]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - PWGGA/CaloTrackCorrelations/AliAnaParticleHadronCorrelation.h
Cleaning up streamers
[u/mrichter/AliRoot.git] / PWGGA / CaloTrackCorrelations / AliAnaParticleHadronCorrelation.h
... / ...
CommitLineData
1#ifndef ALIANAPARTICLEHADRONCORRELATION_H
2#define ALIANAPARTICLEHADRONCORRELATION_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
6//_________________________________________________________________________
7// Class that contains the algorithm for the analysis of particle - hadron correlations
8// Particle (for example direct gamma) must be found in a previous analysis
9//-- Author: Gustavo Conesa (INFN-LNF)
10
11// Modified by Yaxian Mao:
12// 1. add the UE subtraction for corrlation study
13// 2. change the correlation variable
14// 3. Only use leading particle(cluster/track) as trigger for correlation (2010/07/02)
15// 4. Make decay photon-hadron correlations where decay contribute pi0 mass (2010/09/09)
16// 5. fill the pout to extract kt at the end, also to study charge asymmetry(2010/10/06)
17// 6. Add the possibility for event selection analysis based on vertex and multiplicity bins (10/10/2010)
18// 7. change the way of delta phi cut for UE study due to memory issue (reduce histograms)
19// 8. Add the possibility to request the absolute leading particle at the near side or not, set trigger bins, general clean-up (08/2011)
20
21// --- Analysis system ---
22#include "AliAnaCaloTrackCorrBaseClass.h"
23class AliAODPWG4ParticleCorrelation ;
24
25class AliAnaParticleHadronCorrelation : public AliAnaCaloTrackCorrBaseClass {
26
27 public:
28
29 AliAnaParticleHadronCorrelation() ; // default ctor
30 virtual ~AliAnaParticleHadronCorrelation() ; // virtual dtor
31
32 // General methods
33
34 TObjString * GetAnalysisCuts();
35
36 TList * GetCreateOutputObjects();
37
38 void InitParameters();
39
40 void FillEventMixPool() ;
41
42 void MakeAnalysisFillAOD() ;
43
44 void MakeAnalysisFillHistograms() ;
45
46 void Print(const Option_t * opt) const;
47
48 // Main analysis methods
49
50 Bool_t GetDecayPhotonMomentum(const AliAODPWG4Particle* trigger, TLorentzVector & mom1,TLorentzVector & mom2);
51
52 Bool_t MakeChargedCorrelation (AliAODPWG4ParticleCorrelation * aodParticle, const TObjArray* pl, Bool_t bFillHisto) ;
53
54 Bool_t MakeNeutralCorrelation (AliAODPWG4ParticleCorrelation * aodParticle, const TObjArray* pl, Bool_t bFillHisto) ;
55
56 void MakeMCChargedCorrelation(AliAODPWG4ParticleCorrelation * aodParticle) ;
57
58 void MakeChargedMixCorrelation(AliAODPWG4ParticleCorrelation *aodParticle) ;
59
60 // Filling histogram methods
61
62 void FillChargedAngularCorrelationHistograms (Float_t ptAssoc, Float_t ptTrig, Int_t assocBin,
63 Float_t phiAssoc, Float_t phiTrig, Float_t & deltaPhi,
64 Float_t etaAssoc, Float_t etaTrig,
65 Bool_t decay, Float_t hmpidSignal, Int_t outTOF,
66 Int_t nTracks, Int_t mcTag);
67
68 void FillChargedEventMixPool();
69
70 Bool_t FillChargedMCCorrelationHistograms (Float_t mcAssocPt, Float_t mcAssocPhi, Float_t mcAssocEta,
71 Float_t mcTrigPt, Float_t mcTrigPhi, Float_t mcTrigEta );
72
73
74 void FillChargedMomentumImbalanceHistograms (Float_t ptTrig, Float_t ptAssoc,
75 Float_t xE, Float_t hbpXE,
76 Float_t zT, Float_t hbpZT,
77 Float_t pout, Float_t deltaPhi, Int_t nTracks, Int_t charge,
78 Int_t assocBin, Bool_t decay,
79 Int_t outTOF, Int_t mcTag );
80
81 void FillChargedUnderlyingEventHistograms (Float_t ptTrig, Float_t ptAssoc,
82 Float_t deltaPhi, Int_t nTracks, Int_t outTOF);
83
84 void FillChargedUnderlyingEventSidesHistograms(Float_t ptTrig, Float_t ptAssoc,
85 Float_t deltaPhi);
86
87 void FillDecayPhotonCorrelationHistograms (Float_t ptAssoc, Float_t phiAssoc,
88 TLorentzVector mom1, TLorentzVector mom2,
89 Bool_t bChargedOrNeutral);
90
91
92 void FillNeutralAngularCorrelationHistograms (Float_t ptAssoc, Float_t ptTrig,
93 Float_t phiAssoc, Float_t phiTrig, Float_t & deltaPhi,
94 Float_t etaAssoc, Float_t etaTrig);
95
96 void FillNeutralEventMixPool();
97
98
99 void FillNeutralUnderlyingEventSidesHistograms(Float_t ptTrig, Float_t ptAssoc,
100 Float_t xE, Float_t hbpXE,
101 Float_t zT, Float_t hbpZT,
102 Float_t deltaPhi);
103
104 Int_t GetMCTagHistogramIndex(Int_t tag);
105
106 // Parameter setter and getter
107
108 Float_t GetMinimumTriggerPt() const { return fMinTriggerPt ; }
109 void SetMinimumTriggerPt(Float_t min) { fMinTriggerPt = min ; }
110
111 Float_t GetMaximumAssociatedPt() const { return fMaxAssocPt ; }
112 Float_t GetMinimumAssociatedPt() const { return fMinAssocPt ; }
113 void SetAssociatedPtRange(Float_t min, Float_t max)
114 { fMaxAssocPt = max ; fMinAssocPt = min ; }
115
116 Double_t GetDeltaPhiMaxCut() const { return fDeltaPhiMaxCut ; }
117 Double_t GetDeltaPhiMinCut() const { return fDeltaPhiMinCut ; }
118 void SetDeltaPhiCutRange(Double_t phimin, Double_t phimax)
119 { fDeltaPhiMaxCut = phimax ; fDeltaPhiMinCut = phimin ; }
120
121 // Leading Hadron
122 Double_t GetLeadHadronPhiMaxCut() const { return fMaxLeadHadPhi ; }
123 Double_t GetLeadHadronPhiMinCut() const { return fMinLeadHadPhi ; }
124 void SetLeadHadronPhiCut(Float_t min, Float_t max)
125 { fMaxLeadHadPhi = max ; fMinLeadHadPhi = min ; }
126
127 Double_t GetLeadHadronPtMinCut() const { return fMinLeadHadPt ; }
128 Double_t GetLeadHadronPtMaxCut() const { return fMaxLeadHadPt ; }
129 void SetLeadHadronPtCut(Float_t min, Float_t max)
130 { fMaxLeadHadPt = max ; fMinLeadHadPt = min ; }
131
132 Bool_t IsLeadHadronCutOn() const { return fSelectLeadingHadronAngle ; }
133 void SwitchOnLeadHadronSelection() { fSelectLeadingHadronAngle = kTRUE ; }
134 void SwitchOffLeadHadronSelection() { fSelectLeadingHadronAngle = kFALSE ; }
135
136 // UE
137
138 Double_t GetUeDeltaPhiMaxCut() const { return fUeDeltaPhiMaxCut ; }
139 Double_t GetUeDeltaPhiMinCut() const { return fUeDeltaPhiMinCut ; }
140
141 void SetUeDeltaPhiCutRange(Double_t uephimin, Double_t uephimax)
142 { fUeDeltaPhiMaxCut = uephimax ; fUeDeltaPhiMinCut = uephimin ; }
143
144 Bool_t IsSeveralUEOn() const { return fMakeSeveralUE ; }
145 void SwitchOnSeveralUECalculation() { fMakeSeveralUE = kTRUE ; }
146 void SwitchOffSeveralUECalculation() { fMakeSeveralUE = kFALSE ; }
147
148 // Do trigger-neutral correlation
149 Bool_t DoNeutralCorr() const { return fNeutralCorr ; }
150 void SwitchOnNeutralCorr() { fNeutralCorr = kTRUE ; }
151 void SwitchOffNeutralCorr() { fNeutralCorr = kFALSE ; }
152
153 // Taking the absolute leading as the trigger or not
154 Bool_t DoAbsoluteLeading() const { return fMakeAbsoluteLeading ; }
155 void SwitchOnAbsoluteLeading() { fMakeAbsoluteLeading = kTRUE ; }
156 void SwitchOffAbsoluteLeading() { fMakeAbsoluteLeading = kFALSE ; }
157
158 // Taking the near side leading as the trigger or not
159 Bool_t DoNearSideLeading() const { return fMakeNearSideLeading ; }
160 void SwitchOnNearSideLeading() { fMakeNearSideLeading = kTRUE ; }
161 void SwitchOffNearSideLeading() { fMakeNearSideLeading = kFALSE ; }
162
163 // Do decay-hadron correlation if it is pi0 trigger
164 Bool_t IsPi0Trigger() const { return fPi0Trigger ; }
165 void SwitchOnPi0TriggerDecayCorr() { fPi0Trigger = kTRUE ; }
166 void SwitchOffPi0TriggerDecayCorr() { fPi0Trigger = kFALSE ; }
167
168 Bool_t IsDecayTrigger() const { return fDecayTrigger ; }
169 void SwitchOnDecayTriggerDecayCorr() { fDecayTrigger = kTRUE ; }
170 void SwitchOffDecayTriggerDecayCorr() { fDecayTrigger = kFALSE ; }
171
172 Bool_t IsHMPIDCorrelation() const { return fHMPIDCorrelation ; }
173 void SwitchOnHMPIDCorrelation() { fHMPIDCorrelation = kTRUE ; }
174 void SwitchOffHMPIDCorrelation() { fHMPIDCorrelation = kFALSE ; }
175
176 void SwitchOnFillBradHistograms() { fFillBradHisto = kTRUE ; }
177 void SwitchOffFillBradHistograms() { fFillBradHisto = kFALSE ; }
178
179 Bool_t OnlyIsolated() const { return fSelectIsolated ; }
180 void SelectIsolated(Bool_t s) { fSelectIsolated = s ; }
181
182 void SetPi0AODBranchName(TString n) { fPi0AODBranchName = n ; }
183
184 void SetNAssocPtBins(Int_t n) ;
185 void SetAssocPtBinLimit(Int_t ibin, Float_t pt) ;
186
187 Bool_t IsMixStoredInReaderOn() const { return fUseMixStoredInReader ; }
188 void SwitchOnUseMixStoredInReader() { fUseMixStoredInReader = kTRUE ; }
189 void SwitchOffUseMixStoredInReader() { fUseMixStoredInReader = kFALSE; }
190
191 void SwitchOnFillNeutralInMixedEvent() { fFillNeutralEventMixPool = kTRUE ; }
192 void SwitchOffFillNeutralInMixedEvent(){ fFillNeutralEventMixPool = kFALSE ; }
193
194 void SetM02Cut(Float_t min=0, Float_t max=10) { fM02MinCut = min ; fM02MaxCut = max ; }
195
196 void SwitchOnCorrelationVzBin() { fCorrelVzBin = kTRUE ; }
197 void SwitchOffCorrelationVzBin() { fCorrelVzBin = kFALSE ; }
198
199 void SwitchOnFillPileUpHistograms() { fFillPileUpHistograms = kTRUE ; }
200 void SwitchOffFillPileUpHistograms() { fFillPileUpHistograms = kFALSE ; }
201
202 private:
203
204 Float_t fMinTriggerPt ; // Minimum trigger hadron pt
205 Float_t fMaxAssocPt ; // Maximum associated hadron pt
206 Float_t fMinAssocPt ; // Minimum associated hadron pt
207 Double_t fDeltaPhiMaxCut ; // Minimum Delta Phi Gamma-Hadron
208 Double_t fDeltaPhiMinCut ; // Maximum Delta Phi Gamma-Hadron
209 Bool_t fSelectIsolated ; // Select only trigger particles isolated
210 Bool_t fMakeSeveralUE ; // Do analysis for several underlying events contribution
211 Double_t fUeDeltaPhiMaxCut ; // Minimum Delta Phi Gamma-Underlying Hadron
212 Double_t fUeDeltaPhiMinCut ; // Maximum Delta Phi Gamma-Underlying Hadron
213 TString fPi0AODBranchName; // Name of AOD branch with pi0, not trigger
214 Bool_t fNeutralCorr ; // switch the analysis with neutral particles
215 Bool_t fPi0Trigger ; // switch the analysis with decay photon from pi0 trigger
216 Bool_t fDecayTrigger ; // switch the analysis with decay photon from photon trigger
217 Bool_t fMakeAbsoluteLeading ; // requesting absolute leading triggers
218 Bool_t fMakeNearSideLeading ; // requesting near side leading (+-90ยบ from trigger particle) triggers
219 Int_t fLeadingTriggerIndex ; // Store here per event the trigger index, to avoid too many loops
220 Bool_t fHMPIDCorrelation ; // Correlate with particles on HMPID or its acceptance
221 Bool_t fFillBradHisto ; // DPhi histograms calculated differently
222 Int_t fNAssocPtBins ; // Number of associated pT bins under study
223 Float_t fAssocPtBinLimit[20] ; // Associated pT under study
224 Bool_t fCorrelVzBin ; // Fill one histogram per vz bin
225
226 TList ** fListMixTrackEvents ; //![GetNCentrBin()*GetNZvertBin()*GetNRPBin()] Containers for tracks in stored events for mixing
227 TList ** fListMixCaloEvents ; //![GetNCentrBin()*GetNZvertBin()*GetNRPBin()] Containers for calo clusters in stored events for mixing
228
229 Bool_t fUseMixStoredInReader; // Signal if in the current event the pool was filled
230 Bool_t fFillNeutralEventMixPool; // Add clusters to pool if requested
231
232 Float_t fM02MaxCut ; // Study photon clusters with l0 smaller than cut
233 Float_t fM02MinCut ; // Study photon clusters with l0 larger than cut
234
235 Bool_t fFillPileUpHistograms; // Fill pile-up related histograms
236
237 Bool_t fSelectLeadingHadronAngle; // Select events with leading particle within a range
238 Float_t fMinLeadHadPhi; // Minimum angle between the trigger and leading hadron
239 Float_t fMaxLeadHadPhi; // Maximum ange between the trigger and leading hadron
240 Float_t fMinLeadHadPt; // Minimum pT of leading hadron
241 Float_t fMaxLeadHadPt; // Maximum pT of leading hadron
242
243 //Histograms
244
245 //leading particles
246 TH1F * fhPtInput; //! pT distribution of trigger particles before selection
247 TH1F * fhPtFidCut; //! pT distribution of trigger particles before leading selection, after fiducial selection
248 TH1F * fhPtLeading; //! pT distribution of leading particles
249 TH1F * fhPtLeadingVtxBC0; //! pT distribution of leading particles
250 TH1F * fhPtLeadingPileUp[7]; //! pT distribution of leading particles
251 TH2F * fhPtLeadingVzBin; //! pT distribution of leading particles vs vz bin
252 TH2F * fhPtLeadingBin; //! pT distribution of leading particles, vs mixing bin
253 TH2F * fhPhiLeading; //! phi distribution vs pT of leading particles
254 TH2F * fhEtaLeading; //! eta distribution vs pT of leading particles
255
256 TH1F * fhPtLeadingMC[6]; //! pT distribution of leading particles, check the origin of the cluster : decay photon (pi0, eta, other), merged photon (pi0), hadron, rest of photons (prompt, FSR, ISR)
257
258 TH2F * fhPtLeadingCentrality; //! pT distribution of leading particles vs centrality
259 TH2F * fhPtLeadingEventPlane; //! pT distribution of leading particles vs centrality
260 TH2F * fhLeadingEventPlaneCentrality; //! event plane vs centrality for leading particles
261
262 TH1F * fhPtLeadingMixed; //! pT distribution of leading particles, used in mixing
263 TH2F * fhPtLeadingMixedVzBin; //! pT distribution of leading particles, used in mixing, vs vz bin
264 TH2F * fhPtLeadingMixedBin; //! pT distribution of leading particles vs mixing bin
265 TH2F * fhPhiLeadingMixed; //! phi distribution vs pT of leading particles, used in mixing
266 TH2F * fhEtaLeadingMixed; //! eta distribution vs pT of leading particles, used in mixing
267
268 //trigger-charged histograms
269 TH2F * fhDeltaPhiDeltaEtaCharged ; //! differences of eta and phi between trigger and charged hadrons
270 TH2F * fhPhiCharged ; //! Phi distribution of charged particles
271 TH2F * fhEtaCharged ; //! Eta distribution of charged particles
272 TH2F * fhDeltaPhiCharged ; //! Difference of charged particle phi and trigger particle phi as function of trigger particle pT
273 TH2F * fhDeltaEtaCharged ; //! Difference of charged particle eta and trigger particle eta as function of trigger particle pT
274 TH2F * fhDeltaPhiChargedPt ; //! Difference of charged particle phi and trigger particle phi as function of charged particle pT
275 TH2F * fhDeltaPhiUeChargedPt ; //! Difference of charged particle from underlying events phi and trigger particle phi as function of charged particle pT
276 TH1F * fhUePart; //! UE particles distribution vs pt trig
277 TH2F * fhXECharged ; //! Trigger particle -charged hadron momentum imbalance histogram
278 TH2F * fhXECharged_Cone2 ; //! Trigger particle -charged hadron momentum imbalance histogram in cone2 (5pi/6-7pi/6)
279 TH2F * fhXEUeCharged ; //! Trigger particle -underlying charged hadron momentum imbalance histogram
280 TH2F * fhXEPosCharged ; //! Trigger particle -positive charged hadron momentum imbalance histogram
281 TH2F * fhXENegCharged ; //! Trigger particle -negative charged hadron momentum imbalance histogram
282 TH2F * fhPtHbpXECharged ; //! Trigger particle -charged hadron momentum HBP histogram
283 TH2F * fhPtHbpXECharged_Cone2 ; //! Trigger particle -charged hadron momentum HBP histogram in cone2 (5pi/6-7pi/6)
284 TH2F * fhPtHbpXEUeCharged ; //! Trigger particle -underlying charged hadron momentum HBP histogram
285 TH2F * fhZTCharged ; //! Trigger particle -charged hadron momentum imbalance histogram
286 TH2F * fhZTUeCharged ; //! Trigger particle -underlying charged hadron momentum imbalance histogram
287 TH2F * fhZTPosCharged ; //! Trigger particle -positive charged hadron momentum imbalance histogram
288 TH2F * fhZTNegCharged ; //! Trigger particle -negative charged hadron momentum imbalance histogram
289 TH2F * fhPtHbpZTCharged ; //! Trigger particle -charged hadron momentum HBP histogram
290 TH2F * fhPtHbpZTUeCharged ; //! Trigger particle -underlying charged hadron momentum HBP histogram
291
292 TH2F * fhXEChargedMC[7] ; //! Trigger particle -charged hadron momentum imbalance histogram, check the origin of the cluster : decay photon (pi0, eta, other), merged photon (pi0), hadron, rest of photons (prompt, FSR, ISR)
293 TH2F * fhDeltaPhiChargedMC[7] ; //! Trigger particle -charged hadron delta phi histogram, check the origin of the cluster : decay photon (pi0, eta, other), merged photon (pi0), hadron, rest of photons (prompt, FSR, ISR)
294
295 TH2F * fhDeltaPhiDeltaEtaChargedPtA3GeV;//! differences of eta and phi between trigger and charged hadrons, pTa > 3 GeV
296 TH2F * fhDeltaPhiChargedPtA3GeV ; //! Difference of charged particle phi and trigger particle phi as function of trigger particle pT, pTa > 3 GeV
297 TH2F * fhDeltaEtaChargedPtA3GeV ; //! Difference of charged particle eta and trigger particle eta as function of trigger particle pT, pTa > 3 GeV
298
299 // Events tagged as pileup by SDD,EMCal, or combination
300 TH2F * fhDeltaPhiChargedPileUp[7] ; //! Difference of charged particle phi and trigger particle phi as function of trigger particle pT
301 TH2F * fhDeltaEtaChargedPileUp[7] ; //! Difference of charged particle eta and trigger particle eta as function of trigger particle pT
302 TH2F * fhDeltaPhiChargedPtA3GeVPileUp[7] ; //! Difference of charged particle phi and trigger particle phi as function of trigger particle pT, pTa > 3 GeV
303 TH2F * fhDeltaEtaChargedPtA3GeVPileUp[7] ; //! Difference of charged particle eta and trigger particle eta as function of trigger particle pT, pTa > 3 GeV
304 TH2F * fhXEChargedPileUp[7] ; //! Trigger particle -charged hadron momentum imbalance histogram
305 TH2F * fhXEUeChargedPileUp[7] ; //! Trigger particle -charged hadron momentum imbalance histogram
306 TH2F * fhZTChargedPileUp[7] ; //! Trigger particle -charged hadron momentum imbalance histogram
307 TH2F * fhZTUeChargedPileUp[7] ; //! Trigger particle -charged hadron momentum imbalance histogram
308 TH2F * fhPtTrigChargedPileUp[7] ; //! trigger and correlated particl pt, to be used for mean value for kt
309
310 TH2F * fhDeltaPhiChargedOtherBC ; //! Difference of charged particle phi and trigger particle phi as function of trigger particle pT
311 TH2F * fhDeltaPhiChargedPtA3GeVOtherBC ; //! Difference of charged particle phi and trigger particle phi as function of trigger particle pT, pTa > 3 GeV
312 TH2F * fhXEChargedOtherBC ; //! Trigger particle -charged hadron momentum imbalance histogram
313 TH2F * fhXEUeChargedOtherBC ; //! Trigger particle -charged hadron momentum imbalance histogram
314 TH2F * fhZTChargedOtherBC ; //! Trigger particle -charged hadron momentum imbalance histogram
315 TH2F * fhZTUeChargedOtherBC ; //! Trigger particle -charged hadron momentum imbalance histogram
316 TH2F * fhPtTrigChargedOtherBC ; //! trigger and correlated particl pt, to be used for mean value for kt
317
318 TH2F * fhDeltaPhiChargedBC0 ; //! Difference of charged particle phi and trigger particle phi as function of trigger particle pT
319 TH2F * fhDeltaPhiChargedPtA3GeVBC0 ; //! Difference of charged particle phi and trigger particle phi as function of trigger particle pT, pTa > 3 GeV
320 TH2F * fhXEChargedBC0 ; //! Trigger particle -charged hadron momentum imbalance histogram
321 TH2F * fhXEUeChargedBC0 ; //! Trigger particle -charged hadron momentum imbalance histogram
322 TH2F * fhZTChargedBC0 ; //! Trigger particle -charged hadron momentum imbalance histogram
323 TH2F * fhZTUeChargedBC0 ; //! Trigger particle -charged hadron momentum imbalance histogram
324 TH2F * fhPtTrigChargedBC0 ; //! trigger and correlated particl pt, to be used for mean value for kt
325
326 TH2F * fhDeltaPhiChargedVtxBC0 ; //! Difference of charged particle phi and trigger particle phi as function of trigger particle pT
327 TH2F * fhDeltaPhiChargedPtA3GeVVtxBC0 ; //! Difference of charged particle phi and trigger particle phi as function of trigger particle pT, pTa > 3 GeV
328 TH2F * fhXEChargedVtxBC0 ; //! Trigger particle -charged hadron momentum imbalance histogram
329 TH2F * fhXEUeChargedVtxBC0 ; //! Trigger particle -charged hadron momentum imbalance histogram
330 TH2F * fhZTChargedVtxBC0 ; //! Trigger particle -charged hadron momentum imbalance histogram
331 TH2F * fhZTUeChargedVtxBC0 ; //! Trigger particle -charged hadron momentum imbalance histogram
332 TH2F * fhPtTrigChargedVtxBC0 ; //! trigger and correlated particl pt, to be used for mean value for kt
333
334 //if several UE calculation is on, most useful for jet-jet events contribution
335 TH2F * fhDeltaPhiUeLeftCharged ; //! Difference of charged particle from underlying events phi and trigger particle phi as function of charged particle pT
336 TH2F * fhDeltaPhiUeRightCharged ; //! Difference of charged particle from underlying events phi and trigger particle phi
337 TH2F * fhDeltaPhiUeLeftUpCharged; //! Difference of charged particle from underlying events phi and trigger particle phi
338 TH2F * fhDeltaPhiUeRightUpCharged; //! Difference of charged particle from underlying events phi and trigger particle phi
339 TH2F * fhDeltaPhiUeLeftDownCharged; //! Difference of charged particle from underlying events phi and trigger particle phi
340 TH2F * fhDeltaPhiUeRightDownCharged; //! Difference of charged particle from underlying events phi and trigger particle phi
341 TH2F * fhXEUeLeftCharged ; //! Trigger particle -underlying charged hadron momentum imbalance histogram
342 TH2F * fhXEUeRightCharged ; //! Trigger particle -underlying charged hadron momentum imbalance histogram
343 TH2F * fhXEUeLeftUpCharged ; //! Trigger particle -underlying charged hadron momentum imbalance histogram
344 TH2F * fhXEUeRightUpCharged ; //! Trigger particle -underlying charged hadron momentum imbalance histogram
345 TH2F * fhXEUeLeftDownCharged ; //! Trigger particle -underlying charged hadron momentum imbalance histogram
346 TH2F * fhXEUeRightDownCharged ; //! Trigger particle -underlying charged hadron momentum imbalance histogram
347 TH2F * fhPtHbpXEUeLeftCharged ; //! Trigger particle -underlying charged hadron momentum HBP histogram
348 TH2F * fhPtHbpXEUeRightCharged ; //! Trigger particle -underlying charged hadron momentum HBP histogram
349 TH2F * fhZTUeLeftCharged ; //! Trigger particle -underlying charged hadron momentum imbalance histogram
350 TH2F * fhZTUeRightCharged ; //! Trigger particle -underlying charged hadron momentum imbalance histogram
351 TH2F * fhPtHbpZTUeLeftCharged ; //! Trigger particle -underlying charged hadron momentum HBP histogram
352 TH2F * fhPtHbpZTUeRightCharged ; //! Trigger particle -underlying charged hadron momentum HBP histogram
353
354 //for pout and kt extraction
355 TH2F * fhPtTrigPout ; //! Pout =associated pt*sin(delta phi) distribution vs trigger pt
356 TH2F * fhPtTrigCharged ; //! trigger and correlated particl pt, to be used for mean value for kt
357
358 //if different multiplicity analysis asked
359 TH2F ** fhTrigDeltaPhiCharged ; //![GetMultiBin()] differences of phi between trigger and charged hadrons
360 TH2F ** fhTrigDeltaEtaCharged ; //![GetMultiBin()] differences of eta between trigger and charged hadrons
361 TH2F ** fhTrigXECorr ; //![GetMultiBin()] Trigger particle -charged hadron momentum imbalance histogram
362 TH2F ** fhTrigXEUeCorr ; //![GetMultiBin()] Trigger particle -UE charged hadron momentum imbalance histogram
363 TH2F ** fhTrigZTCorr ; //![GetMultiBin()] Trigger particle -charged hadron momentum imbalance histogram
364 TH2F ** fhTrigZTUeCorr ; //![GetMultiBin()] Trigger particle -UE charged hadron momentum imbalance histogram
365
366 TH2F * fhAssocPtBkg; //! Trigger pT vs associated pT for background
367 TH2F ** fhDeltaPhiDeltaEtaAssocPtBin; //![fNAssocPtBins*GetNZvertBin()] Difference of charged particle phi and trigger particle phi as function eta difference, for different associated bins
368 TH2F ** fhDeltaPhiAssocPtBin; //![fNAssocPtBins*GetNZvertBin()] Trigger pT vs dPhi for different associated pt bins
369 TH2F ** fhDeltaPhiAssocPtBinDEta08; //![fNAssocPtBins*GetNZvertBin()] Trigger pT vs dPhi for different associated pt bins for Delta eta > 0.8
370 TH2F ** fhDeltaPhiAssocPtBinDEta0 ; //![fNAssocPtBins*GetNZvertBin()] Trigger pT vs dPhi for different associated pt bins for Delta eta = 0
371 TH2F ** fhDeltaPhiAssocPtBinHMPID; //![fNAssocPtBins*GetNZvertBin()] Trigger pT vs dPhi for different associated pt bins, track with HMPID
372 TH2F ** fhDeltaPhiAssocPtBinHMPIDAcc; //![fNAssocPtBins*GetNZvertBin()] Trigger pT vs dPhi for different associated pt bins, track with HMPIDAcc
373 TH2F ** fhDeltaPhiBradAssocPtBin; //![fNAssocPtBins*GetNZvertBin()] Trigger pT vs dPhi Brad (?) for different associated pt bins
374 TH2F * fhDeltaPhiBrad; //! Trigger pT vs dPhi Brad (?) for different associated pt bins
375 TH2F ** fhXEAssocPtBin ; //![fNAssocPtBins*GetNZvertBin()] Trigger pT vs xE for different associated pt bins
376 TH2F ** fhZTAssocPtBin ; //![fNAssocPtBins*GetNZvertBin()] Trigger pT vs zT for different associated pt bins
377
378 //trigger-neutral histograms
379 TH2F * fhDeltaPhiDeltaEtaNeutral ; //! differences of eta and phi between trigger and neutral hadrons (pi0)
380 TH2F * fhPhiNeutral ; //! Phi distribution of neutral particles
381 TH2F * fhEtaNeutral ; //! Eta distribution of neutral particles
382 TH2F * fhDeltaPhiNeutral ; //! Difference of neutral particle phi and trigger particle phi as function of trigger particle pT
383 TH2F * fhDeltaEtaNeutral ; //! Difference of neutral particle eta and trigger particle eta as function of trigger particle pT
384 TH2F * fhDeltaPhiNeutralPt ; //! Difference of neutral particle phi and trigger particle phi as function of neutral particle particle pT
385 TH2F * fhDeltaPhiUeNeutralPt ; //! Difference of neutral particle phi and trigger particle phi as function of neutral particle particle pT
386 TH2F * fhXENeutral ; //! Trigger particle - neutral hadron momentum imbalance histogram
387 TH2F * fhXEUeNeutral ; //! Trigger particle - neutral hadron momentum imbalance histogram
388 TH2F * fhPtHbpXENeutral ; //! Trigger particle - neutral particle momentum HBP histogram
389 TH2F * fhPtHbpXEUeNeutral ; //! Trigger particle - underlying neutral hadron momentum HBP histogram
390 TH2F * fhZTNeutral ; //! Trigger particle - neutral hadron momentum imbalance histogram
391 TH2F * fhZTUeNeutral ; //! Trigger particle - neutral hadron momentum imbalance histogram
392 TH2F * fhPtHbpZTNeutral ; //! Trigger particle - neutral particle momentum HBP histogram
393 TH2F * fhPtHbpZTUeNeutral ; //! Trigger particle - underlying neutral hadron momentum HBP histogram
394
395 //if several UE calculation is on, most useful for jet-jet events contribution
396 TH2F * fhDeltaPhiUeLeftNeutral ; //! Difference of charged particle from underlying events phi and trigger particle phi as function of neutral particle pT
397 TH2F * fhDeltaPhiUeRightNeutral ; //! Difference of charged particle from underlying events phi and trigger particle phi
398 TH2F * fhXEUeLeftNeutral ; //! Trigger particle -underlying neutral hadron momentum imbalance histogram
399 TH2F * fhXEUeRightNeutral ; //! Trigger particle -underlying neutral hadron momentum imbalance histogram
400 TH2F * fhPtHbpXEUeLeftNeutral ; //! Trigger particle -underlying neutral hadron momentum HBP histogram
401 TH2F * fhPtHbpXEUeRightNeutral ; //! Trigger particle -underlying neutral hadron momentum HBP histogram
402 TH2F * fhZTUeLeftNeutral ; //! Trigger particle -underlying neutral hadron momentum imbalance histogram
403 TH2F * fhZTUeRightNeutral ; //! Trigger particle -underlying neutral hadron momentum imbalance histogram
404 TH2F * fhPtHbpZTUeLeftNeutral ; //! Trigger particle -underlying neutral hadron momentum HBP histogram
405 TH2F * fhPtHbpZTUeRightNeutral ; //! Trigger particle -underlying neutral hadron momentum HBP histogram
406
407 //for decay photon trigger correlation
408 TH2F * fhPtPi0DecayRatio ; //! for pi0 pt and ratio of decay photon pt
409 TH2F * fhDeltaPhiDecayCharged ; //! Difference of charged particle phi and decay trigger
410 TH2F * fhXEDecayCharged ; //! Trigger particle (decay from pi0)-charged hadron momentum imbalance histogram
411 TH2F * fhZTDecayCharged ; //! Trigger particle (decay from pi0)-charged hadron momentum imbalance histogram
412
413 TH2F * fhDeltaPhiDecayNeutral ; //! Difference of neutral particle phi and decay trigger
414 TH2F * fhXEDecayNeutral ; //! Trigger particle (decay from pi0)-neutral hadron momentum imbalance histogram
415 TH2F * fhZTDecayNeutral ; //! Trigger particle (decay from pi0)-neutral hadron momentum imbalance histogram
416
417 TH2F ** fhDeltaPhiDecayChargedAssocPtBin;//![fNAssocPtBins*GetNZvertBin()] Tagged as decay Trigger pT vs dPhi for different associated pt bins
418 TH2F ** fhXEDecayChargedAssocPtBin ; //![fNAssocPtBins*GetNZvertBin()] Tagged as decay Trigger pT vs xE for different associated pt bins
419 TH2F ** fhZTDecayChargedAssocPtBin ; //![fNAssocPtBins*GetNZvertBin()] Tagged as decay Trigger pT vs xE for different associated pt bins
420
421 //if the data is MC, fill MC information
422 TH2F * fh2phiLeadingParticle; //! #phi resolution for triggers
423 TH1F * fhMCPtLeading; //! MC pure pT distribution of leading particles
424 TH2F * fhMCPhiLeading; //! MC pure Phi distribution of leading particles
425 TH2F * fhMCEtaLeading; //! MC pure Eta distribution of leading particles
426 TH2F * fhMCEtaCharged; //! MC pure particles charged primary pt vs eta (both associated)
427 TH2F * fhMCPhiCharged; //! MC pure particles charged primary pt vs phi (both associated)
428 TH2F * fhMCDeltaEtaCharged; //! MC pure particles charged trigger primary pt vs delta eta (associated-trigger)
429 TH2F * fhMCDeltaPhiCharged; //! MC pure particles charged trigger primary pt vs delta phi (associated-trigger)
430 TH2F * fhMCDeltaPhiDeltaEtaCharged; //! MC pure particles charged associated primary pt vs delta phi (associated-trigger), in away side
431 TH2F * fhMCDeltaPhiChargedPt; //! MC pure particles charged delta phi vs delta eta (associated-trigger)
432 TH2F * fhMCPtXECharged; //! MC pure particles charged trigger primary pt vs xE
433 TH2F * fhMCPtXEUeCharged; //! MC pure particles charged trigger primary pt vs xE (underlying event)
434 TH2F * fhMCPtHbpXECharged; //! MC pure particles charged trigger primary pt vs ln(1/xE)
435 TH2F * fhMCPtHbpXEUeCharged; //! MC pure particles charged trigger primary pt vs ln(1/xE) (underlying event)
436 TH1F * fhMCUePart; //! MC pure UE particles distribution vs pt trig
437 TH2F * fhMCPtZTCharged; //! MC pure particles charged trigger primary pt vs zT
438 TH2F * fhMCPtHbpZTCharged; //! MC pure particles charged trigger primary pt vs ln(1/zT)
439 TH2F * fhMCPtTrigPout ; //! MC pure particles charged trigger primary pt vs pOut
440 TH2F * fhMCPtAssocDeltaPhi ; //! MC pure particles charged associated primary pt vs delta phi (associated-trigger)
441
442 // Mixing
443 TH1I * fhNEventsTrigger; //! number of analyzed triggered events
444 TH1F * fhNtracksMB; //! total number of tracks in MB events
445 TH1F * fhNclustersMB; //! total number of clusters in MB events
446 TH2F * fhMixDeltaPhiCharged ; //! Difference of charged particle phi and trigger particle phi as function of trigger particle pT
447 TH2F * fhMixDeltaPhiDeltaEtaCharged ; //! Difference of charged particle phi and trigger particle phi as function eta difference
448 TH2F * fhMixXECharged; //! xE for mixed event
449 TH2F * fhMixXEUeCharged; //! xE for mixed event in Ue region
450 TH2F * fhMixHbpXECharged; //! ln(1/xE) for mixed event
451 TH2F ** fhMixDeltaPhiChargedAssocPtBin; //![fNAssocPtBins*GetNZvertBin()] Difference of charged particle phi and trigger particle phi as function of trigger particle pT, for different associated bins
452 TH2F ** fhMixDeltaPhiChargedAssocPtBinDEta08; //![fNAssocPtBins*GetNZvertBin()] Difference of charged particle phi and trigger particle phi as function of trigger particle pT, for different associated bins, delta eta > 0.8
453 TH2F ** fhMixDeltaPhiChargedAssocPtBinDEta0; //![fNAssocPtBins*GetNZvertBin()] Difference of charged particle phi and trigger particle phi as function of trigger particle pT, for different associated bins, delta eta = 0
454 TH2F ** fhMixDeltaPhiDeltaEtaChargedAssocPtBin; //![fNAssocPtBins*GetNZvertBin()] Difference of charged particle phi and trigger particle phi as function eta difference, for different associated bins
455
456 TH1I * fhEventBin; //! Number of real events in a particular bin (cen,vz,rp)
457 TH1I * fhEventMixBin; //! Number of mixed events in a particular bin (cen,vz,rp)
458
459 AliAnaParticleHadronCorrelation( const AliAnaParticleHadronCorrelation & ph) ; // cpy ctor
460 AliAnaParticleHadronCorrelation & operator = (const AliAnaParticleHadronCorrelation & ph) ; // cpy assignment
461
462 ClassDef(AliAnaParticleHadronCorrelation,30)
463} ;
464
465
466#endif //ALIANAPARTICLEHADRONCORRELATION_H
467
468
469