]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - PWGGA/CaloTrackCorrelations/AliAnaPi0EbE.h
change histogram labels
[u/mrichter/AliRoot.git] / PWGGA / CaloTrackCorrelations / AliAnaPi0EbE.h
... / ...
CommitLineData
1#ifndef ALIANAPI0EBE_H
2#define ALIANAPI0EBE_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
6//_________________________________________________________________________
7//
8// Class for the analysis of high pT pi0 event by event
9// Pi0/Eta identified by one of the following:
10// -Invariant mass of 2 cluster in calorimeter
11// -Shower shape analysis in calorimeter
12// -Invariant mass of one cluster in calorimeter and one photon reconstructed in TPC (in near future)
13//
14//-- Author: Gustavo Conesa (INFN-LNF) & Raphaelle Ichou (SUBATECH)
15//_________________________________________________________________________
16
17
18// --- ROOT system ---
19class TList ;
20class TObjString;
21
22// --- ANALYSIS system ---
23#include "AliAnaCaloTrackCorrBaseClass.h"
24
25class AliAnaPi0EbE : public AliAnaCaloTrackCorrBaseClass {
26
27 public:
28 AliAnaPi0EbE() ; // default ctor
29 virtual ~AliAnaPi0EbE() { ; } //virtual dtor
30
31 TObjString * GetAnalysisCuts();
32
33 TList * GetCreateOutputObjects();
34
35 Int_t GetMCIndex(Int_t aodTag);
36
37 void Init();
38
39 void InitParameters();
40
41 void MakeAnalysisFillAOD() ;
42
43 void MakeAnalysisFillHistograms() ;
44
45 void Print(const Option_t * opt) const;
46
47 // Main
48
49 void FillPileUpHistograms(Float_t pt, Float_t time, AliVCluster * c) ;
50
51 void FillRejectedClusterHistograms(TLorentzVector mom, Int_t mctag, Int_t nMaxima);
52
53 void FillSelectedClusterHistograms(AliVCluster* cluster, Float_t pt,
54 Int_t nLocMax, Int_t tag,
55 Float_t asy = 0);
56
57 void FillWeightHistograms(AliVCluster *clus);
58
59 void HasPairSameMCMother(AliAODPWG4Particle * photon1,
60 AliAODPWG4Particle * photon2,
61 Int_t & label, Int_t & tag);
62
63 void MakeInvMassInCalorimeter() ;
64
65 void MakeInvMassInCalorimeterAndCTS() ;
66
67 void MakeShowerShapeIdentification() ;
68
69 //Setters Getters
70
71 //Analysis types
72 enum anaTypes {kIMCalo, kSSCalo, kIMCaloTracks};
73 anaTypes GetAnalysisType() const { return fAnaType ; }
74 void SetAnalysisType(anaTypes ana) { fAnaType = ana ; }
75
76 TString GetInputAODGammaConvName() const { return fInputAODGammaConvName ; }
77 void SetInputAODGammaConvName(TString name) { fInputAODGammaConvName = name ; }
78
79 //Only for pi0 SS identification case
80 void SetCalorimeter(TString & det) { fCalorimeter = det ; }
81
82 void SetMinDistanceToBadChannel(Float_t m1, Float_t m2, Float_t m3) {
83 fMinDist = m1; fMinDist2 = m2; fMinDist3 = m3 ; }
84
85 void SetNLMCut(Int_t min, Int_t max) { fNLMCutMin = min;
86 fNLMCutMax = max ; }
87 Int_t GetNLMCutMin() const { return fNLMCutMin ; }
88 Int_t GetNLMCutMax() const { return fNLMCutMax ; }
89
90 void SetNLMMinEnergy(Int_t i, Float_t min) { if (i < 3 && i >=0 ) fNLMECutMin[i] = min ; }
91 Float_t GetNLMMinEnergy(Int_t i) const { if( i < 3 && i >=0 ) return fNLMECutMin[i] ; else return 0 ; }
92
93 void SetTimeCut(Double_t min, Double_t max) { fTimeCutMin = min;
94 fTimeCutMax = max ; }
95 Double_t GetTimeCutMin() const { return fTimeCutMin ; }
96 Double_t GetTimeCutMax() const { return fTimeCutMax ; }
97
98 Bool_t IsTrackMatchRejectionOn() const { return fRejectTrackMatch ; }
99 void SwitchOnTrackMatchRejection() { fRejectTrackMatch = kTRUE ; }
100 void SwitchOffTrackMatchRejection() { fRejectTrackMatch = kFALSE ; }
101
102 void SwitchOnFillPileUpHistograms() { fFillPileUpHistograms = kTRUE ; }
103 void SwitchOffFillPileUpHistograms() { fFillPileUpHistograms = kFALSE ; }
104
105 void SwitchOnFillWeightHistograms() { fFillWeightHistograms = kTRUE ; }
106 void SwitchOffFillWeightHistograms() { fFillWeightHistograms = kFALSE ; }
107
108 void SwitchOnTMHistoFill() { fFillTMHisto = kTRUE ; }
109 void SwitchOffTMHistoFill() { fFillTMHisto = kFALSE ; }
110
111 void SwitchOnSelectedClusterHistoFill() { fFillSelectClHisto = kTRUE ; }
112 void SwitchOffSelectedClusterHistoFill() { fFillSelectClHisto = kFALSE ; }
113
114 void SwitchOnOnlySimpleSSHistoFill() { fFillOnlySimpleSSHisto = kTRUE ; }
115 void SwitchOffOnlySimpleHistoFill() { fFillOnlySimpleSSHisto = kFALSE ; }
116
117 void SwitchOnFillEMCALBCHistograms() { fFillEMCALBCHistograms = kTRUE ; }
118 void SwitchOffFillEMCALBCHistograms() { fFillEMCALBCHistograms = kFALSE ; }
119
120 void SwitchOnSplitClusterDistToBad() { fCheckSplitDistToBad = kTRUE ; }
121 void SwitchOffSplitClusterDistToBad() { fCheckSplitDistToBad = kFALSE ; }
122
123 //For histograms
124 enum mcTypes { kmcPhoton = 0, kmcConversion = 1, kmcPi0 = 2,
125 kmcEta = 3, kmcElectron = 4, kmcHadron = 5 };
126
127 private:
128
129 anaTypes fAnaType; // Select analysis type
130
131 //Only for pi0 SS identification case, kSSCalo
132 TString fCalorimeter ; // Calorimeter where the gamma is searched;
133 Float_t fMinDist ; // Minimal distance to bad channel to accept cluster
134 Float_t fMinDist2; // Cuts on Minimal distance to study acceptance evaluation
135 Float_t fMinDist3; // One more cut on distance used for acceptance-efficiency study
136 Int_t fNLMCutMin ; // Remove clusters/cells with number of local maxima smaller than this value
137 Int_t fNLMCutMax ; // Remove clusters/cells with number of local maxima larger than this value
138 Float_t fNLMECutMin[3] ; // Minimum energy of the cluster, depending on nlm.
139 Double_t fTimeCutMin ; // Remove clusters/cells with time smaller than this value, in ns
140 Double_t fTimeCutMax ; // Remove clusters/cells with time larger than this value, in ns
141 Bool_t fRejectTrackMatch ; // Remove clusters which have an associated TPC track
142
143 Bool_t fFillPileUpHistograms; // Fill pile-up related histograms
144 Bool_t fFillWeightHistograms ; // Fill weigth histograms
145 Bool_t fFillTMHisto; // Fill track matching plots
146 Bool_t fFillSelectClHisto; // Fill selected cluster histograms
147 Bool_t fFillOnlySimpleSSHisto; // Fill selected cluster histograms, selected SS histograms
148 Bool_t fFillEMCALBCHistograms; // Fill eta-phi BC dependent histograms
149
150 //Only for combination of calorimeter and conversion photons, kIMCaloTracks
151 TString fInputAODGammaConvName; // Name of AOD branch with conversion photons
152
153 Bool_t fCheckSplitDistToBad; // Check the distance to bad channel and to EMCal borders of split clusters
154
155 //Histograms
156
157 TH1F * fhPt ; //! Number of identified pi0/eta vs pT
158 TH1F * fhE ; //! Number of identified pi0/eta vs E
159 TH2F * fhPtEta ; //! Pt vs eta of identified pi0/eta
160 TH2F * fhPtPhi ; //! Pt vs phi of identified pi0/eta
161 TH2F * fhEtaPhi ; //! eta vs phi of identified pi0/eta
162 TH2F * fhEtaPhiEMCALBC0 ; //! Pseudorapidity vs Phi of clusters
163 TH2F * fhEtaPhiEMCALBC1 ; //! Pseudorapidity vs Phi of clusters
164 TH2F * fhEtaPhiEMCALBCN ; //! Pseudorapidity vs Phi of clusters
165
166 TH2F * fhEtaPhiTriggerEMCALBC[11] ; //! Pseudorapidity vs Phi of pi0 for E > 2
167 TH2F * fhTimeTriggerEMCALBC [11] ; //! Time distribution of pi0, when trigger is in a given BC
168 TH2F * fhTimeTriggerEMCALBCPileUpSPD[11] ; //! Time distribution of pi0, when trigger is in a given BC, tagged as pile-up SPD
169 TH2F * fhEtaPhiTriggerEMCALBCUM[11] ; //! Pseudorapidity vs Phi of pi0 for E > 2, not matched to trigger
170 TH2F * fhTimeTriggerEMCALBCUM[11] ; //! Time distribution of pi0, when trigger is in a given BC, not matched to trigger
171
172 TH2F * fhTimeTriggerEMCALBC0UMReMatchOpenTime ; //! Time distribution of pi0s in event, when trigger is not found, rematched open time trigger
173 TH2F * fhTimeTriggerEMCALBC0UMReMatchCheckNeigh ; //! Time distribution of pi0s in event, when trigger is not found, rematched with neigbour patchs
174 TH2F * fhTimeTriggerEMCALBC0UMReMatchBoth ; //! Time distribution of pi0s in event, when trigger is not found, rematched open both
175
176 TH2F * fhPtCentrality ; //! centrality vs pi0/eta pT
177 TH2F * fhPtEventPlane ; //! event plane vs pi0/eta pT
178
179 TH1F * fhPtReject ; //! Number of rejected as pi0/eta vs pT
180 TH1F * fhEReject ; //! Number of rejected as pi0/eta vs E
181 TH2F * fhPtEtaReject ; //! pT vs eta of rejected as pi0/eta
182 TH2F * fhPtPhiReject ; //! pT vs phi of rejected as pi0/eta
183 TH2F * fhEtaPhiReject ; //! eta vs phi of rejected as pi0/eta
184
185 TH2F * fhMass ; //! pair mass vs E, for all pairs
186 TH2F * fhMassPt ; //! pair mass vs pT, for all pairs
187 TH2F * fhMassSplitPt ; //! pair mass vs pT (split), for all pairs
188 TH2F * fhSelectedMass ; //! pair mass vs E, for selected pairs
189 TH2F * fhSelectedMassPt ; //! pair mass vs pT, for selected pairs
190 TH2F * fhSelectedMassSplitPt ; //! pair mass vs pT (split), for selected pairs
191
192 TH2F * fhMassPtLocMax[3] ; //! pair mass vs pT, for all pairs, for each NLM case
193 TH2F * fhSelectedMassPtLocMax[3] ; //! pair mass vs pT, for selected pairs, for each NLM case
194 TH2F * fhSelectedMassPtLocMaxSM[3][22];//! pair mass vs pT, for selected pairs, for each NLM case, for each SM
195 TH2F * fhMCSelectedMassPtLocMax[6][3] ;//! pair mass vs pT, for selected pairs, vs originating particle
196
197 TH2F * fhSelectedLambda0PtLocMaxSM[3][22];//! pair mass vs pT, for selected pairs, for each NLM case, for each SM
198
199 TH2F * fhMassNoOverlap ; //! pair mass vs E, for all pairs, no overlap
200 TH2F * fhMassPtNoOverlap ; //! pair mass vs pT, for all pairs, no overlap
201 TH2F * fhMassSplitPtNoOverlap ; //! pair mass vs pT (split), for all pairs, no overlap
202 TH2F * fhSelectedMassNoOverlap ; //! pair mass vs E, for selected pairs, no overlap
203 TH2F * fhSelectedMassPtNoOverlap ; //! pair mass vs pT, for selected pairs, no overlap
204 TH2F * fhSelectedMassSplitPtNoOverlap ; //! pair mass vs pT (split), for selected pairs, no overlap
205
206 TH2F * fhMCPi0PtRecoPtPrim; //! pt reco vs pt prim for pi0 mother
207 TH2F * fhMCEtaPtRecoPtPrim; //! pt reco vs pt prim for eta mother
208 TH2F * fhMCPi0PtRecoPtPrimNoOverlap; //! pt reco vs pt prim for pi0 mother
209 TH2F * fhMCEtaPtRecoPtPrimNoOverlap; //! pt reco vs pt prim for eta mother
210
211 TH2F * fhMCPi0SplitPtRecoPtPrim; //! pt split reco vs pt prim for pi0 mother
212 TH2F * fhMCEtaSplitPtRecoPtPrim; //! pt split reco vs pt prim for eta mother
213 TH2F * fhMCPi0SplitPtRecoPtPrimNoOverlap; //! pt split reco vs pt prim for pi0 mother
214 TH2F * fhMCEtaSplitPtRecoPtPrimNoOverlap; //! pt split reco vs pt prim for eta mother
215
216 TH2F * fhMCPi0SelectedPtRecoPtPrim; //! pt reco vs pt prim for pi0 mother
217 TH2F * fhMCEtaSelectedPtRecoPtPrim; //! pt reco vs pt prim for eta mother
218 TH2F * fhMCPi0SelectedPtRecoPtPrimNoOverlap; //! pt reco vs pt prim for pi0 mother
219 TH2F * fhMCEtaSelectedPtRecoPtPrimNoOverlap; //! pt reco vs pt prim for eta mother
220
221 TH2F * fhMCPi0SelectedSplitPtRecoPtPrim; //! pt split reco vs pt prim for pi0 mother
222 TH2F * fhMCEtaSelectedSplitPtRecoPtPrim; //! pt split reco vs pt prim for eta mother
223 TH2F * fhMCPi0SelectedSplitPtRecoPtPrimNoOverlap; //! pt split reco vs pt prim for pi0 mother
224 TH2F * fhMCEtaSelectedSplitPtRecoPtPrimNoOverlap; //! pt split reco vs pt prim for eta mother
225
226 TH2F * fhMCPi0PtRecoPtPrimLocMax[3]; //! pt reco vs pt prim for pi0 mother, vs NLM
227 TH2F * fhMCEtaPtRecoPtPrimLocMax[3]; //! pt reco vs pt prim for eta mother, vs NLM
228 TH2F * fhMCPi0SplitPtRecoPtPrimLocMax[3]; //! pt split reco vs pt prim for pi0 mother, vs NLM
229 TH2F * fhMCEtaSplitPtRecoPtPrimLocMax[3]; //! pt split reco vs pt prim for eta mother, vs NLM
230
231 TH2F * fhMCPi0SelectedPtRecoPtPrimLocMax[3]; //! pt reco vs pt prim for pi0 mother, vs NLM
232 TH2F * fhMCEtaSelectedPtRecoPtPrimLocMax[3]; //! pt reco vs pt prim for eta mother, vs NLM
233 TH2F * fhMCPi0SelectedSplitPtRecoPtPrimLocMax[3]; //! pt split reco vs pt prim for pi0 mother, vs NLM
234 TH2F * fhMCEtaSelectedSplitPtRecoPtPrimLocMax[3]; //! pt split reco vs pt prim for eta mother, vs NLM
235
236 TH2F * fhAsymmetry ; //! cluster pT vs asymmetry of 2 splitted clusters
237 TH2F * fhSelectedAsymmetry ; //! cluster pT vs asymmetry of 2 splitted clusters, for selected pairs
238 TH1F * fhSplitE ; //! split sub-cluster pair energy sum
239 TH1F * fhSplitPt ; //! split sub-cluster pair pT sum
240 TH2F * fhSplitPtEta ; //! split sub-cluster pair pT sum vs eta
241 TH2F * fhSplitPtPhi ; //! split sub-cluster pair pT sum vs phi
242 TH2F * fhNLocMaxSplitPt ; //! split sub-cluster pair pT sum, as a function of n maxima
243
244 TH1F * fhPtDecay ; //! Number of identified pi0/eta decay photons vs pT
245 TH1F * fhEDecay ; //! Number of identified pi0/eta decay photons vs E
246
247 TH2F * fhPtDispersion ; //! pT vs disp of selected cluster
248 TH2F * fhPtLambda0 ; //! pT vs lambda0 of selected cluster
249 TH2F * fhPtLambda1 ; //! pT vs lambda1 of selected cluster
250 TH2F * fhPtLambda0NoTRD ; //! pT vs lambda0 of selected cluster, not behind TRD
251 TH2F * fhPtLambda0FracMaxCellCut ;//! pT vs lambda0 of selected cluster, fraction of cluster energy in max cell cut
252 TH2F * fhPtFracMaxCell ; //! pT vs frac max cell of selected cluster
253 TH2F * fhPtFracMaxCellNoTRD ; //! pT vs frac max cell of selected cluster, not behind TRD
254 TH2F * fhPtNCells; //! pT vs N cells in selected cluster
255 TH2F * fhPtTime; //! pT vs Time of selected cluster
256 TH2F * fhEPairDiffTime; //! E pair vs Pair of clusters time difference vs E
257
258 TH2F * fhPtDispEta ; //! shower dispersion in eta direction
259 TH2F * fhPtDispPhi ; //! shower dispersion in phi direction
260 TH2F * fhLambda0DispEta[7] ; //! shower shape correlation l0 vs disp eta
261 TH2F * fhLambda0DispPhi[7] ; //! shower shape correlation l0 vs disp phi
262 TH2F * fhPtSumEta ; //! shower dispersion in eta direction
263 TH2F * fhPtSumPhi ; //! shower dispersion in phi direction
264 TH2F * fhPtSumEtaPhi ; //! shower dispersion in eta and phi direction
265 TH2F * fhPtDispEtaPhiDiff ; //! shower dispersion eta - phi
266 TH2F * fhPtSphericity ; //! shower sphericity in eta vs phi
267 TH2F * fhDispEtaDispPhi[7] ; //! shower dispersion in eta direction vs phi direction for 5 E bins [0-2],[2-4],[4-6],[6-10],[> 10]
268 TH2F * fhAsymmetryLambda0[7] ; //! E asymmetry of 2 splitted clusters vs lam0 for 5 E bins
269 TH2F * fhAsymmetryDispEta[7] ; //! E asymmetry of 2 splitted clusters vs lam0 for 5 E bins
270 TH2F * fhAsymmetryDispPhi[7] ; //! E asymmetry of 2 splitted clusters vs lam0 for 5 E bins
271
272 //MC histograms
273
274 TH2F * fhMCPtLambda0[6] ; //! pT vs lambda0 of pi0 pairs but really from MC particle
275 TH2F * fhMCPtLambda1[6] ; //! pT vs lambda1 of pi0 pairs but really from MC particle
276 TH2F * fhMCPtDispersion[6] ; //! pT vs dispersion of pi0 pairs but really from MC particle
277 TH2F * fhMCPtLambda0NoTRD[6] ; //! pT vs lambda0 of pi0 pairs but really from MC particle, not behind TRD
278 TH2F * fhMCPtLambda0FracMaxCellCut[6] ;//! pT vs lambda0 of pi0 pairs but really from MC particle, fraction of cluster energy in max cell cut
279 TH2F * fhMCPtFracMaxCell[6] ; //! pT vs fraction of max cell
280
281 TH2F * fhMCPtDispEta[6] ; //! shower dispersion in eta direction
282 TH2F * fhMCPtDispPhi[6] ; //! shower dispersion in phi direction
283 TH2F * fhMCLambda0DispEta[7][6] ; //! shower shape correlation l0 vs disp eta
284 TH2F * fhMCLambda0DispPhi[7][6] ; //! shower shape correlation l0 vs disp phi
285 TH2F * fhMCPtSumEtaPhi[6] ; //! shower dispersion in eta vs phi direction
286 TH2F * fhMCPtDispEtaPhiDiff[6] ; //! shower dispersion in eta -phi direction
287 TH2F * fhMCPtSphericity[6] ; //! shower sphericity, eta vs phi
288 TH2F * fhMCDispEtaDispPhi[7][6] ; //! shower dispersion in eta direction vs phi direction for 5 E bins [0-2],[2-4],[4-6],[6-10],[> 10]
289 TH2F * fhMCPtAsymmetry[6] ; //! E asymmetry of 2 splitted clusters vs cluster pT
290 TH2F * fhMCAsymmetryLambda0[7][6] ; //! E asymmetry of 2 splitted clusters vs lam0 for 5 E bins
291 TH2F * fhMCAsymmetryDispEta[7][6] ; //! E asymmetry of 2 splitted clusters vs lam0 for 5 E bins
292 TH2F * fhMCAsymmetryDispPhi[7][6] ; //! E asymmetry of 2 splitted clusters vs lam0 for 5 E bins
293
294 TH1F * fhMCE[6]; //! Number of identified as pi0 vs E coming from X
295 TH1F * fhMCPt[6]; //! Number of identified as pi0 vs Pt coming from X
296 TH2F * fhMCPtPhi[6]; //! pt vs phi of identified as pi0, coming from X
297 TH2F * fhMCPtEta[6]; //! pt vs eta of identified as pi0, coming from X
298 TH1F * fhMCEReject[6]; //! Number of rejected as pi0 vs E coming from X
299 TH1F * fhMCPtReject[6]; //! Number of rejected as pi0 vs Pt coming from X
300
301 TH1F * fhMCSplitE[6]; //! Number of identified as pi0 vs sum E split coming from X
302 TH1F * fhMCSplitPt[6]; //! Number of identified as pi0 vs sum Pt split coming from X
303 TH2F * fhMCSplitPtPhi[6]; //! pt vs phi of identified as pi0, coming from X
304 TH2F * fhMCSplitPtEta[6]; //! pt vs eta of identified as pi0, coming from X
305 TH2F * fhMCNLocMaxSplitPt[6]; //! Number of identified as pi0 vs sum Pt split coming from X, for different NLM
306
307 TH2F * fhMCMassPt[6]; //! pair pT vs Mass coming from X
308 TH2F * fhMCMassSplitPt[6]; //! pair pT (split) vs Mass coming from X
309 TH2F * fhMCSelectedMassPt[6]; //! selected pair pT vs Mass coming from X
310 TH2F * fhMCSelectedMassSplitPt[6]; //! selected pair pT (split) vs Mass coming from X
311
312 TH2F * fhMCMassPtNoOverlap[6]; //! pair pT vs Mass coming from X, no random particles overlap
313 TH2F * fhMCMassSplitPtNoOverlap[6]; //! pair pT (split) vs Mass coming from X, no random particles overlap
314 TH2F * fhMCSelectedMassPtNoOverlap[6]; //! selected pair pT vs Mass coming from X, no random particles overlap
315 TH2F * fhMCSelectedMassSplitPtNoOverlap[6]; //! selected pair pT (split) vs Mass coming from X, no random particles overlap
316
317 TH2F * fhMCPtCentrality[6] ; //! centrality vs pi0/eta pT coming from X
318
319 TH2F * fhMCPi0PtGenRecoFraction; //! SS id, clusters id as pi0 (eta), coming from 2 photon, pi0 primary, pt vs E prim pi0 / E reco
320 TH2F * fhMCEtaPtGenRecoFraction; //! SS id, clusters id as pi0 (eta), coming from 2 photon, eta primary, pt vs E prim eta / E reco
321 TH1F * fhMCPi0DecayPt; //! SS id, clusters id as pi0 (eta), coming from 1 photon, pi0 decay primary, pt
322 TH2F * fhMCPi0DecayPtFraction; //! SS id, clusters id as pi0 (eta), coming from 1 photon, pi0 decay primary, pt vs pt decay / pt mother
323 TH1F * fhMCEtaDecayPt; //! SS id, clusters id as pi0 (eta), coming from 1 photon, eta decay primary, pt
324 TH2F * fhMCEtaDecayPtFraction; //! SS id, clusters id as pi0 (eta), coming from 1 photon, eta decay primary, pt vs pt decay / pt mother
325 TH1F * fhMCOtherDecayPt; //! SS id, clusters id as pi0 (eta), coming from 1 photon, other decay primary, pt
326
327 TH2F * fhMassPairMCPi0; //! pair mass, origin is same pi0
328 TH2F * fhMassPairMCEta; //! pair mass, origin is same eta
329 TH2F * fhAnglePairMCPi0; //! pair opening angle, origin is same pi0
330 TH2F * fhAnglePairMCEta; //! pair opening angle, origin is same eta
331
332 TH2F * fhMCPi0PtOrigin ; //! Mass of reoconstructed pi0 pairs in calorimeter vs mother
333 TH2F * fhMCEtaPtOrigin ; //! Mass of reoconstructed pi0 pairs in calorimeter vs mother
334 TH2F * fhMCPi0ProdVertex; //! Spectrum of selected pi0 vs production vertex
335 TH2F * fhMCEtaProdVertex; //! Spectrum of selected eta vs production vertex
336
337 // Weight studies
338
339 TH2F * fhECellClusterRatio; //! e cell / e cluster vs e cluster for selected photons
340 TH2F * fhECellClusterLogRatio; //! log (e cell / e cluster) vs e cluster for selected photons
341 TH2F * fhEMaxCellClusterRatio; //! e max cell / e cluster vs e cluster for selected photons
342 TH2F * fhEMaxCellClusterLogRatio;//! log (e max cell / e cluster) vs e cluster for selected photons
343 TH2F * fhLambda0ForW0[14]; //! L0 for 7 defined w0= 3, 3.5 ... 6 for selected photons
344 //TH2F * fhLambda1ForW0[7]; //! L1 for 7 defined w0= 3, 3.5 ... 6 for selected photons
345
346 // Track Matching
347 TH2F * fhTrackMatchedDEta ; //! Eta distance between track and cluster vs cluster E
348 TH2F * fhTrackMatchedDPhi ; //! Phi distance between track and cluster vs cluster E
349 TH2F * fhTrackMatchedDEtaDPhi ; //! Eta vs Phi distance between track and cluster, E cluster > 0.5 GeV
350 TH2F * fhTrackMatchedDEtaPos ; //! Eta distance between track and cluster vs cluster E
351 TH2F * fhTrackMatchedDPhiPos ; //! Phi distance between track and cluster vs cluster E
352 TH2F * fhTrackMatchedDEtaDPhiPos ; //! Eta vs Phi distance between track and cluster, E cluster > 0.5 GeV
353 TH2F * fhTrackMatchedDEtaNeg ; //! Eta distance between track and cluster vs cluster E
354 TH2F * fhTrackMatchedDPhiNeg ; //! Phi distance between track and cluster vs cluster E
355 TH2F * fhTrackMatchedDEtaDPhiNeg ; //! Eta vs Phi distance between track and cluster, E cluster > 0.5 GeV
356
357 TH2F * fhTrackMatchedMCParticlePt; //! Trace origin of matched particle, energy
358 TH2F * fhTrackMatchedMCParticleDEta; //! Trace origin of matched particle, eta residual
359 TH2F * fhTrackMatchedMCParticleDPhi; //! Trace origin of matched particle, phi residual
360 TH2F * fhdEdx ; //! matched track dEdx vs cluster E
361 TH2F * fhEOverP; //! matched track E cluster over P track vs cluster E
362 TH2F * fhEOverPNoTRD; //! matched track E cluster over P track vs cluster E, not behind TRD
363
364 // Local maxima
365 TH2F * fhNLocMaxPt; //! number of maxima in selected clusters
366 TH2F * fhNLocMaxPtSM[22] ; //! number of maxima in selected clusters, per super module
367 TH2F * fhMCNLocMaxPt[6]; //! number of maxima in selected clusters, vs originating particle
368 TH2F * fhPtLambda0LocMax[3] ; //! pT vs lambda0 of selected cluster, 1,2,>2 local maxima in cluster
369 TH2F * fhMCPtLambda0LocMax[6][3] ;//! pT vs lambda0 of selected cluster, 1,2,>2 local maxima in cluster, vs originating particle
370 TH2F * fhPtLambda1LocMax[3] ; //! pT vs lambda1 of selected cluster, 1,2,>2 local maxima in cluster
371 TH2F * fhPtDispersionLocMax[3] ; //! pT vs lambda1 of selected cluster, 1,2,>2 local maxima in cluster
372 TH2F * fhPtDispEtaLocMax[3] ; //! pT vs eta dispersion of selected cluster, 1,2,>2 local maxima in cluster
373 TH2F * fhPtDispPhiLocMax[3] ; //! pT vs phi dispersion of selected cluster, 1,2,>2 local maxima in cluster
374 TH2F * fhPtSumEtaPhiLocMax[3] ; //! pT vs dispersion in eta and phi direction
375 TH2F * fhPtDispEtaPhiDiffLocMax[3] ; //! pT vs dispersion eta - phi
376 TH2F * fhPtSphericityLocMax[3] ; //! pT vs sphericity in eta vs phi
377 TH2F * fhPtAsymmetryLocMax[3] ; //! E asymmetry of 2 splitted clusters vs cluster E for different NLM
378
379 TH2F * fhMassPairLocMax[8]; //! pair mass, origin is same pi0, combine clusters depending on number of maxima
380
381 TH2F * fhNLocMaxPtReject; //! number of maxima in selected clusters
382 TH2F * fhMCNLocMaxPtReject[6]; //! number of maxima in selected clusters
383
384 // Pile-up
385 TH1F * fhPtPileUp[7]; //! pT distribution of selected pi0/eta
386 TH2F * fhPtCellTimePileUp[7]; //! pT vs Time inside cluster, before any selection, not max cell
387 TH2F * fhPtTimeDiffPileUp[7]; //! pT vs Time difference inside cluster, before any selection
388 TH2F * fhTimePtNoCut; //! time of cluster vs pT, no cut
389 TH2F * fhTimePtSPD; //! time of cluster vs pT, IsSPDPileUp
390 TH2F * fhTimePtSPDMulti; //! time of cluster vs pT, IsSPDPileUpMulti
391 TH2F * fhTimeNPileUpVertSPD; //! time of cluster vs n pile-up vertices from SPD
392 TH2F * fhTimeNPileUpVertTrack; //! time of cluster vs n pile-up vertices from Tracks
393 TH2F * fhTimeNPileUpVertContributors; //! time of cluster vs n pile-up vertex from SPD contributors
394 TH2F * fhTimePileUpMainVertexZDistance; //! time of cluster vs difference of z main vertex and pile-up vertex
395 TH2F * fhTimePileUpMainVertexZDiamond; //! time of cluster vs difference of z diamond and pile-up vertex
396
397 TH2F * fhPtNPileUpSPDVtx; //! cluster pt vs number of spd pile-up vertices
398 TH2F * fhPtNPileUpTrkVtx; //! cluster pt vs number of track pile-up vertices
399 TH2F * fhPtNPileUpSPDVtxTimeCut; //! cluster pt vs number of spd pile-up vertices, time cut +-25 ns
400 TH2F * fhPtNPileUpTrkVtxTimeCut; //! cluster pt vs number of track pile-up vertices, time cut +- 25 ns
401 TH2F * fhPtNPileUpSPDVtxTimeCut2; //! cluster pt vs number of spd pile-up vertices, time cut +-75 ns
402 TH2F * fhPtNPileUpTrkVtxTimeCut2; //! cluster pt vs number of track pile-up vertices, time cut +- 75 ns
403
404 AliAnaPi0EbE( const AliAnaPi0EbE & pi0ebe) ; // cpy ctor
405 AliAnaPi0EbE & operator = (const AliAnaPi0EbE & pi0ebe) ; // cpy assignment
406
407 ClassDef(AliAnaPi0EbE,38)
408} ;
409
410
411#endif //ALIANAPI0EBE_H
412
413
414