]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - MUON/AliMUONClusterSplitterMLEM.cxx
add pt spectra histograms for different pile-up event definition
[u/mrichter/AliRoot.git] / MUON / AliMUONClusterSplitterMLEM.cxx
... / ...
CommitLineData
1/**************************************************************************
2* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3* *
4* Author: The ALICE Off-line Project. *
5* Contributors are mentioned in the code where appropriate. *
6* *
7* Permission to use, copy, modify and distribute this software and its *
8* documentation strictly for non-commercial purposes is hereby granted *
9* without fee, provided that the above copyright notice appears in all *
10* copies and that both the copyright notice and this permission notice *
11* appear in the supporting documentation. The authors make no claims *
12* about the suitability of this software for any purpose. It is *
13* provided "as is" without express or implied warranty. *
14**************************************************************************/
15
16/* $Id$ */
17
18//-----------------------------------------------------------------------------
19/// \class AliMUONClusterSplitterMLEM
20///
21/// Splitter class for the MLEM algorithm. Performs fitting procedure
22/// with up to 3 hit candidates and tries to split clusters if the number
23/// of candidates exceeds 3.
24///
25/// \author Laurent Aphecetche (for the "new" C++ structure) and
26/// Alexander Zinchenko, JINR Dubna, for the hardcore of it ;-)
27//-----------------------------------------------------------------------------
28
29#include "AliMUONClusterSplitterMLEM.h"
30#include "AliMUONClusterFinderMLEM.h" // for status flag constants
31
32#include "AliMUONCluster.h"
33#include "AliMUONPad.h"
34#include "AliMUONPad.h"
35#include "AliMUONConstants.h"
36#include "AliMpDEManager.h"
37#include "AliMUONMathieson.h"
38
39#include "AliMpEncodePair.h"
40
41#include "AliLog.h"
42
43#include <TClonesArray.h>
44#include <TH2.h>
45#include <TMath.h>
46#include <TMatrixD.h>
47#include <TObjArray.h>
48#include <TRandom.h>
49#include <Riostream.h>
50
51using std::endl;
52using std::cout;
53/// \cond CLASSIMP
54ClassImp(AliMUONClusterSplitterMLEM)
55/// \endcond
56
57//const Double_t AliMUONClusterSplitterMLEM::fgkCouplMin = 1.e-3; // threshold on coupling
58const Double_t AliMUONClusterSplitterMLEM::fgkCouplMin = 1.e-2; // threshold on coupling
59
60//_____________________________________________________________________________
61AliMUONClusterSplitterMLEM::AliMUONClusterSplitterMLEM(Int_t detElemId,
62 TObjArray* pixArray,
63 Double_t lowestPixelCharge,
64 Double_t lowestPadCharge,
65 Double_t lowestClusterCharge)
66: TObject(),
67fPixArray(pixArray),
68fMathieson(0x0),
69fDetElemId(detElemId),
70fNpar(0),
71fQtot(0),
72fnCoupled(0),
73fDebug(0),
74fLowestPixelCharge(lowestPixelCharge),
75fLowestPadCharge(lowestPadCharge),
76fLowestClusterCharge(lowestClusterCharge)
77{
78 /// Constructor
79
80 AliMq::Station12Type stationType = AliMpDEManager::GetStation12Type(fDetElemId);
81
82 Float_t kx3 = AliMUONConstants::SqrtKx3();
83 Float_t ky3 = AliMUONConstants::SqrtKy3();
84 Float_t pitch = AliMUONConstants::Pitch();
85
86 if ( stationType == AliMq::kStation1 )
87 {
88 kx3 = AliMUONConstants::SqrtKx3St1();
89 ky3 = AliMUONConstants::SqrtKy3St1();
90 pitch = AliMUONConstants::PitchSt1();
91 }
92
93 fMathieson = new AliMUONMathieson;
94
95 fMathieson->SetPitch(pitch);
96 fMathieson->SetSqrtKx3AndDeriveKx2Kx4(kx3);
97 fMathieson->SetSqrtKy3AndDeriveKy2Ky4(ky3);
98
99}
100
101//_____________________________________________________________________________
102AliMUONClusterSplitterMLEM::~AliMUONClusterSplitterMLEM()
103{
104 /// Destructor
105
106 delete fMathieson;
107}
108
109//_____________________________________________________________________________
110void
111AliMUONClusterSplitterMLEM::AddBin(TH2 *mlem,
112 Int_t ic, Int_t jc, Int_t mode,
113 Bool_t *used, TObjArray *pix)
114{
115 /// Add a bin to the cluster
116
117 Int_t nx = mlem->GetNbinsX();
118 Int_t ny = mlem->GetNbinsY();
119 Double_t cont1, cont = mlem->GetCellContent(jc,ic);
120 AliMUONPad *pixPtr = 0;
121
122 Int_t ie = TMath::Min(ic+1,ny), je = TMath::Min(jc+1,nx);
123 for (Int_t i = TMath::Max(ic-1,1); i <= ie; ++i) {
124 for (Int_t j = TMath::Max(jc-1,1); j <= je; ++j) {
125 if (i != ic && j != jc) continue;
126 if (used[(i-1)*nx+j-1]) continue;
127 cont1 = mlem->GetCellContent(j,i);
128 if (mode && cont1 > cont) continue;
129 used[(i-1)*nx+j-1] = kTRUE;
130 if (cont1 < fLowestPixelCharge) continue;
131 if (pix) pix->Add(BinToPix(mlem,j,i));
132 else {
133 pixPtr = new AliMUONPad (mlem->GetXaxis()->GetBinCenter(j),
134 mlem->GetYaxis()->GetBinCenter(i), 0, 0, cont1);
135 fPixArray->Add(pixPtr);
136 }
137 AddBin(mlem, i, j, mode, used, pix); // recursive call
138 }
139 }
140}
141
142//_____________________________________________________________________________
143void
144AliMUONClusterSplitterMLEM::AddCluster(Int_t ic, Int_t nclust,
145 TMatrixD& aijcluclu,
146 Bool_t *used, Int_t *clustNumb, Int_t &nCoupled)
147{
148 /// Add a cluster to the group of coupled clusters
149
150 for (Int_t i = 0; i < nclust; ++i) {
151 if (used[i]) continue;
152 if (aijcluclu(i,ic) < fgkCouplMin) continue;
153 used[i] = kTRUE;
154 clustNumb[nCoupled++] = i;
155 AddCluster(i, nclust, aijcluclu, used, clustNumb, nCoupled);
156 }
157}
158
159//_____________________________________________________________________________
160TObject*
161AliMUONClusterSplitterMLEM::BinToPix(TH2 *mlem,
162 Int_t jc, Int_t ic)
163{
164 /// Translate histogram bin to pixel
165
166 Double_t yc = mlem->GetYaxis()->GetBinCenter(ic);
167 Double_t xc = mlem->GetXaxis()->GetBinCenter(jc);
168
169 Int_t nPix = fPixArray->GetEntriesFast();
170 AliMUONPad *pixPtr = NULL;
171
172 // Compare pixel and bin positions
173 for (Int_t i = 0; i < nPix; ++i) {
174 pixPtr = (AliMUONPad*) fPixArray->UncheckedAt(i);
175 if (pixPtr->Charge() < fLowestPixelCharge) continue;
176 if (TMath::Abs(pixPtr->Coord(0)-xc)<1.e-4 && TMath::Abs(pixPtr->Coord(1)-yc)<1.e-4)
177 {
178 //return (TObject*) pixPtr;
179 return pixPtr;
180 }
181 }
182 AliError(Form(" Something wrong ??? %f %f ", xc, yc));
183 return NULL;
184}
185
186//_____________________________________________________________________________
187Float_t
188AliMUONClusterSplitterMLEM::ChargeIntegration(Double_t x, Double_t y,
189 const AliMUONPad& pad)
190{
191 /// Compute the Mathieson integral on pad area, assuming the center
192 /// of the Mathieson is at (x,y)
193
194 TVector2 lowerLeft(TVector2(x,y)-pad.Position()-pad.Dimensions());
195 TVector2 upperRight(lowerLeft + pad.Dimensions()*2.0);
196
197 return fMathieson->IntXY(lowerLeft.X(),lowerLeft.Y(),
198 upperRight.X(),upperRight.Y());
199}
200
201//_____________________________________________________________________________
202void
203AliMUONClusterSplitterMLEM::Fcn1(const AliMUONCluster& cluster,
204 Int_t & /*fNpar*/, Double_t * /*gin*/,
205 Double_t &f, Double_t *par, Int_t iflag)
206{
207 /// Computes the functional to be minimized
208
209 Int_t indx, npads=0;
210 Double_t charge, delta, coef=0, chi2=0, qTot = 0;
211 static Double_t qAver = 0;
212
213 Int_t mult = cluster.Multiplicity(), iend = fNpar / 3;
214 for (Int_t j = 0; j < mult; ++j)
215 {
216 AliMUONPad* pad = cluster.Pad(j);
217 //if ( pad->Status() !=1 || pad->IsSaturated() ) continue;
218 if ( pad->Status() != AliMUONClusterFinderMLEM::GetUseForFitFlag() ||
219 pad->Charge() == 0 ) continue;
220 if (iflag == 0) {
221 if ( pad->IsReal() ) npads++; // exclude virtual pads
222 qTot += pad->Charge();
223 }
224 charge = 0;
225 for (Int_t i = 0; i <= iend; ++i)
226 {
227 // sum over hits
228 indx = 3 * i;
229 coef = Param2Coef(i, coef, par);
230 charge += ChargeIntegration(par[indx],par[indx+1],*pad) * coef;
231 }
232 charge *= fQtot;
233 delta = charge - pad->Charge();
234 delta *= delta;
235 delta /= pad->Charge();
236 chi2 += delta;
237 } // for (Int_t j=0;
238 if (iflag == 0 && npads) qAver = qTot / npads;
239 if (!npads && iflag==0)
240 {
241 AliError(Form("Got npads=0. Please check"));
242 }
243 f = chi2 / qAver;
244}
245
246//_____________________________________________________________________________
247Double_t AliMUONClusterSplitterMLEM::Param2Coef(Int_t icand, Double_t coef, Double_t *par) const
248{
249 /// Extract hit contribution scale factor from fit parameters
250
251 if (fNpar == 2) return 1.;
252 if (fNpar == 5) return icand==0 ? par[2] : TMath::Max(1.-par[2],0.);
253 if (icand == 0) return par[2];
254 if (icand == 1) return TMath::Max((1.-par[2])*par[5], 0.);
255 return TMath::Max(1.-par[2]-coef,0.);
256}
257
258//_____________________________________________________________________________
259Int_t
260AliMUONClusterSplitterMLEM::Fit(const AliMUONCluster& cluster,
261 Int_t iSimple, Int_t nfit,
262 const Int_t *clustFit, TObjArray **clusters,
263 Double_t *parOk,
264 TObjArray& clusterList, TH2 *mlem)
265{
266 /// Steering function and fitting procedure for the fit of pad charge distribution
267
268 // AliDebug(2,Form("iSimple=%d nfit=%d",iSimple,nfit));
269
270 Double_t xmin = mlem->GetXaxis()->GetXmin() - mlem->GetXaxis()->GetBinWidth(1);
271 Double_t xmax = mlem->GetXaxis()->GetXmax() + mlem->GetXaxis()->GetBinWidth(1);
272 Double_t ymin = mlem->GetYaxis()->GetXmin() - mlem->GetYaxis()->GetBinWidth(1);
273 Double_t ymax = mlem->GetYaxis()->GetXmax() + mlem->GetYaxis()->GetBinWidth(1);
274 Double_t xPad = 0, yPad = 99999;
275
276 // Number of pads to use and number of virtual pads
277 Int_t npads = 0, nVirtual = 0, nfit0 = nfit;
278 //cluster.Print("full");
279 Int_t mult = cluster.Multiplicity();
280 for (Int_t i = 0; i < mult; ++i )
281 {
282 AliMUONPad* pad = cluster.Pad(i);
283 if ( !pad->IsReal() ) ++nVirtual;
284 //if ( pad->Status() !=1 || pad->IsSaturated() ) continue;
285 if ( pad->Status() != AliMUONClusterFinderMLEM::GetUseForFitFlag() ) continue;
286 if ( pad->IsReal() )
287 {
288 ++npads;
289 if (yPad > 9999)
290 {
291 xPad = pad->X();
292 yPad = pad->Y();
293 }
294 else
295 {
296 if (pad->DY() < pad->DX() )
297 {
298 yPad = pad->Y();
299 }
300 else
301 {
302 xPad = pad->X();
303 }
304 }
305 }
306 }
307
308 fNpar = 0;
309 fQtot = 0;
310
311 if (npads < 2) return 0;
312
313 // FIXME : AliWarning("Reconnect the following code for hit/track passing ?");
314
315 // Int_t tracks[3] = {-1, -1, -1};
316
317 /*
318 Int_t digit = 0;
319 AliMUONDigit *mdig = 0;
320 for (Int_t cath=0; cath<2; cath++) {
321 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
322 if (fPadIJ[0][i] != cath) continue;
323 if (fPadIJ[1][i] != 1) continue;
324 if (fXyq[3][i] < 0) continue; // exclude virtual pads
325 digit = TMath::Nint (fXyq[5][i]);
326 if (digit >= 0) mdig = fInput->Digit(cath,digit);
327 else mdig = fInput->Digit(TMath::Even(cath),-digit-1);
328 //if (!mdig) mdig = fInput->Digit(TMath::Even(cath),digit);
329 if (!mdig) continue; // protection for cluster display
330 if (mdig->Hit() >= 0) {
331 if (tracks[0] < 0) {
332 tracks[0] = mdig->Hit();
333 tracks[1] = mdig->Track(0);
334 } else if (mdig->Track(0) < tracks[1]) {
335 tracks[0] = mdig->Hit();
336 tracks[1] = mdig->Track(0);
337 }
338 }
339 if (mdig->Track(1) >= 0 && mdig->Track(1) != tracks[1]) {
340 if (tracks[2] < 0) tracks[2] = mdig->Track(1);
341 else tracks[2] = TMath::Min (tracks[2], mdig->Track(1));
342 }
343 } // for (Int_t i=0;
344 } // for (Int_t cath=0;
345 */
346
347 // Get number of pads in X and Y
348 //const Int_t kStatusToTest(1);
349 const Int_t kStatusToTest(AliMUONClusterFinderMLEM::GetUseForFitFlag());
350
351 Long_t nofPads = cluster.NofPads(kStatusToTest);
352 Int_t nInX = AliMp::PairFirst(nofPads);
353 Int_t nInY = AliMp::PairSecond(nofPads);
354
355 if (fDebug) {
356 Int_t npadOK = 0;
357 for (Int_t j = 0; j < cluster.Multiplicity(); ++j) {
358 AliMUONPad *pad = cluster.Pad(j);
359 //if (pad->Status() == 1 && !pad->IsSaturated()) npadOK++;
360 if (pad->Status() == AliMUONClusterFinderMLEM::GetUseForFitFlag() && !pad->IsSaturated()) npadOK++;
361 }
362 cout << " Number of pads to fit: " << npadOK << endl;
363 cout << " nInX and Y: " << nInX << " " << nInY << endl;
364 }
365
366 Int_t nfitMax = 3;
367 nfitMax = TMath::Min (nfitMax, (npads + 1) / 3);
368 if (nfitMax > 1) {
369 if (((nInX < 3) && (nInY < 3)) || ((nInX == 3) && (nInY < 3)) || ((nInX < 3) && (nInY == 3))) nfitMax = 1; // not enough pads in each direction
370 }
371 if (nfit > nfitMax) nfit = nfitMax;
372
373 // Take cluster maxima as fitting seeds
374 TObjArray *pix;
375 AliMUONPad *pixPtr;
376 Int_t npxclu;
377 Double_t cont, cmax = 0, xseed = 0, yseed = 0, errOk[8], qq = 0;
378
379 for ( int i = 0; i < 8; ++i ) errOk[i]=0.0;
380
381 Double_t xyseed[3][2], qseed[3], xyCand[3][2] = {{0},{0}}, sigCand[3][2] = {{0},{0}};
382
383 for (Int_t ifit = 1; ifit <= nfit0; ++ifit)
384 {
385 cmax = 0;
386 pix = clusters[clustFit[ifit-1]];
387 npxclu = pix->GetEntriesFast();
388 //qq = 0;
389 for (Int_t clu = 0; clu < npxclu; ++clu)
390 {
391 pixPtr = (AliMUONPad*) pix->UncheckedAt(clu);
392 cont = pixPtr->Charge();
393 fQtot += cont;
394 if (cont > cmax)
395 {
396 cmax = cont;
397 xseed = pixPtr->Coord(0);
398 yseed = pixPtr->Coord(1);
399 }
400 qq += cont;
401 xyCand[0][0] += pixPtr->Coord(0) * cont;
402 xyCand[0][1] += pixPtr->Coord(1) * cont;
403 sigCand[0][0] += pixPtr->Coord(0) * pixPtr->Coord(0) * cont;
404 sigCand[0][1] += pixPtr->Coord(1) * pixPtr->Coord(1) * cont;
405 }
406 xyseed[ifit-1][0] = xseed;
407 xyseed[ifit-1][1] = yseed;
408 qseed[ifit-1] = cmax;
409 } // for (Int_t ifit=1;
410
411 xyCand[0][0] /= qq; // <x>
412 xyCand[0][1] /= qq; // <y>
413 sigCand[0][0] = sigCand[0][0]/qq - xyCand[0][0]*xyCand[0][0]; // <x^2> - <x>^2
414 sigCand[0][0] = sigCand[0][0] > 0 ? TMath::Sqrt (sigCand[0][0]) : 0;
415 sigCand[0][1] = sigCand[0][1]/qq - xyCand[0][1]*xyCand[0][1]; // <y^2> - <y>^2
416 sigCand[0][1] = sigCand[0][1] > 0 ? TMath::Sqrt (sigCand[0][1]) : 0;
417 if (fDebug) cout << xyCand[0][0] << " " << xyCand[0][1] << " " << sigCand[0][0] << " " << sigCand[0][1] << endl;
418
419 Int_t nDof, maxSeed[3];//, nMax = 0;
420
421 if ( nfit0 < 0 || nfit0 > 3 ) {
422 AliErrorStream() << "Wrong nfit0 value: " << nfit0 << endl;
423 return nfit;
424 }
425 TMath::Sort(nfit0, qseed, maxSeed, kTRUE); // in decreasing order
426
427 Double_t step[3]={0.01,0.002,0.02}, fmin, chi2o = 9999, chi2n;
428 Double_t *gin = 0, func0, func1, param[8]={0}, step0[8]={0};
429 Double_t param0[2][8]={{0},{0}}, deriv[2][8]={{0},{0}};
430 Double_t shift[8]={0}, stepMax, derMax, parmin[8]={0}, parmax[8]={0}, func2[2]={0}, shift0;
431 Double_t delta[8]={0}, scMax, dder[8], estim, shiftSave = 0;
432 Int_t min, max, nCall = 0, nLoop, idMax = 0, iestMax = 0, nFail;
433 Double_t rad, dist[3] = {0};
434
435 // Try to fit with one-track hypothesis, then 2-track. If chi2/dof is
436 // lower, try 3-track (if number of pads is sufficient).
437 Int_t iflag = 0; // for the first call of fcn1
438 for (Int_t iseed = 0; iseed < nfit; ++iseed)
439 {
440
441 Int_t memory[8] = {0};
442 if (iseed)
443 {
444 for (Int_t j = 0; j < fNpar; ++j)
445 {
446 param[j] = parOk[j];
447 }
448 param[fNpar] = 0.6;
449 parmin[fNpar] = 1E-9;
450 parmax[fNpar++] = 1;
451 }
452
453 if (nfit == 1)
454 {
455 param[fNpar] = xyCand[0][0]; // take COG
456 }
457 else
458 {
459 param[fNpar] = xyseed[maxSeed[iseed]][0];
460 //param[fNpar] = fNpar==0 ? -16.1651 : -15.2761;
461 }
462 parmin[fNpar] = xmin;
463 parmax[fNpar++] = xmax;
464 if (nfit == 1)
465 {
466 param[fNpar] = xyCand[0][1]; // take COG
467 }
468 else
469 {
470 param[fNpar] = xyseed[maxSeed[iseed]][1];
471 //param[fNpar] = fNpar==1 ? -15.1737 : -15.8487;
472 }
473 parmin[fNpar] = ymin;
474 parmax[fNpar++] = ymax;
475
476 for (Int_t j = 0; j < fNpar; ++j)
477 {
478 step0[j] = shift[j] = step[j%3];
479 }
480
481 if (iseed)
482 {
483 for (Int_t j = 0; j < fNpar; ++j)
484 {
485 param0[1][j] = 0;
486 }
487 }
488 if (fDebug) {
489 for (Int_t j = 0; j < fNpar; ++j) cout << param[j] << " ";
490 cout << endl;
491 }
492
493 // Try new algorithm
494 min = nLoop = 1; stepMax = func2[1] = derMax = 999999; nFail = 0;
495
496 while (1)
497 {
498 max = !min;
499 Fcn1(cluster,fNpar, gin, func0, param, iflag); nCall++;
500 iflag = 1;
501 //cout << " Func: " << func0 << endl;
502
503 func2[max] = func0;
504 for (Int_t j = 0; j < fNpar; ++j)
505 {
506 param0[max][j] = param[j];
507 delta[j] = step0[j];
508 param[j] += delta[j] / 10;
509 if (j > 0) param[j-1] -= delta[j-1] / 10;
510 Fcn1(cluster,fNpar, gin, func1, param, iflag); nCall++;
511 deriv[max][j] = (func1 - func0) / delta[j] * 10; // first derivative
512 //cout << j << " " << deriv[max][j] << endl;
513 dder[j] = param0[0][j] != param0[1][j] ? (deriv[0][j] - deriv[1][j]) /
514 (param0[0][j] - param0[1][j]) : 0; // second derivative
515 }
516 param[fNpar-1] -= delta[fNpar-1] / 10;
517 if (nCall > 2000) break;
518
519 min = func2[0] < func2[1] ? 0 : 1;
520 nFail = min == max ? 0 : nFail + 1;
521
522 stepMax = derMax = estim = 0;
523 for (Int_t j = 0; j < fNpar; ++j)
524 {
525 // Estimated distance to minimum
526 shift0 = shift[j];
527 if (nLoop == 1)
528 {
529 shift[j] = TMath::Sign (step0[j], -deriv[max][j]); // first step
530 }
531 else if (TMath::Abs(deriv[0][j]) < 1.e-3 && TMath::Abs(deriv[1][j]) < 1.e-3)
532 {
533 shift[j] = 0;
534 }
535 else if (((deriv[min][j]*deriv[!min][j] > 0) && (TMath::Abs(deriv[min][j]) > TMath::Abs(deriv[!min][j])))
536 || (TMath::Abs(deriv[0][j]-deriv[1][j]) < 1.e-3) || (TMath::Abs(dder[j]) < 1.e-6))
537 {
538 shift[j] = -TMath::Sign (shift[j], (func2[0]-func2[1]) * (param0[0][j]-param0[1][j]));
539 if (min == max)
540 {
541 if (memory[j] > 1)
542 {
543 shift[j] *= 2;
544 }
545 memory[j]++;
546 }
547 }
548 else
549 {
550 shift[j] = dder[j] != 0 ? -deriv[min][j] / dder[j] : 0;
551 memory[j] = 0;
552 }
553
554 Double_t es = TMath::Abs(shift[j]) / step0[j];
555 if (es > estim)
556 {
557 estim = es;
558 iestMax = j;
559 }
560
561 // Too big step
562 if (TMath::Abs(shift[j])/step0[j] > 10) shift[j] = TMath::Sign(10.,shift[j]) * step0[j]; //
563
564 // Failed to improve minimum
565 if (min != max)
566 {
567 memory[j] = 0;
568 param[j] = param0[min][j];
569 if (TMath::Abs(shift[j]+shift0) > 0.1*step0[j])
570 {
571 shift[j] = (shift[j] + shift0) / 2;
572 }
573 else
574 {
575 shift[j] /= -2;
576 }
577 }
578
579 // Too big step
580 if (TMath::Abs(shift[j]*deriv[min][j]) > func2[min])
581 {
582 shift[j] = TMath::Sign (func2[min]/deriv[min][j], shift[j]);
583 }
584
585 // Introduce step relaxation factor
586 if (memory[j] < 3)
587 {
588 scMax = 1 + 4 / TMath::Max(nLoop/2.,1.);
589 if (TMath::Abs(shift0) > 0 && TMath::Abs(shift[j]/shift0) > scMax)
590 {
591 shift[j] = TMath::Sign (shift0*scMax, shift[j]);
592 }
593 }
594 param[j] += shift[j];
595 // Check parameter limits
596 if (param[j] < parmin[j])
597 {
598 shift[j] = parmin[j] - param[j];
599 param[j] = parmin[j];
600 }
601 else if (param[j] > parmax[j])
602 {
603 shift[j] = parmax[j] - param[j];
604 param[j] = parmax[j];
605 }
606 //cout << " xxx " << j << " " << shift[j] << " " << param[j] << endl;
607 stepMax = TMath::Max (stepMax, TMath::Abs(shift[j]/step0[j]));
608 if (TMath::Abs(deriv[min][j]) > derMax)
609 {
610 idMax = j;
611 derMax = TMath::Abs (deriv[min][j]);
612 }
613 } // for (Int_t j=0; j<fNpar;
614
615 if (((estim < 1) && (derMax < 2)) || nLoop > 150) break; // minimum was found
616
617 nLoop++;
618
619 // Check for small step
620 if (shift[idMax] == 0)
621 {
622 shift[idMax] = step0[idMax]/10;
623 param[idMax] += shift[idMax];
624 continue;
625 }
626
627 if (!memory[idMax] && derMax > 0.5 && nLoop > 10)
628 {
629 if (dder[idMax] != 0 && TMath::Abs(deriv[min][idMax]/dder[idMax]/shift[idMax]) > 10)
630 {
631 if (min == max) dder[idMax] = -dder[idMax];
632 shift[idMax] = -deriv[min][idMax] / dder[idMax] / 10;
633 param[idMax] += shift[idMax];
634 stepMax = TMath::Max (stepMax, TMath::Abs(shift[idMax])/step0[idMax]);
635 if (min == max) shiftSave = shift[idMax];
636 }
637 if (nFail > 10)
638 {
639 param[idMax] -= shift[idMax];
640 shift[idMax] = 4 * shiftSave * (gRandom->Rndm(0) - 0.5);
641 param[idMax] += shift[idMax];
642 }
643 }
644 } // while (1)
645
646 fmin = func2[min];
647
648 nDof = npads - fNpar + nVirtual;
649 if (!nDof) nDof++;
650 chi2n = fmin / nDof;
651 if (fDebug) cout << " Chi2 " << chi2n << " " << fNpar << endl;
652
653 //if (fNpar > 2) cout << param0[min][fNpar-3] << " " << chi2n * (1+TMath::Min(1-param0[min][fNpar-3],0.25)) << endl;
654 //if (chi2n*1.2+1.e-6 > chi2o )
655 if (fNpar > 2 && (chi2n > chi2o || ((iseed == nfit-1)
656 && (chi2n * (1+TMath::Min(1-param0[min][fNpar-3],0.25)) > chi2o))))
657 { fNpar -= 3; break; }
658
659 // Save parameters and errors
660
661 if (nInX == 1) {
662 // One pad per direction
663 //for (Int_t i=0; i<fNpar; ++i) if (i == 0 || i == 2 || i == 5) param0[min][i] = xPad;
664 for (Int_t i=0; i<fNpar; ++i) if (i == 0 || i == 2 || i == 5)
665 param0[min][i] = xyCand[0][0];
666 }
667 if (nInY == 1) {
668 // One pad per direction
669 //for (Int_t i=0; i<fNpar; ++i) if (i == 1 || i == 3 || i == 6) param0[min][i] = yPad;
670 for (Int_t i=0; i<fNpar; ++i) if (i == 1 || i == 3 || i == 6)
671 param0[min][i] = xyCand[0][1];
672 }
673
674 /*
675 if (iseed > 0) {
676 // Find distance to the nearest neighbour
677 dist[0] = dist[1] = TMath::Sqrt ((param0[min][0]-param0[min][2])*
678 (param0[min][0]-param0[min][2])
679 +(param0[min][1]-param0[min][3])*
680 (param0[min][1]-param0[min][3]));
681 if (iseed > 1) {
682 dist[2] = TMath::Sqrt ((param0[min][0]-param0[min][5])*
683 (param0[min][0]-param0[min][5])
684 +(param0[min][1]-param0[min][6])*
685 (param0[min][1]-param0[min][6]));
686 rad = TMath::Sqrt ((param0[min][2]-param0[min][5])*
687 (param0[min][2]-param0[min][5])
688 +(param0[min][3]-param0[min][6])*
689 (param0[min][3]-param0[min][6]));
690 if (dist[2] < dist[0]) dist[0] = dist[2];
691 if (rad < dist[1]) dist[1] = rad;
692 if (rad < dist[2]) dist[2] = rad;
693 }
694 cout << dist[0] << " " << dist[1] << " " << dist[2] << endl;
695 if (dist[TMath::LocMin(iseed+1,dist)] < 1.) { fNpar -= 3; break; }
696 }
697 */
698
699 for (Int_t i = 0; i < fNpar; ++i) {
700 parOk[i] = param0[min][i];
701 //errOk[i] = fmin;
702 errOk[i] = chi2n;
703 // Bounded params
704 parOk[i] = TMath::Max (parOk[i], parmin[i]);
705 parOk[i] = TMath::Min (parOk[i], parmax[i]);
706 }
707
708 chi2o = chi2n;
709 if (fmin < 0.1) break; // !!!???
710 } // for (Int_t iseed=0;
711
712 if (fDebug) {
713 for (Int_t i=0; i<fNpar; ++i) {
714 if (i == 4 || i == 7) {
715 if ((i == 7) || ((i == 4) && (fNpar < 7))) cout << parOk[i] << endl;
716 else cout << parOk[i] * (1-parOk[7]) << endl;
717 continue;
718 }
719 cout << parOk[i] << " " << errOk[i] << endl;
720 }
721 }
722 nfit = (fNpar + 1) / 3;
723 dist[0] = dist[1] = dist[2] = 0;
724
725 if (nfit > 1) {
726 // Find distance to the nearest neighbour
727 dist[0] = dist[1] = TMath::Sqrt ((parOk[0]-parOk[2])*
728 (parOk[0]-parOk[2])
729 +(parOk[1]-parOk[3])*
730 (parOk[1]-parOk[3]));
731 if (nfit > 2) {
732 dist[2] = TMath::Sqrt ((parOk[0]-parOk[5])*
733 (parOk[0]-parOk[5])
734 +(parOk[1]-parOk[6])*
735 (parOk[1]-parOk[6]));
736 rad = TMath::Sqrt ((parOk[2]-parOk[5])*
737 (parOk[2]-parOk[5])
738 +(parOk[3]-parOk[6])*
739 (parOk[3]-parOk[6]));
740 if (dist[2] < dist[0]) dist[0] = dist[2];
741 if (rad < dist[1]) dist[1] = rad;
742 if (rad < dist[2]) dist[2] = rad;
743 }
744 }
745
746 Int_t indx;
747
748 Double_t coef = 0;
749 if (iSimple) fnCoupled = 0;
750 for (Int_t j = 0; j < nfit; ++j) {
751 indx = 3 * j;
752 coef = Param2Coef(j, coef, parOk);
753
754 //void AliMUONClusterFinderMLEM::AddRawCluster(Double_t x, Double_t y,
755 // Double_t qTot, Double_t fmin,
756 // Int_t nfit, Int_t *tracks,
757 // Double_t /*sigx*/,
758 // Double_t /*sigy*/,
759 // Double_t /*dist*/)
760
761 if ( coef*fQtot >= fLowestClusterCharge )
762 {
763 //AZ AliMUONCluster* cluster1 = new AliMUONCluster();
764 AliMUONCluster* cluster1 = new AliMUONCluster(cluster);
765
766 cluster1->SetCharge(coef*fQtot,coef*fQtot);
767 cluster1->SetPosition(TVector2(parOk[indx],parOk[indx+1]),TVector2(sigCand[0][0],sigCand[0][1]));
768 //cluster1->SetChi2(dist[TMath::LocMin(nfit,dist)]);
769 Int_t idx = TMath::LocMin(nfit,dist);
770 if ( idx < 0 || idx > 2 ) {
771 AliErrorStream() << "Wrong index value: " << idx << endl;
772 return nfit;
773 }
774 cluster1->SetChi2(dist[idx]);
775
776 // FIXME: we miss some information in this cluster, as compared to
777 // the original AddRawCluster code.
778
779 AliDebug(2,Form("Adding RawCluster detElemId %4d mult %2d charge %5d (xl,yl)=(%9.6g,%9.6g)",
780 fDetElemId,cluster1->Multiplicity(),(Int_t)cluster1->Charge(),
781 cluster1->Position().X(),cluster1->Position().Y()));
782
783 clusterList.Add(cluster1);
784 }
785 // AddRawCluster (parOk[indx], // double x
786 // parOk[indx+1], // double y
787 // coef*qTot, // double charge
788 // errOk[indx], // double fmin
789 // nfit0+10*nfit+100*nMax+10000*fnCoupled, // int nfit
790 // tracks, // int* tracks
791 // sigCand[0][0], // double sigx
792 // sigCand[0][1], // double sigy
793 // dist[TMath::LocMin(nfit,dist)] // double dist
794 // );
795 }
796 return nfit;
797}
798
799
800//_____________________________________________________________________________
801void
802AliMUONClusterSplitterMLEM::Split(const AliMUONCluster& cluster,
803 TH2 *mlem, Double_t *coef,
804 TObjArray& clusterList)
805{
806 /// The main steering function to work with clusters of pixels in anode
807 /// plane (find clusters, decouple them from each other, merge them (if
808 /// necessary), pick up coupled pads, call the fitting function)
809
810 Int_t nx = mlem->GetNbinsX();
811 Int_t ny = mlem->GetNbinsY();
812 Int_t nPix = fPixArray->GetEntriesFast();
813
814 Double_t cont;
815 Int_t nclust = 0, indx, indx1, nxy = ny * nx;
816 Bool_t *used = new Bool_t[nxy];
817
818 for (Int_t j = 0; j < nxy; ++j) used[j] = kFALSE;
819
820 TObjArray *clusters[200]={0};
821 TObjArray *pix;
822
823 // Find clusters of histogram bins (easier to work in 2-D space)
824 for (Int_t i = 1; i <= ny; ++i)
825 {
826 for (Int_t j = 1; j <= nx; ++j)
827 {
828 indx = (i-1)*nx + j - 1;
829 if (used[indx]) continue;
830 cont = mlem->GetCellContent(j,i);
831 if (cont < fLowestPixelCharge) continue;
832 pix = new TObjArray(20);
833 used[indx] = 1;
834 pix->Add(BinToPix(mlem,j,i));
835 AddBin(mlem, i, j, 0, used, pix); // recursive call
836 if (nclust >= 200) AliFatal(" Too many clusters !!!");
837 clusters[nclust++] = pix;
838 } // for (Int_t j=1; j<=nx; j++) {
839 } // for (Int_t i=1; i<=ny;
840 if (fDebug) cout << nclust << endl;
841 delete [] used;
842
843 // Compute couplings between clusters and clusters to pads
844 Int_t npad = cluster.Multiplicity();
845
846 // Exclude pads with overflows
847 /*
848 for (Int_t j = 0; j < npad; ++j)
849 {
850 AliMUONPad* pad = cluster.Pad(j);
851 if ( pad->IsSaturated() )
852 {
853 pad->SetStatus(-5);
854 }
855 else
856 {
857 pad->SetStatus(0);
858 }
859 }
860 */
861
862 // Compute couplings of clusters to pads (including overflows)
863 TMatrixD aijclupad(nclust,npad);
864 aijclupad = 0;
865 Int_t npxclu;
866 for (Int_t iclust = 0; iclust < nclust; ++iclust)
867 {
868 pix = clusters[iclust];
869 npxclu = pix->GetEntriesFast();
870 for (Int_t i = 0; i < npxclu; ++i)
871 {
872 indx = fPixArray->IndexOf(pix->UncheckedAt(i));
873 for (Int_t j = 0; j < npad; ++j)
874 {
875 //AliMUONPad* pad = cluster.Pad(j);
876 //if ( pad->Status() < 0 && pad->Status() != -5) continue;
877 if (coef[j*nPix+indx] < fgkCouplMin) continue;
878 aijclupad(iclust,j) += coef[j*nPix+indx];
879 }
880 }
881 }
882
883 // Compute couplings between clusters (exclude overflows)
884 TMatrixD aijcluclu(nclust,nclust);
885 aijcluclu = 0;
886 for (Int_t iclust = 0; iclust < nclust; ++iclust)
887 {
888 for (Int_t j = 0; j < npad; ++j)
889 {
890 // Exclude overflows
891 //if ( cluster.Pad(j)->Status() < 0) continue;
892 if ( cluster.Pad(j)->IsSaturated()) continue;
893 if (aijclupad(iclust,j) < fgkCouplMin) continue;
894 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++)
895 {
896 if (aijclupad(iclust1,j) < fgkCouplMin) continue;
897 aijcluclu(iclust,iclust1) +=
898 TMath::Sqrt (aijclupad(iclust,j)*aijclupad(iclust1,j));
899 }
900 }
901 }
902 for (Int_t iclust = 0; iclust < nclust; ++iclust)
903 {
904 for (Int_t iclust1 = iclust+1; iclust1 < nclust; ++iclust1)
905 {
906 aijcluclu(iclust1,iclust) = aijcluclu(iclust,iclust1);
907 }
908 }
909
910 if (fDebug && nclust > 1) aijcluclu.Print();
911
912 // Find groups of coupled clusters
913 used = new Bool_t[nclust];
914 for (Int_t j = 0; j < nclust; ++j) used[j] = kFALSE;
915
916 Int_t *clustNumb = new Int_t[nclust];
917 Int_t nCoupled, nForFit, minGroup[3], clustFit[3], nfit = 0;
918 //Double_t parOk[8];
919 Double_t parOk[8] = {0}; //AZ
920
921 for (Int_t igroup = 0; igroup < nclust; ++igroup)
922 {
923 if (used[igroup]) continue;
924 used[igroup] = kTRUE;
925 clustNumb[0] = igroup;
926 nCoupled = 1;
927 // Find group of coupled clusters
928 AddCluster(igroup, nclust, aijcluclu, used, clustNumb, nCoupled); // recursive
929
930 if (fDebug) {
931 cout << " nCoupled: " << nCoupled << endl;
932 for (Int_t i=0; i<nCoupled; ++i) cout << clustNumb[i] << " "; cout << endl;
933 }
934
935 fnCoupled = nCoupled;
936
937 while (nCoupled > 0)
938 {
939 if (nCoupled < 4)
940 {
941 nForFit = nCoupled;
942 for (Int_t i = 0; i < nCoupled; ++i) clustFit[i] = clustNumb[i];
943 }
944 else
945 {
946 // Too many coupled clusters to fit - try to decouple them
947 // Find the lowest coupling of 1, 2, min(3,nLinks/2) pixels with
948 // all the others in the group
949 for (Int_t j = 0; j < 3; ++j) minGroup[j] = -1;
950 Double_t coupl = MinGroupCoupl(nCoupled, clustNumb, aijcluclu, minGroup);
951
952 // Flag clusters for fit
953 nForFit = 0;
954 while (nForFit < 3 && minGroup[nForFit] >= 0)
955 {
956 if (fDebug) cout << clustNumb[minGroup[nForFit]] << " ";
957 clustFit[nForFit] = clustNumb[minGroup[nForFit]];
958 clustNumb[minGroup[nForFit]] -= 999;
959 nForFit++;
960 }
961 if (fDebug) cout << " nForFit " << nForFit << " " << coupl << endl;
962 } // else
963
964 // Select pads for fit.
965 if (SelectPad(cluster,nCoupled, nForFit, clustNumb, clustFit, aijclupad) < 3 && nCoupled > 1)
966 {
967 // Deselect pads
968 for (Int_t j = 0; j < npad; ++j)
969 {
970 AliMUONPad* pad = cluster.Pad(j);
971 //if ( pad->Status()==1 ) pad->SetStatus(0);
972 //if ( pad->Status()==-9) pad->SetStatus(-5);
973 if ( pad->Status() == AliMUONClusterFinderMLEM::GetUseForFitFlag() ||
974 pad->Status() == AliMUONClusterFinderMLEM::GetCoupledFlag())
975 pad->SetStatus(AliMUONClusterFinderMLEM::GetZeroFlag());
976 }
977 // Merge the failed cluster candidates (with too few pads to fit) with
978 // the one with the strongest coupling
979 Merge(cluster,nForFit, nCoupled, clustNumb, clustFit, clusters, aijcluclu, aijclupad);
980 }
981 else
982 {
983 // Do the fit
984 nfit = Fit(cluster,0, nForFit, clustFit, clusters, parOk, clusterList, mlem);
985 if (nfit == 0) {
986 //cout << " (nfit == 0) " << fNpar << " " << cluster.Multiplicity() << endl;
987 fNpar = 0; // should be 0 by itself but just in case ...
988 }
989 }
990
991 // Subtract the fitted charges from pads with strong coupling and/or
992 // return pads for further use
993 UpdatePads(cluster,nfit, parOk);
994
995 // Mark used pads
996 for (Int_t j = 0; j < npad; ++j)
997 {
998 AliMUONPad* pad = cluster.Pad(j);
999 //if ( pad->Status()==1 ) pad->SetStatus(-2);
1000 //if ( pad->Status()==-9) pad->SetStatus(-5);
1001 if ( pad->Status() == AliMUONClusterFinderMLEM::GetUseForFitFlag() )
1002 pad->SetStatus(AliMUONClusterFinderMLEM::GetModifiedFlag());
1003 }
1004
1005 // Sort the clusters (move to the right the used ones)
1006 Int_t beg = 0, end = nCoupled - 1;
1007 while (beg < end)
1008 {
1009 if (clustNumb[beg] >= 0) { ++beg; continue; }
1010 for (Int_t j = end; j > beg; --j)
1011 {
1012 if (clustNumb[j] < 0) continue;
1013 end = j - 1;
1014 indx = clustNumb[beg];
1015 clustNumb[beg] = clustNumb[j];
1016 clustNumb[j] = indx;
1017 break;
1018 }
1019 ++beg;
1020 }
1021
1022 nCoupled -= nForFit;
1023 if (nCoupled > 3)
1024 {
1025 // Remove couplings of used clusters
1026 for (Int_t iclust = nCoupled; iclust < nCoupled+nForFit; ++iclust)
1027 {
1028 indx = clustNumb[iclust] + 999;
1029 for (Int_t iclust1 = 0; iclust1 < nCoupled; ++iclust1)
1030 {
1031 indx1 = clustNumb[iclust1];
1032 aijcluclu(indx,indx1) = aijcluclu(indx1,indx) = 0;
1033 }
1034 }
1035
1036 // Update the remaining clusters couplings (subtract couplings from
1037 // the used pads) - overflows excluded
1038 for (Int_t j = 0; j < npad; ++j)
1039 {
1040 AliMUONPad* pad = cluster.Pad(j);
1041 //if ( pad->Status() != -2) continue;
1042 if ( pad->Status() != AliMUONClusterFinderMLEM::GetModifiedFlag()) continue;
1043 for (Int_t iclust=0; iclust<nCoupled; ++iclust)
1044 {
1045 indx = clustNumb[iclust];
1046 if (aijclupad(indx,j) < fgkCouplMin) continue;
1047 for (Int_t iclust1 = iclust+1; iclust1 < nCoupled; ++iclust1)
1048 {
1049 indx1 = clustNumb[iclust1];
1050 if (aijclupad(indx1,j) < fgkCouplMin) continue;
1051 // Check this
1052 aijcluclu(indx,indx1) -=
1053 TMath::Sqrt (aijclupad(indx,j)*aijclupad(indx1,j));
1054 aijcluclu(indx1,indx) = aijcluclu(indx,indx1);
1055 }
1056 }
1057 //pad->SetStatus(-8);
1058 pad->SetStatus(AliMUONClusterFinderMLEM::GetOverFlag());
1059 } // for (Int_t j=0; j<npad;
1060 } // if (nCoupled > 3)
1061 } // while (nCoupled > 0)
1062 } // for (Int_t igroup=0; igroup<nclust;
1063
1064 for (Int_t iclust = 0; iclust < nclust; ++iclust)
1065 {
1066 pix = clusters[iclust];
1067 pix->Clear();
1068 delete pix;
1069 }
1070 delete [] clustNumb;
1071 delete [] used;
1072
1073}
1074
1075//_____________________________________________________________________________
1076void
1077AliMUONClusterSplitterMLEM::Merge(const AliMUONCluster& cluster,
1078 Int_t nForFit, Int_t nCoupled,
1079 const Int_t *clustNumb, const Int_t *clustFit,
1080 TObjArray **clusters,
1081 TMatrixD& aijcluclu, TMatrixD& aijclupad)
1082{
1083 /// Merge the group of clusters with the one having the strongest coupling with them
1084
1085 Int_t indx, indx1, npxclu, npxclu1, imax=0;
1086 TObjArray *pix, *pix1;
1087 Double_t couplMax;
1088
1089 for (Int_t icl = 0; icl < nForFit; ++icl)
1090 {
1091 indx = clustFit[icl];
1092 pix = clusters[indx];
1093 npxclu = pix->GetEntriesFast();
1094 couplMax = -1;
1095 for (Int_t icl1 = 0; icl1 < nCoupled; ++icl1)
1096 {
1097 indx1 = clustNumb[icl1];
1098 if (indx1 < 0) continue;
1099 if ( aijcluclu(indx,indx1) > couplMax)
1100 {
1101 couplMax = aijcluclu(indx,indx1);
1102 imax = indx1;
1103 }
1104 } // for (Int_t icl1=0;
1105 // Add to it
1106 pix1 = clusters[imax];
1107 npxclu1 = pix1->GetEntriesFast();
1108 // Add pixels
1109 for (Int_t i = 0; i < npxclu; ++i)
1110 {
1111 pix1->Add(pix->UncheckedAt(i));
1112 pix->RemoveAt(i);
1113 }
1114
1115 //Add cluster-to-cluster couplings
1116 for (Int_t icl1 = 0; icl1 < nCoupled; ++icl1)
1117 {
1118 indx1 = clustNumb[icl1];
1119 if (indx1 < 0 || indx1 == imax) continue;
1120 aijcluclu(indx1,imax) += aijcluclu(indx,indx1);
1121 aijcluclu(imax,indx1) = aijcluclu(indx1,imax);
1122 }
1123 aijcluclu(indx,imax) = aijcluclu(imax,indx) = 0;
1124
1125 //Add cluster-to-pad couplings
1126 Int_t mult = cluster.Multiplicity();
1127 for (Int_t j = 0; j < mult; ++j)
1128 {
1129 AliMUONPad* pad = cluster.Pad(j);
1130 //if ( pad->Status() < 0 && pad->Status() != -5 ) continue;// exclude used pads
1131 if ( pad->Status() != AliMUONClusterFinderMLEM::GetZeroFlag()) continue;// exclude used pads
1132 aijclupad(imax,j) += aijclupad(indx,j);
1133 aijclupad(indx,j) = 0;
1134 }
1135 } // for (Int_t icl=0; icl<nForFit;
1136}
1137
1138
1139//_____________________________________________________________________________
1140Double_t
1141AliMUONClusterSplitterMLEM::MinGroupCoupl(Int_t nCoupled, const Int_t *clustNumb,
1142 const TMatrixD& aijcluclu, Int_t *minGroup)
1143{
1144 /// Find group of clusters with minimum coupling to all the others
1145
1146 Int_t i123max = TMath::Min(3,nCoupled/2);
1147 Int_t indx, indx1, indx2, indx3, nTot = 0;
1148 Double_t *coupl1 = 0, *coupl2 = 0, *coupl3 = 0;
1149
1150 for (Int_t i123 = 1; i123 <= i123max; ++i123) {
1151
1152 if (i123 == 1) {
1153 coupl1 = new Double_t [nCoupled];
1154 for (Int_t i = 0; i < nCoupled; ++i) coupl1[i] = 0;
1155 }
1156 else if (i123 == 2) {
1157 nTot = nCoupled*nCoupled;
1158 coupl2 = new Double_t [nTot];
1159 for (Int_t i = 0; i < nTot; ++i) coupl2[i] = 9999;
1160 } else {
1161 nTot = nTot*nCoupled;
1162 coupl3 = new Double_t [nTot];
1163 for (Int_t i = 0; i < nTot; ++i) coupl3[i] = 9999;
1164 } // else
1165
1166 for (Int_t i = 0; i < nCoupled; ++i) {
1167 indx1 = clustNumb[i];
1168 for (Int_t j = i+1; j < nCoupled; ++j) {
1169 indx2 = clustNumb[j];
1170 if (i123 == 1) {
1171 coupl1[i] += aijcluclu(indx1,indx2);
1172 coupl1[j] += aijcluclu(indx1,indx2);
1173 }
1174 else if (i123 == 2) {
1175 indx = i*nCoupled + j;
1176 coupl2[indx] = coupl1[i] + coupl1[j];
1177 coupl2[indx] -= 2 * (aijcluclu(indx1,indx2));
1178 } else {
1179 for (Int_t k = j+1; k < nCoupled; ++k) {
1180 indx3 = clustNumb[k];
1181 indx = i*nCoupled*nCoupled + j*nCoupled + k;
1182 coupl3[indx] = coupl2[i*nCoupled+j] + coupl1[k];
1183 coupl3[indx] -= 2 * (aijcluclu(indx1,indx3)+aijcluclu(indx2,indx3));
1184 }
1185 } // else
1186 } // for (Int_t j=i+1;
1187 } // for (Int_t i=0;
1188 } // for (Int_t i123=1;
1189
1190 // Find minimum coupling
1191 Double_t couplMin = 9999;
1192 Int_t locMin = 0;
1193
1194 for (Int_t i123 = 1; i123 <= i123max; ++i123) {
1195 if (i123 == 1) {
1196 locMin = TMath::LocMin(nCoupled, coupl1);
1197 couplMin = coupl1[locMin];
1198 minGroup[0] = locMin;
1199 delete [] coupl1;
1200 }
1201 else if (i123 == 2) {
1202 locMin = TMath::LocMin(nCoupled*nCoupled, coupl2);
1203 if (coupl2[locMin] < couplMin) {
1204 couplMin = coupl2[locMin];
1205 minGroup[0] = locMin/nCoupled;
1206 minGroup[1] = locMin%nCoupled;
1207 }
1208 delete [] coupl2;
1209 } else {
1210 locMin = TMath::LocMin(nTot, coupl3);
1211 if (coupl3[locMin] < couplMin) {
1212 couplMin = coupl3[locMin];
1213 minGroup[0] = locMin/nCoupled/nCoupled;
1214 minGroup[1] = locMin%(nCoupled*nCoupled)/nCoupled;
1215 minGroup[2] = locMin%nCoupled;
1216 }
1217 delete [] coupl3;
1218 } // else
1219 } // for (Int_t i123=1;
1220 return couplMin;
1221}
1222
1223//_____________________________________________________________________________
1224Int_t
1225AliMUONClusterSplitterMLEM::SelectPad(const AliMUONCluster& cluster,
1226 Int_t nCoupled, Int_t nForFit,
1227 const Int_t *clustNumb, const Int_t *clustFit,
1228 const TMatrixD& aijclupad)
1229{
1230 /// Select pads for fit. If too many coupled clusters, find pads giving
1231 /// the strongest coupling with the rest of clusters and exclude them from the fit.
1232
1233 Int_t npad = cluster.Multiplicity();
1234 Double_t *padpix = 0;
1235
1236 if (nCoupled > 3)
1237 {
1238 padpix = new Double_t[npad];
1239 for (Int_t i = 0; i < npad; ++i) padpix[i] = 0.;
1240 }
1241
1242 Int_t nOK = 0, indx, indx1;
1243 for (Int_t iclust = 0; iclust < nForFit; ++iclust)
1244 {
1245 indx = clustFit[iclust];
1246 for (Int_t j = 0; j < npad; ++j)
1247 {
1248 if ( aijclupad(indx,j) < fgkCouplMin) continue;
1249 AliMUONPad* pad = cluster.Pad(j);
1250 /*
1251 if ( pad->Status() == -5 ) pad->SetStatus(-9); // flag overflow
1252 if ( pad->Status() < 0 ) continue; // exclude overflows and used pads
1253 if ( !pad->Status() )
1254 {
1255 pad->SetStatus(1);
1256 ++nOK; // pad to be used in fit
1257 }
1258 */
1259 if ( pad->Status() != AliMUONClusterFinderMLEM::GetZeroFlag()
1260 || pad->IsSaturated() ) continue; // used pads and overflows
1261 pad->SetStatus(AliMUONClusterFinderMLEM::GetUseForFitFlag());
1262 ++nOK; // pad to be used in fit
1263
1264 if (nCoupled > 3)
1265 {
1266 // Check other clusters
1267 for (Int_t iclust1 = 0; iclust1 < nCoupled; ++iclust1)
1268 {
1269 indx1 = clustNumb[iclust1];
1270 if (indx1 < 0) continue;
1271 if ( aijclupad(indx1,j) < fgkCouplMin ) continue;
1272 padpix[j] += aijclupad(indx1,j);
1273 }
1274 } // if (nCoupled > 3)
1275 } // for (Int_t j=0; j<npad;
1276 } // for (Int_t iclust=0; iclust<nForFit
1277 if (nCoupled < 4) return nOK;
1278
1279 Double_t aaa = 0;
1280 for (Int_t j = 0; j < npad; ++j)
1281 {
1282 if (padpix[j] < fgkCouplMin) continue;
1283 aaa += padpix[j];
1284 //cluster.Pad(j)->SetStatus(-1); // exclude pads with strong coupling to the other clusters
1285 cluster.Pad(j)->SetStatus(AliMUONClusterFinderMLEM::GetCoupledFlag()); // exclude pads with strong coupling to the other clusters
1286 nOK--;
1287 }
1288 delete [] padpix;
1289 return nOK;
1290}
1291
1292//_____________________________________________________________________________
1293void
1294AliMUONClusterSplitterMLEM::UpdatePads(const AliMUONCluster& cluster,
1295 Int_t /*nfit*/, Double_t *par)
1296{
1297 /// Subtract the fitted charges from pads with strong coupling
1298
1299 Int_t indx, mult = cluster.Multiplicity(), iend = fNpar/3;
1300 Double_t charge, coef=0;
1301
1302 for (Int_t j = 0; j < mult; ++j)
1303 {
1304 AliMUONPad* pad = cluster.Pad(j);
1305 //if ( pad->Status() != -1 ) continue;
1306 if ( pad->Status() != AliMUONClusterFinderMLEM::GetCoupledFlag() ) continue;
1307 if (fNpar != 0)
1308 {
1309 charge = 0;
1310 for (Int_t i = 0; i <= iend; ++i)
1311 {
1312 // sum over hits
1313 indx = 3 * i;
1314 coef = Param2Coef(i, coef, par);
1315 charge += ChargeIntegration(par[indx],par[indx+1],*pad) * coef;
1316 }
1317 charge *= fQtot;
1318 pad->SetCharge(pad->Charge()-charge);
1319 } // if (fNpar != 0)
1320
1321 //if (pad->Charge() > 6 /*fgkZeroSuppression*/) pad->SetStatus(0);
1322 if (pad->Charge() > fLowestPadCharge) pad->SetStatus(AliMUONClusterFinderMLEM::GetZeroFlag());
1323 // return pad for further using // FIXME: remove usage of zerosuppression here
1324 else pad->SetStatus(AliMUONClusterFinderMLEM::GetOverFlag()); // do not use anymore
1325
1326 } // for (Int_t j=0;
1327}
1328
1329