]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - STAT/TKDNodeInfo.cxx
Update of centrality code - write the histos only for MB events (Alberica)
[u/mrichter/AliRoot.git] / STAT / TKDNodeInfo.cxx
... / ...
CommitLineData
1////////////////////////////////////////////////////////
2//
3// Bucket representation for TKDInterpolator(Base)
4//
5// The class store data and provides the interface to draw and print.
6// The bucket - generalized histogram bin in N dimensions is represented by unprocessed data like
7// - experimental PDF value and statistical error
8// - COG position (n-tuplu)
9// - boundaries
10// and interpolated data like
11// - parameters of the local parabolic fit
12// - their covariance matrix
13//
14// For drawing 2D projections the helper class TKDNodeInfo::TKDNodeDraw is used.
15//
16// Author Alexandru Bercuci <A.Bercuci@gsi.de>
17//
18////////////////////////////////////////////////////////
19
20#include "TKDNodeInfo.h"
21
22#include "TVectorD.h"
23#include "TMatrixD.h"
24#include "TRandom.h"
25#include "TMath.h"
26
27ClassImp(TKDNodeInfo)
28ClassImp(TKDNodeInfo::TKDNodeDraw)
29
30
31//_________________________________________________________________
32TKDNodeInfo::TKDNodeInfo(Int_t dim):
33 TObject()
34 ,fNDim(3*dim)
35 ,fData(NULL)
36 ,fNpar(0)
37 ,fNcov(0)
38 ,fPar(NULL)
39 ,fCov(NULL)
40{
41 // Default constructor
42 fVal[0] = 0.; fVal[1] = 0.;
43 Build(dim);
44}
45
46//_________________________________________________________________
47TKDNodeInfo::TKDNodeInfo(const TKDNodeInfo &ref):
48 TObject((TObject&) ref)
49 ,fNDim(ref.fNDim)
50 ,fData(NULL)
51 ,fNpar(0)
52 ,fNcov(0)
53 ,fPar(NULL)
54 ,fCov(NULL)
55{
56 // Copy constructor
57 Build(fNDim/3);
58
59 fData = new Float_t[fNDim];
60 memcpy(fData, ref.fData, fNDim*sizeof(Float_t));
61 fVal[0] = ref.fVal[0];
62 fVal[1] = ref.fVal[1];
63 if(ref.fNpar&&ref.fPar){
64 fNpar = ref.fNpar;
65 fPar=new Double_t[fNpar];
66 memcpy(fPar, ref.fPar, fNpar*sizeof(Double_t));
67 }
68 if(ref.fNcov && ref.fCov){
69 fNcov = ref.fNcov;
70 fCov=new Double_t[fNcov];
71 memcpy(fCov, ref.fCov, fNcov*sizeof(Double_t));
72 }
73}
74
75
76//_________________________________________________________________
77TKDNodeInfo::~TKDNodeInfo()
78{
79 // Destructor
80 if(fData) delete [] fData;
81 if(fPar) delete [] fPar;
82 if(fCov) delete [] fCov;
83}
84
85//_________________________________________________________________
86TKDNodeInfo& TKDNodeInfo::operator=(const TKDNodeInfo & ref)
87{
88// Info("operator==()", "...");
89
90 Int_t ndim = fNDim/3;
91 if(fNDim != ref.fNDim){
92 fNDim = ref.fNDim;
93 Build(ndim);
94 }
95 memcpy(fData, ref.fData, fNDim*sizeof(Float_t));
96 fVal[0] = ref.fVal[0];
97 fVal[1] = ref.fVal[1];
98 if(ref.fNpar&&ref.fPar){
99 fNpar = ref.fNpar;
100 fPar=new Double_t[fNpar];
101 memcpy(fPar, ref.fPar, fNpar*sizeof(Double_t));
102 }
103 if(ref.fNcov && ref.fCov){
104 fNcov = ref.fNcov;
105 fCov=new Double_t[fNcov];
106 memcpy(fCov, ref.fCov, fNcov*sizeof(Double_t));
107 }
108 return *this;
109}
110
111//_________________________________________________________________
112void TKDNodeInfo::Build(Int_t dim)
113{
114// Allocate/Reallocate space for this node.
115
116// Info("Build()", "...");
117
118 if(!dim) return;
119 fNDim = 3*dim;
120 if(fData) delete [] fData;
121 fData = new Float_t[fNDim];
122 return;
123}
124
125//_________________________________________________________________
126void TKDNodeInfo::Bootstrap()
127{
128 if(!fNpar || !fPar) return;
129
130 Int_t ndim = Int_t(.5*(TMath::Sqrt(1.+8.*fNpar)-1.))-1;
131 fNDim = 3*ndim;
132}
133
134//_________________________________________________________________
135void TKDNodeInfo::SetNode(Int_t ndim, Float_t *data, Float_t *pdf)
136{
137 Build(ndim);
138 memcpy(fData, data, fNDim*sizeof(Float_t));
139 fVal[0]=pdf[0]; fVal[1]=pdf[1];
140}
141
142
143//_________________________________________________________________
144void TKDNodeInfo::Print(const Option_t *opt) const
145{
146 // Print the content of the node
147 Int_t dim = Int_t(fNDim/3.);
148 printf("x[");
149 for(int idim=0; idim<dim; idim++) printf("%f ", fData?fData[idim]:0.);
150 printf("] f = [%f +- %f]\n", fVal[0], fVal[1]);
151
152 if(fData){
153 Float_t *bounds = &fData[dim];
154 printf("range[");
155 for(int idim=0; idim<dim; idim++) printf("(%f %f) ", bounds[2*idim], bounds[2*idim+1]);
156 printf("]\n");
157 }
158 if(strcmp(opt, "a")!=0) return;
159
160 if(fNpar){
161 printf("Fit parameters : \n");
162 for(int ip=0; ip<fNpar; ip++) printf("p%d[%f] ", ip, fPar[ip]);
163 printf("\n");
164 }
165 if(!fNcov) return;
166 for(int ip(0), n(0); ip<fNpar; ip++){
167 for(int jp(ip); jp<fNpar; jp++) printf("c(%d %d)[%f] ", ip, jp, fCov[n++]);
168 printf("\n");
169 }
170}
171
172//_________________________________________________________________
173void TKDNodeInfo::Store(TVectorD const *par, TMatrixD const *cov)
174{
175// Store the parameters and the covariance in the node
176
177 if(!fPar){SetNpar(); fPar = new Double_t[fNpar];}
178 for(int ip=0; ip<fNpar; ip++) fPar[ip] = (*par)[ip];
179
180 if(!cov) return;
181 if(!fCov){SetNcov(); fCov = new Double_t[fNcov];}
182 for(int ip(0), np(0); ip<fNpar; ip++)
183 for(int jp=ip; jp<fNpar; jp++) fCov[np++] = (*cov)(ip,jp);
184}
185
186//_________________________________________________________________
187Bool_t TKDNodeInfo::CookPDF(const Double_t *point, Double_t &result, Double_t &error) const
188{
189// Recalculate the PDF for one node from the results of interpolation (parameters and covariance matrix)
190
191 Int_t ndim = Int_t(fNDim/3.);
192 if(ndim>10) return kFALSE; // support only up to 10 dimensions
193 //printf("ndim[%d] npar[%d] ncov[%d]\n", ndim, fNpar, fNcov);
194
195 Double_t fdfdp[66]; memset(fdfdp, 0, ndim*sizeof(Double_t));
196 Int_t ipar = 0;
197 fdfdp[ipar++] = 1.;
198 for(int idim=0; idim<ndim; idim++){
199 fdfdp[ipar++] = point[idim];
200 for(int jdim=idim; jdim<ndim; jdim++) fdfdp[ipar++] = point[idim]*point[jdim];
201 }
202
203 // calculate estimation
204 result =0.; error = 0.;
205 for(int i=0; i<fNpar; i++) result += fdfdp[i]*fPar[i];
206 if(!fNcov) return kTRUE;
207
208 for(int i(0), n(0); i<fNpar; i++){
209 error += fdfdp[i]*fdfdp[i]*fCov[n++];
210 for(int j(i+1); j<fNpar; j++) error += 2.*fdfdp[i]*fdfdp[j]*fCov[n++];
211 }
212 error = TMath::Sqrt(error);
213
214 //printf("TKDNodeInfo::CookPDF() : %6.3f +- %6.3f\n", result, error);
215
216 return kTRUE;
217}
218
219
220
221//_________________________________________________________________
222TKDNodeInfo::TKDNodeDraw::TKDNodeDraw()
223 :TBox()
224 ,fCOG()
225 ,fNode(NULL)
226{
227 SetFillStyle(3002);
228 SetFillColor(50+Int_t(gRandom->Uniform()*50.));
229
230 fCOG.SetMarkerStyle(3);
231 fCOG.SetMarkerSize(.7);
232 fCOG.SetMarkerColor(2);
233}
234
235
236//_________________________________________________________________
237void TKDNodeInfo::TKDNodeDraw::Draw(Option_t* option)
238{
239 TBox::Draw(option);
240 fCOG.Draw("p");
241}
242
243//_________________________________________________________________
244void TKDNodeInfo::TKDNodeDraw::SetNode(TKDNodeInfo *node, UChar_t size, UChar_t ax1, UChar_t ax2)
245{
246 fNode=node;
247 const Float_t kBorder = 0.;//1.E-4;
248 Float_t *bounds = &(node->Data()[size]);
249 fX1=bounds[2*ax1]+kBorder;
250 fX2=bounds[2*ax1+1]-kBorder;
251 fY1=bounds[2*ax2]+kBorder;
252 fY2=bounds[2*ax2+1]-kBorder;
253
254 Float_t x(node->Data()[ax1]), y(node->Data()[ax2]);
255 fCOG.SetX(x); fCOG.SetY(y);
256}
257
258
259//_________________________________________________________________
260void TKDNodeInfo::TKDNodeDraw::Print(const Option_t* option) const
261{
262 if(!fNode) return;
263 fNode->Print(option);
264}