDeltaE) delete fDeltaE;
793ff80c 185 if (fTR) delete fTR;
82bbf98a 186
fe4da5cc 187}
188
dd9a6ee3 189//_____________________________________________________________________________
190AliTRDv1 &AliTRDv1::operator=(const AliTRDv1 &trd)
191{
192 //
193 // Assignment operator
194 //
195
196 if (this != &trd) ((AliTRDv1 &) trd).Copy(*this);
197 return *this;
198
199}
8230f242 200
201//_____________________________________________________________________________
43da34c0 202void AliTRDv1::Copy(TObject &trd)
8230f242 203{
204 //
205 // Copy function
206 //
207
43da34c0 208 ((AliTRDv1 &) trd).fIdSens = fIdSens;
8230f242 209
43da34c0 210 ((AliTRDv1 &) trd).fIdChamber1 = fIdChamber1;
211 ((AliTRDv1 &) trd).fIdChamber2 = fIdChamber2;
212 ((AliTRDv1 &) trd).fIdChamber3 = fIdChamber3;
8230f242 213
43da34c0 214 ((AliTRDv1 &) trd).fSensSelect = fSensSelect;
215 ((AliTRDv1 &) trd).fSensPlane = fSensPlane;
216 ((AliTRDv1 &) trd).fSensChamber = fSensChamber;
217 ((AliTRDv1 &) trd).fSensSector = fSensSector;
218 ((AliTRDv1 &) trd).fSensSectorRange = fSensSectorRange;
8230f242 219
793ff80c 220 fDeltaE->Copy(*((AliTRDv1 &) trd).fDeltaE);
221 fTR->Copy(*((AliTRDv1 &) trd).fTR);
8230f242 222
223}
224
fe4da5cc 225//_____________________________________________________________________________
226void AliTRDv1::CreateGeometry()
227{
228 //
851d3db9 229 // Create the GEANT geometry for the Transition Radiation Detector - Version 1
5c7f4665 230 // This version covers the full azimuth.
d3f347ff 231 //
232
82bbf98a 233 // Check that FRAME is there otherwise we have no place where to put the TRD
8230f242 234 AliModule* frame = gAlice->GetModule("FRAME");
235 if (!frame) return;
d3f347ff 236
82bbf98a 237 // Define the chambers
238 AliTRD::CreateGeometry();
d3f347ff 239
fe4da5cc 240}
241
242//_____________________________________________________________________________
243void AliTRDv1::CreateMaterials()
244{
245 //
851d3db9 246 // Create materials for the Transition Radiation Detector version 1
fe4da5cc 247 //
82bbf98a 248
d3f347ff 249 AliTRD::CreateMaterials();
82bbf98a 250
fe4da5cc 251}
252
793ff80c 253//_____________________________________________________________________________
254void AliTRDv1::CreateTRhit(Int_t det)
255{
256 //
257 // Creates an electron cluster from a TR photon.
258 // The photon is assumed to be created a the end of the radiator. The
259 // distance after which it deposits its energy takes into account the
260 // absorbtion of the entrance window and of the gas mixture in drift
261 // volume.
262 //
263
264 // PDG code electron
265 const Int_t kPdgElectron = 11;
266
267 // Ionization energy
268 const Float_t kWion = 22.04;
269
270 // Maximum number of TR photons per track
271 const Int_t kNTR = 50;
272
273 TLorentzVector mom, pos;
274 TClonesArray &lhits = *fHits;
275
276 // Create TR only for electrons
277 Int_t iPdg = gMC->TrackPid();
278 if (TMath::Abs(iPdg) != kPdgElectron) return;
279
280 // Create TR at the entrance of the chamber
281 if (gMC->IsTrackEntering()) {
282
283 Float_t eTR[kNTR];
284 Int_t nTR;
285
286 // Create TR photons
287 gMC->TrackMomentum(mom);
288 Float_t pTot = mom.Rho();
289 fTR->CreatePhotons(iPdg,pTot,nTR,eTR);
290 if (nTR > kNTR) {
291 printf("AliTRDv1::CreateTRhit -- ");
292 printf("Boundary error: nTR = %d, kNTR = %d\n",nTR,kNTR);
293 exit(1);
294 }
295
296 // Loop through the TR photons
297 for (Int_t iTR = 0; iTR < nTR; iTR++) {
298
299 Float_t energyMeV = eTR[iTR] * 0.001;
300 Float_t energyeV = eTR[iTR] * 1000.0;
301 Float_t absLength = 0;
302 Float_t sigma = 0;
303
304 // Take the absorbtion in the entrance window into account
305 Double_t muMy = fTR->GetMuMy(energyMeV);
306 sigma = muMy * fFoilDensity;
307 absLength = gRandom->Exp(sigma);
308 if (absLength < AliTRDgeometry::MyThick()) continue;
309
310 // The absorbtion cross sections in the drift gas
311 if (fGasMix == 1) {
312 // Gas-mixture (Xe/CO2)
313 Double_t muXe = fTR->GetMuXe(energyMeV);
314 Double_t muCO = fTR->GetMuCO(energyMeV);
315 sigma = (0.90 * muXe + 0.10 * muCO) * fGasDensity;
316 }
317 else {
318 // Gas-mixture (Xe/Isobutane)
319 Double_t muXe = fTR->GetMuXe(energyMeV);
320 Double_t muBu = fTR->GetMuBu(energyMeV);
321 sigma = (0.97 * muXe + 0.03 * muBu) * fGasDensity;
322 }
323
324 // The distance after which the energy of the TR photon
325 // is deposited.
326 absLength = gRandom->Exp(sigma);
327 if (absLength > AliTRDgeometry::DrThick()) continue;
328
329 // The position of the absorbtion
330 Float_t posHit[3];
331 gMC->TrackPosition(pos);
332 posHit[0] = pos[0] + mom[0] / pTot * absLength;
333 posHit[1] = pos[1] + mom[1] / pTot * absLength;
334 posHit[2] = pos[2] + mom[2] / pTot * absLength;
335
336 // Create the charge
337 Int_t q = ((Int_t) (energyeV / kWion));
338
339 // Add the hit to the array. TR photon hits are marked
340 // by negative charge
341 new(lhits[fNhits++]) AliTRDhit(fIshunt,gAlice->CurrentTrack()
342 ,det,posHit,-q);
343
344 }
345
346 }
347
348}
349
5c7f4665 350//_____________________________________________________________________________
351void AliTRDv1::Init()
352{
353 //
354 // Initialise Transition Radiation Detector after geometry has been built.
5c7f4665 355 //
356
357 AliTRD::Init();
358
851d3db9 359 printf(" Slow simulator\n\n");
360 if (fSensSelect) {
361 if (fSensPlane >= 0)
362 printf(" Only plane %d is sensitive\n",fSensPlane);
363 if (fSensChamber >= 0)
364 printf(" Only chamber %d is sensitive\n",fSensChamber);
9d0b222b 365 if (fSensSector >= 0) {
366 Int_t sens1 = fSensSector;
367 Int_t sens2 = fSensSector + fSensSectorRange;
793ff80c 368 sens2 -= ((Int_t) (sens2 / AliTRDgeometry::Nsect()))
369 * AliTRDgeometry::Nsect();
9d0b222b 370 printf(" Only sectors %d - %d are sensitive\n",sens1,sens2-1);
371 }
851d3db9 372 }
793ff80c 373 if (fTR)
374 printf(" TR simulation on\n");
375 else
376 printf(" TR simulation off\n");
851d3db9 377 printf("\n");
5c7f4665 378
379 // First ionization potential (eV) for the gas mixture (90% Xe + 10% CO2)
380 const Float_t kPoti = 12.1;
381 // Maximum energy (50 keV);
382 const Float_t kEend = 50000.0;
383 // Ermilova distribution for the delta-ray spectrum
8230f242 384 Float_t poti = TMath::Log(kPoti);
385 Float_t eEnd = TMath::Log(kEend);
793ff80c 386 fDeltaE = new TF1("deltae",Ermilova,poti,eEnd,0);
5c7f4665 387
388 // Identifier of the sensitive volume (drift region)
389 fIdSens = gMC->VolId("UL05");
82bbf98a 390
391 // Identifier of the TRD-driftchambers
392 fIdChamber1 = gMC->VolId("UCIO");
393 fIdChamber2 = gMC->VolId("UCIM");
394 fIdChamber3 = gMC->VolId("UCII");
395
5c7f4665 396 for (Int_t i = 0; i < 80; i++) printf("*");
397 printf("\n");
398
fe4da5cc 399}
400
793ff80c 401//_____________________________________________________________________________
402AliTRDsim *AliTRDv1::CreateTR()
403{
404 //
405 // Enables the simulation of TR
406 //
407
408 fTR = new AliTRDsim();
409 return fTR;
410
411}
412
5c7f4665 413//_____________________________________________________________________________
414void AliTRDv1::SetSensPlane(Int_t iplane)
415{
416 //
851d3db9 417 // Defines the hit-sensitive plane (0-5)
5c7f4665 418 //
82bbf98a 419
851d3db9 420 if ((iplane < 0) || (iplane > 5)) {
5c7f4665 421 printf("Wrong input value: %d\n",iplane);
422 printf("Use standard setting\n");
851d3db9 423 fSensPlane = -1;
424 fSensSelect = 0;
5c7f4665 425 return;
426 }
82bbf98a 427
5c7f4665 428 fSensSelect = 1;
429 fSensPlane = iplane;
82bbf98a 430
5c7f4665 431}
432
433//_____________________________________________________________________________
434void AliTRDv1::SetSensChamber(Int_t ichamber)
435{
436 //
851d3db9 437 // Defines the hit-sensitive chamber (0-4)
5c7f4665 438 //
439
851d3db9 440 if ((ichamber < 0) || (ichamber > 4)) {
5c7f4665 441 printf("Wrong input value: %d\n",ichamber);
442 printf("Use standard setting\n");
851d3db9 443 fSensChamber = -1;
444 fSensSelect = 0;
5c7f4665 445 return;
446 }
447
448 fSensSelect = 1;
449 fSensChamber = ichamber;
450
451}
452
453//_____________________________________________________________________________
454void AliTRDv1::SetSensSector(Int_t isector)
455{
456 //
851d3db9 457 // Defines the hit-sensitive sector (0-17)
5c7f4665 458 //
459
9d0b222b 460 SetSensSector(isector,1);
461
462}
463
464//_____________________________________________________________________________
465void AliTRDv1::SetSensSector(Int_t isector, Int_t nsector)
466{
467 //
468 // Defines a range of hit-sensitive sectors. The range is defined by
469 // <isector> (0-17) as the starting point and <nsector> as the number
470 // of sectors to be included.
471 //
472
851d3db9 473 if ((isector < 0) || (isector > 17)) {
9d0b222b 474 printf("Wrong input value <isector>: %d\n",isector);
5c7f4665 475 printf("Use standard setting\n");
9d0b222b 476 fSensSector = -1;
477 fSensSectorRange = 0;
478 fSensSelect = 0;
5c7f4665 479 return;
480 }
481
9d0b222b 482 if ((nsector < 1) || (nsector > 18)) {
483 printf("Wrong input value <nsector>: %d\n",nsector);
484 printf("Use standard setting\n");
485 fSensSector = -1;
486 fSensSectorRange = 0;
487 fSensSelect = 0;
488 return;
489 }
490
491 fSensSelect = 1;
492 fSensSector = isector;
493 fSensSectorRange = nsector;
5c7f4665 494
495}
496
497//_____________________________________________________________________________
498void AliTRDv1::StepManager()
499{
500 //
5c7f4665 501 // Slow simulator. Every charged track produces electron cluster as hits
502 // along its path across the drift volume. The step size is set acording
503 // to Bethe-Bloch. The energy distribution of the delta electrons follows
504 // a spectrum taken from Ermilova et al.
505 //
506
507 Int_t iIdSens, icSens;
508 Int_t iIdSpace, icSpace;
509 Int_t iIdChamber, icChamber;
851d3db9 510 Int_t pla = 0;
511 Int_t cha = 0;
512 Int_t sec = 0;
793ff80c 513 Int_t det = 0;
851d3db9 514 Int_t iPdg;
793ff80c 515 Int_t qTot;
5c7f4665 516
793ff80c 517 Float_t hits[3];
990e4068 518 Float_t moms[3];
5c7f4665 519 Float_t random[1];
520 Float_t charge;
521 Float_t aMass;
522
523 Double_t pTot;
5c7f4665 524 Double_t eDelta;
525 Double_t betaGamma, pp;
526
527 TLorentzVector pos, mom;
82bbf98a 528 TClonesArray &lhits = *fHits;
529
851d3db9 530 const Double_t kBig = 1.0E+12;
5c7f4665 531
532 // Ionization energy
851d3db9 533 const Float_t kWion = 22.04;
5c7f4665 534 // Maximum energy for e+ e- g for the step-size calculation
851d3db9 535 const Float_t kPTotMax = 0.002;
5c7f4665 536 // Plateau value of the energy-loss for electron in xenon
537 // taken from: Allison + Comb, Ann. Rev. Nucl. Sci. (1980), 30, 253
538 //const Double_t kPlateau = 1.70;
539 // the averaged value (26/3/99)
851d3db9 540 const Float_t kPlateau = 1.55;
5c7f4665 541 // dN1/dx|min for the gas mixture (90% Xe + 10% CO2)
851d3db9 542 const Float_t kPrim = 48.0;
5c7f4665 543 // First ionization potential (eV) for the gas mixture (90% Xe + 10% CO2)
851d3db9 544 const Float_t kPoti = 12.1;
545
546 // PDG code electron
8230f242 547 const Int_t kPdgElectron = 11;
5c7f4665 548
549 // Set the maximum step size to a very large number for all
550 // neutral particles and those outside the driftvolume
551 gMC->SetMaxStep(kBig);
552
769257f4 553 // Create some special hits with amplitude 0 at the entrance and
554 // exit of each chamber that contain the momentum components of the particle
555 if (gMC->TrackCharge() &&
556 (gMC->IsTrackEntering() || gMC->IsTrackExiting())) {
557
558 // Inside a sensitive volume?
559 iIdSens = gMC->CurrentVolID(icSens);
560 if (iIdSens == fIdSens) {
561
562 iIdSpace = gMC->CurrentVolOffID(4,icSpace );
563 iIdChamber = gMC->CurrentVolOffID(1,icChamber);
564
565 // The hit coordinates
566 gMC->TrackPosition(pos);
990e4068 567 hits[0] = pos[0];
568 hits[1] = pos[1];
569 hits[2] = pos[2];
769257f4 570
571 // The track momentum
572 gMC->TrackMomentum(mom);
990e4068 573 moms[0] = mom[0];
574 moms[1] = mom[1];
575 moms[2] = mom[2];
769257f4 576
577 // The sector number (0 - 17)
578 // The numbering goes clockwise and starts at y = 0
579 Float_t phi = kRaddeg*TMath::ATan2(pos[0],pos[1]);
580 if (phi < 90.)
581 phi = phi + 270.;
582 else
583 phi = phi - 90.;
584 sec = ((Int_t) (phi / 20));
585
586 // The chamber number
587 // 0: outer left
588 // 1: middle left
589 // 2: inner
590 // 3: middle right
591 // 4: outer right
592 if (iIdChamber == fIdChamber1)
593 cha = (hits[2] < 0 ? 0 : 4);
594 else if (iIdChamber == fIdChamber2)
595 cha = (hits[2] < 0 ? 1 : 3);
596 else if (iIdChamber == fIdChamber3)
597 cha = 2;
598
599 // The plane number
600 // The numbering starts at the innermost plane
601 pla = icChamber - TMath::Nint((Float_t) (icChamber / 7)) * 6 - 1;
602
603 // Check on selected volumes
604 Int_t addthishit = 1;
605 if (fSensSelect) {
606 if ((fSensPlane >= 0) && (pla != fSensPlane )) addthishit = 0;
607 if ((fSensChamber >= 0) && (cha != fSensChamber)) addthishit = 0;
608 if (fSensSector >= 0) {
609 Int_t sens1 = fSensSector;
610 Int_t sens2 = fSensSector + fSensSectorRange;
611 sens2 -= ((Int_t) (sens2 / AliTRDgeometry::Nsect()))
612 * AliTRDgeometry::Nsect();
613 if (sens1 < sens2) {
614 if ((sec < sens1) || (sec >= sens2)) addthishit = 0;
615 }
616 else {
617 if ((sec < sens1) && (sec >= sens2)) addthishit = 0;
618 }
619 }
620 }
621
622 // Add this hit
623 if (addthishit) {
624 det = fGeometry->GetDetector(pla,cha,sec);
625 new(lhits[fNhits++]) AliTRDhit(fIshunt
626 ,gAlice->CurrentTrack()
627 ,det
990e4068 628 ,moms
769257f4 629 ,0);
630 }
631
632 }
633
634 }
635
5c7f4665 636 // Use only charged tracks
637 if (( gMC->TrackCharge() ) &&
638 (!gMC->IsTrackStop() ) &&
639 (!gMC->IsTrackDisappeared())) {
fe4da5cc 640
5c7f4665 641 // Inside a sensitive volume?
82bbf98a 642 iIdSens = gMC->CurrentVolID(icSens);
643 if (iIdSens == fIdSens) {
644
82bbf98a 645 iIdSpace = gMC->CurrentVolOffID(4,icSpace );
646 iIdChamber = gMC->CurrentVolOffID(1,icChamber);
fe4da5cc 647
5c7f4665 648 // Calculate the energy of the delta-electrons
649 eDelta = TMath::Exp(fDeltaE->GetRandom()) - kPoti;
650 eDelta = TMath::Max(eDelta,0.0);
651
652 // The number of secondary electrons created
793ff80c 653 qTot = ((Int_t) (eDelta / kWion) + 1);
5c7f4665 654
655 // The hit coordinates and charge
656 gMC->TrackPosition(pos);
657 hits[0] = pos[0];
658 hits[1] = pos[1];
659 hits[2] = pos[2];
5c7f4665 660
851d3db9 661 // The sector number (0 - 17)
662 // The numbering goes clockwise and starts at y = 0
663 Float_t phi = kRaddeg*TMath::ATan2(pos[0],pos[1]);
664 if (phi < 90.)
665 phi = phi + 270.;
666 else
667 phi = phi - 90.;
668 sec = ((Int_t) (phi / 20));
82bbf98a 669
d3f347ff 670 // The chamber number
851d3db9 671 // 0: outer left
672 // 1: middle left
673 // 2: inner
674 // 3: middle right
675 // 4: outer right
82bbf98a 676 if (iIdChamber == fIdChamber1)
851d3db9 677 cha = (hits[2] < 0 ? 0 : 4);
82bbf98a 678 else if (iIdChamber == fIdChamber2)
851d3db9 679 cha = (hits[2] < 0 ? 1 : 3);
82bbf98a 680 else if (iIdChamber == fIdChamber3)
851d3db9 681 cha = 2;
82bbf98a 682
fe4da5cc 683 // The plane number
851d3db9 684 // The numbering starts at the innermost plane
685 pla = icChamber - TMath::Nint((Float_t) (icChamber / 7)) * 6 - 1;
82bbf98a 686
5c7f4665 687 // Check on selected volumes
688 Int_t addthishit = 1;
689 if (fSensSelect) {
6f1e466d 690 if ((fSensPlane >= 0) && (pla != fSensPlane )) addthishit = 0;
691 if ((fSensChamber >= 0) && (cha != fSensChamber)) addthishit = 0;
9d0b222b 692 if (fSensSector >= 0) {
693 Int_t sens1 = fSensSector;
694 Int_t sens2 = fSensSector + fSensSectorRange;
793ff80c 695 sens2 -= ((Int_t) (sens2 / AliTRDgeometry::Nsect()))
696 * AliTRDgeometry::Nsect();
9d0b222b 697 if (sens1 < sens2) {
698 if ((sec < sens1) || (sec >= sens2)) addthishit = 0;
699 }
700 else {
701 if ((sec < sens1) && (sec >= sens2)) addthishit = 0;
702 }
703 }
5c7f4665 704 }
705
706 // Add this hit
707 if (addthishit) {
708
793ff80c 709 det = fGeometry->GetDetector(pla,cha,sec);
710
711 // Create the electron cluster from TR photons
712 if (fTR) CreateTRhit(det);
713
851d3db9 714 new(lhits[fNhits++]) AliTRDhit(fIshunt
715 ,gAlice->CurrentTrack()
9d0b222b 716 ,det
793ff80c 717 ,hits
718 ,qTot);
5c7f4665 719
720 // The energy loss according to Bethe Bloch
721 gMC->TrackMomentum(mom);
722 pTot = mom.Rho();
851d3db9 723 iPdg = TMath::Abs(gMC->TrackPid());
8230f242 724 if ( (iPdg != kPdgElectron) ||
725 ((iPdg == kPdgElectron) && (pTot < kPTotMax))) {
5c7f4665 726 aMass = gMC->TrackMass();
727 betaGamma = pTot / aMass;
728 pp = kPrim * BetheBloch(betaGamma);
729 // Take charge > 1 into account
730 charge = gMC->TrackCharge();
731 if (TMath::Abs(charge) > 1) pp = pp * charge*charge;
732 }
733 // Electrons above 20 Mev/c are at the plateau
734 else {
735 pp = kPrim * kPlateau;
736 }
737
738 // Calculate the maximum step size for the next tracking step
739 if (pp > 0) {
740 do
741 gMC->Rndm(random,1);
742 while ((random[0] == 1.) || (random[0] == 0.));
743 gMC->SetMaxStep( - TMath::Log(random[0]) / pp);
744 }
745
746 }
747 else {
748 // set step size to maximal value
749 gMC->SetMaxStep(kBig);
750 }
d3f347ff 751
752 }
753
5c7f4665 754 }
755
756}
757
758//_____________________________________________________________________________
759Double_t AliTRDv1::BetheBloch(Double_t bg)
760{
761 //
762 // Parametrization of the Bethe-Bloch-curve
763 // The parametrization is the same as for the TPC and is taken from Lehrhaus.
764 //
765
766 // This parameters have been adjusted to averaged values from GEANT
767 const Double_t kP1 = 7.17960e-02;
768 const Double_t kP2 = 8.54196;
769 const Double_t kP3 = 1.38065e-06;
770 const Double_t kP4 = 5.30972;
771 const Double_t kP5 = 2.83798;
772
773 // This parameters have been adjusted to Xe-data found in:
774 // Allison & Cobb, Ann. Rev. Nucl. Sci. (1980), 30, 253
775 //const Double_t kP1 = 0.76176E-1;
776 //const Double_t kP2 = 10.632;
777 //const Double_t kP3 = 3.17983E-6;
778 //const Double_t kP4 = 1.8631;
779 //const Double_t kP5 = 1.9479;
780
781 if (bg > 0) {
782 Double_t yy = bg / TMath::Sqrt(1. + bg*bg);
783 Double_t aa = TMath::Power(yy,kP4);
784 Double_t bb = TMath::Power((1./bg),kP5);
785 bb = TMath::Log(kP3 + bb);
786 return ((kP2 - aa - bb)*kP1 / aa);
787 }
788 else
789 return 0;
d3f347ff 790
fe4da5cc 791}
5c7f4665 792
793//_____________________________________________________________________________
794Double_t Ermilova(Double_t *x, Double_t *)
795{
796 //
797 // Calculates the delta-ray energy distribution according to Ermilova.
798 // Logarithmic scale !
799 //
800
801 Double_t energy;
802 Double_t dpos;
803 Double_t dnde;
804
805 Int_t pos1, pos2;
806
8230f242 807 const Int_t kNv = 31;
5c7f4665 808
8230f242 809 Float_t vxe[kNv] = { 2.3026, 2.9957, 3.4012, 3.6889, 3.9120
810 , 4.0943, 4.2485, 4.3820, 4.4998, 4.6052
811 , 4.7005, 5.0752, 5.2983, 5.7038, 5.9915
812 , 6.2146, 6.5221, 6.9078, 7.3132, 7.6009
813 , 8.0064, 8.5172, 8.6995, 8.9872, 9.2103
814 , 9.4727, 9.9035,10.3735,10.5966,10.8198
815 ,11.5129 };
5c7f4665 816
8230f242 817 Float_t vye[kNv] = { 80.0 , 31.0 , 23.3 , 21.1 , 21.0
818 , 20.9 , 20.8 , 20.0 , 16.0 , 11.0
819 , 8.0 , 6.0 , 5.2 , 4.6 , 4.0
820 , 3.5 , 3.0 , 1.4 , 0.67 , 0.44
821 , 0.3 , 0.18 , 0.12 , 0.08 , 0.056
822 , 0.04 , 0.023, 0.015, 0.011, 0.01
823 , 0.004 };
5c7f4665 824
825 energy = x[0];
826
827 // Find the position
828 pos1 = pos2 = 0;
829 dpos = 0;
830 do {
831 dpos = energy - vxe[pos2++];
832 }
833 while (dpos > 0);
834 pos2--;
8230f242 835 if (pos2 > kNv) pos2 = kNv;
5c7f4665 836 pos1 = pos2 - 1;
837
838 // Differentiate between the sampling points
839 dnde = (vye[pos1] - vye[pos2]) / (vxe[pos2] - vxe[pos1]);
840
841 return dnde;
842
843}