]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - TOF/AliTOFv2.cxx
New code from Piergiorgio added
[u/mrichter/AliRoot.git] / TOF / AliTOFv2.cxx
... / ...
CommitLineData
1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
18Revision 1.14.2.1 2000/05/10 09:37:16 vicinanz
19New version with Holes for PHOS/RICH
20
21Revision 1.14 1999/11/05 22:39:06 fca
22New hits structure
23
24Revision 1.13 1999/11/02 11:26:39 fca
25added stdlib.h for exit
26
27Revision 1.12 1999/11/01 20:41:57 fca
28Added protections against using the wrong version of FRAME
29
30Revision 1.11 1999/10/22 08:04:14 fca
31Correct improper use of negative parameters
32
33Revision 1.10 1999/10/16 19:30:06 fca
34Corrected Rotation Matrix and CVS log
35
36Revision 1.9 1999/10/15 15:35:20 fca
37New version for frame1099 with and without holes
38
39Revision 1.8 1999/09/29 09:24:33 fca
40Introduction of the Copyright and cvs Log
41
42*/
43
44///////////////////////////////////////////////////////////////////////////////
45// //
46// Time Of Flight: design of C.Williams
47//
48// This class contains the functions for version 1 of the Time Of Flight //
49// detector. //
50//
51// VERSION WITH 5 MODULES AND TILTED STRIPS
52//
53// HOLES FOR PHOS AND RICH DETECTOR
54//
55// Authors:
56//
57// Alessio Seganti
58// Domenico Vicinanza
59//
60// University of Salerno - Italy
61//
62//
63//Begin_Html
64/*
65<img src="picts/AliTOFv2Class.gif">
66*/
67//End_Html
68// //
69///////////////////////////////////////////////////////////////////////////////
70
71#include <iostream.h>
72#include <stdlib.h>
73
74#include "AliTOFv2.h"
75#include "TBRIK.h"
76#include "TNode.h"
77#include "TObject.h"
78#include "AliRun.h"
79#include "AliConst.h"
80
81
82ClassImp(AliTOFv2)
83
84//_____________________________________________________________________________
85AliTOFv2::AliTOFv2()
86{
87 //
88 // Default constructor
89 //
90}
91
92//_____________________________________________________________________________
93AliTOFv2::AliTOFv2(const char *name, const char *title)
94 : AliTOF(name,title)
95{
96 //
97 // Standard constructor
98 //
99 //
100 // Check that FRAME is there otherwise we have no place where to
101 // put TOF
102 AliModule* FRAME=gAlice->GetModule("FRAME");
103 if(!FRAME) {
104 Error("Ctor","TOF needs FRAME to be present\n");
105 exit(1);
106 } else
107 if(FRAME->IsVersion()!=1) {
108 Error("Ctor","FRAME version 1 needed with this version of TOF\n");
109 exit(1);
110 }
111
112}
113
114//_____________________________________________________________________________
115void AliTOFv2::BuildGeometry()
116{
117 //
118 // Build TOF ROOT geometry for the ALICE event display
119 //
120 TNode *Node, *Top;
121 const int kColorTOF = 27;
122
123 // Find top TNODE
124 Top = gAlice->GetGeometry()->GetNode("alice");
125
126 // Position the different copies
127 const Float_t rTof =(fRmax+fRmin)/2;
128 const Float_t hTof = fRmax-fRmin;
129 const Int_t fNTof = 18;
130 const Float_t kPi = TMath::Pi();
131 const Float_t angle = 2*kPi/fNTof;
132 Float_t ang;
133
134 // Define TOF basic volume
135
136 char NodeName0[6], NodeName1[6], NodeName2[6];
137 char NodeName3[6], NodeName4[6], RotMatNum[6];
138
139 new TBRIK("S_TOF_C","TOF box","void",
140 120*0.5,hTof*0.5,fZlenC*0.5);
141 new TBRIK("S_TOF_B","TOF box","void",
142 120*0.5,hTof*0.5,fZlenB*0.5);
143 new TBRIK("S_TOF_A","TOF box","void",
144 120*0.5,hTof*0.5,fZlenA*0.5);
145
146 for (Int_t NodeNum=1;NodeNum<19;NodeNum++){
147
148 if (NodeNum<10) {
149 sprintf(RotMatNum,"rot50%i",NodeNum);
150 sprintf(NodeName0,"FTO00%i",NodeNum);
151 sprintf(NodeName1,"FTO10%i",NodeNum);
152 sprintf(NodeName2,"FTO20%i",NodeNum);
153 sprintf(NodeName3,"FTO30%i",NodeNum);
154 sprintf(NodeName4,"FTO40%i",NodeNum);
155 }
156 if (NodeNum>9) {
157 sprintf(RotMatNum,"rot5%i",NodeNum);
158 sprintf(NodeName0,"FTO0%i",NodeNum);
159 sprintf(NodeName1,"FTO1%i",NodeNum);
160 sprintf(NodeName2,"FTO2%i",NodeNum);
161 sprintf(NodeName3,"FTO3%i",NodeNum);
162 sprintf(NodeName4,"FTO4%i",NodeNum);
163 }
164
165 new TRotMatrix(RotMatNum,RotMatNum,90,-20*NodeNum,90,90-20*NodeNum,0,0);
166 ang = (4.5-NodeNum) * angle;
167
168 Top->cd();
169 Node = new TNode(NodeName0,NodeName0,"S_TOF_C",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),299.15,RotMatNum);
170 Node->SetLineColor(kColorTOF);
171 fNodes->Add(Node);
172
173 Top->cd();
174 Node = new TNode(NodeName1,NodeName1,"S_TOF_C",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),-299.15,RotMatNum);
175 Node->SetLineColor(kColorTOF);
176 fNodes->Add(Node);
177if (NodeNum !=1 && NodeNum!=2 && NodeNum !=18)
178 {
179 Top->cd();
180 Node = new TNode(NodeName2,NodeName2,"S_TOF_B",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),146.45,RotMatNum);
181 Node->SetLineColor(kColorTOF);
182 fNodes->Add(Node);
183
184 Top->cd();
185 Node = new TNode(NodeName3,NodeName3,"S_TOF_B",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),-146.45,RotMatNum);
186 Node->SetLineColor(kColorTOF);
187 fNodes->Add(Node);
188 } // Holes for RICH detector
189
190if ((NodeNum<8 || NodeNum>12) && NodeNum !=1 && NodeNum!=2 && NodeNum
191!=18)
192 {
193 Top->cd();
194 Node = new TNode(NodeName4,NodeName4,"S_TOF_A",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),0.,RotMatNum);
195 Node->SetLineColor(kColorTOF);
196 fNodes->Add(Node);
197 } // Holes for PHOS detector (+ Holes for RICH detector, central part)
198 }
199}
200
201
202
203//_____________________________________________________________________________
204void AliTOFv2::CreateGeometry()
205{
206 //
207 // Create geometry for Time Of Flight version 0
208 //
209 //Begin_Html
210 /*
211 <img src="picts/AliTOFv2.gif">
212 */
213 //End_Html
214 //
215 // Creates common geometry
216 //
217 AliTOF::CreateGeometry();
218}
219
220//_____________________________________________________________________________
221void AliTOFv2::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC,
222 Float_t zlenB, Float_t zlenA, Float_t ztof0)
223{
224 //
225 // Definition of the Time Of Fligh Resistive Plate Chambers
226 // xFLT, yFLT, zFLT - sizes of TOF modules (large)
227
228 Float_t ycoor, zcoor;
229 Float_t par[10];
230 Int_t *idtmed = fIdtmed->GetArray()-499;
231 Int_t idrotm[100];
232 Int_t nrot = 0;
233 Float_t hTof = fRmax-fRmin;
234
235 Float_t Radius = fRmin+2.;//cm
236
237 par[0] = xtof * 0.5;
238 par[1] = ytof * 0.5;
239 par[2] = zlenC * 0.5;
240 gMC->Gsvolu("FTOC", "BOX ", idtmed[506], par, 3);
241 par[2] = zlenB * 0.5;
242 gMC->Gsvolu("FTOB", "BOX ", idtmed[506], par, 3);
243 par[2] = zlenA * 0.5;
244 gMC->Gsvolu("FTOA", "BOX ", idtmed[506], par, 3);
245
246
247// Positioning of modules
248
249 Float_t zcor1 = ztof0 - zlenC*0.5;
250 Float_t zcor2 = ztof0 - zlenC - zlenB*0.5;
251 Float_t zcor3 = 0.;
252
253 AliMatrix(idrotm[0], 90., 0., 0., 0., 90,-90.);
254 AliMatrix(idrotm[1], 90.,180., 0., 0., 90, 90.);
255 gMC->Gspos("FTOC", 1, "BTO1", 0, zcor1, 0, idrotm[0], "ONLY");
256 gMC->Gspos("FTOC", 2, "BTO1", 0, -zcor1, 0, idrotm[1], "ONLY");
257 gMC->Gspos("FTOC", 1, "BTO2", 0, zcor1, 0, idrotm[0], "ONLY");
258 gMC->Gspos("FTOC", 2, "BTO2", 0, -zcor1, 0, idrotm[1], "ONLY");
259 gMC->Gspos("FTOC", 1, "BTO3", 0, zcor1, 0, idrotm[0], "ONLY");
260 gMC->Gspos("FTOC", 2, "BTO3", 0, -zcor1, 0, idrotm[1], "ONLY");
261
262 gMC->Gspos("FTOB", 1, "BTO1", 0, zcor2, 0, idrotm[0], "ONLY");
263 gMC->Gspos("FTOB", 2, "BTO1", 0, -zcor2, 0, idrotm[1], "ONLY");
264 gMC->Gspos("FTOB", 1, "BTO2", 0, zcor2, 0, idrotm[0], "ONLY");
265 gMC->Gspos("FTOB", 2, "BTO2", 0, -zcor2, 0, idrotm[1], "ONLY");
266
267 gMC->Gspos("FTOA", 0, "BTO1", 0, zcor3, 0, idrotm[0], "ONLY");
268
269 Float_t db = 0.5;//cm
270 Float_t xFLT, xFST, yFLT, zFLTA, zFLTB, zFLTC;
271
272 xFLT = fStripLn;
273 yFLT = ytof;
274 zFLTA = zlenA;
275 zFLTB = zlenB;
276 zFLTC = zlenC;
277
278 xFST = xFLT-fDeadBndX*2;//cm
279
280// Sizes of MRPC pads
281
282 Float_t yPad = 0.505;//cm
283
284// Large not sensitive volumes with CO2
285 par[0] = xFLT*0.5;
286 par[1] = yFLT*0.5;
287
288 cout <<"************************* TOF geometry **************************"<<endl;
289
290 par[2] = (zFLTA *0.5);
291 gMC->Gsvolu("FLTA", "BOX ", idtmed[506], par, 3); // CO2
292 gMC->Gspos ("FLTA", 0, "FTOA", 0., 0., 0., 0, "ONLY");
293
294 par[2] = (zFLTB * 0.5);
295 gMC->Gsvolu("FLTB", "BOX ", idtmed[506], par, 3); // CO2
296 gMC->Gspos ("FLTB", 0, "FTOB", 0., 0., 0., 0, "ONLY");
297
298 par[2] = (zFLTC * 0.5);
299 gMC->Gsvolu("FLTC", "BOX ", idtmed[506], par, 3); // CO2
300 gMC->Gspos ("FLTC", 0, "FTOC", 0., 0., 0., 0, "ONLY");
301
302////////// Layers before detector ////////////////////
303
304// MYlar layer in front 1.0 mm thick at the beginning
305 par[0] = -1;
306 par[1] = 0.1;//cm
307 par[2] = -1;
308 ycoor = -yFLT/2 + par[1];
309 gMC->Gsvolu("FMYA", "BOX ", idtmed[508], par, 3); // Alluminium
310 gMC->Gspos ("FMYA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
311 gMC->Gsvolu("FMYB", "BOX ", idtmed[508], par, 3); // Alluminium
312 gMC->Gspos ("FMYB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
313 gMC->Gsvolu("FMYC", "BOX ", idtmed[508], par, 3); // Alluminium
314 gMC->Gspos ("FMYC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
315
316// honeycomb (special Polyethilene Layer of 1cm)
317 ycoor = ycoor + par[1];
318 par[0] = -1;
319 par[1] = 0.5;//cm
320 par[2] = -1;
321 ycoor = ycoor + par[1];
322 gMC->Gsvolu("FPLA", "BOX ", idtmed[503], par, 3); // Hony
323 gMC->Gspos ("FPLA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
324 gMC->Gsvolu("FPLB", "BOX ", idtmed[503], par, 3); // Hony
325 gMC->Gspos ("FPLB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
326 gMC->Gsvolu("FPLC", "BOX ", idtmed[503], par, 3); // Hony
327 gMC->Gspos ("FPLC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
328
329///////////////// Detector itself //////////////////////
330
331 const Float_t DeadBound = fDeadBndZ; //cm non-sensitive between the pad edge
332 //and the boundary of the strip
333 const Int_t nx = fNpadX; // number of pads along x
334 const Int_t nz = fNpadZ; // number of pads along z
335 const Float_t Space = fSpace; //cm distance from the front plate of the box
336
337 Float_t zSenStrip = fZpad*fNpadZ;//cm
338 Float_t StripWidth = zSenStrip + 2*DeadBound;
339
340 par[0] = xFLT*0.5;
341 par[1] = yPad*0.5;
342 par[2] = StripWidth*0.5;
343
344 // glass layer of detector STRip
345 gMC->Gsvolu("FSTR","BOX",idtmed[514],par,3);
346
347 // Non-Sesitive Freon boundaries
348 par[0] = xFLT*0.5;
349 par[1] = 0.110*0.5;//cm
350 par[2] = -1;
351 gMC->Gsvolu("FNSF","BOX",idtmed[512],par,3);
352 gMC->Gspos ("FNSF",0,"FSTR",0.,0.,0.,0,"ONLY");
353
354 // MYlar for Internal non-sesitive boundaries
355// par[1] = 0.025;//cm
356// gMC->Gsvolu("FMYI","BOX",idtmed[510],par,3);
357// gMC->Gspos ("FMYI",0,"FNSF",0.,0.,0.,0,"MANY");
358
359 // MYlar eXternal layers
360 par[1] = 0.035*0.5;//cm
361 ycoor = -yPad*0.5+par[1];
362 gMC->Gsvolu("FMYX","BOX",idtmed[510],par,3);
363 gMC->Gspos ("FMYX",1,"FSTR",0.,ycoor,0.,0,"ONLY");
364 gMC->Gspos ("FMYX",2,"FSTR",0.,-ycoor,0.,0,"ONLY");
365 ycoor += par[1];
366
367 // GRaphyte Layers
368 par[1] = 0.003*0.5;
369 ycoor += par[1];
370 gMC->Gsvolu("FGRL","BOX",idtmed[502],par,3);
371 gMC->Gspos ("FGRL",1,"FSTR",0.,ycoor,0.,0,"ONLY");
372 gMC->Gspos ("FGRL",2,"FSTR",0.,-ycoor,0.,0,"ONLY");
373
374 // freon sensitive layer (Chlorine-Fluorine-Carbon)
375 par[0] = xFST*0.5;
376 par[1] = 0.110*0.5;
377 par[2] = zSenStrip*0.5;
378 gMC->Gsvolu("FCFC","BOX",idtmed[513],par,3);
379 gMC->Gspos ("FCFC",0,"FNSF",0.,0.,0.,0,"ONLY");
380
381 // Pad definition x & z
382 gMC->Gsdvn("FLZ","FCFC", nz, 3);
383 gMC->Gsdvn("FLX","FLZ" , nx, 1);
384
385 // MRPC PAD itself
386 par[0] = -1;
387 par[1] = -1;
388 par[2] = -1;
389 gMC->Gsvolu("FPAD", "BOX ", idtmed[513], par, 3);
390 gMC->Gspos ("FPAD", 0, "FLX", 0., 0., 0., 0, "ONLY");
391
392//// Positioning the Strips (FSTR) in the FLT volumes /////
393
394 // Plate A (Central)
395
396 Float_t t = zFLTC+zFLTB+zFLTA*0.5+ 2*db;//Half Width of Barrel
397
398 Float_t Gap = fGapA; //cm distance between the strip axis
399 Float_t zpos = 0;
400 Float_t ang = 0;
401 Int_t i=1,j=1;
402 nrot = 0;
403 zcoor = 0;
404 ycoor = -14.5 + Space ; //2 cm over front plate
405
406 AliMatrix (idrotm[0], 90., 0.,90.,90.,0., 90.);
407 gMC->Gspos("FSTR",j,"FLTA",0.,ycoor, 0.,idrotm[0],"ONLY");
408
409 printf("%f, St. %2i, Pl.3 ",ang*kRaddeg,i);
410 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
411
412 zcoor -= zSenStrip;
413 j++;
414 Int_t UpDown = -1; // UpDown=-1 -> Upper strip
415 // UpDown=+1 -> Lower strip
416 do{
417 ang = atan(zcoor/Radius);
418 ang *= kRaddeg;
419 AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.);
420 AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.);
421 ang /= kRaddeg;
422 ycoor = -14.5+ Space; //2 cm over front plate
423 ycoor += (1-(UpDown+1)/2)*Gap;
424 gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY");
425 gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY");
426
427 printf("%f, St. %2i, Pl.3 ",ang*kRaddeg,i);
428 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
429
430 j += 2;
431 UpDown*= -1; // Alternate strips
432 zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)-
433 UpDown*Gap*TMath::Tan(ang)-
434 (zSenStrip/2)/TMath::Cos(ang);
435 } while (zcoor-(StripWidth/2)*TMath::Cos(ang)>-t+zFLTC+zFLTB+db*2);
436
437 zcoor = zcoor+(zSenStrip/2)/TMath::Cos(ang)+
438 UpDown*Gap*TMath::Tan(ang)+
439 (zSenStrip/2)/TMath::Cos(ang);
440
441 Gap = fGapB;
442 zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)-
443 UpDown*Gap*TMath::Tan(ang)-
444 (zSenStrip/2)/TMath::Cos(ang);
445
446 ang = atan(zcoor/Radius);
447 ang *= kRaddeg;
448 AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.);
449 AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.);
450 ang /= kRaddeg;
451
452 ycoor = -14.5+ Space; //2 cm over front plate
453 ycoor += (1-(UpDown+1)/2)*Gap;
454 gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY");
455 gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY");
456
457 printf("%f, St. %2i, Pl.3 ",ang*kRaddeg,i);
458 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
459
460 ycoor = -hTof/2.+ Space;//2 cm over front plate
461
462 // Plate B
463
464 nrot = 0;
465 i=1;
466 UpDown = 1;
467 Float_t DeadRegion = 1.0;//cm
468
469 zpos = zcoor - (zSenStrip/2)/TMath::Cos(ang)-
470 UpDown*Gap*TMath::Tan(ang)-
471 (zSenStrip/2)/TMath::Cos(ang)-
472 DeadRegion/TMath::Cos(ang);
473
474 ang = atan(zpos/Radius);
475 ang *= kRaddeg;
476 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
477 ang /= kRaddeg;
478 ycoor = -hTof*0.5+ Space ; //2 cm over front plate
479 ycoor += (1-(UpDown+1)/2)*Gap;
480 zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB
481 gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
482
483 printf("%f, St. %2i, Pl.4 ",ang*kRaddeg,i);
484 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
485
486 i++;
487 UpDown*=-1;
488
489 do {
490 zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)-
491 UpDown*Gap*TMath::Tan(ang)-
492 (zSenStrip/2)/TMath::Cos(ang);
493 ang = atan(zpos/Radius);
494 ang *= kRaddeg;
495 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
496 ang /= kRaddeg;
497 ycoor = -hTof*0.5+ Space ; //2 cm over front plate
498 ycoor += (1-(UpDown+1)/2)*Gap;
499 zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB
500 gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
501
502 printf("%f, St. %2i, Pl.4 ",ang*kRaddeg,i);
503 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
504
505 UpDown*=-1;
506 i++;
507 } while (TMath::Abs(ang*kRaddeg)<22.5);
508 //till we reach a tilting angle of 22.5 degrees
509
510 ycoor = -hTof*0.5+ Space ; //2 cm over front plate
511 zpos = zpos - zSenStrip/TMath::Cos(ang);
512
513 do {
514 ang = atan(zpos/Radius);
515 ang *= kRaddeg;
516 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
517 ang /= kRaddeg;
518 zcoor = zpos+(zFLTB/2+zFLTA/2+db);
519 gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
520 zpos = zpos - zSenStrip/TMath::Cos(ang);
521 printf("%f, St. %2i, Pl.4 ",ang*kRaddeg,i);
522 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
523 i++;
524
525 } while (zpos-StripWidth*0.5/TMath::Cos(ang)>-t+zFLTC+db);
526
527 // Plate C
528
529 zpos = zpos + zSenStrip/TMath::Cos(ang);
530
531 zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)+
532 Gap*TMath::Tan(ang)-
533 (zSenStrip/2)/TMath::Cos(ang);
534
535 nrot = 0;
536 i=0;
537 ycoor= -hTof*0.5+Space+Gap;
538
539 do {
540 i++;
541 ang = atan(zpos/Radius);
542 ang *= kRaddeg;
543 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
544 ang /= kRaddeg;
545 zcoor = zpos+(zFLTC*0.5+zFLTB+zFLTA*0.5+db*2);
546 gMC->Gspos("FSTR",i, "FLTC", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
547
548 printf("%f, St. %2i, Pl.5 ",ang*kRaddeg,i);
549 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
550
551 zpos = zpos - zSenStrip/TMath::Cos(ang);
552 } while (zpos-StripWidth*TMath::Cos(ang)*0.5>-t);
553
554
555////////// Layers after detector /////////////////
556
557// honeycomb (Polyethilene) Layer after (3cm)
558
559 Float_t OverSpace = fOverSpc;//cm
560
561 par[0] = -1;
562 par[1] = 0.6;
563 par[2] = -1;
564 ycoor = -yFLT/2 + OverSpace + par[1];
565 gMC->Gsvolu("FPEA", "BOX ", idtmed[503], par, 3); // Hony
566 gMC->Gspos ("FPEA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
567 gMC->Gsvolu("FPEB", "BOX ", idtmed[503], par, 3); // Hony
568 gMC->Gspos ("FPEB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
569 gMC->Gsvolu("FPEC", "BOX ", idtmed[503], par, 3); // Hony
570 gMC->Gspos ("FPEC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
571
572// Electronics (Cu) after
573 ycoor += par[1];
574 par[0] = -1;
575 par[1] = 1.43*0.05*0.5; // 5% of X0
576 par[2] = -1;
577 ycoor += par[1];
578 gMC->Gsvolu("FECA", "BOX ", idtmed[501], par, 3); // Cu
579 gMC->Gspos ("FECA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
580 gMC->Gsvolu("FECB", "BOX ", idtmed[501], par, 3); // Cu
581 gMC->Gspos ("FECB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
582 gMC->Gsvolu("FECC", "BOX ", idtmed[501], par, 3); // Cu
583 gMC->Gspos ("FECC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
584
585// cooling WAter after
586 ycoor += par[1];
587 par[0] = -1;
588 par[1] = 36.1*0.02*0.5; // 2% of X0
589 par[2] = -1;
590 ycoor += par[1];
591 gMC->Gsvolu("FWAA", "BOX ", idtmed[515], par, 3); // Water
592 gMC->Gspos ("FWAA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
593 gMC->Gsvolu("FWAB", "BOX ", idtmed[515], par, 3); // Water
594 gMC->Gspos ("FWAB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
595 gMC->Gsvolu("FWAC", "BOX ", idtmed[515], par, 3); // Water
596 gMC->Gspos ("FWAC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
597
598//Back Plate honycomb (2cm)
599 par[0] = -1;
600 par[1] = 2 *0.5;
601 par[2] = -1;
602 ycoor = yFLT/2 - par[1];
603 gMC->Gsvolu("FBPA", "BOX ", idtmed[503], par, 3); // Hony
604 gMC->Gspos ("FBPA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
605 gMC->Gsvolu("FBPB", "BOX ", idtmed[503], par, 3); // Hony
606 gMC->Gspos ("FBPB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
607 gMC->Gsvolu("FBPC", "BOX ", idtmed[503], par, 3); // Hony
608 gMC->Gspos ("FBPC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
609}
610
611//_____________________________________________________________________________
612void AliTOFv2::DrawModule()
613{
614 //
615 // Draw a shaded view of the Time Of Flight version 1
616 //
617 // Set everything unseen
618 gMC->Gsatt("*", "seen", -1);
619 //
620 // Set ALIC mother transparent
621 gMC->Gsatt("ALIC","SEEN",0);
622 //
623 // Set the volumes visible
624 gMC->Gsatt("ALIC","SEEN",0);
625
626 gMC->Gsatt("FTOA","SEEN",1);
627 gMC->Gsatt("FTOB","SEEN",1);
628 gMC->Gsatt("FTOC","SEEN",1);
629 gMC->Gsatt("FLTA","SEEN",1);
630 gMC->Gsatt("FLTB","SEEN",1);
631 gMC->Gsatt("FLTC","SEEN",1);
632 gMC->Gsatt("FPLA","SEEN",1);
633 gMC->Gsatt("FPLB","SEEN",1);
634 gMC->Gsatt("FPLC","SEEN",1);
635 gMC->Gsatt("FSTR","SEEN",1);
636 gMC->Gsatt("FPEA","SEEN",1);
637 gMC->Gsatt("FPEB","SEEN",1);
638 gMC->Gsatt("FPEC","SEEN",1);
639
640 gMC->Gsatt("FLZ1","SEEN",0);
641 gMC->Gsatt("FLZ2","SEEN",0);
642 gMC->Gsatt("FLZ3","SEEN",0);
643 gMC->Gsatt("FLX1","SEEN",0);
644 gMC->Gsatt("FLX2","SEEN",0);
645 gMC->Gsatt("FLX3","SEEN",0);
646 gMC->Gsatt("FPAD","SEEN",0);
647
648 gMC->Gdopt("hide", "on");
649 gMC->Gdopt("shad", "on");
650 gMC->Gsatt("*", "fill", 7);
651 gMC->SetClipBox(".");
652 gMC->SetClipBox("*", 0, 1000, -1000, 1000, -1000, 1000);
653 gMC->DefaultRange();
654 gMC->Gdraw("alic", 40, 30, 0, 12, 9.5, .02, .02);
655 gMC->Gdhead(1111, "Time Of Flight");
656 gMC->Gdman(18, 4, "MAN");
657 gMC->Gdopt("hide","off");
658}
659
660//_____________________________________________________________________________
661void AliTOFv2::CreateMaterials()
662{
663 //
664 // Define materials for the Time Of Flight
665 //
666 AliTOF::CreateMaterials();
667}
668
669//_____________________________________________________________________________
670void AliTOFv2::Init()
671{
672 //
673 // Initialise the detector after the geometry has been defined
674 //
675 printf("**************************************"
676 " TOF "
677 "**************************************\n");
678 printf("\n Version 2 of TOF initialing, "
679 "TOF with holes for PHOS and RICH \n");
680
681 AliTOF::Init();
682
683 fIdFTOA = gMC->VolId("FTOA");
684 fIdFTOB = gMC->VolId("FTOB");
685 fIdFTOC = gMC->VolId("FTOC");
686 fIdFLTA = gMC->VolId("FLTA");
687 fIdFLTB = gMC->VolId("FLTB");
688 fIdFLTC = gMC->VolId("FLTC");
689
690 printf("**************************************"
691 " TOF "
692 "**************************************\n");
693}
694
695//_____________________________________________________________________________
696void AliTOFv2::StepManager()
697{
698 //
699 // Procedure called at each step in the Time Of Flight
700 //
701 TLorentzVector mom, pos;
702 Float_t xm[3],pm[3],xpad[3],ppad[3];
703 Float_t hits[13],phi,phid,z;
704 Int_t vol[5];
705 Int_t sector, plate, pad_x, pad_z, strip;
706 Int_t copy, pad_z_id, pad_x_id, strip_id, i;
707 Int_t *idtmed = fIdtmed->GetArray()-499;
708 Float_t IncidenceAngle;
709
710 if(gMC->GetMedium()==idtmed[513] &&
711 gMC->IsTrackEntering() && gMC->TrackCharge()
712 && gMC->CurrentVolID(copy)==fIdSens)
713 {
714 // getting information about hit volumes
715
716 pad_z_id=gMC->CurrentVolOffID(2,copy);
717 pad_z=copy;
718
719 pad_x_id=gMC->CurrentVolOffID(1,copy);
720 pad_x=copy;
721
722 strip_id=gMC->CurrentVolOffID(5,copy);
723 strip=copy;
724
725 gMC->TrackPosition(pos);
726 gMC->TrackMomentum(mom);
727
728// Double_t NormPos=1./pos.Rho();
729 Double_t NormMom=1./mom.Rho();
730
731// getting the cohordinates in pad ref system
732 xm[0] = (Float_t)pos.X();
733 xm[1] = (Float_t)pos.Y();
734 xm[2] = (Float_t)pos.Z();
735
736 pm[0] = (Float_t)mom.X()*NormMom;
737 pm[1] = (Float_t)mom.Y()*NormMom;
738 pm[2] = (Float_t)mom.Z()*NormMom;
739
740 gMC->Gmtod(xm,xpad,1);
741 gMC->Gmtod(pm,ppad,2);
742
743 IncidenceAngle = TMath::ACos(ppad[1])*kRaddeg;
744
745 z = pos[2];
746
747 plate = 0;
748 if (TMath::Abs(z) <= fZlenA*0.5) plate = 3;
749 if (z < (fZlenA*0.5+fZlenB) &&
750 z > fZlenA*0.5) plate = 4;
751 if (z >-(fZlenA*0.5+fZlenB) &&
752 z < -fZlenA*0.5) plate = 2;
753 if (z > (fZlenA*0.5+fZlenB)) plate = 5;
754 if (z <-(fZlenA*0.5+fZlenB)) plate = 1;
755
756 phi = pos.Phi();
757 phid = phi*kRaddeg+180.;
758 sector = Int_t (phid/20.);
759 sector++;
760
761 for(i=0;i<3;++i) {
762 hits[i] = pos[i];
763 hits[i+3] = pm[i];
764 }
765
766 hits[6] = mom.Rho();
767 hits[7] = pos[3];
768 hits[8] = xpad[0];
769 hits[9] = xpad[1];
770 hits[10]= xpad[2];
771 hits[11]= IncidenceAngle;
772 hits[12]= gMC->Edep();
773
774 vol[0]= sector;
775 vol[1]= plate;
776 vol[2]= strip;
777 vol[3]= pad_x;
778 vol[4]= pad_z;
779
780 AddHit(gAlice->CurrentTrack(),vol, hits);
781 }
782}