]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TRD/AliTRDv2.cxx
New TRD files from C.Blume.
[u/mrichter/AliRoot.git] / TRD / AliTRDv2.cxx
CommitLineData
fe4da5cc 1///////////////////////////////////////////////////////////////////////////////
2// //
3// Transition Radiation Detector version 2 -- detailed simulation //
4// //
5//Begin_Html
6/*
7<img src="gif/AliTRDv2Class.gif">
8*/
9//End_Html
10// //
11// //
12///////////////////////////////////////////////////////////////////////////////
13
14#include <TMath.h>
fe4da5cc 15#include <TVector.h>
fe4da5cc 16
fe4da5cc 17#include "AliTRDv2.h"
18#include "AliRun.h"
fe4da5cc 19#include "AliMC.h"
d3f347ff 20#include "AliConst.h"
fe4da5cc 21
22ClassImp(AliTRDv2)
23
24//_____________________________________________________________________________
25AliTRDv2::AliTRDv2(const char *name, const char *title)
26 :AliTRD(name, title)
27{
28 //
29 // Standard constructor for Transition Radiation Detector version 2
30 //
d3f347ff 31 for (Int_t icham = 0; icham < ncham; ++icham) {
32 fIdSensI[icham] = 0;
33 fIdSensN[icham] = 0;
34 fIdSensO[icham] = 0;
35 }
36 fDeltaE = NULL;
37
fe4da5cc 38 SetBufferSize(128000);
39}
d3f347ff 40
41AliTRDv2::~AliTRDv2()
42{
43 if (fDeltaE) delete fDeltaE;
44}
fe4da5cc 45
46//_____________________________________________________________________________
47void AliTRDv2::CreateGeometry()
48{
49 //
50 // Create geometry for the Transition Radiation Detector version 2
51 // This version covers the full azimuth.
d3f347ff 52 // --- Author : Christoph Blume (GSI) 20/5/99
53 //
54 // --- Volume names :
55 // TRD --> Mother TRD volume (Al)
56 // UTRS --> Sectors of the sub-detector (Al)
57 // UTRI --> Inner part of the detector frame (Air)
58 // The chambers
59 // UCI1-6 --> The frame of the inner chambers (C)
60 // UCN1-6 --> The frame of the neighbouring chambers (C)
61 // UCO1-6 --> The frame of the outer chambers (C)
62 // UII1-6 --> The inner part of the inner chambers (Air)
63 // UIN1-6 --> The inner part of the neighbouring chambers (Air)
64 // UIO1-6 --> The inner part of the outer chambers (Air)
65 // The layers inside a chamber
66 // UT0I(N,O) --> Radiator seal (G10)
67 // UT1I(N,O) --> Radiator (CO2)
68 // UT2I(N,O) --> Polyethylene of radiator (PE)
69 // UT3I(N,O) --> Entrance window (Mylar)
70 // UXI(N,O)1-6 --> Gas volume (sensitive) (Xe/Isobutane)
71 // UT5I(N,O) --> Pad plane (Cu)
72 // UT6I(N,O) --> Support structure (G10)
73 // UT7I(N,O) --> FEE + signal lines (Cu)
74 // UT8I(N,O) --> Polyethylene of cooling device (PE)
75 // UT9I(N,O) --> Cooling water (Water)
fe4da5cc 76 //
77 //Begin_Html
78 /*
79 <img src="gif/AliTRDv2.gif">
80 */
81 //End_Html
82 //Begin_Html
83 /*
84 <img src="gif/AliTRDv2Tree.gif">
85 */
86 //End_Html
d3f347ff 87
88 Float_t xpos, ypos, zpos;
89 Int_t idmat[2];
fe4da5cc 90
d3f347ff 91 const Int_t nparmo = 10;
92 const Int_t nparfr = 4;
93 const Int_t nparch = 3;
94 const Int_t nparic = 4;
95 const Int_t nparnc = 4;
96 const Int_t nparoc = 11;
fe4da5cc 97
d3f347ff 98 Float_t par_mo[nparmo];
99 Float_t par_fr[nparfr];
100 Float_t par_ch[nparch];
101 Float_t par_ic[nparic];
102 Float_t par_nc[nparnc];
103 Float_t par_oc[nparoc];
fe4da5cc 104
fe4da5cc 105 Int_t *idtmed = gAlice->Idtmed();
106
d3f347ff 107 AliMC* pMC = AliMC::GetMC();
108
109 //////////////////////////////////////////////////////////////////////////
fe4da5cc 110 // Definition of Volumes
d3f347ff 111 //////////////////////////////////////////////////////////////////////////
fe4da5cc 112
d3f347ff 113 // Definition of the mother volume for the TRD (Al)
114 par_mo[0] = 0.;
fe4da5cc 115 par_mo[1] = 360.;
116 par_mo[2] = nsect;
117 par_mo[3] = 2.;
118 par_mo[4] = -zmax1;
119 par_mo[5] = rmin;
120 par_mo[6] = rmax;
d3f347ff 121 par_mo[7] = zmax1;
fe4da5cc 122 par_mo[8] = rmin;
123 par_mo[9] = rmax;
d3f347ff 124 pMC->Gsvolu("TRD ", "PGON", idtmed[1301-1], par_mo, nparmo);
fe4da5cc 125 pMC->Gsdvn("UTRS", "TRD ", nsect, 2);
d3f347ff 126
127 // The minimal width of a sector in rphi-direction
128 Float_t widmi = rmin * TMath::Sin(kPI/nsect);
129 // The maximal width of a sector in rphi-direction
130 Float_t widma = rmax * TMath::Sin(kPI/nsect);
131 // The total thickness of the spaceframe (Al + Air)
132 Float_t frame = widmi - (widpl1 / 2);
133
134 // Definition of the inner part of the detector frame (Air)
135 par_fr[0] = widmi - alframe / 2.;
136 par_fr[1] = widma - alframe / 2.;
137 par_fr[2] = zmax1;
138 par_fr[3] = (rmax - rmin) / 2;
139 pMC->Gsvolu("UTRI", "TRD1", idtmed[1302-1], par_fr, nparfr);
140
141 // Some parameter for the chambers
142 Float_t lendifc = (zmax1 - zmax2) / nmodul;
143 Float_t heightc = (rmax - rmin ) / nmodul;
144 Float_t widdifc = (widma - widmi) / nmodul;
145
146 // Definition of the chambers
147 Char_t ctagc[5], ctagi[5];
148 for (Int_t icham = 1; icham <= ncham; ++icham) {
149
150 // Carbon frame of the inner chambers (C)
151 par_ch[0] = widmi + (icham-1) * widdifc - frame;
152 par_ch[1] = zleni / 2.;
153 par_ch[2] = heightc / 2.;
fe4da5cc 154 sprintf(ctagc,"UCI%1d",icham);
d3f347ff 155 pMC->Gsvolu(ctagc, "BOX ", idtmed[1307-1], par_ch, nparch);
156 // Inner part of the inner chambers (Air)
fe4da5cc 157 par_ch[0] -= ccframe;
158 par_ch[1] -= ccframe;
d3f347ff 159 sprintf(ctagc,"UII%1d",icham);
160 pMC->Gsvolu(ctagc, "BOX ", idtmed[1302-1], par_ch, nparch);
161
162 // Carbon frame of the neighbouring chambers (C)
163 par_ch[0] = widmi + (icham-1) * widdifc - frame;
164 par_ch[1] = zlenn / 2.;
165 par_ch[2] = heightc / 2.;
166 sprintf(ctagc,"UCN%1d",icham);
167 pMC->Gsvolu(ctagc, "BOX ", idtmed[1307-1], par_ch, nparch);
168 // Inner part of the neighbouring chambers (Air)
169 par_ch[0] -= ccframe;
170 par_ch[1] -= ccframe;
171 sprintf(ctagc,"UIN%1d",icham);
172 pMC->Gsvolu(ctagc, "BOX ", idtmed[1302-1], par_ch, nparch);
173
174 // Carbon frame of the outer chambers (C)
175 par_ch[0] = widmi + (icham-1) * widdifc - frame;
176 par_ch[1] = (icham - 6) * lendifc / 2. + zleno / 2.;
fe4da5cc 177 par_ch[2] = heightc / 2.;
178 sprintf(ctagc,"UCO%1d",icham);
d3f347ff 179 pMC->Gsvolu(ctagc, "BOX ", idtmed[1307-1], par_ch, nparch);
180 // Inner part of the outer chambers (Air)
fe4da5cc 181 par_ch[0] -= ccframe;
182 par_ch[1] -= ccframe;
d3f347ff 183 sprintf(ctagc,"UIO%1d",icham);
184 pMC->Gsvolu(ctagc, "BOX ", idtmed[1302-1], par_ch, nparch);
185
fe4da5cc 186 }
d3f347ff 187
188 // Definition of the layers in each inner chamber
fe4da5cc 189 par_ic[0] = -1.;
190 par_ic[1] = -1.;
d3f347ff 191 // G10 layer (radiator layer)
192 par_ic[2] = sethick / 2;
193 pMC->Gsvolu("UT0I", "BOX ", idtmed[1313-1], par_ic, nparic);
194 // CO2 layer (radiator)
195 par_ic[2] = rathick / 2;
196 pMC->Gsvolu("UT1I", "BOX ", idtmed[1312-1], par_ic, nparic);
197 // PE layer (radiator)
198 par_ic[2] = pethick / 2;
199 pMC->Gsvolu("UT2I", "BOX ", idtmed[1303-1], par_ic, nparic);
200 // Mylar layer (entrance window + HV cathode)
201 par_ic[2] = mythick / 2;
202 pMC->Gsvolu("UT3I", "BOX ", idtmed[1308-1], par_ic, nparic);
203 // Xe/Isobutane layer (gasvolume)
204 par_ic[2] = xethick / 2.;
205 for (Int_t icham = 1; icham <= 6; ++icham) {
206 sprintf(ctagc,"UXI%1d",icham);
207 pMC->Gsvolu(ctagc, "BOX ", idtmed[1309-1], par_ic, nparic);
fe4da5cc 208 }
d3f347ff 209 // Cu layer (pad plane)
210 par_ic[2] = cuthick / 2;
211 pMC->Gsvolu("UT5I", "BOX ", idtmed[1305-1], par_ic, nparic);
212 // G10 layer (support structure)
213 par_ic[2] = suthick / 2;
214 pMC->Gsvolu("UT6I", "BOX ", idtmed[1313-1], par_ic, nparic);
215 // Cu layer (FEE + signal lines)
216 par_ic[2] = fethick / 2;
217 pMC->Gsvolu("UT7I", "BOX ", idtmed[1305-1], par_ic, nparic);
218 // PE layer (cooling devices)
219 par_ic[2] = cothick / 2;
220 pMC->Gsvolu("UT8I", "BOX ", idtmed[1303-1], par_ic, nparic);
221 // Water layer (cooling)
222 par_ic[2] = wathick / 2;
223 pMC->Gsvolu("UT9I", "BOX ", idtmed[1314-1], par_ic, nparic);
224
225 // Definition of the layers in each neighbouring chamber
226 par_nc[0] = -1.;
227 par_nc[1] = -1.;
228 // G10 layer (radiator layer)
229 par_nc[2] = sethick / 2;
230 pMC->Gsvolu("UT0N", "BOX ", idtmed[1313-1], par_nc, nparnc);
231 // CO2 layer (radiator)
232 par_nc[2] = rathick / 2;
233 pMC->Gsvolu("UT1N", "BOX ", idtmed[1312-1], par_nc, nparnc);
234 // PE layer (radiator)
235 par_nc[2] = pethick / 2;
236 pMC->Gsvolu("UT2N", "BOX ", idtmed[1303-1], par_nc, nparnc);
237 // Mylar layer (entrance window + HV cathode)
238 par_nc[2] = mythick / 2;
239 pMC->Gsvolu("UT3N", "BOX ", idtmed[1308-1], par_nc, nparnc);
240 // Xe/Isobutane layer (gasvolume)
241 par_nc[2] = xethick / 2.;
242 for (Int_t icham = 1; icham <= 6; ++icham) {
243 sprintf(ctagc,"UXN%1d",icham);
244 pMC->Gsvolu(ctagc, "BOX ", idtmed[1309-1], par_nc, nparnc);
245 }
246 // Cu layer (pad plane)
247 par_nc[2] = cuthick / 2;
248 pMC->Gsvolu("UT5N", "BOX ", idtmed[1305-1], par_nc, nparnc);
249 // G10 layer (support structure)
250 par_nc[2] = suthick / 2;
251 pMC->Gsvolu("UT6N", "BOX ", idtmed[1313-1], par_nc, nparnc);
252 // Cu layer (FEE + signal lines)
253 par_nc[2] = fethick / 2;
254 pMC->Gsvolu("UT7N", "BOX ", idtmed[1305-1], par_nc, nparnc);
255 // PE layer (cooling devices)
256 par_nc[2] = cothick / 2;
257 pMC->Gsvolu("UT8N", "BOX ", idtmed[1303-1], par_nc, nparnc);
258 // Water layer (cooling)
259 par_nc[2] = wathick / 2;
260 pMC->Gsvolu("UT9N", "BOX ", idtmed[1314-1], par_nc, nparnc);
261
262 // Definition of the layers in each outer chamber
fe4da5cc 263 par_oc[0] = -1.;
264 par_oc[1] = -1.;
d3f347ff 265 // G10 layer (radiator layer)
266 par_oc[2] = sethick / 2;
267 pMC->Gsvolu("UT0O", "BOX ", idtmed[1313-1], par_oc, nparoc);
268 // CO2 layer (radiator)
269 par_oc[2] = rathick / 2;
270 pMC->Gsvolu("UT1O", "BOX ", idtmed[1312-1], par_oc, nparoc);
271 // PE layer (radiator)
272 par_oc[2] = pethick / 2;
273 pMC->Gsvolu("UT2O", "BOX ", idtmed[1303-1], par_oc, nparoc);
274 // Mylar layer (entrance window + HV cathode)
275 par_oc[2] = mythick / 2;
276 pMC->Gsvolu("UT3O", "BOX ", idtmed[1308-1], par_oc, nparoc);
277 // Xe/Isobutane layer (gasvolume)
278 par_oc[2] = xethick / 2.;
279 for (Int_t icham = 1; icham <= 6; ++icham) {
280 sprintf(ctagc,"UXO%1d",icham);
281 pMC->Gsvolu(ctagc, "BOX ", idtmed[1309-1], par_oc, nparoc);
fe4da5cc 282 }
d3f347ff 283 // Cu layer (pad plane)
284 par_oc[2] = cuthick / 2;
285 pMC->Gsvolu("UT5O", "BOX ", idtmed[1305-1], par_oc, nparoc);
286 // G10 layer (support structure)
287 par_oc[2] = suthick / 2;
288 pMC->Gsvolu("UT6O", "BOX ", idtmed[1313-1], par_oc, nparoc);
289 // Cu layer (FEE + signal lines)
290 par_oc[2] = fethick / 2;
291 pMC->Gsvolu("UT7O", "BOX ", idtmed[1305-1], par_oc, nparoc);
292 // PE layer (cooling devices)
293 par_oc[2] = cothick / 2;
294 pMC->Gsvolu("UT8O", "BOX ", idtmed[1303-1], par_oc, nparoc);
295 // Water layer (cooling)
296 par_oc[2] = wathick / 2;
297 pMC->Gsvolu("UT9O", "BOX ", idtmed[1314-1], par_oc, nparoc);
298
299 //////////////////////////////////////////////////////////////////////////
300 // Positioning of Volumes
301 //////////////////////////////////////////////////////////////////////////
302
303 // The rotation matrices
304 AliMatrix(idmat[0], 90., 90., 180., 0., 90., 0.);
305 AliMatrix(idmat[1], 90., 90., 0., 0., 90., 0.);
306
307 // Position of the layers in a chamber
308 pMC->Gspos("UT2I", 1, "UT1I", 0., 0., pezpos, 0, "ONLY");
309 pMC->Gspos("UT2N", 1, "UT1N", 0., 0., pezpos, 0, "ONLY");
310 pMC->Gspos("UT2O", 1, "UT1O", 0., 0., pezpos, 0, "ONLY");
311 for (Int_t icham = 1; icham <= ncham; ++icham) {
312 // The inner chambers
fe4da5cc 313 sprintf(ctagi,"UII%1d",icham);
d3f347ff 314 sprintf(ctagc,"UXI%1d",icham);
315 pMC->Gspos("UT9I", icham, ctagi, 0., 0., wazpos, 0, "ONLY");
316 pMC->Gspos("UT8I", icham, ctagi, 0., 0., cozpos, 0, "ONLY");
317 pMC->Gspos("UT7I", icham, ctagi, 0., 0., fezpos, 0, "ONLY");
318 pMC->Gspos("UT6I", icham, ctagi, 0., 0., suzpos, 0, "ONLY");
fe4da5cc 319 pMC->Gspos("UT5I", icham, ctagi, 0., 0., cuzpos, 0, "ONLY");
d3f347ff 320 pMC->Gspos(ctagc , 1, ctagi, 0., 0., xezpos, 0, "ONLY");
fe4da5cc 321 pMC->Gspos("UT3I", icham, ctagi, 0., 0., myzpos, 0, "ONLY");
322 pMC->Gspos("UT1I", icham, ctagi, 0., 0., razpos, 0, "ONLY");
d3f347ff 323 pMC->Gspos("UT0I", icham, ctagi, 0., 0., sezpos, 0, "ONLY");
324 // The neighbouring chambers
325 sprintf(ctagi,"UIN%1d",icham);
326 sprintf(ctagc,"UXN%1d",icham);
327 pMC->Gspos("UT9N", icham, ctagi, 0., 0., wazpos, 0, "ONLY");
328 pMC->Gspos("UT8N", icham, ctagi, 0., 0., cozpos, 0, "ONLY");
329 pMC->Gspos("UT7N", icham, ctagi, 0., 0., fezpos, 0, "ONLY");
330 pMC->Gspos("UT6N", icham, ctagi, 0., 0., suzpos, 0, "ONLY");
331 pMC->Gspos("UT5N", icham, ctagi, 0., 0., cuzpos, 0, "ONLY");
332 pMC->Gspos(ctagc , 1, ctagi, 0., 0., xezpos, 0, "ONLY");
333 pMC->Gspos("UT3N", icham, ctagi, 0., 0., myzpos, 0, "ONLY");
334 pMC->Gspos("UT1N", icham, ctagi, 0., 0., razpos, 0, "ONLY");
335 pMC->Gspos("UT0N", icham, ctagi, 0., 0., sezpos, 0, "ONLY");
336 // The outer chambers
337 sprintf(ctagi,"UIO%1d",icham);
338 sprintf(ctagc,"UXO%1d",icham);
339 pMC->Gspos("UT9O", icham, ctagi, 0., 0., wazpos, 0, "ONLY");
340 pMC->Gspos("UT8O", icham, ctagi, 0., 0., cozpos, 0, "ONLY");
341 pMC->Gspos("UT7O", icham, ctagi, 0., 0., fezpos, 0, "ONLY");
342 pMC->Gspos("UT6O", icham, ctagi, 0., 0., suzpos, 0, "ONLY");
fe4da5cc 343 pMC->Gspos("UT5O", icham, ctagi, 0., 0., cuzpos, 0, "ONLY");
d3f347ff 344 pMC->Gspos(ctagc , 1, ctagi, 0., 0., xezpos, 0, "ONLY");
fe4da5cc 345 pMC->Gspos("UT3O", icham, ctagi, 0., 0., myzpos, 0, "ONLY");
346 pMC->Gspos("UT1O", icham, ctagi, 0., 0., razpos, 0, "ONLY");
d3f347ff 347 pMC->Gspos("UT0O", icham, ctagi, 0., 0., sezpos, 0, "ONLY");
fe4da5cc 348 }
d3f347ff 349
350 // Position of the inner part of the chambers in the carbon-frames
351 for (Int_t icham = 1; icham <= ncham; ++icham) {
352 xpos = 0.;
353 ypos = 0.;
354 zpos = 0.;
355 // The inner chambers
fe4da5cc 356 sprintf(ctagi,"UII%1d",icham);
357 sprintf(ctagc,"UCI%1d",icham);
d3f347ff 358 pMC->Gspos(ctagi, 1, ctagc, xpos, ypos, zpos, 0, "ONLY");
359 // The neighbouring chambers
360 sprintf(ctagi,"UIN%1d",icham);
361 sprintf(ctagc,"UCN%1d",icham);
362 pMC->Gspos(ctagi, 1, ctagc, xpos, ypos, zpos, 0, "ONLY");
363 // The outer chambers
fe4da5cc 364 sprintf(ctagi,"UIO%1d",icham);
365 sprintf(ctagc,"UCO%1d",icham);
d3f347ff 366 pMC->Gspos(ctagi, 1, ctagc, xpos, ypos, zpos, 0, "ONLY");
fe4da5cc 367 }
d3f347ff 368
369 // Position of the chambers in the full TRD-setup
370 for (Int_t icham = 1; icham <= ncham; ++icham) {
371 // The inner chambers
fe4da5cc 372 xpos = 0.;
373 ypos = 0.;
d3f347ff 374 zpos = (icham-0.5) * heightc - (rmax - rmin) / 2;
fe4da5cc 375 sprintf(ctagc,"UCI%1d",icham);
d3f347ff 376 pMC->Gspos(ctagc, 1, "UTRI", xpos, ypos, zpos, 0, "ONLY");
377 // The neighbouring chambers
fe4da5cc 378 xpos = 0.;
d3f347ff 379 ypos = (zleni + zlenn) / 2.;
380 zpos = (icham-0.5) * heightc - (rmax - rmin) / 2;
381 sprintf(ctagc,"UCN%1d",icham);
382 pMC->Gspos(ctagc, 1, "UTRI", xpos, ypos, zpos, 0, "ONLY");
383 ypos = -ypos;
384 sprintf(ctagc,"UCN%1d",icham);
385 pMC->Gspos(ctagc, 2, "UTRI", xpos, ypos, zpos, 0, "ONLY");
386 // The outer chambers
387 xpos = 0.;
388 ypos = (zleni / 2. + zlenn + zmax2 + (icham-1) * lendifc) / 2.;
389 zpos = (icham-0.5) * heightc - (rmax-rmin)/2;
390 sprintf(ctagc,"UCO%1d",icham);
391 pMC->Gspos(ctagc, 1, "UTRI", xpos, ypos, zpos, 0, "ONLY");
392 ypos = -ypos;
fe4da5cc 393 sprintf(ctagc,"UCO%1d",icham);
d3f347ff 394 pMC->Gspos(ctagc, 2, "UTRI", xpos, ypos, zpos, 0, "ONLY");
fe4da5cc 395 }
d3f347ff 396
397 // Position of the inner part of the detector frame
398 xpos = (rmax + rmin) / 2;
399 ypos = 0.;
fe4da5cc 400 zpos = 0.;
d3f347ff 401 pMC->Gspos("UTRI", 1, "UTRS", xpos, ypos, zpos, idmat[0], "ONLY");
402
403 // Position of the TRD mother volume in the ALICE experiment
404 xpos = 0.;
fe4da5cc 405 ypos = 0.;
d3f347ff 406 zpos = 0.;
407 pMC->Gspos("TRD ", 1, "ALIC", xpos, ypos, zpos, 0, "ONLY");
408
fe4da5cc 409}
410
411//_____________________________________________________________________________
05e51f55 412void AliTRDv2::DrawModule()
fe4da5cc 413{
414 //
415 // Draw a shaded view of the Transition Radiation Detector version 1
416 //
417
418 AliMC* pMC = AliMC::GetMC();
419
420 // Set everything unseen
421 pMC->Gsatt("*", "seen", -1);
d3f347ff 422
fe4da5cc 423 // Set ALIC mother transparent
424 pMC->Gsatt("ALIC","SEEN",0);
d3f347ff 425
fe4da5cc 426 // Set the volumes visible
d3f347ff 427 pMC->Gsatt("TRD ","SEEN",0);
fe4da5cc 428 pMC->Gsatt("UTRS","SEEN",0);
d3f347ff 429 pMC->Gsatt("UTRI","SEEN",0);
430 Char_t ctag[5];
431 for (Int_t icham = 0; icham < ncham; ++icham) {
432 sprintf(ctag,"UCI%1d",icham+1);
433 pMC->Gsatt(ctag,"SEEN",0);
434 sprintf(ctag,"UCN%1d",icham+1);
435 pMC->Gsatt(ctag,"SEEN",0);
436 sprintf(ctag,"UCO%1d",icham+1);
437 pMC->Gsatt(ctag,"SEEN",0);
438 sprintf(ctag,"UII%1d",icham+1);
439 pMC->Gsatt(ctag,"SEEN",0);
440 sprintf(ctag,"UIN%1d",icham+1);
441 pMC->Gsatt(ctag,"SEEN",0);
442 sprintf(ctag,"UIO%1d",icham+1);
443 pMC->Gsatt(ctag,"SEEN",0);
444 sprintf(ctag,"UXI%1d",icham+1);
445 pMC->Gsatt(ctag,"SEEN",1);
446 sprintf(ctag,"UXN%1d",icham+1);
447 pMC->Gsatt(ctag,"SEEN",1);
448 sprintf(ctag,"UXO%1d",icham+1);
449 pMC->Gsatt(ctag,"SEEN",1);
450 }
fe4da5cc 451 pMC->Gsatt("UT1I","SEEN",1);
d3f347ff 452 pMC->Gsatt("UT1N","SEEN",1);
fe4da5cc 453 pMC->Gsatt("UT1O","SEEN",1);
d3f347ff 454
fe4da5cc 455 pMC->Gdopt("hide", "on");
456 pMC->Gdopt("shad", "on");
457 pMC->Gsatt("*", "fill", 7);
458 pMC->SetClipBox(".");
459 pMC->SetClipBox("*", 0, 2000, -2000, 2000, -2000, 2000);
460 pMC->DefaultRange();
461 pMC->Gdraw("alic", 40, 30, 0, 12, 9.4, .021, .021);
462 pMC->Gdhead(1111, "Transition Radiation Detector Version 2");
463 pMC->Gdman(18, 4, "MAN");
464 pMC->Gdopt("hide", "off");
465}
466
467//_____________________________________________________________________________
468void AliTRDv2::CreateMaterials()
469{
470 //
471 // Create materials for the Transition Radiation Detector version 2
472 //
fe4da5cc 473 AliTRD::CreateMaterials();
474}
475
476//_____________________________________________________________________________
477void AliTRDv2::Init()
478{
479 //
480 // Initialise Transition Radiation Detector after geometry has been built
481 //
d3f347ff 482
483 // First ionization potential (eV) for the gas mixture (90% Xe + 10% CO2)
484 const Float_t kPoti = 12.1;
485 // Maximum energy (50 keV);
486 const Float_t kEend = 50000.0;
487
fe4da5cc 488 AliTRD::Init();
d3f347ff 489
fe4da5cc 490 AliMC* pMC = AliMC::GetMC();
d3f347ff 491
492 // Get the sensitive volumes
493 Char_t ctag[5];
494 for (Int_t icham = 0; icham < ncham; ++icham) {
495 sprintf(ctag,"UXI%1d",icham+1);
496 fIdSensI[icham] = pMC->VolId(ctag);
497 sprintf(ctag,"UXN%1d",icham+1);
498 fIdSensN[icham] = pMC->VolId(ctag);
499 sprintf(ctag,"UXO%1d",icham+1);
500 fIdSensO[icham] = pMC->VolId(ctag);
501 }
502
503 Float_t Poti = TMath::Log(kPoti);
504 Float_t Eend = TMath::Log(kEend);
505
506 // Ermilova distribution for the delta-ray spectrum
507 fDeltaE = new TF1("deltae",Ermilova,Poti,Eend,0);
508
fe4da5cc 509}
510
511//_____________________________________________________________________________
512void AliTRDv2::StepManager()
513{
514 //
515 // Called at every step in the Transition Radiation Detector version 2
516 //
d3f347ff 517
518 Int_t idSens, icSens, id;
fe4da5cc 519 Int_t iPla, iCha, iSec;
520 Int_t iOut;
521 Int_t vol[3];
522 Int_t iPid;
d3f347ff 523
524 const Double_t kBig = 1.0E+12;
525
526 Float_t hits[4];
527 Float_t mom[4];
fe4da5cc 528 Float_t random[1];
529 Float_t charge;
fe4da5cc 530 Float_t aMass;
d3f347ff 531
532 Double_t pTot;
533 Double_t qTot;
534 Double_t eDelta;
535 Double_t betaGamma, pp;
536
fe4da5cc 537 TClonesArray &lhits = *fHits;
d3f347ff 538
fe4da5cc 539 AliMC* pMC = AliMC::GetMC();
d3f347ff 540
fe4da5cc 541 // Ionization energy
d3f347ff 542 const Float_t kWion = 22.04;
fe4da5cc 543 // Maximum energy for e+ e- g for the step-size calculation
d3f347ff 544 const Float_t kPTotMax = 0.002;
fe4da5cc 545 // Plateau value of the energy-loss for electron in xenon
546 // taken from: Allison + Comb, Ann. Rev. Nucl. Sci. (1980), 30, 253
d3f347ff 547 //const Double_t kPlateau = 1.70;
548 // the averaged value (26/3/99)
549 const Float_t kPlateau = 1.55;
fe4da5cc 550 // dN1/dx|min for the gas mixture (90% Xe + 10% CO2)
d3f347ff 551 const Float_t kPrim = 48.0;
552 // First ionization potential (eV) for the gas mixture (90% Xe + 10% CO2)
553 const Float_t kPoti = 12.1;
554
fe4da5cc 555 // Set the maximum step size to a very large number for all
556 // neutral particles and those outside the driftvolume
557 pMC->SetMaxStep(kBig);
d3f347ff 558
fe4da5cc 559 // Use only charged tracks
560 if (( pMC->TrackCharge() ) &&
561 (!pMC->TrackStop() ) &&
562 (!pMC->TrackDisappear())) {
d3f347ff 563
fe4da5cc 564 // Find the sensitive volume
565 idSens = pMC->CurrentVol(0,icSens);
566 iPla = 0;
567 iOut = 0;
d3f347ff 568 for (Int_t icham = 0; icham < ncham; ++icham) {
569 if (idSens == fIdSensI[icham]) {
570 iOut = 0;
571 iPla = icham + 1;
572 }
573 if (idSens == fIdSensN[icham]) {
574 iOut = 1;
575 iPla = icham + 1;
576 }
577 if (idSens == fIdSensO[icham]) {
578 iOut = 2;
579 iPla = icham + 1;
580 }
581 }
582
fe4da5cc 583 // Inside a sensitive volume?
584 if (iPla) {
d3f347ff 585
586 // Calculate the energy of the delta-electrons
587 eDelta = TMath::Exp(fDeltaE->GetRandom()) - kPoti;
588 eDelta = TMath::Max(eDelta,0.0);
589
590 // The number of secondary electrons created
591 qTot = (Double_t) ((Int_t) (eDelta / kWion) + 1);
592
fe4da5cc 593 // The sector number
d3f347ff 594 id = pMC->CurrentVolOff(4,0,iSec);
595
fe4da5cc 596 // The chamber number
d3f347ff 597 // 1: outer left
598 // 2: neighbouring left
599 // 3: inner
600 // 4: neighbouring right
601 // 5: outer right
602 id = pMC->CurrentVolOff(2,0,iCha);
603 if (iCha == 1)
604 iCha = 3 + iOut;
605 else
606 iCha = 3 - iOut;
607
fe4da5cc 608 vol[0] = iSec;
609 vol[1] = iCha;
610 vol[2] = iPla;
611
d3f347ff 612 // Check on selected volumes
613 Int_t addthishit = 1;
614 if (fSensSelect) {
615 if ((fSensPlane) && (vol[2] != fSensPlane )) addthishit = 0;
616 if ((fSensChamber) && (vol[1] != fSensChamber)) addthishit = 0;
617 if ((fSensSector) && (vol[0] != fSensSector )) addthishit = 0;
618 }
619
620 if (addthishit) {
621
622 // Add this hit
623 pMC->TrackPosition(hits);
624 hits[3] = qTot;
625 new(lhits[fNhits++]) AliTRDhit(fIshunt,gAlice->CurrentTrack(),vol,hits);
626
627 // The energy loss according to Bethe Bloch
628 pMC->TrackMomentum(mom);
629 pTot = mom[3];
630 iPid = pMC->TrackPid();
631 if ( (iPid > 3) ||
632 ((iPid <= 3) && (pTot < kPTotMax))) {
633 aMass = pMC->TrackMass();
634 betaGamma = pTot / aMass;
635 pp = kPrim * BetheBloch(betaGamma);
636 // Take charge > 1 into account
637 charge = pMC->TrackCharge();
638 if (TMath::Abs(charge) > 1) pp = pp * charge*charge;
639 }
640 // Electrons above 20 Mev/c are at the plateau
641 else {
642 pp = kPrim * kPlateau;
643 }
fe4da5cc 644
d3f347ff 645 // Calculate the maximum step size for the next tracking step
646 if (pp > 0) {
647 do
648 pMC->Rndm(random,1);
649 while ((random[0] == 1.) || (random[0] == 0.));
650 pMC->SetMaxStep( - TMath::Log(random[0]) / pp);
651 }
652
fe4da5cc 653 }
fe4da5cc 654 else {
d3f347ff 655 // set step size to maximal value
656 pMC->SetMaxStep(kBig);
fe4da5cc 657 }
d3f347ff 658
fe4da5cc 659 }
d3f347ff 660
661 }
662
663}
664
665//_____________________________________________________________________________
666Double_t AliTRDv2::BetheBloch(Double_t bg)
667{
668 //
669 // Parametrization of the Bethe-Bloch-curve
670 // The parametrization is the same as for the TPC and is taken from Lehrhaus.
671 //
672
673 // The parameters have been adjusted to Xe-data found in:
674 // Allison & Cobb, Ann. Rev. Nucl. Sci. (1980), 30, 253
675 //const Double_t kP1 = 0.76176E-1;
676 //const Double_t kP2 = 10.632;
677 //const Double_t kP3 = 3.17983E-6;
678 //const Double_t kP4 = 1.8631;
679 //const Double_t kP5 = 1.9479;
680
681 // This parameters have been adjusted to averaged values from GEANT
682 const Double_t kP1 = 7.17960e-02;
683 const Double_t kP2 = 8.54196;
684 const Double_t kP3 = 1.38065e-06;
685 const Double_t kP4 = 5.30972;
686 const Double_t kP5 = 2.83798;
687
688 if (bg > 0) {
689 Double_t yy = bg / TMath::Sqrt(1. + bg*bg);
690 Double_t aa = TMath::Power(yy,kP4);
691 Double_t bb = TMath::Power((1./bg),kP5);
692 bb = TMath::Log(kP3 + bb);
693 return ((kP2 - aa - bb)*kP1 / aa);
fe4da5cc 694 }
d3f347ff 695 else
696 return 0;
697
698}
699
700//_____________________________________________________________________________
701Double_t Ermilova(Double_t *x, Double_t *par)
702{
703 //
704 // Calculates the delta-ray energy distribution according to Ermilova
705 // Logarithmic scale !
706 //
707
708 Double_t energy;
709 Double_t dpos;
710 Double_t dnde;
711
712 Int_t pos1, pos2;
713
714 const Int_t nV = 31;
715
716 Float_t vxe[nV] = { 2.3026, 2.9957, 3.4012, 3.6889, 3.9120
717 , 4.0943, 4.2485, 4.3820, 4.4998, 4.6052
718 , 4.7005, 5.0752, 5.2983, 5.7038, 5.9915
719 , 6.2146, 6.5221, 6.9078, 7.3132, 7.6009
720 , 8.0064, 8.5172, 8.6995, 8.9872, 9.2103
721 , 9.4727, 9.9035,10.3735,10.5966,10.8198
722 ,11.5129 };
723
724 Float_t vye[nV] = { 80.0 , 31.0 , 23.3 , 21.1 , 21.0
725 , 20.9 , 20.8 , 20.0 , 16.0 , 11.0
726 , 8.0 , 6.0 , 5.2 , 4.6 , 4.0
727 , 3.5 , 3.0 , 1.4 , 0.67 , 0.44
728 , 0.3 , 0.18 , 0.12 , 0.08 , 0.056
729 , 0.04 , 0.023, 0.015, 0.011, 0.01
730 , 0.004 };
731
732 energy = x[0];
733
734 // Find the position
735 pos1 = pos2 = 0;
736 dpos = 0;
737 do {
738 dpos = energy - vxe[pos2++];
739 }
740 while (dpos > 0);
741 pos2--;
742 if (pos2 > nV) pos2 = nV;
743 pos1 = pos2 - 1;
744
745 // Differentiate between the sampling points
746 dnde = (vye[pos1] - vye[pos2]) / (vxe[pos2] - vxe[pos1]);
747
748 return dnde;
749
fe4da5cc 750}