]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - EMCAL/AliEMCALTrigger.h
Addeds some ignores
[u/mrichter/AliRoot.git] / EMCAL / AliEMCALTrigger.h
... / ...
CommitLineData
1#ifndef ALIEMCALTRIGGER_H
2#define ALIEMCALTRIGGER_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
6/* $Id$ */
7
8//___________________________________________________________
9// Class for trigger analysis.
10//
11// -- Author: Gustavo Conesa & Yves Schutz (IFIC, SUBATECH, CERN)
12// Digits are grouped in TRU's (Trigger Units). A TRU consist of 384 cells
13// ordered fNTRUPhi x fNTRUEta matrix. The algorithm searches all possible
14// 2x2 and nxn (n multiple of 4) crystal combinations per each TRU, adding the
15// digits amplitude and finding the maximum. It is found is maximum is isolated.
16// Maxima are transformed in adc time samples. Each time bin is compared to the
17// trigger threshold until it is larger and then, triggers are set.
18// Thresholds need to be fixed.
19// Last 2 modules are half size in Phi, I considered that the number
20// of TRU is maintained for the last modules but final decision has not
21// been taken. If different, then this must to be changed.
22// Usage:
23//
24// //Inside the event loop
25// AliEMCALTrigger *tr = new AliEMCALTrigger();//Init Trigger
26// tr->SetL0Threshold(100);
27// tr->SetL1GammaLowPtThreshold(1000);
28// tr->SetL1GammaMediumPtThreshold(10000);
29// tr->SetL1GammaHighPtThreshold(20000);
30// ....
31// tr->Trigger(); //Execute Trigger
32// tr->Print(""); //Print data members after calculation.
33//
34//*-- Author: Gustavo Conesa & Yves Schutz (IFIC, SUBATECH, CERN)
35//* -- Author: Aleksei Pavlinov, WSU, Detroit, USA
36// Nov 2, 2007
37// One TRU card receives 96 analogue sums from 12 FEE cards.
38// One sum is correcponding output from on module.
39// This patch has size 12x8 modules (24x16 modules).
40// Each SM has 3 TRU cards.
41
42// --- ROOT system ---
43
44class TClonesArray ;
45class TTree;
46
47#include <TMatrixD.h>
48#include <TArrayF.h>
49
50// --- AliRoot header files ---
51#include "AliTriggerDetector.h"
52
53class TBrowser;
54class AliEMCALGeometry ;
55class TH2F;
56
57class AliEMCALTrigger : public AliTriggerDetector {
58
59 public:
60
61 AliEMCALTrigger() ; // ctor
62 AliEMCALTrigger(const AliEMCALTrigger & trig) ; // cpy ctor
63 virtual ~AliEMCALTrigger(); //virtual dtor
64
65
66 virtual void CreateInputs(); //Define trigger inputs for Central Trigger Processor
67 void Print(const Option_t * opt ="") const ;
68 virtual void Trigger(); //Make EMCAL trigger
69 //assignment operator for coding convention
70 const AliEMCALTrigger & operator = (const AliEMCALTrigger & ) {return *this;}
71
72 //Getters
73 Float_t Get2x2MaxAmplitude() const { return f2x2MaxAmp ; }
74 Float_t GetnxnMaxAmplitude() const { return fnxnMaxAmp ; }
75 Int_t Get2x2ModulePhi() const { return f2x2ModulePhi ; }
76 Int_t GetnxnModulePhi() const { return fnxnModulePhi ; }
77 Int_t Get2x2ModuleEta() const { return f2x2ModuleEta ; }
78 Int_t GetnxnModuleEta() const { return fnxnModuleEta ; }
79 Int_t Get2x2SuperModule() const { return f2x2SM ; }
80 Int_t GetnxnSuperModule() const { return fnxnSM ; }
81
82 Int_t * GetADCValuesLowGainMax2x2Sum() const { return fADCValuesLow2x2; }
83 Int_t * GetADCValuesHighGainMax2x2Sum() const { return fADCValuesHigh2x2; }
84 Int_t * GetADCValuesLowGainMaxnxnSum() const { return fADCValuesLownxn; }
85 Int_t * GetADCValuesHighGainMaxnxnSum() const { return fADCValuesHighnxn; }
86
87 Float_t GetL0Threshold() const { return fL0Threshold ; }
88 Float_t GetL1GammaLowPtThreshold() const { return fL1GammaLowPtThreshold ; }
89 Float_t GetL1GammaMediumPtThreshold() const { return fL1GammaMediumPtThreshold ; }
90 Float_t GetL1GammaHighPtThreshold() const { return fL1GammaHighPtThreshold ; }
91
92 Int_t GetPatchSize() const { return fPatchSize ; }
93 Int_t GetIsolPatchSize() const { return fIsolPatchSize ; }
94
95 Float_t Get2x2AmpOutOfPatch() const { return f2x2AmpOutOfPatch ; }
96 Float_t GetnxnAmpOutOfPatch() const { return fnxnAmpOutOfPatch ; }
97 Float_t Get2x2AmpOutOfPatchThres() const { return f2x2AmpOutOfPatchThres ; }
98 Float_t GetnxnAmpOutOfPatchThres() const { return fnxnAmpOutOfPatchThres ; }
99
100 Bool_t Is2x2Isol() const { return fIs2x2Isol ; }
101 Bool_t IsnxnIsol() const { return fIsnxnIsol ; }
102
103 Bool_t IsSimulation() const { return fSimulation ; }
104 Bool_t IsIsolatedInSuperModule() const { return fIsolateInSuperModule ; }
105 Bool_t GetTimeKey() const { return fTimeKey;}
106 TH2F* GetJetMatrixE() const { return fJetMatrixE;}
107 Double_t GetEmcalSumAmp() const;
108
109 Int_t GetNJetThreshold() const {return fNJetThreshold;}
110 Double_t* GetL1JetThresholds() const {return fL1JetThreshold;}
111 TMatrixD GetAmpJetMax() const {return fAmpJetMax;}
112
113 void PrintJetMatrix() const; // *MENU*
114 void PrintAmpTruMatrix(Int_t ind) const; // *MENU*
115 void PrintAmpSmMatrix(Int_t ind) const; // *MENU*
116 void PrintMatrix(const TMatrixD &mat) const; // *MENU*
117 Bool_t CheckConsistentOfMatrixes(const Int_t pri=0); // *MENU*
118
119
120 //Setters
121 void SetDigitsList(TClonesArray * digits)
122 {fDigitsList = digits ; }
123
124 void SetL0Threshold(Int_t amp)
125 {fL0Threshold = amp; }
126 void SetL1GammaLowPtThreshold(Int_t amp)
127 {fL1GammaLowPtThreshold = amp; }
128 void SetL1GammaMediumPtThreshold(Int_t amp)
129 {fL1GammaMediumPtThreshold = amp; }
130 void SetL1GammaHighPtThreshold(Int_t amp)
131 {fL1GammaHighPtThreshold = amp; }
132
133 void SetPatchSize(Int_t ps) {fPatchSize = ps ; }
134 void SetIsolPatchSize(Int_t ps) {fIsolPatchSize = ps ; }
135 void Set2x2AmpOutOfPatchThres(Float_t th) { f2x2AmpOutOfPatchThres = th; }
136 void SetnxnAmpOutOfPatchThres(Float_t th) { fnxnAmpOutOfPatchThres = th; }
137 void SetSimulation(Bool_t sim ) {fSimulation = sim ; }
138 void SetIsolateInSuperModule(Bool_t isol ) {fIsolateInSuperModule = isol ; }
139 void SetTimeKey(Bool_t timeKey) {fTimeKey = timeKey;}
140 void SetJetPatchSize(const Int_t patchSize) {fNJetPatchPhi = fNJetPatchEta = patchSize;}
141 void SetJetParameters(const Int_t patchSize, Double_t* jetThreshold)
142 { // unused now
143 fNJetPatchPhi = fNJetPatchEta = patchSize;
144 fL1JetThreshold = jetThreshold;
145 }
146 void SetVZER0Multiplicity(Double_t mult) {fVZER0Mult = mult;}
147
148 //
149 virtual void Browse(TBrowser* b);
150 virtual Bool_t IsFolder() const {return kTRUE;}
151
152 // Name of Jet trigger(s)
153 Char_t* GetNameOfJetTrigger(const Int_t i) {return Form("%s_Th_%2.2i",fgNameOfJetTriggers.Data(),i);}
154 static TString GetNameOfJetTriggers() {return fgNameOfJetTriggers;}
155 static TString fgNameOfJetTriggers; //Name of jet triggers
156 // Estimation on EMCal energy from VZERO multiplicity
157 // 0.0153 is coefficient from adc to energy
158 // Dec 4, 2007
159 // 1 p0 2.52248e-02 3.24364e-05 9.29319e-01 -2.34036e-06
160 static Double_t GetMeanEmcalEnergy(const Int_t mult) {return 2.52248e-02*Double_t(mult);}
161 static Double_t GetMeanEmcalPatchEnergy(const Int_t mult, Int_t patchSize)
162 {return GetMeanEmcalEnergy(mult)*Double_t(patchSize)*Double_t(patchSize)/208.;}
163 private:
164
165 void FillTRU(const TClonesArray * digits, TClonesArray * ampmatrix, TClonesArray * ampmatrixsmod, TClonesArray * timeRmatrix);
166
167 Bool_t IsPatchIsolated(Int_t iPatchType, const TClonesArray * ampmods, const Int_t imod, const Int_t mtru, const Float_t maxamp, const Int_t maxphi, const Int_t maxeta) ;
168
169 void MakeSlidingTowers(const TClonesArray * amptrus, const TClonesArray * timeRtrus,
170 const Int_t supermod, TMatrixD &ampmax2, TMatrixD &ampmaxn) ;
171
172 void SetTriggers(const TClonesArray * amptrus,const Int_t iSM, const TMatrixD &ampmax2, const TMatrixD &ampmaxn) ;
173 void GetTriggerInfo(TArrayF &triggerPosition, TArrayF &triggerAmplitudes) const;
174 // Jet staff
175 void FillJetMatrixFromSMs(TClonesArray *ampmatrixsmod, TMatrixD * const jetMat, AliEMCALGeometry * const g);
176 // no timing information here
177 void MakeSlidingPatch(const TMatrixD &jm, const Int_t nPatchSize, TMatrixD &ampJetMax);
178
179 private:
180 AliEMCALGeometry *fGeom; //!
181
182 Float_t f2x2MaxAmp ; //! Maximum 2x2 added amplitude (not overlapped)
183 Int_t f2x2ModulePhi ; //! upper right cell, row(phi)
184 Int_t f2x2ModuleEta ; //! and column(eta)
185 Int_t f2x2SM ; //! Super Module where maximum is found
186 Float_t fnxnMaxAmp ; //! Maximum nxn added amplitude (overlapped)
187 Int_t fnxnModulePhi ; //! upper right cell, row(phi)
188 Int_t fnxnModuleEta ; //! and column(eta)
189 Int_t fnxnSM ; //! Super Module where maximum is found
190
191 Int_t* fADCValuesHighnxn ; //! Sampled ADC high gain values for the nxn crystals amplitude sum
192 Int_t* fADCValuesLownxn ; //! " low gain "
193 Int_t* fADCValuesHigh2x2 ; //! " high gain " 2x2 "
194 Int_t* fADCValuesLow2x2 ; //! " low gaing " "
195
196 TClonesArray* fDigitsList; //! Array of digits
197
198 Float_t fL0Threshold ; // L0 trigger energy threshold
199 Float_t fL1GammaLowPtThreshold ; // L1 gamma Low pT trigger energy threshold
200 Float_t fL1GammaMediumPtThreshold ; // L1 gamma Medium pT trigger energy threshold
201 Float_t fL1GammaHighPtThreshold ; // L1 gamma High pT trigger energy threshold
202
203 Int_t fPatchSize; // Trigger patch factor, to be multiplied to 2x2 cells
204 // 0 means 2x2, 1 means 4x4 (max size 4x4 now)
205 Int_t fIsolPatchSize ; // Isolation patch size, number of rows or columns to add to
206 // the 2x2 or nxn maximum amplitude patch.
207 // 1 means a patch around max amplitude of 2x2 of 4x4 and around
208 // max ampl patch of 4x4 of 8x8
209
210 Float_t f2x2AmpOutOfPatch; // Amplitude in isolation cone minus maximum amplitude of the reference 2x2 patch
211 Float_t fnxnAmpOutOfPatch; // Amplitude in isolation cone minus maximum amplitude of the reference nxn patch
212 Float_t f2x2AmpOutOfPatchThres; // Threshold to select a trigger as isolated on f2x2AmpOutOfPatch value
213 Float_t fnxnAmpOutOfPatchThres; // Threshold to select a trigger as isolated on fnxnAmpOutOfPatch value
214 Float_t fIs2x2Isol; // 2x2 Patch is isolated if f2x2AmpOutOfPatchThres threshold is passed
215 Float_t fIsnxnIsol ; // nxn Patch is isolated if fnxnAmpOutOfPatchThres threshold is passed
216
217
218 Bool_t fSimulation ; // Flag to do the trigger during simulation or reconstruction
219 Bool_t fIsolateInSuperModule; // Flag to isolate trigger patch in SuperModule or in TRU acceptance
220 Bool_t fTimeKey; // Flag to take into account the digits time information
221 //
222 TClonesArray *fAmpTrus; //! Array of amplides of TRU matrixes
223 TClonesArray *fTimeRtrus; //! Array of recent times (unused now)
224 TClonesArray *fAmpSMods; //! Array of amplides of SM matrixes
225 // Information for EMCAL ESD
226 TArrayF fTriggerPosition; // Triggered patch position
227 TArrayF fTriggerAmplitudes; // Triggered patch amplitude
228 // Jet staf
229 Int_t fNJetPatchPhi; // size of jet pathch in phi(row) direction (nJetPatchPhi*4 module)
230 Int_t fNJetPatchEta; // size of jet pathch in eta(column) direction (nJetPatchEta*4 module)
231 Int_t fNJetThreshold; // number of jet threshold
232 Double_t *fL1JetThreshold; //[fNJetThreshold] array of L1 jet energy threshold (this is not Et)
233 Double_t fJetMaxAmp; // Max amp from patch (fNJetPatchPhi*fNJetPatchEta)
234 TMatrixD* fAmpJetMatrix; //-> Jet trigger matrix : (nphi(17), neta(12))
235 TH2F* fJetMatrixE; //-> temporary solution for getting coordinate informatin
236 TMatrixD fAmpJetMax; // 6 elements
237 // VZER0
238 Double_t fVZER0Mult; // multiplicity (V0A+V0c)
239
240 ClassDef(AliEMCALTrigger, 2)
241} ;
242
243
244#endif //ALIEMCALTRIGGER_H
245