]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - PHOS/AliPHOSGeometry.h
Calculation of cluster properties dep. on vertex posponed to TrackSegmentMaker
[u/mrichter/AliRoot.git] / PHOS / AliPHOSGeometry.h
... / ...
CommitLineData
1#ifndef ALIPHOSGEOMETRY_H
2#define ALIPHOSGEOMETRY_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
6/* $Id$ */
7
8//_________________________________________________________________________
9// Geometry class for PHOS : singleton
10// PHOS consists of the electromagnetic calorimeter (EMCA)
11// and a charged particle veto either in the Subatech's version (PPSD)
12// or in the IHEP's one (CPV).
13// The EMCA/PPSD/CPV modules are parametrized so that any configuration
14// can be easily implemented
15// The title is used to identify the version of CPV used.
16//
17//*-- Author: Yves Schutz (SUBATECH)
18
19// --- ROOT system ---
20
21// --- AliRoot header files ---
22
23#include "AliGeometry.h"
24#include "AliPHOSEMCAGeometry.h"
25#include "AliPHOSCPVGeometry.h"
26#include "AliPHOSSupportGeometry.h"
27
28
29class AliPHOSGeometry : public AliGeometry {
30
31public:
32
33 AliPHOSGeometry() ;
34 AliPHOSGeometry(const AliPHOSGeometry & geom) ;
35
36 virtual ~AliPHOSGeometry(void) ;
37 static AliPHOSGeometry * GetInstance(const Text_t* name, const Text_t* title="") ;
38 static AliPHOSGeometry * GetInstance() ;
39 virtual void GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos, TMatrixF & gmat) const ;
40 virtual void GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos) const ;
41 virtual Bool_t Impact(const TParticle * particle) const ;
42
43 AliPHOSGeometry & operator = (const AliPHOSGeometry & /*rvalue*/) {
44 Fatal("operator =", "not implemented") ;
45 return *this ;
46 }
47
48 // General
49
50 static TString Degre(void) { return TString("deg") ; } // a global for degree (deg)
51
52 static TString Radian(void){ return TString("rad") ; } // a global for radian (rad)
53
54 Bool_t AbsToRelNumbering(Int_t AbsId, Int_t * RelId) const ;
55 // converts the absolute PHOS numbering to a relative
56
57 void EmcModuleCoverage(Int_t m, Double_t & tm, Double_t & tM, Double_t & pm,
58 Double_t & pM, Option_t * opt = Radian() ) const ;
59 // calculates the angular coverage in theta and phi of a EMC module
60 void EmcXtalCoverage(Double_t & theta, Double_t & phi, Option_t * opt = Radian() ) const ;
61 // calculates the angular coverage in theta and phi of a
62 // single crystal in a EMC module
63 void ImpactOnEmc(Double_t theta, Double_t phi, Int_t & ModuleNumber,
64 Double_t & z, Double_t & x) const ;
65 void ImpactOnEmc(const TVector3& vec, Int_t & ModuleNumber,
66 Double_t & z, Double_t & x) const ;
67 void ImpactOnEmc(const TParticle& p, Int_t & ModuleNumber,
68 Double_t & z, Double_t & x) const ;
69 // calculates the impact coordinates of a neutral particle
70 // emitted in direction theta and phi in ALICE
71 Bool_t IsInEMC(Int_t id) const { if (id > GetNModules() * GetNCristalsInModule() ) return kFALSE; return kTRUE; }
72 void RelPosInModule(const Int_t * RelId, Float_t & y, Float_t & z) const ;
73 // gets the position of element (pad or Xtal) relative to
74 // center of PHOS module
75 void RelPosInAlice(Int_t AbsId, TVector3 & pos) const ;
76 // gets the position of element (pad or Xtal) relative to Alice
77 Bool_t RelToAbsNumbering(const Int_t * RelId, Int_t & AbsId) const ;
78 // converts the absolute PHOS numbering to a relative
79 void RelPosToAbsId(Int_t module, Double_t x, Double_t z, Int_t & AbsId) const;
80 // converts local PHOS-module (x, z) coordinates to absId
81
82 Bool_t IsInitialized(void) const { return fgInit ; }
83
84 // Return general PHOS parameters
85 Int_t GetNModules(void) const { return fNModules ; }
86 Float_t GetPHOSAngle(Int_t index) const { return fPHOSAngle[index-1] ; }
87 Float_t* GetPHOSParams(void) { return fPHOSParams;} //Half-sizes of PHOS trapecoid
88 Float_t GetIPtoUpperCPVsurface(void) const { return fIPtoUpperCPVsurface ; }
89 Float_t GetOuterBoxSize(Int_t index) const { return 2.*fPHOSParams[index]; }
90 Float_t GetCrystalSize(Int_t index) const { return fGeometryEMCA->GetCrystalSize(index) ; }
91 Float_t GetCellStep(void) const { return 2*(fGeometryEMCA->GetAirCellHalfSize()[0] +
92 fGeometryEMCA->GetStripWallWidthOut()) ;}
93
94 Float_t GetModuleCenter(Int_t module, Int_t axis) const {
95 return fModuleCenter[module][axis];}
96 Float_t GetModuleAngle(Int_t module, Int_t axis, Int_t angle) const {
97 return fModuleAngle[module][axis][angle];}
98
99
100 // Return EMCA geometry parameters
101
102 AliPHOSEMCAGeometry * GetEMCAGeometry() const {return fGeometryEMCA ;}
103 Float_t GetIPtoCrystalSurface(void) const { return fGeometryEMCA->GetIPtoCrystalSurface() ; }
104 Float_t GetIPtoOuterCoverDistance(void) const { return fGeometryEMCA->GetIPtoOuterCoverDistance() ; }
105 Int_t GetNPhi(void) const { return fGeometryEMCA->GetNPhi() ; }
106 Int_t GetNZ(void) const { return fGeometryEMCA->GetNZ() ; }
107 Int_t GetNCristalsInModule(void) const { return fGeometryEMCA->GetNPhi() * fGeometryEMCA->GetNZ() ; }
108
109 // Return CPV geometry parameters
110 Int_t GetNumberOfCPVLayers(void) const { return fGeometryCPV ->GetNumberOfCPVLayers(); }
111 Float_t GetCPVActiveSize(Int_t index) const { return fGeometryCPV->GetCPVActiveSize(index); }
112 Int_t GetNumberOfCPVChipsPhi(void) const { return fGeometryCPV->GetNumberOfCPVChipsPhi(); }
113 Int_t GetNumberOfCPVChipsZ(void) const { return fGeometryCPV->GetNumberOfCPVChipsZ(); }
114 Int_t GetNumberOfCPVPadsPhi(void) const { return fGeometryCPV->GetNumberOfCPVPadsPhi(); }
115 Int_t GetNumberOfCPVPadsZ(void) const { return fGeometryCPV->GetNumberOfCPVPadsZ(); }
116 Float_t GetPadSizePhi(void) const { return fGeometryCPV->GetCPVPadSizePhi(); }
117 Float_t GetPadSizeZ(void) const { return fGeometryCPV->GetCPVPadSizeZ(); }
118 Float_t GetGassiplexChipSize(Int_t index) const { return fGeometryCPV->GetGassiplexChipSize(index); }
119 Float_t GetCPVGasThickness(void) const { return fGeometryCPV->GetCPVGasThickness(); }
120 Float_t GetCPVTextoliteThickness(void) const { return fGeometryCPV->GetCPVTextoliteThickness(); }
121 Float_t GetCPVCuNiFoilThickness(void) const { return fGeometryCPV->GetCPVCuNiFoilThickness(); }
122 Float_t GetFTPosition(Int_t index) const { return fGeometryCPV->GetFTPosition(index); }
123 Float_t GetCPVFrameSize(Int_t index) const { return fGeometryCPV->GetCPVFrameSize(index); }
124 Float_t GetCPVBoxSize(Int_t index) const { return fGeometryCPV ->GetCPVBoxSize(index); }
125 Float_t GetIPtoCPVDistance(void) const { return GetIPtoOuterCoverDistance() -
126 GetCPVBoxSize(1) - 1.0; }
127 void GetModuleCenter(TVector3& center, const char *det, Int_t module) const;
128 void Global2Local(TVector3& localPosition,
129 const TVector3& globalPosition,
130 Int_t module) const;
131
132 // Return PHOS' support geometry parameters
133
134 Float_t GetRailOuterSize(Int_t index) const { return fGeometrySUPP->GetRailOuterSize(index); }
135 Float_t GetRailPart1 (Int_t index) const { return fGeometrySUPP->GetRailPart1 (index); }
136 Float_t GetRailPart2 (Int_t index) const { return fGeometrySUPP->GetRailPart2 (index); }
137 Float_t GetRailPart3 (Int_t index) const { return fGeometrySUPP->GetRailPart3 (index); }
138 Float_t GetRailPos (Int_t index) const { return fGeometrySUPP->GetRailPos (index); }
139 Float_t GetRailLength (void) const { return fGeometrySUPP->GetRailLength (); }
140 Float_t GetDistanceBetwRails(void) const { return fGeometrySUPP->GetDistanceBetwRails(); }
141 Float_t GetRailsDistanceFromIP(void) const { return fGeometrySUPP->GetRailsDistanceFromIP();}
142 Float_t GetRailRoadSize (Int_t index) const { return fGeometrySUPP->GetRailRoadSize (index); }
143 Float_t GetCradleWallThickness(void) const { return fGeometrySUPP->GetCradleWallThickness();}
144 Float_t GetCradleWall (Int_t index) const { return fGeometrySUPP->GetCradleWall (index); }
145 Float_t GetCradleWheel (Int_t index) const { return fGeometrySUPP->GetCradleWheel (index); }
146 void Init(void) ; // steering method for PHOS and PPSD/CPV
147
148
149protected:
150
151 AliPHOSGeometry(const Text_t* name, const Text_t* title="") ;
152private:
153
154 Int_t fNModules ; // Number of modules constituing PHOS
155 Float_t fAngle ; // Position angles between modules
156 Float_t *fPHOSAngle ; //[fNModules] Position angles of modules
157 Float_t fPHOSParams[4] ; // Half-sizes of PHOS trapecoid
158 Float_t fIPtoUpperCPVsurface; // Minimal distance from IP to PHOS
159 TObjArray *fRotMatrixArray ; // Liste of rotation matrices (one per phos module)
160 AliPHOSEMCAGeometry *fGeometryEMCA ; // Geometry object for Electromagnetic calorimeter
161 AliPHOSCPVGeometry *fGeometryCPV ; // Geometry object for CPV (IHEP)
162 AliPHOSSupportGeometry *fGeometrySUPP ; // Geometry object for PHOS support
163 Float_t fModuleCenter[5][3]; // xyz-position of the module center
164 Float_t fModuleAngle[5][3][2]; // polar and azymuth angles for 3 axes of modules
165
166 void SetPHOSAngles(); // calculates the PHOS modules PHI angle
167
168 static AliPHOSGeometry * fgGeom ; // pointer to the unique instance of the singleton
169 static Bool_t fgInit ; // Tells if geometry has been succesfully set up
170
171 ClassDef(AliPHOSGeometry,2) // PHOS geometry class
172
173} ;
174
175#endif // AliPHOSGEOMETRY_H