]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - ITS/AliITSsimulationSDD.cxx
modifications to satisfy the coding conventions
[u/mrichter/AliRoot.git] / ITS / AliITSsimulationSDD.cxx
... / ...
CommitLineData
1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18#include <Riostream.h>
19#include <stdlib.h>
20#include <stdio.h>
21#include <cstring>
22
23#include <TCanvas.h>
24#include <TF1.h>
25#include <TH1.h>
26#include <TFile.h>
27#include <TRandom.h>
28#include <TROOT.h>
29#include "AliITS.h"
30#include "AliITSMapA2.h"
31#include "AliITSRawData.h"
32#include "AliITSdigitSPD.h"
33#include "AliITSetfSDD.h"
34#include "AliITSmodule.h"
35#include "AliITSpList.h"
36#include "AliITSCalibrationSDD.h"
37#include "AliITSsegmentationSDD.h"
38#include "AliITSsimulationSDD.h"
39#include "AliLog.h"
40#include "AliRun.h"
41
42ClassImp(AliITSsimulationSDD)
43////////////////////////////////////////////////////////////////////////
44// Version: 0 //
45// Written by Piergiorgio Cerello //
46// November 23 1999 //
47// //
48// AliITSsimulationSDD is the simulation of SDDs. //
49////////////////////////////////////////////////////////////////////////
50
51//______________________________________________________________________
52AliITSsimulationSDD::AliITSsimulationSDD():
53AliITSsimulation(),
54fITS(0),
55fHitMap2(0),
56fHitSigMap2(0),
57fHitNoiMap2(0),
58fElectronics(0),
59fInZR(0),
60fInZI(0),
61fOutZR(0),
62fOutZI(0),
63fAnodeFire(0),
64fHis(0),
65fFlag(kFALSE),
66fCrosstalkFlag(kFALSE),
67fDoFFT(1),
68fNofMaps(0),
69fMaxNofSamples(0),
70fScaleSize(0){
71 // Default constructor
72 SetScaleFourier();
73 SetPerpendTracksFlag();
74 SetCrosstalkFlag();
75 SetDoFFT();
76}
77//______________________________________________________________________
78AliITSsimulationSDD::AliITSsimulationSDD(const AliITSsimulationSDD &source) :
79 AliITSsimulation(source),
80fITS(source.fITS),
81fHitMap2(source.fHitMap2),
82fHitSigMap2(source.fHitSigMap2),
83fHitNoiMap2(source.fHitNoiMap2),
84fElectronics(source.fElectronics),
85fInZR(source.fInZR),
86fInZI(source.fInZI),
87fOutZR(source.fOutZR),
88fOutZI(source.fOutZI),
89fAnodeFire(source.fAnodeFire),
90fHis(source.fHis),
91fFlag(source.fFlag),
92fCrosstalkFlag(source.fCrosstalkFlag),
93fDoFFT(source.fDoFFT),
94fNofMaps(source.fNofMaps),
95fMaxNofSamples(source.fMaxNofSamples),
96fScaleSize(source.fScaleSize){
97 // Copy constructor to satify Coding roules only.
98
99}
100//______________________________________________________________________
101AliITSsimulationSDD& AliITSsimulationSDD::operator=(const AliITSsimulationSDD &src){
102 // Assignment operator to satify Coding roules only.
103
104 if(this==&src) return *this;
105 Error("AliITSsimulationSDD","Not allowed to make a = with "
106 "AliITSsimulationSDD Using default creater instead");
107 return *this ;
108}
109/*
110//______________________________________________________________________
111AliITSsimulation& AliITSsimulationSDD::operator=(const AliITSsimulation &src){
112 // Assignment operator to satify Coding roules only.
113
114 if(this==&src) return *this;
115 Error("AliITSsimulationSSD","Not allowed to make a = with "
116 "AliITSsimulationSDD Using default creater instead");
117 return *this ;
118}
119*/
120//______________________________________________________________________
121AliITSsimulationSDD::AliITSsimulationSDD(AliITSDetTypeSim* dettyp):
122AliITSsimulation(dettyp),
123fITS(0),
124fHitMap2(0),
125fHitSigMap2(0),
126fHitNoiMap2(0),
127fElectronics(0),
128fInZR(0),
129fInZI(0),
130fOutZR(0),
131fOutZI(0),
132fAnodeFire(0),
133fHis(0),
134fFlag(kFALSE),
135fCrosstalkFlag(kFALSE),
136fDoFFT(1),
137fNofMaps(0),
138fMaxNofSamples(0),
139fScaleSize(0){
140 // Default Constructor
141 Init();
142}
143//______________________________________________________________________
144void AliITSsimulationSDD::Init(){
145 // Standard Constructor
146
147 SetScaleFourier();
148 SetPerpendTracksFlag();
149 SetCrosstalkFlag();
150 SetDoFFT();
151
152 AliITSsegmentationSDD* seg = (AliITSsegmentationSDD*)GetSegmentationModel(1);
153 if(seg->Npx()==128) fScaleSize=8;
154 AliITSSimuParam* simpar = fDetType->GetSimuParam();
155 fpList = new AliITSpList( seg->Npz(),
156 fScaleSize*seg->Npx() );
157 fHitSigMap2 = new AliITSMapA2(seg,fScaleSize,1);
158 fHitNoiMap2 = new AliITSMapA2(seg,fScaleSize,1);
159 fHitMap2 = fHitSigMap2;
160
161 fNofMaps = seg->Npz();
162 fMaxNofSamples = seg->Npx();
163 fAnodeFire = new Bool_t [fNofMaps];
164
165 Float_t sddWidth = seg->Dz();
166 Float_t anodePitch = seg->Dpz(0);
167 Double_t timeStep = (Double_t)seg->Dpx(0);
168
169 if(anodePitch*(fNofMaps/2) > sddWidth) {
170 Warning("AliITSsimulationSDD",
171 "Too many anodes %d or too big pitch %f \n",
172 fNofMaps/2,anodePitch);
173 } // end if
174
175
176 fElectronics = new AliITSetfSDD(timeStep/fScaleSize,
177 simpar->GetSDDElectronics());
178
179
180 fITS = (AliITS*)gAlice->GetModule("ITS");
181
182 fInZR = new Double_t [fScaleSize*fMaxNofSamples];
183 fInZI = new Double_t [fScaleSize*fMaxNofSamples];
184 fOutZR = new Double_t [fScaleSize*fMaxNofSamples];
185 fOutZI = new Double_t [fScaleSize*fMaxNofSamples];
186}
187//______________________________________________________________________
188AliITSsimulationSDD::~AliITSsimulationSDD() {
189 // destructor
190
191 // delete fpList;
192 delete fHitSigMap2;
193 delete fHitNoiMap2;
194 delete fElectronics;
195
196 fITS = 0;
197
198 if (fHis) {
199 fHis->Delete();
200 delete fHis;
201 } // end if fHis
202 if(fInZR) delete [] fInZR;
203 if(fInZI) delete [] fInZI;
204 if(fOutZR) delete [] fOutZR;
205 if(fOutZI) delete [] fOutZI;
206 if(fAnodeFire) delete [] fAnodeFire;
207}
208//______________________________________________________________________
209void AliITSsimulationSDD::InitSimulationModule( Int_t module, Int_t event ) {
210 // create maps to build the lists of tracks for each summable digit
211 fModule = module;
212 fEvent = event;
213 ClearMaps();
214 memset(fAnodeFire,0,sizeof(Bool_t)*fNofMaps);
215}
216//______________________________________________________________________
217void AliITSsimulationSDD::ClearMaps() {
218 // clear maps
219 fpList->ClearMap();
220 fHitSigMap2->ClearMap();
221 fHitNoiMap2->ClearMap();
222}
223//______________________________________________________________________
224void AliITSsimulationSDD::FastFourierTransform(Double_t *real,
225 Double_t *imag,Int_t direction) {
226 // Do a Fast Fourier Transform
227
228 Int_t samples = fElectronics->GetSamples();
229 Int_t l = (Int_t) ((log((Float_t) samples)/log(2.))+0.5);
230 Int_t m1 = samples;
231 Int_t m = samples/2;
232 Int_t m2 = samples/m1;
233 Int_t i,j,k;
234 for(i=1; i<=l; i++) {
235 for(j=0; j<samples; j += m1) {
236 Int_t p = 0;
237 for(k=j; k<= j+m-1; k++) {
238 Double_t wsr = fElectronics->GetWeightReal(p);
239 Double_t wsi = fElectronics->GetWeightImag(p);
240 if(direction == -1) wsi = -wsi;
241 Double_t xr = *(real+k+m);
242 Double_t xi = *(imag+k+m);
243 *(real+k+m) = wsr*(*(real+k)-xr) - wsi*(*(imag+k)-xi);
244 *(imag+k+m) = wsr*(*(imag+k)-xi) + wsi*(*(real+k)-xr);
245 *(real+k) += xr;
246 *(imag+k) += xi;
247 p += m2;
248 } // end for k
249 } // end for j
250 m1 = m;
251 m /= 2;
252 m2 += m2;
253 } // end for i
254 for(j=0; j<samples; j++) {
255 Int_t j1 = j;
256 Int_t p = 0;
257 Int_t i1;
258 for(i1=1; i1<=l; i1++) {
259 Int_t j2 = j1;
260 j1 /= 2;
261 p = p + p + j2 - j1 - j1;
262 } // end for i1
263 if(p >= j) {
264 Double_t xr = *(real+j);
265 Double_t xi = *(imag+j);
266 *(real+j) = *(real+p);
267 *(imag+j) = *(imag+p);
268 *(real+p) = xr;
269 *(imag+p) = xi;
270 } // end if p>=j
271 } // end for j
272 if(direction == -1) {
273 for(i=0; i<samples; i++) {
274 *(real+i) /= samples;
275 *(imag+i) /= samples;
276 } // end for i
277 } // end if direction == -1
278 return;
279}
280
281//______________________________________________________________________
282void AliITSsimulationSDD::SDigitiseModule(AliITSmodule *mod,Int_t md,Int_t ev){
283 // digitize module using the "slow" detector simulator creating
284 // summable digits.
285
286 TObjArray *fHits = mod->GetHits();
287 Int_t nhits = fHits->GetEntriesFast();
288 if( !nhits ) return;
289
290 InitSimulationModule( md, ev );
291 HitsToAnalogDigits( mod ); // fills fHitMap2 which is = fHitSigmap2
292 ChargeToSignal( fModule,kFALSE,kTRUE ); // - Process signal adding gain without adding noise
293 fHitMap2 = fHitNoiMap2; // - Swap to noise map
294 ChargeToSignal( fModule,kTRUE,kFALSE ); // - Process only noise
295 fHitMap2 = fHitSigMap2; // - Return to signal map
296 WriteSDigits();
297 ClearMaps();
298}
299//______________________________________________________________________
300Bool_t AliITSsimulationSDD::AddSDigitsToModule(TClonesArray *pItemArray,
301 Int_t mask ) {
302 // Add Summable digits to module maps.
303 AliITSSimuParam* simpar = fDetType->GetSimuParam();
304 Int_t nItems = pItemArray->GetEntries();
305 Double_t maxadc = simpar->GetSDDMaxAdc();
306 Bool_t sig = kFALSE;
307
308 // cout << "Adding "<< nItems <<" SDigits to module " << fModule << endl;
309 for( Int_t i=0; i<nItems; i++ ) {
310 AliITSpListItem * pItem = (AliITSpListItem *)(pItemArray->At( i ));
311 if( pItem->GetModule() != fModule ) {
312 Error( "AliITSsimulationSDD","Error reading, SDigits module "
313 "%d != current module %d: exit",
314 pItem->GetModule(), fModule );
315 return sig;
316 } // end if
317
318 if(pItem->GetSignal()>0.0 ) sig = kTRUE;
319
320 fpList->AddItemTo( mask, pItem ); // Add SignalAfterElect + noise
321 AliITSpListItem * pItem2 = fpList->GetpListItem( pItem->GetIndex() );
322 Double_t sigAE = pItem2->GetSignalAfterElect();
323 if( sigAE >= maxadc ) sigAE = maxadc-1; // avoid overflow signal
324 Int_t ia;
325 Int_t it;
326 fpList->GetMapIndex( pItem->GetIndex(), ia, it );
327 fHitMap2->SetHit( ia, it, sigAE );
328 fAnodeFire[ia] = kTRUE;
329 }
330 return sig;
331}
332//______________________________________________________________________
333void AliITSsimulationSDD::FinishSDigitiseModule() {
334 // digitize module using the "slow" detector simulator from
335 // the sum of summable digits.
336 FinishDigits() ;
337 ClearMaps();
338}
339//______________________________________________________________________
340void AliITSsimulationSDD::DigitiseModule(AliITSmodule *mod,Int_t md,Int_t ev){
341 // create maps to build the lists of tracks for each digit
342
343 TObjArray *fHits = mod->GetHits();
344 Int_t nhits = fHits->GetEntriesFast();
345
346 InitSimulationModule( md, ev );
347 if( !nhits ) return;
348
349 HitsToAnalogDigits( mod );
350 ChargeToSignal( fModule,kTRUE,kTRUE ); // process signal + noise
351
352 for( Int_t i=0; i<fNofMaps; i++ ) {
353 for( Int_t j=0; j<fMaxNofSamples; j++ ) {
354 Int_t jdx = j*fScaleSize;
355 Int_t index = fpList->GetHitIndex( i, j );
356 AliITSpListItem pItemTmp2( fModule, index, 0. );
357 // put the fScaleSize analog digits in only one
358 for( Int_t ik=0; ik<fScaleSize; ik++ ) {
359 AliITSpListItem *pItemTmp = fpList->GetpListItem( i, jdx+ik );
360 if( pItemTmp == 0 ) continue;
361 pItemTmp2.Add( pItemTmp );
362 }
363 fpList->DeleteHit( i, j );
364 fpList->AddItemTo( 0, &pItemTmp2 );
365 }
366 }
367 FinishDigits();
368 ClearMaps();
369}
370//______________________________________________________________________
371void AliITSsimulationSDD::FinishDigits() {
372 // introduce the electronics effects and do zero-suppression if required
373
374 if( fCrosstalkFlag ) ApplyCrosstalk(fModule);
375
376 AliITSCalibrationSDD* res = (AliITSCalibrationSDD*)GetCalibrationModel(fModule);
377 Bool_t isZeroSupp = res->GetZeroSupp();
378 if (isZeroSupp) Compress2D();
379 else StoreAllDigits();
380}
381//______________________________________________________________________
382void AliITSsimulationSDD::HitsToAnalogDigits( AliITSmodule *mod ) {
383 // create maps to build the lists of tracks for each digit
384 AliITSsegmentationSDD* seg = (AliITSsegmentationSDD*)GetSegmentationModel(1);
385 AliITSCalibrationSDD* res = (AliITSCalibrationSDD*)GetCalibrationModel(fModule);
386 AliITSSimuParam* simpar = fDetType->GetSimuParam();
387
388 TObjArray *hits = mod->GetHits();
389 Int_t nhits = hits->GetEntriesFast();
390
391 // Int_t arg[6] = {0,0,0,0,0,0};
392 Int_t nofAnodes = fNofMaps/2;
393 Double_t sddLength = seg->Dx();
394 Double_t sddWidth = seg->Dz();
395 Double_t anodePitch = seg->Dpz(0);
396 Double_t timeStep = seg->Dpx(0);
397 Double_t driftSpeed ; // drift velocity (anode dependent)
398 Double_t norm = simpar->GetSDDMaxAdc()/simpar->GetSDDDynamicRange(); // maxadc/topValue;
399 Double_t cHloss = simpar->GetSDDChargeLoss();
400 Float_t dfCoeff, s1;
401 simpar->GetSDDDiffCoeff(dfCoeff,s1); // Signal 2d Shape
402 Double_t eVpairs = simpar->GetGeVToCharge()*1.0E9; // 3.6 eV by def.
403 Double_t nsigma = simpar->GetNSigmaIntegration(); //
404 Int_t nlookups = simpar->GetGausNLookUp(); //
405 Float_t jitter = simpar->GetSDDJitterError(); //
406
407 // Piergiorgio's part (apart for few variables which I made float
408 // when i thought that can be done
409 // Fill detector maps with GEANT hits
410 // loop over hits in the module
411
412 const Float_t kconv = 1.0e+6; // GeV->KeV
413 Int_t itrack = 0;
414 Int_t iWing; // which detector wing/side.
415 Int_t ii,kk,ka,kt; // loop indexs
416 Int_t ia,it,index; // sub-pixel integration indexies
417 Int_t iAnode; // anode number.
418 Int_t timeSample; // time buckett.
419 Int_t anodeWindow; // anode direction charge integration width
420 Int_t timeWindow; // time direction charge integration width
421 Int_t jamin,jamax; // anode charge integration window
422 Int_t jtmin,jtmax; // time charge integration window
423 Int_t ndiv; // Anode window division factor.
424 Int_t nsplit; // the number of splits in anode and time windows==1.
425 Int_t nOfSplits; // number of times track length is split into
426 Float_t nOfSplitsF; // Floating point version of nOfSplits.
427 Float_t kkF; // Floating point version of loop index kk.
428 Double_t pathInSDD; // Track length in SDD.
429 Double_t drPath; // average position of track in detector. in microns
430 Double_t drTime; // Drift time
431 Double_t nmul; // drift time window multiplication factor.
432 Double_t avDrft; // x position of path length segment in cm.
433 Double_t avAnode; // Anode for path length segment in Anode number (float)
434 Double_t zAnode; // Floating point anode number.
435 Double_t driftPath; // avDrft in microns.
436 Double_t width; // width of signal at anodes.
437 Double_t depEnergy; // Energy deposited in this GEANT step.
438 Double_t xL[3],dxL[3]; // local hit coordinates and diff.
439 Double_t sigA; // sigma of signal at anode.
440 Double_t sigT; // sigma in time/drift direction for track segment
441 Double_t aStep,aConst; // sub-pixel size and offset anode
442 Double_t tStep,tConst; // sub-pixel size and offset time
443 Double_t amplitude; // signal amplitude for track segment in nanoAmpere
444 Double_t chargeloss; // charge loss for track segment.
445 Double_t anodeAmplitude; // signal amplitude in anode direction
446 Double_t aExpo; // exponent of Gaussian anode direction
447 Double_t timeAmplitude; // signal amplitude in time direction
448 Double_t tExpo; // exponent of Gaussian time direction
449 // Double_t tof; // Time of flight in ns of this step.
450
451 for(ii=0; ii<nhits; ii++) {
452 if(!mod->LineSegmentL(ii,xL[0],dxL[0],xL[1],dxL[1],xL[2],dxL[2],
453 depEnergy,itrack)) continue;
454 Float_t xloc=xL[0];
455 if(xloc>0) iWing=0; // left side, carlos channel 0
456 else iWing=1; // right side
457
458 Float_t zloc=xL[2]+0.5*dxL[2];
459 zAnode=seg->GetAnodeFromLocal(xloc,zloc); // anode number in the range 0.-511.
460 driftSpeed = res->GetDriftSpeedAtAnode(zAnode);
461 if(timeStep*fMaxNofSamples < sddLength/driftSpeed) {
462 AliWarning("Time Interval > Allowed Time Interval\n");
463 }
464 depEnergy *= kconv;
465
466 // scale path to simulate a perpendicular track
467 // continue if the particle did not lose energy
468 // passing through detector
469 if (!depEnergy) {
470 AliDebug(1,
471 Form("fTrack = %d hit=%d module=%d This particle has passed without losing energy!",
472 itrack,ii,mod->GetIndex()));
473 continue;
474 } // end if !depEnergy
475
476 xL[0] += 0.0001*gRandom->Gaus( 0, jitter ); //
477 pathInSDD = TMath::Sqrt(dxL[0]*dxL[0]+dxL[1]*dxL[1]+dxL[2]*dxL[2]);
478
479 if (fFlag && pathInSDD) { depEnergy *= (0.03/pathInSDD); }
480 drPath = TMath::Abs(10000.*(dxL[0]+2.*xL[0])*0.5);
481 drPath = sddLength-drPath;
482 if(drPath < 0) {
483 AliDebug(1, // this should be fixed at geometry level
484 Form("negative drift path drPath=%e sddLength=%e dxL[0]=%e xL[0]=%e",
485 drPath,sddLength,dxL[0],xL[0]));
486 continue;
487 } // end if drPath < 0
488
489 // Compute number of segments to brake step path into
490 drTime = drPath/driftSpeed; // Drift Time
491 sigA = TMath::Sqrt(2.*dfCoeff*drTime+s1*s1);// Sigma along the anodes
492 // calcuate the number of time the path length should be split into.
493 nOfSplits = (Int_t) (1. + 10000.*pathInSDD/sigA);
494 if(fFlag) nOfSplits = 1;
495
496 // loop over path segments, init. some variables.
497 depEnergy /= nOfSplits;
498 nOfSplitsF = (Float_t) nOfSplits;
499 Float_t theAverage=0.,theSteps=0.;
500 for(kk=0;kk<nOfSplits;kk++) { // loop over path segments
501 kkF = (Float_t) kk + 0.5;
502 avDrft = xL[0]+dxL[0]*kkF/nOfSplitsF;
503 avAnode = xL[2]+dxL[2]*kkF/nOfSplitsF;
504 theSteps+=1.;
505 theAverage+=avAnode;
506 zAnode = seg->GetAnodeFromLocal(avDrft,avAnode);
507 driftSpeed = res->GetDriftSpeedAtAnode(zAnode);
508 driftPath = TMath::Abs(10000.*avDrft);
509 driftPath = sddLength-driftPath;
510 if(driftPath < 0) {
511 AliDebug(1, // this should be fixed at geometry level
512 Form("negative drift path driftPath=%e sddLength=%e avDrft=%e dxL[0]=%e xL[0]=%e",
513 driftPath,sddLength,avDrft,dxL[0],xL[0]));
514 continue;
515 } // end if driftPath < 0
516 drTime = driftPath/driftSpeed; // drift time for segment.
517 timeSample = (Int_t) (fScaleSize*drTime/timeStep + 1); // time bin in range 1-256 !!!
518 if(timeSample > fScaleSize*fMaxNofSamples) {
519 AliWarning(Form("Wrong Time Sample: %e",timeSample));
520 continue;
521 } // end if timeSample > fScaleSize*fMaxNofSamples
522 if(zAnode>nofAnodes) zAnode-=nofAnodes; // to have the anode number between 0. and 256.
523 if(zAnode*anodePitch > sddWidth || zAnode*anodePitch < 0.)
524 AliWarning(Form("Exceeding sddWidth=%e Z = %e",sddWidth,zAnode*anodePitch));
525 iAnode = (Int_t) (1.+zAnode); // iAnode in range 1-256 !!!!
526 if(iAnode < 1 || iAnode > nofAnodes) {
527 AliWarning(Form("Wrong iAnode: 1<%d>%d (xanode=%e)",iAnode,nofAnodes, zAnode));
528 continue;
529 } // end if iAnode < 1 || iAnode > nofAnodes
530
531 // store straight away the particle position in the array
532 // of particles and take idhit=ii only when part is entering (this
533 // requires FillModules() in the macro for analysis) :
534
535 // Sigma along the anodes for track segment.
536 sigA = TMath::Sqrt(2.*dfCoeff*drTime+s1*s1);
537 sigT = sigA/driftSpeed;
538 // Peak amplitude in nanoAmpere
539 amplitude = fScaleSize*160.*depEnergy/
540 (timeStep*eVpairs*2.*acos(-1.)*sigT*sigA);
541 //amplitude *= timeStep/25.; // WARNING!!!!! Amplitude scaling to
542 // account for clock variations
543 // (reference value: 40 MHz)
544 chargeloss = 1.-cHloss*driftPath/1000.;
545 amplitude *= chargeloss;
546 width = 2.*nsigma/(nlookups-1);
547 // Spread the charge
548 // Pixel index
549 ndiv = 2;
550 nmul = 3.;
551 if(drTime > 1200.) {
552 ndiv = 4;
553 nmul = 1.5;
554 } // end if drTime > 1200.
555 // Sub-pixel index
556 nsplit = 4; // hard-wired //nsplit=4;nsplit = (nsplit+1)/2*2;
557 // Sub-pixel size see computation of aExpo and tExpo.
558 aStep = anodePitch/(nsplit*fScaleSize*sigA);
559 aConst = zAnode*anodePitch/sigA;
560 tStep = timeStep/(nsplit*fScaleSize*sigT);
561 tConst = drTime/sigT;
562 // Define SDD window corresponding to the hit
563 anodeWindow = (Int_t)(fScaleSize*nsigma*sigA/anodePitch+1);
564 timeWindow = (Int_t) (fScaleSize*nsigma*sigT/timeStep+1.);
565 jamin = (iAnode - anodeWindow/ndiv - 2)*fScaleSize*nsplit +1;
566 jamax = (iAnode + anodeWindow/ndiv + 1)*fScaleSize*nsplit;
567 if(jamin <= 0) jamin = 1;
568 if(jamax > fScaleSize*nofAnodes*nsplit)
569 jamax = fScaleSize*nofAnodes*nsplit;
570 // jtmin and jtmax are Hard-wired
571 jtmin = (Int_t)(timeSample-timeWindow*nmul-1)*nsplit+1;
572 jtmax = (Int_t)(timeSample+timeWindow*nmul)*nsplit;
573 if(jtmin <= 0) jtmin = 1;
574 if(jtmax > fScaleSize*fMaxNofSamples*nsplit)
575 jtmax = fScaleSize*fMaxNofSamples*nsplit;
576 // Spread the charge in the anode-time window
577 for(ka=jamin; ka <=jamax; ka++) {
578 ia = (ka-1)/(fScaleSize*nsplit) + 1;
579 if(ia <= 0) {
580 Warning("HitsToAnalogDigits","ia < 1: ");
581 continue;
582 } // end if
583 if(ia > nofAnodes) ia = nofAnodes;
584 aExpo = (aStep*(ka-0.5)-aConst);
585 if(TMath::Abs(aExpo) > nsigma) anodeAmplitude = 0.;
586 else {
587 Int_t theBin = (Int_t) ((aExpo+nsigma)/width+0.5);
588 anodeAmplitude = amplitude*simpar->GetGausLookUp(theBin);
589 } // end if TMath::Abs(aEspo) > nsigma
590 // index starts from 0
591 index = iWing*nofAnodes+ia-1;
592 if(anodeAmplitude){
593 for(kt=jtmin; kt<=jtmax; kt++) {
594 it = (kt-1)/nsplit+1; // it starts from 1
595 if(it<=0){
596 Warning("HitsToAnalogDigits","it < 1:");
597 continue;
598 } // end if
599 if(it>fScaleSize*fMaxNofSamples)
600 it = fScaleSize*fMaxNofSamples;
601 tExpo = (tStep*(kt-0.5)-tConst);
602 if(TMath::Abs(tExpo) > nsigma) timeAmplitude = 0.;
603 else {
604 Int_t theBin = (Int_t) ((tExpo+nsigma)/width+0.5);
605 timeAmplitude = anodeAmplitude*simpar->GetGausLookUp(theBin);
606 } // end if TMath::Abs(tExpo) > nsigma
607 // build the list of Sdigits for this module
608 // arg[0] = index;
609 // arg[1] = it;
610 // arg[2] = itrack; // track number
611 // arg[3] = ii-1; // hit number.
612 timeAmplitude *= norm;
613 timeAmplitude *= 10;
614 // ListOfFiredCells(arg,timeAmplitude,alst,padr);
615 Double_t charge = timeAmplitude;
616 charge += fHitMap2->GetSignal(index,it-1);
617 fHitMap2->SetHit(index, it-1, charge);
618 fpList->AddSignal(index,it-1,itrack,ii-1,
619 mod->GetIndex(),timeAmplitude);
620 fAnodeFire[index] = kTRUE;
621 } // end loop over time in window
622 } // end if anodeAmplitude
623 } // loop over anodes in window
624 } // end loop over "sub-hits"
625 } // end loop over hits
626}
627
628//____________________________________________
629void AliITSsimulationSDD::AddDigit( Int_t i, Int_t j, Int_t signalc, Int_t signale) {
630 // Adds a Digit.
631 Int_t size = AliITSdigit::GetNTracks();
632
633 Int_t digits[3];
634 Int_t * tracks = new Int_t[size];
635 Int_t * hits = new Int_t[size];
636 Float_t phys;
637 Float_t * charges = new Float_t[size];
638
639 digits[0] = i;
640 digits[1] = j;
641 digits[2] = signalc;
642
643 AliITSpListItem *pItem = fpList->GetpListItem( i, j );
644 if( pItem == 0 ) {
645 phys = 0.0;
646 for( Int_t l=0; l<size; l++ ) {
647 tracks[l] = 0;
648 hits[l] = 0;
649 charges[l] = 0.0;
650 }
651 } else {
652 Int_t idtrack = pItem->GetTrack( 0 );
653 if( idtrack >= 0 ) phys = pItem->GetSignal();
654 else phys = 0.0;
655
656 for( Int_t l=0; l<size; l++ ) if(l<pItem->GetMaxKept()) {
657 tracks[l] = pItem->GetTrack( l );
658 hits[l] = pItem->GetHit( l );
659 charges[l] = pItem->GetSignal( l );
660 }else{
661 tracks[l] = -3;
662 hits[l] = -1;
663 charges[l] = 0.0;
664 }// end for if
665 }
666
667 fITS->AddSimDigit( 1, phys, digits, tracks, hits, charges, signale );
668 delete [] tracks;
669 delete [] hits;
670 delete [] charges;
671}
672//______________________________________________________________________
673void AliITSsimulationSDD::ChargeToSignal(Int_t mod,Bool_t bAddNoise, Bool_t bAddGain) {
674 // add baseline, noise, gain, electronics and ADC saturation effects
675 // apply dead channels
676
677 AliITSCalibrationSDD* res = (AliITSCalibrationSDD*)GetCalibrationModel(mod);
678 Double_t baseline=0;
679 Double_t noise=0;
680 Double_t gain=0;
681 Float_t contrib=0;
682 Int_t i,k,kk;
683 AliITSSimuParam* simpar = fDetType->GetSimuParam();
684 Float_t maxadc = simpar->GetSDDMaxAdc();
685
686 for (i=0;i<fNofMaps;i++) {
687 if( !fAnodeFire[i] ) continue;
688 baseline = res->GetBaseline(i);
689 noise = res->GetNoise(i);
690 gain = res->GetChannelGain(i);
691 if(res->IsBad()) gain=0.;
692 if( res->IsChipBad(res->GetChip(i)) )gain=0.;
693 for(k=0; k<fScaleSize*fMaxNofSamples; k++) {
694 fInZR[k] = fHitMap2->GetSignal(i,k);
695 if(bAddGain) fInZR[k]*=gain;
696 if( bAddNoise ) {
697 contrib = (baseline + noise*gRandom->Gaus());
698 fInZR[k] += contrib;
699 }
700 fInZI[k] = 0.;
701 } // end for k
702 if(!fDoFFT) {
703 for(k=0; k<fMaxNofSamples; k++) {
704 Double_t newcont = 0.;
705 Double_t maxcont = 0.;
706 for(kk=0;kk<fScaleSize;kk++) {
707 newcont = fInZR[fScaleSize*k+kk];
708 if(newcont > maxcont) maxcont = newcont;
709 } // end for kk
710 newcont = maxcont;
711 if (newcont >= maxadc) newcont = maxadc -1;
712 if(newcont >= baseline){
713 Warning("","newcont=%d>=baseline=%d",newcont,baseline);
714 } // end if
715 // back to analog: ?
716 fHitMap2->SetHit(i,k,newcont);
717 } // end for k
718 }else{
719 FastFourierTransform(&fInZR[0],&fInZI[0],1);
720 for(k=0; k<fScaleSize*fMaxNofSamples; k++) {
721 Double_t rw = fElectronics->GetTraFunReal(k);
722 Double_t iw = fElectronics->GetTraFunImag(k);
723 fOutZR[k] = fInZR[k]*rw - fInZI[k]*iw;
724 fOutZI[k] = fInZR[k]*iw + fInZI[k]*rw;
725 } // end for k
726 FastFourierTransform(&fOutZR[0],&fOutZI[0],-1);
727 for(k=0; k<fMaxNofSamples; k++) {
728 Double_t newcont1 = 0.;
729 Double_t maxcont1 = 0.;
730 for(kk=0;kk<fScaleSize;kk++) {
731 newcont1 = fOutZR[fScaleSize*k+kk];
732 if(newcont1 > maxcont1) maxcont1 = newcont1;
733 } // end for kk
734 newcont1 = maxcont1;
735 if (newcont1 >= maxadc) newcont1 = maxadc -1;
736 fHitMap2->SetHit(i,k,newcont1);
737 } // end for k
738 }
739 } // end for i loop over anodes
740 return;
741}
742
743//______________________________________________________________________
744void AliITSsimulationSDD::ApplyCrosstalk(Int_t mod) {
745 // function add the crosstalk effect to signal
746 // temporal function, should be checked...!!!
747
748 // create and inizialice crosstalk map
749 Float_t* ctk = new Float_t[fNofMaps*fMaxNofSamples+1];
750 if( ctk == NULL ) {
751 Error( "ApplyCrosstalk", "no memory for temporal map: exit \n" );
752 return;
753 }
754 memset( ctk, 0, sizeof(Float_t)*(fNofMaps*fMaxNofSamples+1) );
755 AliITSCalibrationSDD* calibr = (AliITSCalibrationSDD*)GetCalibrationModel(mod);
756 for( Int_t z=0; z<fNofMaps; z++ ) {
757 Double_t baseline = calibr->GetBaseline(z);
758 Bool_t on = kFALSE;
759 Int_t tstart = 0;
760 Int_t tstop = 0;
761 Int_t nTsteps = 0;
762
763 for( Int_t l=0; l<fMaxNofSamples; l++ ) {
764 Float_t fadc = (Float_t)fHitMap2->GetSignal( z, l );
765 if( fadc > baseline ) {
766 if( on == kFALSE && l<fMaxNofSamples-4 ) {
767 Float_t fadc1 = (Float_t)fHitMap2->GetSignal( z, l+1 );
768 if( fadc1 < fadc ) continue;
769 on = kTRUE;
770 nTsteps = 0;
771 tstart = l;
772 }
773 nTsteps++;
774 }
775 else { // end fadc > baseline
776 if( on == kTRUE ) {
777 if( nTsteps > 2 ) {
778 tstop = l;
779 // make smooth derivative
780 Float_t* dev = new Float_t[fMaxNofSamples+1];
781 memset( dev, 0, sizeof(Float_t)*(fMaxNofSamples+1) );
782 if( ctk == NULL ) {
783 Error( "ApplyCrosstalk",
784 "no memory for temporal array: exit \n" );
785 return;
786 }
787 for( Int_t i=tstart; i<tstop; i++ ) {
788 if( i > 2 && i < fMaxNofSamples-2 )
789 dev[i] = -0.2*fHitMap2->GetSignal( z,i-2 )
790 -0.1*fHitMap2->GetSignal( z,i-1 )
791 +0.1*fHitMap2->GetSignal( z,i+1 )
792 +0.2*fHitMap2->GetSignal( z,i+2 );
793 }
794
795 // add crosstalk contribution to neibourg anodes
796 for( Int_t i=tstart; i<tstop; i++ ) {
797 Int_t anode = z - 1;
798 Int_t i1 = (Int_t)((i-tstart)*.61+tstart+0.5); //
799 Float_t ctktmp = -dev[i1] * 0.25;
800 if( anode > 0 ) {
801 ctk[anode*fMaxNofSamples+i] += ctktmp;
802 }
803 anode = z + 1;
804 if( anode < fNofMaps ) {
805 ctk[anode*fMaxNofSamples+i] += ctktmp;
806 }
807 }
808 delete [] dev;
809
810 } // if( nTsteps > 2 )
811 on = kFALSE;
812 } // if( on == kTRUE )
813 } // else
814 }
815 }
816
817 for( Int_t a=0; a<fNofMaps; a++ )
818 for( Int_t t=0; t<fMaxNofSamples; t++ ) {
819 Float_t signal = fHitMap2->GetSignal(a,t)+ctk[a*fMaxNofSamples+t];
820 fHitMap2->SetHit( a, t, signal );
821 }
822
823 delete [] ctk;
824}
825
826//______________________________________________________________________
827Int_t AliITSsimulationSDD::Convert10to8(Int_t signal) const {
828 // To the 10 to 8 bit lossive compression.
829 // code from Davide C. and Albert W.
830
831 if (signal < 128) return signal;
832 if (signal < 256) return (128+((signal-128)>>1));
833 if (signal < 512) return (192+((signal-256)>>3));
834 if (signal < 1024) return (224+((signal-512)>>4));
835 return 0;
836}
837//______________________________________________________________________
838Int_t AliITSsimulationSDD::Convert8to10(Int_t signal) const {
839 // Decompression from 8 to 10 bit
840
841 if (signal < 0 || signal > 255) {
842 AliWarning(Form("Signal value %d out of range",signal));
843 return 0;
844 } // end if signal <0 || signal >255
845
846 if (signal < 128) return signal;
847 if (signal < 192) {
848 if (TMath::Odd(signal)) return (128+((signal-128)<<1));
849 else return (128+((signal-128)<<1)+1);
850 } // end if signal < 192
851 if (signal < 224) {
852 if (TMath::Odd(signal)) return (256+((signal-192)<<3)+3);
853 else return (256+((signal-192)<<3)+4);
854 } // end if signal < 224
855 if (TMath::Odd(signal)) return (512+((signal-224)<<4)+7);
856 return (512+((signal-224)<<4)+8);
857}
858//______________________________________________________________________
859void AliITSsimulationSDD::Compress2D(){
860 // 2D zero-suppression algorithm as described in ALICE-INT-1999-28 V10
861 AliITSCalibrationSDD* res = (AliITSCalibrationSDD*)GetCalibrationModel(fModule);
862 for (Int_t iWing=0; iWing<2; iWing++) {
863 Int_t tL=res->GetZSLowThreshold(iWing);
864 Int_t tH=res->GetZSHighThreshold(iWing);
865 for (Int_t i=0; i<fNofMaps/2; i++) {
866 Int_t ian=i+iWing*fNofMaps/2;
867 if( !fAnodeFire[ian] ) continue;
868 for (Int_t itb=0; itb<fMaxNofSamples; itb++) {
869 Int_t nLow=0, nHigh=0;
870 Float_t cC=fHitMap2->GetSignal(ian,itb);
871 if(cC<=tL) continue;
872 nLow++; // cC is greater than tL
873 if(cC>tH) nHigh++;
874 // N
875 // Get "quintuple": WCE
876 // S
877 Float_t wW=0.;
878 if(itb>0) wW=fHitMap2->GetSignal(ian,itb-1);
879 if(wW>tL) nLow++;
880 if(wW>tH) nHigh++;
881 Float_t eE=0.;
882 if(itb<fMaxNofSamples-1) eE=fHitMap2->GetSignal(ian,itb+1);
883 if(eE>tL) nLow++;
884 if(eE>tH) nHigh++;
885 Float_t nN=0.;
886 if(i<(fNofMaps/2-1)) nN=fHitMap2->GetSignal(ian+1,itb);
887 if(nN>tL) nLow++;
888 if(nN>tH) nHigh++;
889 Float_t sS=0.;
890 if(i>0) sS=fHitMap2->GetSignal(ian-1,itb);
891 if(sS>tL) nLow++;
892 if(sS>tH) nHigh++;
893
894 if(nLow>=3 && nHigh>=1){
895 Int_t signal=(Int_t)cC;
896 Int_t signalc = Convert10to8(signal);
897 Int_t signale = Convert8to10(signalc);
898 signalc-=tL; // subtract low threshold after 10 to 8 bit compression
899 AddDigit(ian,itb,signalc,signale); // store C
900 }
901 }
902 }
903 }
904}
905
906
907//______________________________________________________________________
908void AliITSsimulationSDD::StoreAllDigits(){
909 // store digits for non-zero-suppressed data
910 for (Int_t ian=0; ian<fNofMaps; ian++) {
911 for (Int_t itb=0; itb<fMaxNofSamples; itb++){
912 Int_t signal=(Int_t)(fHitMap2->GetSignal(ian,itb));
913 Int_t signalc = Convert10to8(signal);
914 Int_t signale = Convert8to10(signalc);
915 AddDigit(ian,itb,signalc,signale);
916 }
917 }
918}
919//______________________________________________________________________
920void AliITSsimulationSDD::CreateHistograms(Int_t scale){
921 // Creates histograms of maps for debugging
922 Int_t i;
923
924 fHis=new TObjArray(fNofMaps);
925 for (i=0;i<fNofMaps;i++) {
926 TString sddName("sdd_");
927 Char_t candNum[4];
928 sprintf(candNum,"%d",i+1);
929 sddName.Append(candNum);
930 fHis->AddAt(new TH1F(sddName.Data(),"SDD maps",scale*fMaxNofSamples,
931 0.,(Float_t) scale*fMaxNofSamples), i);
932 } // end for i
933}
934//______________________________________________________________________
935void AliITSsimulationSDD::FillHistograms(){
936 // fill 1D histograms from map
937
938 if (!fHis) return;
939
940 for( Int_t i=0; i<fNofMaps; i++) {
941 TH1F *hist =(TH1F *)fHis->UncheckedAt(i);
942 Int_t nsamples = hist->GetNbinsX();
943 for( Int_t j=0; j<nsamples; j++) {
944 Double_t signal=fHitMap2->GetSignal(i,j);
945 hist->Fill((Float_t)j,signal);
946 } // end for j
947 } // end for i
948}
949//______________________________________________________________________
950void AliITSsimulationSDD::ResetHistograms(){
951 // Reset histograms for this detector
952 Int_t i;
953
954 for (i=0;i<fNofMaps;i++ ) {
955 if (fHis->At(i)) ((TH1F*)fHis->At(i))->Reset();
956 } // end for i
957}
958//______________________________________________________________________
959TH1F *AliITSsimulationSDD::GetAnode(Int_t wing, Int_t anode) {
960 // Fills a histogram from a give anode.
961
962 if (!fHis) return 0;
963
964 if(wing <=0 || wing > 2) {
965 Warning("GetAnode","Wrong wing number: %d",wing);
966 return NULL;
967 } // end if wing <=0 || wing >2
968 if(anode <=0 || anode > fNofMaps/2) {
969 Warning("GetAnode","Wrong anode number: %d",anode);
970 return NULL;
971 } // end if ampde <=0 || andoe > fNofMaps/2
972
973 Int_t index = (wing-1)*fNofMaps/2 + anode-1;
974 return (TH1F*)(fHis->At(index));
975}
976//______________________________________________________________________
977void AliITSsimulationSDD::WriteToFile(TFile *hfile) {
978 // Writes the histograms to a file
979
980 if (!fHis) return;
981
982 hfile->cd();
983 Int_t i;
984 for(i=0; i<fNofMaps; i++) fHis->At(i)->Write(); //fAdcs[i]->Write();
985 return;
986}
987//______________________________________________________________________
988void AliITSsimulationSDD::WriteSDigits(){
989 // Fills the Summable digits Tree
990 static AliITS *aliITS = (AliITS*)gAlice->GetModule("ITS");
991
992 for( Int_t i=0; i<fNofMaps; i++ ) {
993 if( !fAnodeFire[i] ) continue;
994 for( Int_t j=0; j<fMaxNofSamples; j++ ) {
995 Double_t sig = fHitMap2->GetSignal( i, j );
996 if( sig > 0.2 ) {
997 Int_t jdx = j*fScaleSize;
998 Int_t index = fpList->GetHitIndex( i, j );
999 AliITSpListItem pItemTmp2( fModule, index, 0. );
1000 // put the fScaleSize analog digits in only one
1001 for( Int_t ik=0; ik<fScaleSize; ik++ ) {
1002 AliITSpListItem *pItemTmp = fpList->GetpListItem(i,jdx+ik);
1003 if( pItemTmp == 0 ) continue;
1004 pItemTmp2.Add( pItemTmp );
1005 }
1006 pItemTmp2.AddSignalAfterElect( fModule, index, sig );
1007 pItemTmp2.AddNoise(fModule,index,fHitNoiMap2->GetSignal(i,j));
1008 aliITS->AddSumDigit( pItemTmp2 );
1009 } // end if (sig > 0.2)
1010 }
1011 }
1012 return;
1013}
1014//______________________________________________________________________
1015void AliITSsimulationSDD::PrintStatus() const {
1016 // Print SDD simulation Parameters
1017
1018 cout << "**************************************************" << endl;
1019 cout << " Silicon Drift Detector Simulation Parameters " << endl;
1020 cout << "**************************************************" << endl;
1021 cout << "Flag for Perpendicular tracks: " << (Int_t) fFlag << endl;
1022 cout << "Flag to switch off electronics: " << (Int_t) fDoFFT << endl;
1023 cout << "Number of Anodes used: " << fNofMaps << endl;
1024 cout << "Number of Time Samples: " << fMaxNofSamples << endl;
1025 cout << "Scale size factor: " << fScaleSize << endl;
1026 cout << "**************************************************" << endl;
1027}