]>
Commit | Line | Data |
---|---|---|
1 | /************************************************************************** | |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * | |
3 | * * | |
4 | * Author: The ALICE Off-line Project. * | |
5 | * Contributors are mentioned in the code where appropriate. * | |
6 | * * | |
7 | * Permission to use, copy, modify and distribute this software and its * | |
8 | * documentation strictly for non-commercial purposes is hereby granted * | |
9 | * without fee, provided that the above copyright notice appears in all * | |
10 | * copies and that both the copyright notice and this permission notice * | |
11 | * appear in the supporting documentation. The authors make no claims * | |
12 | * about the suitability of this software for any purpose. It is * | |
13 | * provided "as is" without express or implied warranty. * | |
14 | **************************************************************************/ | |
15 | ||
16 | // Implemenatation of the K-Means Clustering Algorithm | |
17 | // See http://en.wikipedia.org/wiki/K-means_clustering and references therein. | |
18 | // | |
19 | // This particular implementation is the so called Soft K-means algorithm. | |
20 | // It has been modified to work on the cylindrical topology in eta-phi space. | |
21 | // | |
22 | // Author: Andreas Morsch (CERN) | |
23 | // andreas.morsch@cern.ch | |
24 | ||
25 | #include "AliKMeansClustering.h" | |
26 | #include <TMath.h> | |
27 | #include <TRandom.h> | |
28 | #include <TH1F.h> | |
29 | ||
30 | ClassImp(AliKMeansClustering) | |
31 | ||
32 | Double_t AliKMeansClustering::fBeta = 10.; | |
33 | ||
34 | ||
35 | Int_t AliKMeansClustering::SoftKMeans(Int_t k, Int_t n, const Double_t* x, const Double_t* y, Double_t* mx, Double_t* my , Double_t* rk ) | |
36 | { | |
37 | // | |
38 | // The soft K-means algorithm | |
39 | // | |
40 | Int_t i,j; | |
41 | // | |
42 | // (1) Initialisation of the k means | |
43 | ||
44 | for (i = 0; i < k; i++) { | |
45 | mx[i] = 2. * TMath::Pi() * gRandom->Rndm(); | |
46 | my[i] = -1. + 2. * gRandom->Rndm(); | |
47 | } | |
48 | ||
49 | // | |
50 | // (2a) The responsibilities | |
51 | Double_t** r = new Double_t*[n]; // responsibilities | |
52 | for (j = 0; j < n; j++) {r[j] = new Double_t[k];} | |
53 | // | |
54 | // (2b) Normalisation | |
55 | Double_t* nr = new Double_t[n]; | |
56 | // (3) Iterations | |
57 | Int_t nit = 0; | |
58 | ||
59 | while(1) { | |
60 | nit++; | |
61 | // | |
62 | // Assignment step | |
63 | // | |
64 | for (j = 0; j < n; j++) { | |
65 | nr[j] = 0.; | |
66 | for (i = 0; i < k; i++) { | |
67 | r[j][i] = TMath::Exp(- fBeta * d(mx[i], my[i], x[j], y[j])); | |
68 | nr[j] += r[j][i]; | |
69 | } // mean i | |
70 | } // data point j | |
71 | ||
72 | for (j = 0; j < n; j++) { | |
73 | for (i = 0; i < k; i++) { | |
74 | r[j][i] /= nr[j]; | |
75 | } // mean i | |
76 | } // data point j | |
77 | ||
78 | // | |
79 | // Update step | |
80 | Double_t di = 0; | |
81 | ||
82 | for (i = 0; i < k; i++) { | |
83 | Double_t oldx = mx[i]; | |
84 | Double_t oldy = my[i]; | |
85 | ||
86 | mx[i] = x[0]; | |
87 | my[i] = y[0]; | |
88 | rk[i] = r[0][i]; | |
89 | ||
90 | for (j = 1; j < n; j++) { | |
91 | Double_t xx = x[j]; | |
92 | // | |
93 | // Here we have to take into acount the cylinder topology where phi is defined mod 2xpi | |
94 | // If two coordinates are separated by more than pi in phi one has to be shifted by +/- 2 pi | |
95 | ||
96 | Double_t dx = mx[i] - x[j]; | |
97 | if (dx > TMath::Pi()) xx += 2. * TMath::Pi(); | |
98 | if (dx < -TMath::Pi()) xx -= 2. * TMath::Pi(); | |
99 | mx[i] = mx[i] * rk[i] + r[j][i] * xx; | |
100 | my[i] = my[i] * rk[i] + r[j][i] * y[j]; | |
101 | rk[i] += r[j][i]; | |
102 | mx[i] /= rk[i]; | |
103 | my[i] /= rk[i]; | |
104 | if (mx[i] > 2. * TMath::Pi()) mx[i] -= 2. * TMath::Pi(); | |
105 | if (mx[i] < 0. ) mx[i] += 2. * TMath::Pi(); | |
106 | } // Data | |
107 | di += d(mx[i], my[i], oldx, oldy); | |
108 | } // means | |
109 | // | |
110 | // ending condition | |
111 | if (di < 1.e-8 || nit > 1000) break; | |
112 | } // while | |
113 | ||
114 | // Clean-up | |
115 | delete[] nr; | |
116 | for (j = 0; j < n; j++) delete[] r[j]; | |
117 | delete[] r; | |
118 | // | |
119 | return (nit < 1000); | |
120 | ||
121 | } | |
122 | ||
123 | Int_t AliKMeansClustering::SoftKMeans2(Int_t k, Int_t n, Double_t* x, Double_t* y, Double_t* mx, Double_t* my , Double_t* sigma2, Double_t* rk ) | |
124 | { | |
125 | // | |
126 | // The soft K-means algorithm | |
127 | // | |
128 | Int_t i,j; | |
129 | // | |
130 | // (1) Initialisation of the k means using k-means++ recipe | |
131 | // | |
132 | OptimalInit(k, n, x, y, mx, my); | |
133 | // | |
134 | // (2a) The responsibilities | |
135 | Double_t** r = new Double_t*[n]; // responsibilities | |
136 | for (j = 0; j < n; j++) {r[j] = new Double_t[k];} | |
137 | // | |
138 | // (2b) Normalisation | |
139 | Double_t* nr = new Double_t[n]; | |
140 | // | |
141 | // (2c) Weights | |
142 | Double_t* pi = new Double_t[k]; | |
143 | // | |
144 | // | |
145 | // (2d) Initialise the responsibilties and weights | |
146 | for (j = 0; j < n; j++) { | |
147 | nr[j] = 0.; | |
148 | for (i = 0; i < k; i++) { | |
149 | r[j][i] = TMath::Exp(- fBeta * d(mx[i], my[i], x[j], y[j])); | |
150 | nr[j] += r[j][i]; | |
151 | } // mean i | |
152 | } // data point j | |
153 | ||
154 | for (i = 0; i < k; i++) { | |
155 | rk[i] = 0.; | |
156 | sigma2[i] = 1./fBeta; | |
157 | ||
158 | for (j = 0; j < n; j++) { | |
159 | r[j][i] /= nr[j]; | |
160 | rk[i] += r[j][i]; | |
161 | } // mean i | |
162 | pi[i] = rk[i] / Double_t(n); | |
163 | } // data point j | |
164 | // (3) Iterations | |
165 | Int_t nit = 0; | |
166 | ||
167 | while(1) { | |
168 | nit++; | |
169 | // | |
170 | // Assignment step | |
171 | // | |
172 | for (j = 0; j < n; j++) { | |
173 | nr[j] = 0.; | |
174 | for (i = 0; i < k; i++) { | |
175 | r[j][i] = pi[i] * TMath::Exp(- d(mx[i], my[i], x[j], y[j]) / sigma2[i] ) | |
176 | / (2. * sigma2[i] * TMath::Pi() * TMath::Pi()); | |
177 | nr[j] += r[j][i]; | |
178 | } // mean i | |
179 | } // data point j | |
180 | ||
181 | for (i = 0; i < k; i++) { | |
182 | for (j = 0; j < n; j++) { | |
183 | r[j][i] /= nr[j]; | |
184 | } // mean i | |
185 | } // data point j | |
186 | ||
187 | // | |
188 | // Update step | |
189 | Double_t di = 0; | |
190 | ||
191 | for (i = 0; i < k; i++) { | |
192 | Double_t oldx = mx[i]; | |
193 | Double_t oldy = my[i]; | |
194 | ||
195 | mx[i] = x[0]; | |
196 | my[i] = y[0]; | |
197 | rk[i] = r[0][i]; | |
198 | for (j = 1; j < n; j++) { | |
199 | Double_t xx = x[j]; | |
200 | // | |
201 | // Here we have to take into acount the cylinder topology where phi is defined mod 2xpi | |
202 | // If two coordinates are separated by more than pi in phi one has to be shifted by +/- 2 pi | |
203 | ||
204 | Double_t dx = mx[i] - x[j]; | |
205 | if (dx > TMath::Pi()) xx += 2. * TMath::Pi(); | |
206 | if (dx < -TMath::Pi()) xx -= 2. * TMath::Pi(); | |
207 | if (r[j][i] > 1.e-15) { | |
208 | mx[i] = mx[i] * rk[i] + r[j][i] * xx; | |
209 | my[i] = my[i] * rk[i] + r[j][i] * y[j]; | |
210 | rk[i] += r[j][i]; | |
211 | mx[i] /= rk[i]; | |
212 | my[i] /= rk[i]; | |
213 | } | |
214 | if (mx[i] > 2. * TMath::Pi()) mx[i] -= 2. * TMath::Pi(); | |
215 | if (mx[i] < 0. ) mx[i] += 2. * TMath::Pi(); | |
216 | } // Data | |
217 | di += d(mx[i], my[i], oldx, oldy); | |
218 | ||
219 | } // means | |
220 | // | |
221 | // Sigma | |
222 | for (i = 0; i < k; i++) { | |
223 | sigma2[i] = 0.; | |
224 | for (j = 0; j < n; j++) { | |
225 | sigma2[i] += r[j][i] * d(mx[i], my[i], x[j], y[j]); | |
226 | } // Data | |
227 | sigma2[i] /= rk[i]; | |
228 | if (sigma2[i] < 0.0025) sigma2[i] = 0.0025; | |
229 | } // Clusters | |
230 | // | |
231 | // Fractions | |
232 | for (i = 0; i < k; i++) pi[i] = rk[i] / Double_t(n); | |
233 | // | |
234 | // ending condition | |
235 | if (di < 1.e-8 || nit > 1000) break; | |
236 | } // while | |
237 | ||
238 | // Clean-up | |
239 | delete[] nr; | |
240 | delete[] pi; | |
241 | for (j = 0; j < n; j++) delete[] r[j]; | |
242 | delete[] r; | |
243 | // | |
244 | return (nit < 1000); | |
245 | } | |
246 | ||
247 | Int_t AliKMeansClustering::SoftKMeans3(Int_t k, Int_t n, Double_t* x, Double_t* y, Double_t* mx, Double_t* my , | |
248 | Double_t* sigmax2, Double_t* sigmay2, Double_t* rk ) | |
249 | { | |
250 | // | |
251 | // The soft K-means algorithm | |
252 | // | |
253 | Int_t i,j; | |
254 | // | |
255 | // (1) Initialisation of the k means using k-means++ recipe | |
256 | // | |
257 | OptimalInit(k, n, x, y, mx, my); | |
258 | // | |
259 | // (2a) The responsibilities | |
260 | Double_t** r = new Double_t*[n]; // responsibilities | |
261 | for (j = 0; j < n; j++) {r[j] = new Double_t[k];} | |
262 | // | |
263 | // (2b) Normalisation | |
264 | Double_t* nr = new Double_t[n]; | |
265 | // | |
266 | // (2c) Weights | |
267 | Double_t* pi = new Double_t[k]; | |
268 | // | |
269 | // | |
270 | // (2d) Initialise the responsibilties and weights | |
271 | for (j = 0; j < n; j++) { | |
272 | nr[j] = 0.; | |
273 | for (i = 0; i < k; i++) { | |
274 | ||
275 | r[j][i] = TMath::Exp(- fBeta * d(mx[i], my[i], x[j], y[j])); | |
276 | nr[j] += r[j][i]; | |
277 | } // mean i | |
278 | } // data point j | |
279 | ||
280 | for (i = 0; i < k; i++) { | |
281 | rk[i] = 0.; | |
282 | sigmax2[i] = 1./fBeta; | |
283 | sigmay2[i] = 1./fBeta; | |
284 | ||
285 | for (j = 0; j < n; j++) { | |
286 | r[j][i] /= nr[j]; | |
287 | rk[i] += r[j][i]; | |
288 | } // mean i | |
289 | pi[i] = rk[i] / Double_t(n); | |
290 | } // data point j | |
291 | // (3) Iterations | |
292 | Int_t nit = 0; | |
293 | ||
294 | while(1) { | |
295 | nit++; | |
296 | // | |
297 | // Assignment step | |
298 | // | |
299 | for (j = 0; j < n; j++) { | |
300 | nr[j] = 0.; | |
301 | for (i = 0; i < k; i++) { | |
302 | ||
303 | Double_t dx = TMath::Abs(mx[i]-x[j]); | |
304 | if (dx > TMath::Pi()) dx = 2. * TMath::Pi() - dx; | |
305 | Double_t dy = TMath::Abs(my[i]-y[j]); | |
306 | r[j][i] = pi[i] * TMath::Exp(-0.5 * (dx * dx / sigmax2[i] + dy * dy / sigmay2[i])) | |
307 | / (2. * TMath::Sqrt(sigmax2[i] * sigmay2[i]) * TMath::Pi() * TMath::Pi()); | |
308 | nr[j] += r[j][i]; | |
309 | } // mean i | |
310 | } // data point j | |
311 | ||
312 | for (i = 0; i < k; i++) { | |
313 | for (j = 0; j < n; j++) { | |
314 | r[j][i] /= nr[j]; | |
315 | } // mean i | |
316 | } // data point j | |
317 | ||
318 | // | |
319 | // Update step | |
320 | Double_t di = 0; | |
321 | ||
322 | for (i = 0; i < k; i++) { | |
323 | Double_t oldx = mx[i]; | |
324 | Double_t oldy = my[i]; | |
325 | ||
326 | mx[i] = x[0]; | |
327 | my[i] = y[0]; | |
328 | rk[i] = r[0][i]; | |
329 | for (j = 1; j < n; j++) { | |
330 | Double_t xx = x[j]; | |
331 | // | |
332 | // Here we have to take into acount the cylinder topology where phi is defined mod 2xpi | |
333 | // If two coordinates are separated by more than pi in phi one has to be shifted by +/- 2 pi | |
334 | ||
335 | Double_t dx = mx[i] - x[j]; | |
336 | if (dx > TMath::Pi()) xx += 2. * TMath::Pi(); | |
337 | if (dx < -TMath::Pi()) xx -= 2. * TMath::Pi(); | |
338 | if (r[j][i] > 1.e-15) { | |
339 | mx[i] = mx[i] * rk[i] + r[j][i] * xx; | |
340 | my[i] = my[i] * rk[i] + r[j][i] * y[j]; | |
341 | rk[i] += r[j][i]; | |
342 | mx[i] /= rk[i]; | |
343 | my[i] /= rk[i]; | |
344 | } | |
345 | if (mx[i] > 2. * TMath::Pi()) mx[i] -= 2. * TMath::Pi(); | |
346 | if (mx[i] < 0. ) mx[i] += 2. * TMath::Pi(); | |
347 | } // Data | |
348 | di += d(mx[i], my[i], oldx, oldy); | |
349 | ||
350 | } // means | |
351 | // | |
352 | // Sigma | |
353 | for (i = 0; i < k; i++) { | |
354 | sigmax2[i] = 0.; | |
355 | sigmay2[i] = 0.; | |
356 | ||
357 | for (j = 0; j < n; j++) { | |
358 | Double_t dx = TMath::Abs(mx[i]-x[j]); | |
359 | if (dx > TMath::Pi()) dx = 2. * TMath::Pi() - dx; | |
360 | Double_t dy = TMath::Abs(my[i]-y[j]); | |
361 | sigmax2[i] += r[j][i] * dx * dx; | |
362 | sigmay2[i] += r[j][i] * dy * dy; | |
363 | } // Data | |
364 | sigmax2[i] /= rk[i]; | |
365 | sigmay2[i] /= rk[i]; | |
366 | if (sigmax2[i] < 0.0025) sigmax2[i] = 0.0025; | |
367 | if (sigmay2[i] < 0.0025) sigmay2[i] = 0.0025; | |
368 | } // Clusters | |
369 | // | |
370 | // Fractions | |
371 | for (i = 0; i < k; i++) pi[i] = rk[i] / Double_t(n); | |
372 | // | |
373 | // ending condition | |
374 | if (di < 1.e-8 || nit > 1000) break; | |
375 | } // while | |
376 | ||
377 | // Clean-up | |
378 | delete[] nr; | |
379 | delete[] pi; | |
380 | for (j = 0; j < n; j++) delete[] r[j]; | |
381 | delete[] r; | |
382 | // | |
383 | return (nit < 1000); | |
384 | } | |
385 | ||
386 | Double_t AliKMeansClustering::d(Double_t mx, Double_t my, Double_t x, Double_t y) | |
387 | { | |
388 | // | |
389 | // Distance definition | |
390 | // Quasi - Euclidian on the eta-phi cylinder | |
391 | ||
392 | Double_t dx = TMath::Abs(mx-x); | |
393 | if (dx > TMath::Pi()) dx = 2. * TMath::Pi() - dx; | |
394 | ||
395 | return (0.5*(dx * dx + (my - y) * (my - y))); | |
396 | } | |
397 | ||
398 | ||
399 | ||
400 | void AliKMeansClustering::OptimalInit(Int_t k, Int_t n, const Double_t* x, const Double_t* y, Double_t* mx, Double_t* my) | |
401 | { | |
402 | // | |
403 | // Optimal initialisation using the k-means++ algorithm | |
404 | // http://en.wikipedia.org/wiki/K-means%2B%2B | |
405 | // | |
406 | // k-means++ is an algorithm for choosing the initial values for k-means clustering in statistics and machine learning. | |
407 | // It was proposed in 2007 by David Arthur and Sergei Vassilvitskii as an approximation algorithm for the NP-hard k-means problem--- | |
408 | // a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm. | |
409 | // | |
410 | // | |
411 | TH1F d2("d2", "", n, -0.5, Float_t(n)-0.5); | |
412 | d2.Reset(); | |
413 | ||
414 | // (1) Chose first center as a random point among the input data. | |
415 | Int_t ir = Int_t(Float_t(n) * gRandom->Rndm()); | |
416 | mx[0] = x[ir]; | |
417 | my[0] = y[ir]; | |
418 | ||
419 | // (2) Iterate | |
420 | Int_t icl = 1; | |
421 | while(icl < k) | |
422 | { | |
423 | // find min distance to existing clusters | |
424 | for (Int_t j = 0; j < n; j++) { | |
425 | Double_t dmin = 1.e10; | |
426 | for (Int_t i = 0; i < icl; i++) { | |
427 | Double_t dij = d(mx[i], my[i], x[j], y[j]); | |
428 | if (dij < dmin) dmin = dij; | |
429 | } // clusters | |
430 | d2.Fill(Float_t(j), dmin); | |
431 | } // data points | |
432 | // select a new cluster from data points with probability ~d2 | |
433 | ir = Int_t(d2.GetRandom() + 0.5); | |
434 | mx[icl] = x[ir]; | |
435 | my[icl] = y[ir]; | |
436 | icl++; | |
437 | } // icl | |
438 | } | |
439 | ||
440 | ||
441 | ClassImp(AliKMeansResult) | |
442 | ||
443 | ||
444 | ||
445 | AliKMeansResult::AliKMeansResult(Int_t k): | |
446 | TObject(), | |
447 | fK(k), | |
448 | fMx (new Double_t[k]), | |
449 | fMy (new Double_t[k]), | |
450 | fSigma2(new Double_t[k]), | |
451 | fRk (new Double_t[k]), | |
452 | fTarget(new Double_t[k]), | |
453 | fInd (new Int_t[k]) | |
454 | { | |
455 | // Constructor | |
456 | } | |
457 | ||
458 | AliKMeansResult::AliKMeansResult(const AliKMeansResult &res): | |
459 | TObject(res), | |
460 | fK(res.GetK()), | |
461 | fMx(new Double_t[res.GetK()]), | |
462 | fMy(new Double_t[res.GetK()]), | |
463 | fSigma2(new Double_t[res.GetK()]), | |
464 | fRk(new Double_t[res.GetK()]), | |
465 | fTarget(new Double_t[res.GetK()]), | |
466 | fInd(new Int_t[res.GetK()]) | |
467 | { | |
468 | // Copy constructor | |
469 | for (Int_t i = 0; i <fK; i++) { | |
470 | fMx[i] = (res.GetMx()) [i]; | |
471 | fMy[i] = (res.GetMy()) [i]; | |
472 | fSigma2[i] = (res.GetSigma2())[i]; | |
473 | fRk[i] = (res.GetRk()) [i]; | |
474 | fTarget[i] = (res.GetTarget())[i]; | |
475 | fInd[i] = (res.GetInd()) [i]; | |
476 | } | |
477 | } | |
478 | ||
479 | AliKMeansResult& AliKMeansResult::operator=(const AliKMeansResult& res) | |
480 | { | |
481 | // | |
482 | // Assignment operator | |
483 | if (this != &res) { | |
484 | TObject::operator=(res); | |
485 | if (fK != res.fK) { | |
486 | delete [] fMx; | |
487 | delete [] fMy; | |
488 | delete [] fSigma2; | |
489 | delete [] fRk; | |
490 | delete [] fTarget; | |
491 | delete [] fInd; | |
492 | fK = res.fK; | |
493 | fMx = new Double_t[fK]; | |
494 | fMy = new Double_t[fK]; | |
495 | fSigma2 = new Double_t[fK]; | |
496 | fRk = new Double_t[fK]; | |
497 | fTarget = new Double_t[fK]; | |
498 | fInd = new Int_t[fK]; | |
499 | } | |
500 | ||
501 | fK = res.fK; | |
502 | memcpy(fMx, res.fMx, fK*sizeof(Double_t)); | |
503 | memcpy(fMy, res.fMy, fK*sizeof(Double_t)); | |
504 | memcpy(fSigma2, res.fSigma2, fK*sizeof(Double_t)); | |
505 | memcpy(fRk, res.fRk, fK*sizeof(Double_t)); | |
506 | memcpy(fTarget, res.fTarget, fK*sizeof(Double_t)); | |
507 | memcpy(fInd, res.fInd, fK*sizeof(Int_t)); | |
508 | } | |
509 | return *this; | |
510 | } | |
511 | ||
512 | ||
513 | AliKMeansResult::~AliKMeansResult() | |
514 | { | |
515 | // Destructor | |
516 | delete[] fMx; | |
517 | delete[] fMy; | |
518 | delete[] fSigma2; | |
519 | delete[] fRk; | |
520 | delete[] fInd; | |
521 | delete[] fTarget; | |
522 | } | |
523 | ||
524 | void AliKMeansResult::Sort() | |
525 | { | |
526 | // Build target array and sort | |
527 | // Sort clusters | |
528 | for (Int_t i = 0; i < fK; i++) { | |
529 | if (fRk[i] > 2.9) { | |
530 | fTarget[i] = fRk[i] / fSigma2[i]; | |
531 | } | |
532 | else fTarget[i] = 0.; | |
533 | } | |
534 | ||
535 | TMath::Sort(fK, fTarget, fInd); | |
536 | } | |
537 | ||
538 | void AliKMeansResult::Sort(Int_t n, const Double_t* x, const Double_t* y) | |
539 | { | |
540 | // Build target array and sort | |
541 | for (Int_t i = 0; i < fK; i++) | |
542 | { | |
543 | Int_t nc = 0; | |
544 | for (Int_t j = 0; j < n; j++) | |
545 | { | |
546 | if (2. * AliKMeansClustering::d(fMx[i], fMy[i], x[j], y[j]) < 2.28 * fSigma2[i]) nc++; | |
547 | } | |
548 | ||
549 | if (nc > 2) { | |
550 | fTarget[i] = Double_t(nc) / (2.28 * fSigma2[i]); | |
551 | } else { | |
552 | fTarget[i] = 0.; | |
553 | } | |
554 | } | |
555 | ||
556 | TMath::Sort(fK, fTarget, fInd); | |
557 | } | |
558 | ||
559 | void AliKMeansResult::CopyResults(const AliKMeansResult* res) | |
560 | { | |
561 | fK = res->GetK(); | |
562 | for (Int_t i = 0; i <fK; i++) { | |
563 | fMx[i] = (res->GetMx()) [i]; | |
564 | fMy[i] = (res->GetMy()) [i]; | |
565 | fSigma2[i] = (res->GetSigma2())[i]; | |
566 | fRk[i] = (res->GetRk()) [i]; | |
567 | fTarget[i] = (res->GetTarget())[i]; | |
568 | fInd[i] = (res->GetInd()) [i]; | |
569 | } | |
570 | } |