]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - STEER/AliMagF.cxx
Quick fix for bug 71658
[u/mrichter/AliRoot.git] / STEER / AliMagF.cxx
... / ...
CommitLineData
1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16
17#include <TClass.h>
18#include <TFile.h>
19#include <TSystem.h>
20#include <TPRegexp.h>
21
22#include "AliMagF.h"
23#include "AliMagWrapCheb.h"
24#include "AliLog.h"
25
26ClassImp(AliMagF)
27
28const Double_t AliMagF::fgkSol2DipZ = -700.;
29const UShort_t AliMagF::fgkPolarityConvention = AliMagF::kConvLHC;
30/*
31 Explanation for polarity conventions: these are the mapping between the
32 current signs and main field components in L3 (Bz) and Dipole (Bx) (in Alice frame)
33 1) kConvMap2005: used for the field mapping in 2005
34 positive L3 current -> negative Bz
35 positive Dip current -> positive Bx
36 2) kConvMapDCS2008: defined by the microswitches/cabling of power converters as of 2008 - 1st half 2009
37 positive L3 current -> positive Bz
38 positive Dip current -> positive Bx
39 3) kConvLHC : defined by LHC
40 positive L3 current -> positive Bz
41 positive Dip current -> negative Bx
42
43 Note: only "negative Bz(L3) with postive Bx(Dipole)" and its inverse was mapped in 2005. Hence
44 the GRP Manager will reject the runs with the current combinations (in the convention defined by the
45 static Int_t AliMagF::GetPolarityConvention()) which do not lead to such field polarities.
46
47 -----------------------------------------------
48
49 Explanation on integrals in the TPC region
50 GetTPCInt(xyz,b) and GetTPCRatInt(xyz,b) give integrals from point (x,y,z) to point (x,y,0)
51 (irrespectively of the z sign) of the following:
52 TPCInt: b contains int{bx}, int{by}, int{bz}
53 TPCRatInt: b contains int{bx/bz}, int{by/bz}, int{(bx/bz)^2+(by/bz)^2}
54
55 The same applies to integral in cylindrical coordinates:
56 GetTPCIntCyl(rphiz,b)
57 GetTPCIntRatCyl(rphiz,b)
58 They accept the R,Phi,Z coordinate (-pi<phi<pi) and return the field
59 integrals in cyl. coordinates.
60
61 Thus, to compute the integral from arbitrary xy_z1 to xy_z2, one should take
62 b = b1-b2 with b1 and b2 coming from GetTPCInt(xy_z1,b1) and GetTPCInt(xy_z2,b2)
63
64 Note: the integrals are defined for the range -300<Z<300 and 0<R<300
65*/
66//_______________________________________________________________________
67AliMagF::AliMagF():
68 TVirtualMagField(),
69 fMeasuredMap(0),
70 fMapType(k5kG),
71 fSolenoid(0),
72 fBeamType(kNoBeamField),
73 fBeamEnergy(0),
74 //
75 fInteg(0),
76 fPrecInteg(0),
77 fFactorSol(1.),
78 fFactorDip(1.),
79 fMax(15),
80 fDipoleOFF(kFALSE),
81 //
82 fQuadGradient(0),
83 fDipoleField(0),
84 fCCorrField(0),
85 fACorr1Field(0),
86 fACorr2Field(0),
87 fParNames("","")
88{
89 // Default constructor
90 //
91}
92
93//_______________________________________________________________________
94AliMagF::AliMagF(const char *name, const char* title, Double_t factorSol, Double_t factorDip,
95 BMap_t maptype, BeamType_t bt, Double_t be,Int_t integ, Double_t fmax, const char* path):
96 TVirtualMagField(name),
97 fMeasuredMap(0),
98 fMapType(maptype),
99 fSolenoid(0),
100 fBeamType(bt),
101 fBeamEnergy(be),
102 //
103 fInteg(integ),
104 fPrecInteg(1),
105 fFactorSol(1.),
106 fFactorDip(1.),
107 fMax(fmax),
108 fDipoleOFF(factorDip==0.),
109 //
110 fQuadGradient(0),
111 fDipoleField(0),
112 fCCorrField(0),
113 fACorr1Field(0),
114 fACorr2Field(0),
115 fParNames("","")
116{
117 // Initialize the field with Geant integration option "integ" and max field "fmax,
118 // Impose scaling of parameterized L3 field by factorSol and of dipole by factorDip.
119 // The "be" is the energy of the beam in GeV/nucleon
120 //
121 SetTitle(title);
122 if(integ<0 || integ > 2) {
123 AliWarning(Form("Invalid magnetic field flag: %5d; Helix tracking chosen instead",integ));
124 fInteg = 2;
125 }
126 if (fInteg == 0) fPrecInteg = 0;
127 //
128 if (fBeamEnergy<=0 && fBeamType!=kNoBeamField) {
129 if (fBeamType == kBeamTypepp) fBeamEnergy = 7000.; // max proton energy
130 else if (fBeamType == kBeamTypeAA) fBeamEnergy = 2750; // max PbPb energy
131 AliInfo("Maximim possible beam energy for requested beam is assumed");
132 }
133 const char* parname = 0;
134 //
135 if (fMapType == k2kG) parname = fDipoleOFF ? "Sol12_Dip0_Hole":"Sol12_Dip6_Hole";
136 else if (fMapType == k5kG) parname = fDipoleOFF ? "Sol30_Dip0_Hole":"Sol30_Dip6_Hole";
137 else if (fMapType == k5kGUniform) parname = "Sol30_Dip6_Uniform";
138 else AliFatal(Form("Unknown field identifier %d is requested\n",fMapType));
139 //
140 SetDataFileName(path);
141 SetParamName(parname);
142 //
143 LoadParameterization();
144 InitMachineField(fBeamType,fBeamEnergy);
145 double xyz[3]={0.,0.,0.};
146 fSolenoid = GetBz(xyz);
147 SetFactorSol(factorSol);
148 SetFactorDip(factorDip);
149 Print("a");
150}
151
152//_______________________________________________________________________
153AliMagF::AliMagF(const AliMagF &src):
154 TVirtualMagField(src),
155 fMeasuredMap(0),
156 fMapType(src.fMapType),
157 fSolenoid(src.fSolenoid),
158 fBeamType(src.fBeamType),
159 fBeamEnergy(src.fBeamEnergy),
160 fInteg(src.fInteg),
161 fPrecInteg(src.fPrecInteg),
162 fFactorSol(src.fFactorSol),
163 fFactorDip(src.fFactorDip),
164 fMax(src.fMax),
165 fDipoleOFF(src.fDipoleOFF),
166 fQuadGradient(src.fQuadGradient),
167 fDipoleField(src.fDipoleField),
168 fCCorrField(src.fCCorrField),
169 fACorr1Field(src.fACorr1Field),
170 fACorr2Field(src.fACorr2Field),
171 fParNames(src.fParNames)
172{
173 if (src.fMeasuredMap) fMeasuredMap = new AliMagWrapCheb(*src.fMeasuredMap);
174}
175
176//_______________________________________________________________________
177AliMagF::~AliMagF()
178{
179 delete fMeasuredMap;
180}
181
182//_______________________________________________________________________
183Bool_t AliMagF::LoadParameterization()
184{
185 if (fMeasuredMap) {
186 AliFatal(Form("Field data %s are already loaded from %s\n",GetParamName(),GetDataFileName()));
187 }
188 //
189 char* fname = gSystem->ExpandPathName(GetDataFileName());
190 TFile* file = TFile::Open(fname);
191 if (!file) {
192 AliFatal(Form("Failed to open magnetic field data file %s\n",fname));
193 }
194 //
195 fMeasuredMap = dynamic_cast<AliMagWrapCheb*>(file->Get(GetParamName()));
196 if (!fMeasuredMap) {
197 AliFatal(Form("Did not find field %s in %s\n",GetParamName(),fname));
198 }
199 file->Close();
200 delete file;
201 return kTRUE;
202}
203
204
205//_______________________________________________________________________
206void AliMagF::Field(const Double_t *xyz, Double_t *b)
207{
208 // Method to calculate the field at point xyz
209 //
210 // b[0]=b[1]=b[2]=0.0;
211 if (fMeasuredMap && xyz[2]>fMeasuredMap->GetMinZ() && xyz[2]<fMeasuredMap->GetMaxZ()) {
212 fMeasuredMap->Field(xyz,b);
213 if (xyz[2]>fgkSol2DipZ || fDipoleOFF) for (int i=3;i--;) b[i] *= fFactorSol;
214 else for (int i=3;i--;) b[i] *= fFactorDip;
215 }
216 else MachineField(xyz, b);
217 //
218}
219
220//_______________________________________________________________________
221Double_t AliMagF::GetBz(const Double_t *xyz) const
222{
223 // Method to calculate the field at point xyz
224 //
225 if (fMeasuredMap && xyz[2]>fMeasuredMap->GetMinZ() && xyz[2]<fMeasuredMap->GetMaxZ()) {
226 double bz = fMeasuredMap->GetBz(xyz);
227 return (xyz[2]>fgkSol2DipZ || fDipoleOFF) ? bz*fFactorSol : bz*fFactorDip;
228 }
229 else return 0.;
230}
231
232//_______________________________________________________________________
233AliMagF& AliMagF::operator=(const AliMagF& src)
234{
235 if (this != &src && src.fMeasuredMap) {
236 if (fMeasuredMap) delete fMeasuredMap;
237 fMeasuredMap = new AliMagWrapCheb(*src.fMeasuredMap);
238 SetName(src.GetName());
239 fSolenoid = src.fSolenoid;
240 fBeamType = src.fBeamType;
241 fBeamEnergy = src.fBeamEnergy;
242 fInteg = src.fInteg;
243 fPrecInteg = src.fPrecInteg;
244 fFactorSol = src.fFactorSol;
245 fFactorDip = src.fFactorDip;
246 fMax = src.fMax;
247 fDipoleOFF = src.fDipoleOFF;
248 fParNames = src.fParNames;
249 }
250 return *this;
251}
252
253//_______________________________________________________________________
254void AliMagF::InitMachineField(BeamType_t btype, Double_t benergy)
255{
256 if (btype==kNoBeamField) {
257 fQuadGradient = fDipoleField = fCCorrField = fACorr1Field = fACorr2Field = 0.;
258 return;
259 }
260 //
261 double rigScale = benergy/7000.; // scale according to ratio of E/Enominal
262 // for ions assume PbPb (with energy provided per nucleon) and account for A/Z
263 if (btype == kBeamTypeAA) rigScale *= 208./82.;
264 //
265 fQuadGradient = 22.0002*rigScale;
266 fDipoleField = 37.8781*rigScale;
267 //
268 // SIDE C
269 fCCorrField = -9.6980;
270 // SIDE A
271 fACorr1Field = -13.2247;
272 fACorr2Field = 11.7905;
273 //
274}
275
276//_______________________________________________________________________
277void AliMagF::MachineField(const Double_t *x, Double_t *b) const
278{
279 // ---- This is the ZDC part
280 // Compansators for Alice Muon Arm Dipole
281 const Double_t kBComp1CZ = 1075., kBComp1hDZ = 260./2., kBComp1SqR = 4.0*4.0;
282 const Double_t kBComp2CZ = 2049., kBComp2hDZ = 153./2., kBComp2SqR = 4.5*4.5;
283 //
284 const Double_t kTripQ1CZ = 2615., kTripQ1hDZ = 637./2., kTripQ1SqR = 3.5*3.5;
285 const Double_t kTripQ2CZ = 3480., kTripQ2hDZ = 550./2., kTripQ2SqR = 3.5*3.5;
286 const Double_t kTripQ3CZ = 4130., kTripQ3hDZ = 550./2., kTripQ3SqR = 3.5*3.5;
287 const Double_t kTripQ4CZ = 5015., kTripQ4hDZ = 637./2., kTripQ4SqR = 3.5*3.5;
288 //
289 const Double_t kDip1CZ = 6310.8, kDip1hDZ = 945./2., kDip1SqRC = 4.5*4.5, kDip1SqRA = 3.375*3.375;
290 const Double_t kDip2CZ = 12640.3, kDip2hDZ = 945./2., kDip2SqRC = 4.5*4.5, kDip2SqRA = 3.75*3.75;
291 const Double_t kDip2DXC = 9.7, kDip2DXA = 9.4;
292 //
293 double rad2 = x[0] * x[0] + x[1] * x[1];
294 //
295 b[0] = b[1] = b[2] = 0;
296 //
297 // SIDE C **************************************************
298 if(x[2]<0.){
299 if(TMath::Abs(x[2]+kBComp2CZ)<kBComp2hDZ && rad2 < kBComp2SqR){
300 b[0] = fCCorrField*fFactorDip;
301 }
302 else if(TMath::Abs(x[2]+kTripQ1CZ)<kTripQ1hDZ && rad2 < kTripQ1SqR){
303 b[0] = fQuadGradient*x[1];
304 b[1] = fQuadGradient*x[0];
305 }
306 else if(TMath::Abs(x[2]+kTripQ2CZ)<kTripQ2hDZ && rad2 < kTripQ2SqR){
307 b[0] = -fQuadGradient*x[1];
308 b[1] = -fQuadGradient*x[0];
309 }
310 else if(TMath::Abs(x[2]+kTripQ3CZ)<kTripQ3hDZ && rad2 < kTripQ3SqR){
311 b[0] = -fQuadGradient*x[1];
312 b[1] = -fQuadGradient*x[0];
313 }
314 else if(TMath::Abs(x[2]+kTripQ4CZ)<kTripQ4hDZ && rad2 < kTripQ4SqR){
315 b[0] = fQuadGradient*x[1];
316 b[1] = fQuadGradient*x[0];
317 }
318 else if(TMath::Abs(x[2]+kDip1CZ)<kDip1hDZ && rad2 < kDip1SqRC){
319 b[1] = fDipoleField;
320 }
321 else if(TMath::Abs(x[2]+kDip2CZ)<kDip2hDZ && rad2 < kDip2SqRC) {
322 double dxabs = TMath::Abs(x[0])-kDip2DXC;
323 if ( (dxabs*dxabs + x[1]*x[1])<kDip2SqRC) {
324 b[1] = -fDipoleField;
325 }
326 }
327 }
328 //
329 // SIDE A **************************************************
330 else{
331 if(TMath::Abs(x[2]-kBComp1CZ)<kBComp1hDZ && rad2 < kBComp1SqR) {
332 // Compensator magnet at z = 1075 m
333 b[0] = fACorr1Field*fFactorDip;
334 }
335 //
336 if(TMath::Abs(x[2]-kBComp2CZ)<kBComp2hDZ && rad2 < kBComp2SqR){
337 b[0] = fACorr2Field*fFactorDip;
338 }
339 else if(TMath::Abs(x[2]-kTripQ1CZ)<kTripQ1hDZ && rad2 < kTripQ1SqR){
340 b[0] = -fQuadGradient*x[1];
341 b[1] = -fQuadGradient*x[0];
342 }
343 else if(TMath::Abs(x[2]-kTripQ2CZ)<kTripQ2hDZ && rad2 < kTripQ2SqR){
344 b[0] = fQuadGradient*x[1];
345 b[1] = fQuadGradient*x[0];
346 }
347 else if(TMath::Abs(x[2]-kTripQ3CZ)<kTripQ3hDZ && rad2 < kTripQ3SqR){
348 b[0] = fQuadGradient*x[1];
349 b[1] = fQuadGradient*x[0];
350 }
351 else if(TMath::Abs(x[2]-kTripQ4CZ)<kTripQ4hDZ && rad2 < kTripQ4SqR){
352 b[0] = -fQuadGradient*x[1];
353 b[1] = -fQuadGradient*x[0];
354 }
355 else if(TMath::Abs(x[2]-kDip1CZ)<kDip1hDZ && rad2 < kDip1SqRA){
356 b[1] = -fDipoleField;
357 }
358 else if(TMath::Abs(x[2]-kDip2CZ)<kDip2hDZ && rad2 < kDip2SqRA) {
359 double dxabs = TMath::Abs(x[0])-kDip2DXA;
360 if ( (dxabs*dxabs + x[1]*x[1])<kDip2SqRA) {
361 b[1] = fDipoleField;
362 }
363 }
364 }
365 //
366}
367
368//_______________________________________________________________________
369void AliMagF::GetTPCInt(const Double_t *xyz, Double_t *b) const
370{
371 // Method to calculate the integral_0^z of br,bt,bz
372 b[0]=b[1]=b[2]=0.0;
373 if (fMeasuredMap) {
374 fMeasuredMap->GetTPCInt(xyz,b);
375 for (int i=3;i--;) b[i] *= fFactorSol;
376 }
377}
378
379//_______________________________________________________________________
380void AliMagF::GetTPCRatInt(const Double_t *xyz, Double_t *b) const
381{
382 // Method to calculate the integral_0^z of bx/bz,by/bz and (bx/bz)^2+(by/bz)^2
383 b[0]=b[1]=b[2]=0.0;
384 if (fMeasuredMap) {
385 fMeasuredMap->GetTPCRatInt(xyz,b);
386 b[2] /= 100;
387 }
388}
389
390//_______________________________________________________________________
391void AliMagF::GetTPCIntCyl(const Double_t *rphiz, Double_t *b) const
392{
393 // Method to calculate the integral_0^z of br,bt,bz
394 // in cylindrical coordiates ( -pi<phi<pi convention )
395 b[0]=b[1]=b[2]=0.0;
396 if (fMeasuredMap) {
397 fMeasuredMap->GetTPCIntCyl(rphiz,b);
398 for (int i=3;i--;) b[i] *= fFactorSol;
399 }
400}
401
402//_______________________________________________________________________
403void AliMagF::GetTPCRatIntCyl(const Double_t *rphiz, Double_t *b) const
404{
405 // Method to calculate the integral_0^z of bx/bz,by/bz and (bx/bz)^2+(by/bz)^2
406 // in cylindrical coordiates ( -pi<phi<pi convention )
407 b[0]=b[1]=b[2]=0.0;
408 if (fMeasuredMap) {
409 fMeasuredMap->GetTPCRatIntCyl(rphiz,b);
410 b[2] /= 100;
411 }
412}
413
414//_______________________________________________________________________
415void AliMagF::SetFactorSol(Float_t fc)
416{
417 // set the sign/scale of the current in the L3 according to fgkPolarityConvention
418 switch (fgkPolarityConvention) {
419 case kConvDCS2008: fFactorSol = -fc; break;
420 case kConvLHC : fFactorSol = -fc; break;
421 default : fFactorSol = fc; break; // case kConvMap2005: fFactorSol = fc; break;
422 }
423}
424
425//_______________________________________________________________________
426void AliMagF::SetFactorDip(Float_t fc)
427{
428 // set the sign*scale of the current in the Dipole according to fgkPolarityConvention
429 switch (fgkPolarityConvention) {
430 case kConvDCS2008: fFactorDip = fc; break;
431 case kConvLHC : fFactorDip = -fc; break;
432 default : fFactorDip = fc; break; // case kConvMap2005: fFactorDip = fc; break;
433 }
434}
435
436//_______________________________________________________________________
437Double_t AliMagF::GetFactorSol() const
438{
439 // return the sign*scale of the current in the Dipole according to fgkPolarityConventionthe
440 switch (fgkPolarityConvention) {
441 case kConvDCS2008: return -fFactorSol;
442 case kConvLHC : return -fFactorSol;
443 default : return fFactorSol; // case kConvMap2005: return fFactorSol;
444 }
445}
446
447//_______________________________________________________________________
448Double_t AliMagF::GetFactorDip() const
449{
450 // return the sign*scale of the current in the Dipole according to fgkPolarityConventionthe
451 switch (fgkPolarityConvention) {
452 case kConvDCS2008: return fFactorDip;
453 case kConvLHC : return -fFactorDip;
454 default : return fFactorDip; // case kConvMap2005: return fFactorDip;
455 }
456}
457
458//_____________________________________________________________________________
459AliMagF* AliMagF::CreateFieldMap(Float_t l3Cur, Float_t diCur, Int_t convention, Bool_t uniform,
460 Float_t beamenergy, const Char_t *beamtype, const Char_t *path)
461{
462 //------------------------------------------------
463 // The magnetic field map, defined externally...
464 // L3 current 30000 A -> 0.5 T
465 // L3 current 12000 A -> 0.2 T
466 // dipole current 6000 A
467 // The polarities must match the convention (LHC or DCS2008)
468 // unless the special uniform map was used for MC
469 //------------------------------------------------
470 const Float_t l3NominalCurrent1=30000.; // (A)
471 const Float_t l3NominalCurrent2=12000.; // (A)
472 const Float_t diNominalCurrent =6000. ; // (A)
473
474 const Float_t tolerance=0.03; // relative current tolerance
475 const Float_t zero=77.; // "zero" current (A)
476 //
477 BMap_t map = k5kG;
478 double sclL3,sclDip;
479 //
480 Float_t l3Pol = l3Cur > 0 ? 1:-1;
481 Float_t diPol = diCur > 0 ? 1:-1;
482
483 l3Cur = TMath::Abs(l3Cur);
484 diCur = TMath::Abs(diCur);
485 //
486 if (TMath::Abs((sclDip=diCur/diNominalCurrent)-1.) > tolerance && !uniform) {
487 if (diCur <= zero) sclDip = 0.; // some small current.. -> Dipole OFF
488 else {
489 AliFatalGeneral("AliMagF",Form("Wrong dipole current (%f A)!",diCur));
490 }
491 }
492 //
493 if (uniform) {
494 // special treatment of special MC with uniform mag field (normalized to 0.5 T)
495 // no check for scaling/polarities are done
496 map = k5kGUniform;
497 sclL3 = l3Cur/l3NominalCurrent1;
498 }
499 else {
500 if (TMath::Abs((sclL3=l3Cur/l3NominalCurrent1)-1.) < tolerance) map = k5kG;
501 else if (TMath::Abs((sclL3=l3Cur/l3NominalCurrent2)-1.) < tolerance) map = k2kG;
502 else if (l3Cur <= zero && diCur<=zero) { sclL3=0; sclDip=0; map = k5kGUniform;}
503 else {
504 AliFatalGeneral("AliMagF",Form("Wrong L3 current (%f A)!",l3Cur));
505 }
506 }
507 //
508 if (sclDip!=0 && map!=k5kGUniform) {
509 if ( (l3Cur<=zero) || ((convention==kConvLHC && l3Pol!=diPol) || (convention==kConvDCS2008 && l3Pol==diPol)) ) {
510 AliFatalGeneral("AliMagF",Form("Wrong combination for L3/Dipole polarities (%c/%c) for convention %d",
511 l3Pol>0?'+':'-',diPol>0?'+':'-',GetPolarityConvention()));
512 }
513 }
514 //
515 if (l3Pol<0) sclL3 = -sclL3;
516 if (diPol<0) sclDip = -sclDip;
517 //
518 BeamType_t btype = kNoBeamField;
519 TString btypestr = beamtype;
520 btypestr.ToLower();
521 TPRegexp protonBeam("(proton|p)\\s*-?\\s*\\1");
522 TPRegexp ionBeam("(lead|pb|ion|a)\\s*-?\\s*\\1");
523 if (btypestr.Contains(ionBeam)) btype = kBeamTypeAA;
524 else if (btypestr.Contains(protonBeam)) btype = kBeamTypepp;
525 else AliInfoGeneral("AliMagF",Form("Assume no LHC magnet field for the beam type %s, ",beamtype));
526 char ttl[80];
527 sprintf(ttl,"L3: %+5d Dip: %+4d kA; %s | Polarities in %s convention",(int)TMath::Sign(l3Cur,float(sclL3)),
528 (int)TMath::Sign(diCur,float(sclDip)),uniform ? " Constant":"",
529 convention==kConvLHC ? "LHC":"DCS2008");
530 // LHC and DCS08 conventions have opposite dipole polarities
531 if ( GetPolarityConvention() != convention) sclDip = -sclDip;
532 //
533 return new AliMagF("MagneticFieldMap", ttl,sclL3,sclDip,map,btype,beamenergy,2,10.,path);
534 //
535}
536
537//_____________________________________________________________________________
538const char* AliMagF::GetBeamTypeText() const
539{
540 const char *beamNA = "No Beam";
541 const char *beamPP = "p-p";
542 const char *beamPbPb= "Pb-Pb";
543 switch ( fBeamType ) {
544 case kBeamTypepp : return beamPP;
545 case kBeamTypeAA : return beamPbPb;
546 case kNoBeamField:
547 default: return beamNA;
548 }
549}
550
551//_____________________________________________________________________________
552void AliMagF::Print(Option_t *opt) const
553{
554 // print short or long info
555 TString opts = opt; opts.ToLower();
556 AliInfo(Form("%s:%s",GetName(),GetTitle()));
557 AliInfo(Form("Solenoid (%+.2f*)%.0f kG, Dipole %s (%+.2f) %s",
558 GetFactorSol(),(fMapType==k5kG||fMapType==k5kGUniform)?5.:2.,
559 fDipoleOFF ? "OFF":"ON",GetFactorDip(),fMapType==k5kGUniform?" |Constant Field!":""));
560 if (opts.Contains("a")) {
561 AliInfo(Form("Machine B fields for %s beam (%.0f GeV): QGrad: %.4f Dipole: %.4f",
562 fBeamType==kBeamTypeAA ? "A-A":(fBeamType==kBeamTypepp ? "p-p":"OFF"),
563 fBeamEnergy,fQuadGradient,fDipoleField));
564 AliInfo(Form("Uses %s of %s",GetParamName(),GetDataFileName()));
565 }
566}