]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - TRD/AliTRDgeometry.cxx
More on char* constantness
[u/mrichter/AliRoot.git] / TRD / AliTRDgeometry.cxx
... / ...
CommitLineData
1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18///////////////////////////////////////////////////////////////////////////////
19// //
20// TRD geometry class //
21// //
22///////////////////////////////////////////////////////////////////////////////
23
24#include <TGeoManager.h>
25#include <TGeoPhysicalNode.h>
26#include <TGeoMatrix.h>
27
28#include "AliLog.h"
29#include "AliRunLoader.h"
30#include "AliAlignObj.h"
31#include "AliAlignObjParams.h"
32#include "AliRun.h"
33
34#include "AliTRD.h"
35#include "AliTRDcalibDB.h"
36#include "AliTRDgeometry.h"
37#include "AliTRDpadPlane.h"
38#include "AliTRDCommonParam.h"
39
40ClassImp(AliTRDgeometry)
41
42//_____________________________________________________________________________
43
44 //
45 // The geometry constants
46 //
47 const Int_t AliTRDgeometry::fgkNsector = kNsector;
48 const Int_t AliTRDgeometry::fgkNlayer = kNlayer;
49 const Int_t AliTRDgeometry::fgkNstack = kNstack;
50 const Int_t AliTRDgeometry::fgkNdet = kNdet;
51
52 //
53 // Dimensions of the detector
54 //
55
56 // Total length of the TRD mother volume
57 const Float_t AliTRDgeometry::fgkTlength = 751.0;
58
59 // Parameter of the super module mother volumes
60 const Float_t AliTRDgeometry::fgkSheight = 77.9;
61 const Float_t AliTRDgeometry::fgkSwidth1 = 94.881;
62 const Float_t AliTRDgeometry::fgkSwidth2 = 122.353;
63 const Float_t AliTRDgeometry::fgkSlength = 702.0;
64
65 // Length of the additional space in front of the supermodule
66 // used for services
67 const Float_t AliTRDgeometry::fgkFlength = (AliTRDgeometry::fgkTlength
68 - AliTRDgeometry::fgkSlength) / 2.0;
69
70 // The super module side plates
71 const Float_t AliTRDgeometry::fgkSMpltT = 0.2;
72
73 // Height of different chamber parts
74 // Radiator
75 const Float_t AliTRDgeometry::fgkCraH = 4.8;
76 // Drift region
77 const Float_t AliTRDgeometry::fgkCdrH = 3.0;
78 // Amplification region
79 const Float_t AliTRDgeometry::fgkCamH = 0.7;
80 // Readout
81 const Float_t AliTRDgeometry::fgkCroH = 2.316;
82 // Total height
83 const Float_t AliTRDgeometry::fgkCH = AliTRDgeometry::fgkCraH
84 + AliTRDgeometry::fgkCdrH
85 + AliTRDgeometry::fgkCamH
86 + AliTRDgeometry::fgkCroH;
87
88 // Vertical spacing of the chambers
89 const Float_t AliTRDgeometry::fgkVspace = 1.784;
90 // Horizontal spacing of the chambers
91 const Float_t AliTRDgeometry::fgkHspace = 2.0;
92 // Radial distance of the first ROC to the outer plates of the SM
93 const Float_t AliTRDgeometry::fgkVrocsm = 1.2;
94
95 // Thicknesses of different parts of the chamber frame
96 // Lower aluminum frame
97 const Float_t AliTRDgeometry::fgkCalT = 0.4;
98 // Lower Wacosit frame sides
99 const Float_t AliTRDgeometry::fgkCclsT = 0.21;
100 // Lower Wacosit frame front
101 const Float_t AliTRDgeometry::fgkCclfT = 1.0;
102 // Thickness of glue around radiator
103 const Float_t AliTRDgeometry::fgkCglT = 0.25;
104 // Upper Wacosit frame
105 const Float_t AliTRDgeometry::fgkCcuT = 0.9;
106 // Al frame of back panel
107 const Float_t AliTRDgeometry::fgkCauT = 1.5;
108 // Additional Al of the lower chamber frame
109 const Float_t AliTRDgeometry::fgkCalW = 1.11;
110
111 // Additional width of the readout chamber frames
112 const Float_t AliTRDgeometry::fgkCroW = 0.9;
113
114 // Difference of outer chamber width and pad plane width
115 const Float_t AliTRDgeometry::fgkCpadW = 0.0;
116 const Float_t AliTRDgeometry::fgkRpadW = 1.0;
117
118 //
119 // Thickness of the the material layers
120 //
121 const Float_t AliTRDgeometry::fgkMyThick = 0.005;
122 const Float_t AliTRDgeometry::fgkRaThick = 0.3233;
123 const Float_t AliTRDgeometry::fgkDrThick = AliTRDgeometry::fgkCdrH;
124 const Float_t AliTRDgeometry::fgkAmThick = AliTRDgeometry::fgkCamH;
125 const Float_t AliTRDgeometry::fgkXeThick = AliTRDgeometry::fgkDrThick
126 + AliTRDgeometry::fgkAmThick;
127 const Float_t AliTRDgeometry::fgkWrThick = 0.0002;
128 const Float_t AliTRDgeometry::fgkCuThick = 0.0072;
129 const Float_t AliTRDgeometry::fgkGlThick = 0.05;
130 const Float_t AliTRDgeometry::fgkSuThick = 0.0919;
131 const Float_t AliTRDgeometry::fgkRcThick = 0.0058;
132 const Float_t AliTRDgeometry::fgkRpThick = 0.0632;
133 const Float_t AliTRDgeometry::fgkRoThick = 0.0028;
134
135 //
136 // Position of the material layers
137 //
138 const Float_t AliTRDgeometry::fgkRaZpos = 0.0;
139 const Float_t AliTRDgeometry::fgkDrZpos = 2.4;
140 const Float_t AliTRDgeometry::fgkAmZpos = 0.0;
141 const Float_t AliTRDgeometry::fgkWrZpos = 0.0;
142 const Float_t AliTRDgeometry::fgkCuZpos = -0.9995;
143 const Float_t AliTRDgeometry::fgkGlZpos = -0.5;
144 const Float_t AliTRDgeometry::fgkSuZpos = 0.0;
145 const Float_t AliTRDgeometry::fgkRcZpos = 1.04;
146 const Float_t AliTRDgeometry::fgkRpZpos = 1.0;
147 const Float_t AliTRDgeometry::fgkRoZpos = 1.05;
148
149 const Int_t AliTRDgeometry::fgkMCMmax = 16;
150 const Int_t AliTRDgeometry::fgkMCMrow = 4;
151 const Int_t AliTRDgeometry::fgkROBmaxC0 = 6;
152 const Int_t AliTRDgeometry::fgkROBmaxC1 = 8;
153 const Int_t AliTRDgeometry::fgkADCmax = 21;
154 const Int_t AliTRDgeometry::fgkTBmax = 60;
155 const Int_t AliTRDgeometry::fgkPadmax = 18;
156 const Int_t AliTRDgeometry::fgkColmax = 144;
157 const Int_t AliTRDgeometry::fgkRowmaxC0 = 12;
158 const Int_t AliTRDgeometry::fgkRowmaxC1 = 16;
159
160 const Double_t AliTRDgeometry::fgkTime0Base = 300.65;
161 const Float_t AliTRDgeometry::fgkTime0[6] = { fgkTime0Base + 0 * (Cheight() + Cspace())
162 , fgkTime0Base + 1 * (Cheight() + Cspace())
163 , fgkTime0Base + 2 * (Cheight() + Cspace())
164 , fgkTime0Base + 3 * (Cheight() + Cspace())
165 , fgkTime0Base + 4 * (Cheight() + Cspace())
166 , fgkTime0Base + 5 * (Cheight() + Cspace())};
167
168//_____________________________________________________________________________
169AliTRDgeometry::AliTRDgeometry()
170 :AliGeometry()
171 ,fClusterMatrixArray(0)
172 ,fPadPlaneArray(0)
173{
174 //
175 // AliTRDgeometry default constructor
176 //
177
178 Init();
179
180}
181
182//_____________________________________________________________________________
183AliTRDgeometry::AliTRDgeometry(const AliTRDgeometry &g)
184 :AliGeometry(g)
185 ,fClusterMatrixArray(0)
186 ,fPadPlaneArray(0)
187{
188 //
189 // AliTRDgeometry copy constructor
190 //
191
192 Init();
193
194}
195
196//_____________________________________________________________________________
197AliTRDgeometry::~AliTRDgeometry()
198{
199 //
200 // AliTRDgeometry destructor
201 //
202
203 if (fClusterMatrixArray) {
204 fClusterMatrixArray->Delete();
205 delete fClusterMatrixArray;
206 fClusterMatrixArray = 0;
207 }
208
209 if (fPadPlaneArray) {
210 fPadPlaneArray->Delete();
211 delete fPadPlaneArray;
212 fPadPlaneArray = 0;
213 }
214
215}
216
217//_____________________________________________________________________________
218AliTRDgeometry &AliTRDgeometry::operator=(const AliTRDgeometry &g)
219{
220 //
221 // Assignment operator
222 //
223
224 if (this != &g) {
225 Init();
226 }
227
228 return *this;
229
230}
231
232//_____________________________________________________________________________
233void AliTRDgeometry::Init()
234{
235 //
236 // Initializes the geometry parameter
237 //
238
239 Int_t istack;
240 Int_t ilayer;
241 Int_t isector;
242
243 // The outer width of the chambers
244 fCwidth[0] = 90.4;
245 fCwidth[1] = 94.8;
246 fCwidth[2] = 99.3;
247 fCwidth[3] = 103.7;
248 fCwidth[4] = 108.1;
249 fCwidth[5] = 112.6;
250
251 // The outer lengths of the chambers
252 // Includes the spacings between the chambers!
253 Float_t length[kNlayer][kNstack] = { { 124.0, 124.0, 110.0, 124.0, 124.0 }
254 , { 124.0, 124.0, 110.0, 124.0, 124.0 }
255 , { 131.0, 131.0, 110.0, 131.0, 131.0 }
256 , { 138.0, 138.0, 110.0, 138.0, 138.0 }
257 , { 145.0, 145.0, 110.0, 145.0, 145.0 }
258 , { 147.0, 147.0, 110.0, 147.0, 147.0 } };
259
260 for (istack = 0; istack < kNstack; istack++) {
261 for (ilayer = 0; ilayer < kNlayer; ilayer++) {
262 fClength[ilayer][istack] = length[ilayer][istack];
263 }
264 }
265
266 // The rotation matrix elements
267 Float_t phi = 0.0;
268 for (isector = 0; isector < fgkNsector; isector++) {
269 phi = 2.0 * TMath::Pi() / (Float_t) fgkNsector * ((Float_t) isector + 0.5);
270 fRotB11[isector] = TMath::Cos(phi);
271 fRotB12[isector] = TMath::Sin(phi);
272 fRotB21[isector] = TMath::Sin(phi);
273 fRotB22[isector] = TMath::Cos(phi);
274 }
275
276 // SM status
277 for (Int_t i = 0; i < kNsector; i++) {
278 fSMstatus[i] = 1;
279 }
280
281}
282
283//_____________________________________________________________________________
284void AliTRDgeometry::CreatePadPlaneArray()
285{
286 //
287 // Creates the array of AliTRDpadPlane objects
288 //
289
290 if (fPadPlaneArray) {
291 fPadPlaneArray->Delete();
292 delete fPadPlaneArray;
293 }
294
295 fPadPlaneArray = new TObjArray(fgkNlayer * fgkNstack);
296 for (Int_t ilayer = 0; ilayer < fgkNlayer; ilayer++) {
297 for (Int_t istack = 0; istack < fgkNstack; istack++) {
298 Int_t ipp = GetDetectorSec(ilayer,istack);
299 fPadPlaneArray->AddAt(CreatePadPlane(ilayer,istack),ipp);
300 }
301 }
302
303}
304
305//_____________________________________________________________________________
306AliTRDpadPlane *AliTRDgeometry::CreatePadPlane(Int_t ilayer, Int_t istack)
307{
308 //
309 // Creates an AliTRDpadPlane object
310 //
311
312 AliTRDpadPlane *padPlane = new AliTRDpadPlane();
313
314 padPlane->SetLayer(ilayer);
315 padPlane->SetStack(istack);
316
317 padPlane->SetRowSpacing(0.0);
318 padPlane->SetColSpacing(0.0);
319
320 padPlane->SetLengthRim(1.0);
321 padPlane->SetWidthRim(0.5);
322
323 padPlane->SetNcols(144);
324
325 //
326 // The pad plane parameter
327 //
328 switch (ilayer) {
329 case 0:
330 if (istack == 2) {
331 // L0C0 type
332 padPlane->SetNrows(12);
333 padPlane->SetLength(108.0);
334 padPlane->SetWidth(92.2);
335 padPlane->SetLengthOPad(8.0);
336 padPlane->SetWidthOPad(0.515);
337 padPlane->SetLengthIPad(9.0);
338 padPlane->SetWidthIPad(0.635);
339 padPlane->SetTiltingAngle(2.0);
340 }
341 else {
342 // L0C1 type
343 padPlane->SetNrows(16);
344 padPlane->SetLength(122.0);
345 padPlane->SetWidth(92.2);
346 padPlane->SetLengthOPad(7.5);
347 padPlane->SetWidthOPad(0.515);
348 padPlane->SetLengthIPad(7.5);
349 padPlane->SetWidthIPad(0.635);
350 padPlane->SetTiltingAngle(2.0);
351 }
352 break;
353 case 1:
354 if (istack == 2) {
355 // L1C0 type
356 padPlane->SetNrows(12);
357 padPlane->SetLength(108.0);
358 padPlane->SetWidth(96.6);
359 padPlane->SetLengthOPad(8.0);
360 padPlane->SetWidthOPad(0.585);
361 padPlane->SetLengthIPad(9.0);
362 padPlane->SetWidthIPad(0.665);
363 padPlane->SetTiltingAngle(-2.0);
364 }
365 else {
366 // L1C1 type
367 padPlane->SetNrows(16);
368 padPlane->SetLength(122.0);
369 padPlane->SetWidth(96.6);
370 padPlane->SetLengthOPad(7.5);
371 padPlane->SetWidthOPad(0.585);
372 padPlane->SetLengthIPad(7.5);
373 padPlane->SetWidthIPad(0.665);
374 padPlane->SetTiltingAngle(-2.0);
375 }
376 break;
377 case 2:
378 if (istack == 2) {
379 // L2C0 type
380 padPlane->SetNrows(12);
381 padPlane->SetLength(108.0);
382 padPlane->SetWidth(101.1);
383 padPlane->SetLengthOPad(8.0);
384 padPlane->SetWidthOPad(0.705);
385 padPlane->SetLengthIPad(9.0);
386 padPlane->SetWidthIPad(0.695);
387 padPlane->SetTiltingAngle(2.0);
388 }
389 else {
390 // L2C1 type
391 padPlane->SetNrows(16);
392 padPlane->SetLength(129.0);
393 padPlane->SetWidth(101.1);
394 padPlane->SetLengthOPad(7.5);
395 padPlane->SetWidthOPad(0.705);
396 padPlane->SetLengthIPad(8.0);
397 padPlane->SetWidthIPad(0.695);
398 padPlane->SetTiltingAngle(2.0);
399 }
400 break;
401 case 3:
402 if (istack == 2) {
403 // L3C0 type
404 padPlane->SetNrows(12);
405 padPlane->SetLength(108.0);
406 padPlane->SetWidth(105.5);
407 padPlane->SetLengthOPad(8.0);
408 padPlane->SetWidthOPad(0.775);
409 padPlane->SetLengthIPad(9.0);
410 padPlane->SetWidthIPad(0.725);
411 padPlane->SetTiltingAngle(-2.0);
412 }
413 else {
414 // L3C1 type
415 padPlane->SetNrows(16);
416 padPlane->SetLength(136.0);
417 padPlane->SetWidth(105.5);
418 padPlane->SetLengthOPad(7.5);
419 padPlane->SetWidthOPad(0.775);
420 padPlane->SetLengthIPad(8.5);
421 padPlane->SetWidthIPad(0.725);
422 padPlane->SetTiltingAngle(-2.0);
423 }
424 break;
425 case 4:
426 if (istack == 2) {
427 // L4C0 type
428 padPlane->SetNrows(12);
429 padPlane->SetLength(108.0);
430 padPlane->SetWidth(109.9);
431 padPlane->SetLengthOPad(8.0);
432 padPlane->SetWidthOPad(0.845);
433 padPlane->SetLengthIPad(9.0);
434 padPlane->SetWidthIPad(0.755);
435 padPlane->SetTiltingAngle(2.0);
436 }
437 else {
438 // L4C1 type
439 padPlane->SetNrows(16);
440 padPlane->SetLength(143.0);
441 padPlane->SetWidth(109.9);
442 padPlane->SetLengthOPad(7.5);
443 padPlane->SetWidthOPad(0.845);
444 padPlane->SetLengthIPad(9.0);
445 padPlane->SetWidthIPad(0.755);
446 padPlane->SetTiltingAngle(2.0);
447 }
448 break;
449 case 5:
450 if (istack == 2) {
451 // L5C0 type
452 padPlane->SetNrows(12);
453 padPlane->SetLength(108.0);
454 padPlane->SetWidth(114.4);
455 padPlane->SetLengthOPad(8.0);
456 padPlane->SetWidthOPad(0.965);
457 padPlane->SetLengthIPad(9.0);
458 padPlane->SetWidthIPad(0.785);
459 padPlane->SetTiltingAngle(-2.0);
460 }
461 else {
462 // L5C1 type
463 padPlane->SetNrows(16);
464 padPlane->SetLength(145.0);
465 padPlane->SetWidth(114.4);
466 padPlane->SetLengthOPad(8.5);
467 padPlane->SetWidthOPad(0.965);
468 padPlane->SetLengthIPad(9.0);
469 padPlane->SetWidthIPad(0.785);
470 padPlane->SetTiltingAngle(-2.0);
471 }
472 break;
473 };
474
475 //
476 // The positions of the borders of the pads
477 //
478 // Row direction
479 //
480 Double_t row = fClength[ilayer][istack] / 2.0
481 - fgkRpadW
482 - padPlane->GetLengthRim();
483 for (Int_t ir = 0; ir < padPlane->GetNrows(); ir++) {
484 padPlane->SetPadRow(ir,row);
485 row -= padPlane->GetRowSpacing();
486 if (ir == 0) {
487 row -= padPlane->GetLengthOPad();
488 }
489 else {
490 row -= padPlane->GetLengthIPad();
491 }
492 }
493 //
494 // Column direction
495 //
496 Double_t col = - fCwidth[ilayer] / 2.0
497 - fgkCroW
498 + padPlane->GetWidthRim();
499 for (Int_t ic = 0; ic < padPlane->GetNcols(); ic++) {
500 padPlane->SetPadCol(ic,col);
501 col += padPlane->GetColSpacing();
502 if (ic == 0) {
503 col += padPlane->GetWidthOPad();
504 }
505 else {
506 col += padPlane->GetWidthIPad();
507 }
508 }
509 // Calculate the offset to translate from the local ROC system into
510 // the local supermodule system, which is used for clusters
511 Double_t rowTmp = fClength[ilayer][0]
512 + fClength[ilayer][1]
513 + fClength[ilayer][2] / 2.0;
514 for (Int_t jstack = 0; jstack < istack; jstack++) {
515 rowTmp -= fClength[ilayer][jstack];
516 }
517 padPlane->SetPadRowSMOffset(rowTmp - fClength[ilayer][istack]/2.0);
518
519 return padPlane;
520
521}
522
523//_____________________________________________________________________________
524void AliTRDgeometry::CreateGeometry(Int_t *idtmed)
525{
526 //
527 // Create the TRD geometry without hole
528 //
529 //
530 // Names of the TRD volumina (xx = detector number):
531 //
532 // Volume (Air) wrapping the readout chamber components
533 // UTxx includes: UAxx, UDxx, UFxx, UUxx
534 //
535 // Volume (Air) wrapping the services (fee + cooling)
536 // UUxx the services volume has been reduced by 7.42 mm
537 // in order to allow shifts in radial direction
538 //
539 // Lower part of the readout chambers (drift volume + radiator)
540 //
541 // UAxx Aluminum frames (Al)
542 // UBxx Wacosit frames (C)
543 // UXxx Glue around radiator (Epoxy)
544 // UCxx Inner volumes (Air)
545 // UZxx Additional aluminum ledges (Al)
546 //
547 // Upper part of the readout chambers (readout plane + fee)
548 //
549 // UDxx Wacosit frames of amp. region (C)
550 // UExx Inner volumes of the frame (Air)
551 // UFxx Aluminum frame of back panel (Al)
552 // UGxx Inner volumes of the back panel (Air)
553 //
554 // Inner material layers
555 //
556 // UHxx Radiator (Rohacell)
557 // UJxx Drift volume (Xe/CO2)
558 // UKxx Amplification volume (Xe/CO2)
559 // UWxx Wire plane (Cu)
560 // ULxx Pad plane (Cu)
561 // UYxx Glue layer (Epoxy)
562 // UMxx Support structure (Rohacell)
563 // UNxx ROB base material (C)
564 // UOxx ROB copper (Cu)
565 // UVxx ROB other materials (Cu)
566 //
567
568 const Int_t kNparTrd = 4;
569 const Int_t kNparCha = 3;
570
571 Float_t xpos;
572 Float_t ypos;
573 Float_t zpos;
574
575 Float_t parTrd[kNparTrd];
576 Float_t parCha[kNparCha];
577
578 Char_t cTagV[6];
579 Char_t cTagM[5];
580
581 // There are three TRD volumes for the supermodules in order to accomodate
582 // the different arrangements in front of PHOS
583 // UTR1: Default supermodule
584 // UTR2: Supermodule in front of PHOS with double carbon cover
585 // UTR3: As UTR2, but w/o middle stack
586 //
587 // The mother volume for one sector (Air), full length in z-direction
588 // Provides material for side plates of super module
589 parTrd[0] = fgkSwidth1/2.0;
590 parTrd[1] = fgkSwidth2/2.0;
591 parTrd[2] = fgkSlength/2.0;
592 parTrd[3] = fgkSheight/2.0;
593 gMC->Gsvolu("UTR1","TRD1",idtmed[1302-1],parTrd,kNparTrd);
594 gMC->Gsvolu("UTR2","TRD1",idtmed[1302-1],parTrd,kNparTrd);
595 gMC->Gsvolu("UTR3","TRD1",idtmed[1302-1],parTrd,kNparTrd);
596 // The outer aluminum plates of the super module (Al)
597 parTrd[0] = fgkSwidth1/2.0;
598 parTrd[1] = fgkSwidth2/2.0;
599 parTrd[2] = fgkSlength/2.0;
600 parTrd[3] = fgkSheight/2.0;
601 gMC->Gsvolu("UTS1","TRD1",idtmed[1301-1],parTrd,kNparTrd);
602 gMC->Gsvolu("UTS2","TRD1",idtmed[1301-1],parTrd,kNparTrd);
603 gMC->Gsvolu("UTS3","TRD1",idtmed[1301-1],parTrd,kNparTrd);
604 // The inner part of the TRD mother volume for one sector (Air),
605 // full length in z-direction
606 parTrd[0] = fgkSwidth1/2.0 - fgkSMpltT;
607 parTrd[1] = fgkSwidth2/2.0 - fgkSMpltT;
608 parTrd[2] = fgkSlength/2.0;
609 parTrd[3] = fgkSheight/2.0 - fgkSMpltT;
610 gMC->Gsvolu("UTI1","TRD1",idtmed[1302-1],parTrd,kNparTrd);
611 gMC->Gsvolu("UTI2","TRD1",idtmed[1302-1],parTrd,kNparTrd);
612 gMC->Gsvolu("UTI3","TRD1",idtmed[1302-1],parTrd,kNparTrd);
613
614 // The inner part of the TRD mother volume for services in front
615 // of the supermodules (Air),
616 parTrd[0] = fgkSwidth1/2.0;
617 parTrd[1] = fgkSwidth2/2.0;
618 parTrd[2] = fgkFlength/2.0;
619 parTrd[3] = fgkSheight/2.0;
620 gMC->Gsvolu("UTF1","TRD1",idtmed[1302-1],parTrd,kNparTrd);
621 gMC->Gsvolu("UTF2","TRD1",idtmed[1302-1],parTrd,kNparTrd);
622
623 for (Int_t istack = 0; istack < kNstack; istack++) {
624 for (Int_t ilayer = 0; ilayer < kNlayer; ilayer++) {
625
626 Int_t iDet = GetDetectorSec(ilayer,istack);
627
628 // The lower part of the readout chambers (drift volume + radiator)
629 // The aluminum frames
630 sprintf(cTagV,"UA%02d",iDet);
631 parCha[0] = fCwidth[ilayer]/2.0;
632 parCha[1] = fClength[ilayer][istack]/2.0 - fgkHspace/2.0;
633 parCha[2] = fgkCraH/2.0 + fgkCdrH/2.0;
634 fChamberUAboxd[iDet][0] = parCha[0];
635 fChamberUAboxd[iDet][1] = parCha[1];
636 fChamberUAboxd[iDet][2] = parCha[2];
637 gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha);
638 // The additional aluminum on the frames
639 // This part has not the correct postion but is just supposed to
640 // represent the missing material. The correct form of the L-shaped
641 // profile would not fit into the alignable volume.
642 sprintf(cTagV,"UZ%02d",iDet);
643 parCha[0] = fgkCroW/2.0;
644 parCha[1] = fClength[ilayer][istack]/2.0 - fgkHspace/2.0;
645 parCha[2] = fgkCalW/2.0;
646 fChamberUAboxd[iDet][0] = fChamberUAboxd[iDet][0] + fgkCroW;
647 gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha);
648 // The Wacosit frames
649 sprintf(cTagV,"UB%02d",iDet);
650 parCha[0] = fCwidth[ilayer]/2.0 - fgkCalT;
651 parCha[1] = -1.0;
652 parCha[2] = -1.0;
653 gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha);
654 // The glue around the radiator
655 sprintf(cTagV,"UX%02d",iDet);
656 parCha[0] = fCwidth[ilayer]/2.0 - fgkCalT - fgkCclsT;
657 parCha[1] = fClength[ilayer][istack]/2.0 - fgkHspace/2.0 - fgkCclfT;
658 parCha[2] = fgkCraH/2.0;
659 gMC->Gsvolu(cTagV,"BOX ",idtmed[1311-1],parCha,kNparCha);
660 // The inner part of radiator (air)
661 sprintf(cTagV,"UC%02d",iDet);
662 parCha[0] = fCwidth[ilayer]/2.0 - fgkCalT - fgkCclsT - fgkCglT;
663 parCha[1] = fClength[ilayer][istack]/2.0 - fgkHspace/2.0 - fgkCclfT - fgkCglT;
664 parCha[2] = -1.0;
665 gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
666
667 // The upper part of the readout chambers (amplification volume)
668 // The Wacosit frames
669 sprintf(cTagV,"UD%02d",iDet);
670 parCha[0] = fCwidth[ilayer]/2.0 + fgkCroW;
671 parCha[1] = fClength[ilayer][istack]/2.0 - fgkHspace/2.0;
672 parCha[2] = fgkCamH/2.0;
673 fChamberUDboxd[iDet][0] = parCha[0];
674 fChamberUDboxd[iDet][1] = parCha[1];
675 fChamberUDboxd[iDet][2] = parCha[2];
676 gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha);
677 // The inner part of the Wacosit frame (air)
678 sprintf(cTagV,"UE%02d",iDet);
679 parCha[0] = fCwidth[ilayer]/2.0 + fgkCroW - fgkCcuT;
680 parCha[1] = fClength[ilayer][istack]/2.0 - fgkHspace/2.0 - fgkCcuT;
681 parCha[2] = -1.;
682 gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
683
684 // The support structure (pad plane, back panel, readout boards)
685 // The aluminum frames
686 sprintf(cTagV,"UF%02d",iDet);
687 parCha[0] = fCwidth[ilayer]/2.0 + fgkCroW;
688 parCha[1] = fClength[ilayer][istack]/2.0 - fgkHspace/2.0;
689 parCha[2] = fgkCroH/2.0;
690 fChamberUFboxd[iDet][0] = parCha[0];
691 fChamberUFboxd[iDet][1] = parCha[1];
692 fChamberUFboxd[iDet][2] = parCha[2];
693 gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha);
694 // The inner part of the aluminum frames
695 sprintf(cTagV,"UG%02d",iDet);
696 parCha[0] = fCwidth[ilayer]/2.0 + fgkCroW - fgkCauT;
697 parCha[1] = fClength[ilayer][istack]/2.0 - fgkHspace/2.0 - fgkCauT;
698 parCha[2] = -1.0;
699 gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
700
701 // The material layers inside the chambers
702 // Rohacell layer (radiator)
703 parCha[0] = -1.0;
704 parCha[1] = -1.0;
705 parCha[2] = fgkRaThick/2.0;
706 sprintf(cTagV,"UH%02d",iDet);
707 gMC->Gsvolu(cTagV,"BOX ",idtmed[1315-1],parCha,kNparCha);
708 // Xe/Isobutane layer (drift volume)
709 parCha[0] = fCwidth[ilayer]/2.0 - fgkCalT - fgkCclsT;
710 parCha[1] = fClength[ilayer][istack]/2.0 - fgkHspace/2.0 - fgkCclfT;
711 parCha[2] = fgkDrThick/2.0;
712 sprintf(cTagV,"UJ%02d",iDet);
713 gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha);
714 // Xe/Isobutane layer (amplification volume)
715 parCha[0] = -1.0;
716 parCha[1] = -1.0;
717 parCha[2] = fgkAmThick/2.0;
718 sprintf(cTagV,"UK%02d",iDet);
719 gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha);
720 // Cu layer (wire plane)
721 parCha[0] = -1.0;
722 parCha[1] = -1.0;
723 parCha[2] = fgkWrThick/2.0;
724 sprintf(cTagV,"UW%02d",iDet);
725 gMC->Gsvolu(cTagV,"BOX ",idtmed[1303-1],parCha,kNparCha);
726 // Cu layer (pad plane)
727 parCha[0] = -1.0;
728 parCha[1] = -1.0;
729 parCha[2] = fgkCuThick/2.0;
730 sprintf(cTagV,"UL%02d",iDet);
731 gMC->Gsvolu(cTagV,"BOX ",idtmed[1305-1],parCha,kNparCha);
732 // Epoxy layer (glue)
733 parCha[0] = -1.0;
734 parCha[1] = -1.0;
735 parCha[2] = fgkGlThick/2.0;
736 sprintf(cTagV,"UY%02d",iDet);
737 gMC->Gsvolu(cTagV,"BOX ",idtmed[1311-1],parCha,kNparCha);
738 // G10 layer (support structure / honeycomb)
739 parCha[0] = -1.0;
740 parCha[1] = -1.0;
741 parCha[2] = fgkSuThick/2.0;
742 sprintf(cTagV,"UM%02d",iDet);
743 gMC->Gsvolu(cTagV,"BOX ",idtmed[1310-1],parCha,kNparCha);
744 // G10 layer (PCB readout board)
745 parCha[0] = -1.0;
746 parCha[1] = -1.0;
747 parCha[2] = fgkRpThick/2;
748 sprintf(cTagV,"UN%02d",iDet);
749 gMC->Gsvolu(cTagV,"BOX ",idtmed[1313-1],parCha,kNparCha);
750 // Cu layer (traces in readout board)
751 parCha[0] = -1.0;
752 parCha[1] = -1.0;
753 parCha[2] = fgkRcThick/2.0;
754 sprintf(cTagV,"UO%02d",iDet);
755 gMC->Gsvolu(cTagV,"BOX ",idtmed[1306-1],parCha,kNparCha);
756 // Cu layer (other material on in readout board)
757 parCha[0] = -1.0;
758 parCha[1] = -1.0;
759 parCha[2] = fgkRoThick/2.0;
760 sprintf(cTagV,"UV%02d",iDet);
761 gMC->Gsvolu(cTagV,"BOX ",idtmed[1304-1],parCha,kNparCha);
762
763 // Position the layers in the chambers
764 xpos = 0.0;
765 ypos = 0.0;
766 // Lower part
767 // Rohacell layer (radiator)
768 zpos = fgkRaZpos;
769 sprintf(cTagV,"UH%02d",iDet);
770 sprintf(cTagM,"UC%02d",iDet);
771 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
772 // Xe/Isobutane layer (drift volume)
773 zpos = fgkDrZpos;
774 sprintf(cTagV,"UJ%02d",iDet);
775 sprintf(cTagM,"UB%02d",iDet);
776 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
777 // Upper part
778 // Xe/Isobutane layer (amplification volume)
779 zpos = fgkAmZpos;
780 sprintf(cTagV,"UK%02d",iDet);
781 sprintf(cTagM,"UE%02d",iDet);
782 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
783 // Cu layer (wire plane inside amplification volume)
784 zpos = fgkWrZpos;
785 sprintf(cTagV,"UW%02d",iDet);
786 sprintf(cTagM,"UK%02d",iDet);
787 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
788 // Readout part + support plane
789 // Cu layer (pad plane)
790 zpos = fgkCuZpos;
791 sprintf(cTagV,"UL%02d",iDet);
792 sprintf(cTagM,"UG%02d",iDet);
793 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
794 // Epoxy layer (glue)
795 zpos = fgkGlZpos;
796 sprintf(cTagV,"UY%02d",iDet);
797 sprintf(cTagM,"UG%02d",iDet);
798 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
799 // G10 layer (support structure)
800 zpos = fgkSuZpos;
801 sprintf(cTagV,"UM%02d",iDet);
802 sprintf(cTagM,"UG%02d",iDet);
803 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
804 // G10 layer (PCB readout board)
805 zpos = fgkRpZpos;
806 sprintf(cTagV,"UN%02d",iDet);
807 sprintf(cTagM,"UG%02d",iDet);
808 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
809 // Cu layer (traces in readout board)
810 zpos = fgkRcZpos;
811 sprintf(cTagV,"UO%02d",iDet);
812 sprintf(cTagM,"UG%02d",iDet);
813 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
814 // Cu layer (other materials on readout board)
815 zpos = fgkRoZpos;
816 sprintf(cTagV,"UV%02d",iDet);
817 sprintf(cTagM,"UG%02d",iDet);
818 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
819
820 // Position the inner volumes of the chambers in the frames
821 xpos = 0.0;
822 ypos = 0.0;
823 // The inner part of the radiator
824 zpos = 0.0;
825 sprintf(cTagV,"UC%02d",iDet);
826 sprintf(cTagM,"UX%02d",iDet);
827 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
828 // The glue around the radiator
829 zpos = fgkCraH/2.0 - fgkCdrH/2.0 - fgkCraH/2.0;
830 sprintf(cTagV,"UX%02d",iDet);
831 sprintf(cTagM,"UB%02d",iDet);
832 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
833 // The lower Wacosit frame inside the aluminum frame
834 zpos = 0.0;
835 sprintf(cTagV,"UB%02d",iDet);
836 sprintf(cTagM,"UA%02d",iDet);
837 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
838 // The inside of the upper Wacosit frame
839 zpos = 0.0;
840 sprintf(cTagV,"UE%02d",iDet);
841 sprintf(cTagM,"UD%02d",iDet);
842 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
843 // The inside of the upper aluminum frame
844 zpos = 0.0;
845 sprintf(cTagV,"UG%02d",iDet);
846 sprintf(cTagM,"UF%02d",iDet);
847 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
848
849 // Position the frames of the chambers in the TRD mother volume
850 xpos = 0.0;
851 ypos = fClength[ilayer][0] + fClength[ilayer][1] + fClength[ilayer][2]/2.0;
852 for (Int_t ic = 0; ic < istack; ic++) {
853 ypos -= fClength[ilayer][ic];
854 }
855 ypos -= fClength[ilayer][istack]/2.0;
856 zpos = fgkVrocsm + fgkSMpltT + fgkCraH/2.0 + fgkCdrH/2.0 - fgkSheight/2.0
857 + ilayer * (fgkCH + fgkVspace);
858 // The lower aluminum frame, radiator + drift region
859 sprintf(cTagV,"UA%02d",iDet);
860 fChamberUAorig[iDet][0] = xpos;
861 fChamberUAorig[iDet][1] = ypos;
862 fChamberUAorig[iDet][2] = zpos;
863 // The upper G10 frame, amplification region
864 sprintf(cTagV,"UD%02d",iDet);
865 zpos += fgkCamH/2.0 + fgkCraH/2.0 + fgkCdrH/2.0;
866 fChamberUDorig[iDet][0] = xpos;
867 fChamberUDorig[iDet][1] = ypos;
868 fChamberUDorig[iDet][2] = zpos;
869 // The upper aluminum frame
870 sprintf(cTagV,"UF%02d",iDet);
871 zpos += fgkCroH/2.0 + fgkCamH/2.0;
872 fChamberUForig[iDet][0] = xpos;
873 fChamberUForig[iDet][1] = ypos;
874 fChamberUForig[iDet][2] = zpos;
875
876 }
877 }
878
879 // Create the volumes of the super module frame
880 CreateFrame(idtmed);
881
882 // Create the volumes of the services
883 CreateServices(idtmed);
884
885 for (Int_t istack = 0; istack < kNstack; istack++) {
886 for (Int_t ilayer = 0; ilayer < kNlayer; ilayer++) {
887 GroupChamber(ilayer,istack,idtmed);
888 }
889 }
890
891 xpos = 0.0;
892 ypos = 0.0;
893 zpos = 0.0;
894 gMC->Gspos("UTI1",1,"UTS1",xpos,ypos,zpos,0,"ONLY");
895 gMC->Gspos("UTI2",1,"UTS2",xpos,ypos,zpos,0,"ONLY");
896 gMC->Gspos("UTI3",1,"UTS3",xpos,ypos,zpos,0,"ONLY");
897
898 xpos = 0.0;
899 ypos = 0.0;
900 zpos = 0.0;
901 gMC->Gspos("UTS1",1,"UTR1",xpos,ypos,zpos,0,"ONLY");
902 gMC->Gspos("UTS2",1,"UTR2",xpos,ypos,zpos,0,"ONLY");
903 gMC->Gspos("UTS3",1,"UTR3",xpos,ypos,zpos,0,"ONLY");
904
905 // Put the TRD volumes into the space frame mother volumes
906 // if enabled via status flag
907 xpos = 0.0;
908 ypos = 0.0;
909 zpos = 0.0;
910 for (Int_t isector = 0; isector < kNsector; isector++) {
911 if (GetSMstatus(isector)) {
912 sprintf(cTagV,"BTRD%d",isector);
913 switch (isector) {
914 case 13:
915 case 14:
916 case 15:
917 // Double carbon, w/o middle stack
918 gMC->Gspos("UTR3",1,cTagV,xpos,ypos,zpos,0,"ONLY");
919 break;
920 case 11:
921 case 12:
922 // Double carbon, all stacks
923 gMC->Gspos("UTR2",1,cTagV,xpos,ypos,zpos,0,"ONLY");
924 break;
925 default:
926 // Standard supermodule
927 gMC->Gspos("UTR1",1,cTagV,xpos,ypos,zpos,0,"ONLY");
928 };
929 }
930 }
931
932 // Put the TRD volumes into the space frame mother volumes
933 // if enabled via status flag
934 xpos = 0.0;
935 ypos = 0.5*fgkSlength + 0.5*fgkFlength;
936 zpos = 0.0;
937 for (Int_t isector = 0; isector < kNsector; isector++) {
938 if (GetSMstatus(isector)) {
939 sprintf(cTagV,"BTRD%d",isector);
940 gMC->Gspos("UTF1",1,cTagV,xpos, ypos,zpos,0,"ONLY");
941 gMC->Gspos("UTF2",1,cTagV,xpos,-ypos,zpos,0,"ONLY");
942 }
943 }
944
945}
946
947//_____________________________________________________________________________
948void AliTRDgeometry::CreateFrame(Int_t *idtmed)
949{
950 //
951 // Create the geometry of the frame of the supermodule
952 //
953 // Names of the TRD services volumina
954 //
955 // USRL Support rails for the chambers (Al)
956 // USxx Support cross bars between the chambers (Al)
957 // USHx Horizontal connection between the cross bars (Al)
958 // USLx Long corner ledges (Al)
959 //
960
961 Int_t ilayer = 0;
962
963 Float_t xpos = 0.0;
964 Float_t ypos = 0.0;
965 Float_t zpos = 0.0;
966
967 Char_t cTagV[5];
968 Char_t cTagM[5];
969
970 const Int_t kNparTRD = 4;
971 Float_t parTRD[kNparTRD];
972 const Int_t kNparBOX = 3;
973 Float_t parBOX[kNparBOX];
974 const Int_t kNparTRP = 11;
975 Float_t parTRP[kNparTRP];
976
977 // The rotation matrices
978 const Int_t kNmatrix = 6;
979 Int_t matrix[kNmatrix];
980 gMC->Matrix(matrix[0], 100.0, 0.0, 90.0, 90.0, 10.0, 0.0);
981 gMC->Matrix(matrix[1], 80.0, 0.0, 90.0, 90.0, 10.0, 180.0);
982 gMC->Matrix(matrix[2], 90.0, 0.0, 0.0, 0.0, 90.0, 90.0);
983 gMC->Matrix(matrix[3], 90.0, 180.0, 0.0, 180.0, 90.0, 90.0);
984 gMC->Matrix(matrix[4], 170.0, 0.0, 80.0, 0.0, 90.0, 90.0);
985 gMC->Matrix(matrix[5], 170.0, 180.0, 80.0, 180.0, 90.0, 90.0);
986 gMC->Matrix(matrix[6], 180.0, 180.0, 90.0, 180.0, 90.0, 90.0);
987
988 //
989 // The carbon inserts in the top/bottom aluminum plates
990 //
991
992 const Int_t kNparCrb = 3;
993 Float_t parCrb[kNparCrb];
994 parCrb[0] = 0.0;
995 parCrb[1] = 0.0;
996 parCrb[2] = 0.0;
997 gMC->Gsvolu("USCR","BOX ",idtmed[1307-1],parCrb,0);
998 // Bottom 1 (all sectors)
999 parCrb[0] = 77.49/2.0;
1000 parCrb[1] = 104.60/2.0;
1001 parCrb[2] = fgkSMpltT/2.0;
1002 xpos = 0.0;
1003 ypos = 0.0;
1004 zpos = fgkSMpltT/2.0 - fgkSheight/2.0;
1005 gMC->Gsposp("USCR", 1,"UTS1", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1006 gMC->Gsposp("USCR", 2,"UTS2", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1007 gMC->Gsposp("USCR", 3,"UTS3", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1008 // Bottom 2 (all sectors)
1009 parCrb[0] = 77.49/2.0;
1010 parCrb[1] = 55.80/2.0;
1011 parCrb[2] = fgkSMpltT/2.0;
1012 xpos = 0.0;
1013 ypos = 85.6;
1014 zpos = fgkSMpltT/2.0 - fgkSheight/2.0;
1015 gMC->Gsposp("USCR", 4,"UTS1", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1016 gMC->Gsposp("USCR", 5,"UTS2", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1017 gMC->Gsposp("USCR", 6,"UTS3", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1018 gMC->Gsposp("USCR", 7,"UTS1", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1019 gMC->Gsposp("USCR", 8,"UTS2", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1020 gMC->Gsposp("USCR", 9,"UTS3", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1021 // Bottom 3 (all sectors)
1022 parCrb[0] = 77.49/2.0;
1023 parCrb[1] = 56.00/2.0;
1024 parCrb[2] = fgkSMpltT/2.0;
1025 xpos = 0.0;
1026 ypos = 148.5;
1027 zpos = fgkSMpltT/2.0 - fgkSheight/2.0;
1028 gMC->Gsposp("USCR",10,"UTS1", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1029 gMC->Gsposp("USCR",11,"UTS2", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1030 gMC->Gsposp("USCR",12,"UTS3", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1031 gMC->Gsposp("USCR",13,"UTS1", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1032 gMC->Gsposp("USCR",14,"UTS2", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1033 gMC->Gsposp("USCR",15,"UTS3", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1034 // Bottom 4 (all sectors)
1035 parCrb[0] = 77.49/2.0;
1036 parCrb[1] = 118.00/2.0;
1037 parCrb[2] = fgkSMpltT/2.0;
1038 xpos = 0.0;
1039 ypos = 240.5;
1040 zpos = fgkSMpltT/2.0 - fgkSheight/2.0;
1041 gMC->Gsposp("USCR",16,"UTS1", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1042 gMC->Gsposp("USCR",17,"UTS2", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1043 gMC->Gsposp("USCR",18,"UTS3", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1044 gMC->Gsposp("USCR",19,"UTS1", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1045 gMC->Gsposp("USCR",20,"UTS2", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1046 gMC->Gsposp("USCR",21,"UTS3", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1047 // Top 1 (only in front of PHOS)
1048 parCrb[0] = 111.48/2.0;
1049 parCrb[1] = 105.00/2.0;
1050 parCrb[2] = fgkSMpltT/2.0;
1051 xpos = 0.0;
1052 ypos = 0.0;
1053 zpos = fgkSMpltT/2.0 - fgkSheight/2.0;
1054 gMC->Gsposp("USCR",22,"UTS2", xpos, ypos,-zpos,0,"ONLY",parCrb,kNparCrb);
1055 gMC->Gsposp("USCR",23,"UTS3", xpos, ypos,-zpos,0,"ONLY",parCrb,kNparCrb);
1056 // Top 2 (only in front of PHOS)
1057 parCrb[0] = 111.48/2.0;
1058 parCrb[1] = 56.00/2.0;
1059 parCrb[2] = fgkSMpltT/2.0;
1060 xpos = 0.0;
1061 ypos = 85.5;
1062 zpos = fgkSMpltT/2.0 - fgkSheight/2.0;
1063 gMC->Gsposp("USCR",24,"UTS2", xpos, ypos,-zpos,0,"ONLY",parCrb,kNparCrb);
1064 gMC->Gsposp("USCR",25,"UTS3", xpos, ypos,-zpos,0,"ONLY",parCrb,kNparCrb);
1065 gMC->Gsposp("USCR",26,"UTS2", xpos,-ypos,-zpos,0,"ONLY",parCrb,kNparCrb);
1066 gMC->Gsposp("USCR",27,"UTS3", xpos,-ypos,-zpos,0,"ONLY",parCrb,kNparCrb);
1067
1068 //
1069 // The chamber support rails
1070 //
1071
1072 const Float_t kSRLwid = 2.00;
1073 const Float_t kSRLhgt = 2.3;
1074 const Float_t kSRLdst = 1.0;
1075 const Int_t kNparSRL = 3;
1076 Float_t parSRL[kNparSRL];
1077 parSRL[0] = kSRLwid /2.0;
1078 parSRL[1] = fgkSlength/2.0;
1079 parSRL[2] = kSRLhgt /2.0;
1080 gMC->Gsvolu("USRL","BOX ",idtmed[1301-1],parSRL,kNparSRL);
1081
1082 xpos = 0.0;
1083 ypos = 0.0;
1084 zpos = 0.0;
1085 for (ilayer = 0; ilayer < kNlayer; ilayer++) {
1086 xpos = fCwidth[ilayer]/2.0 + kSRLwid/2.0 + kSRLdst;
1087 ypos = 0.0;
1088 zpos = fgkVrocsm + fgkSMpltT + fgkCraH + fgkCdrH + fgkCamH
1089 - fgkSheight/2.0
1090 + ilayer * (fgkCH + fgkVspace);
1091 gMC->Gspos("USRL",ilayer+1 ,"UTI1", xpos,ypos,zpos,0,"ONLY");
1092 gMC->Gspos("USRL",ilayer+1+ kNlayer,"UTI1",-xpos,ypos,zpos,0,"ONLY");
1093 gMC->Gspos("USRL",ilayer+1+2*kNlayer,"UTI2", xpos,ypos,zpos,0,"ONLY");
1094 gMC->Gspos("USRL",ilayer+1+3*kNlayer,"UTI2",-xpos,ypos,zpos,0,"ONLY");
1095 gMC->Gspos("USRL",ilayer+1+4*kNlayer,"UTI3", xpos,ypos,zpos,0,"ONLY");
1096 gMC->Gspos("USRL",ilayer+1+5*kNlayer,"UTI3",-xpos,ypos,zpos,0,"ONLY");
1097 }
1098
1099 //
1100 // The cross bars between the chambers
1101 //
1102
1103 const Float_t kSCBwid = 1.0;
1104 const Float_t kSCBthk = 2.0;
1105 const Float_t kSCHhgt = 0.3;
1106
1107 const Int_t kNparSCB = 3;
1108 Float_t parSCB[kNparSCB];
1109 parSCB[1] = kSCBwid/2.0;
1110 parSCB[2] = fgkCH /2.0 + fgkVspace/2.0 - kSCHhgt;
1111
1112 const Int_t kNparSCI = 3;
1113 Float_t parSCI[kNparSCI];
1114 parSCI[1] = -1;
1115
1116 xpos = 0.0;
1117 ypos = 0.0;
1118 zpos = 0.0;
1119 for (ilayer = 0; ilayer < kNlayer; ilayer++) {
1120
1121 // The aluminum of the cross bars
1122 parSCB[0] = fCwidth[ilayer]/2.0 + kSRLdst/2.0;
1123 sprintf(cTagV,"USF%01d",ilayer);
1124 gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
1125
1126 // The empty regions in the cross bars
1127 Float_t thkSCB = kSCBthk;
1128 if (ilayer < 2) {
1129 thkSCB *= 1.5;
1130 }
1131 parSCI[2] = parSCB[2] - thkSCB;
1132 parSCI[0] = parSCB[0]/4.0 - kSCBthk;
1133 sprintf(cTagV,"USI%01d",ilayer);
1134 gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parSCI,kNparSCI);
1135
1136 sprintf(cTagV,"USI%01d",ilayer);
1137 sprintf(cTagM,"USF%01d",ilayer);
1138 ypos = 0.0;
1139 zpos = 0.0;
1140 xpos = parSCI[0] + thkSCB/2.0;
1141 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
1142 xpos = - parSCI[0] - thkSCB/2.0;
1143 gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY");
1144 xpos = 3.0 * parSCI[0] + 1.5 * thkSCB;
1145 gMC->Gspos(cTagV,3,cTagM,xpos,ypos,zpos,0,"ONLY");
1146 xpos = - 3.0 * parSCI[0] - 1.5 * thkSCB;
1147 gMC->Gspos(cTagV,4,cTagM,xpos,ypos,zpos,0,"ONLY");
1148
1149 sprintf(cTagV,"USF%01d",ilayer);
1150 xpos = 0.0;
1151 zpos = fgkVrocsm + fgkSMpltT + parSCB[2] - fgkSheight/2.0
1152 + ilayer * (fgkCH + fgkVspace);
1153
1154 ypos = fClength[ilayer][2]/2.0 + fClength[ilayer][1];
1155 gMC->Gspos(cTagV, 1,"UTI1", xpos,ypos,zpos,0,"ONLY");
1156 gMC->Gspos(cTagV, 3,"UTI2", xpos,ypos,zpos,0,"ONLY");
1157 gMC->Gspos(cTagV, 5,"UTI3", xpos,ypos,zpos,0,"ONLY");
1158
1159 ypos = - fClength[ilayer][2]/2.0 - fClength[ilayer][1];
1160 gMC->Gspos(cTagV, 2,"UTI1", xpos,ypos,zpos,0,"ONLY");
1161 gMC->Gspos(cTagV, 4,"UTI2", xpos,ypos,zpos,0,"ONLY");
1162 gMC->Gspos(cTagV, 6,"UTI3", xpos,ypos,zpos,0,"ONLY");
1163
1164 }
1165
1166 //
1167 // The horizontal connections between the cross bars
1168 //
1169
1170 const Int_t kNparSCH = 3;
1171 Float_t parSCH[kNparSCH];
1172
1173 for (ilayer = 1; ilayer < kNlayer-1; ilayer++) {
1174
1175 parSCH[0] = fCwidth[ilayer]/2.0;
1176 parSCH[1] = (fClength[ilayer+1][2]/2.0 + fClength[ilayer+1][1]
1177 - fClength[ilayer ][2]/2.0 - fClength[ilayer ][1])/2.0;
1178 parSCH[2] = kSCHhgt/2.0;
1179
1180 sprintf(cTagV,"USH%01d",ilayer);
1181 gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCH,kNparSCH);
1182 xpos = 0.0;
1183 ypos = fClength[ilayer][2]/2.0 + fClength[ilayer][1] + parSCH[1];
1184 zpos = fgkVrocsm + fgkSMpltT - kSCHhgt/2.0 - fgkSheight/2.0
1185 + (ilayer+1) * (fgkCH + fgkVspace);
1186 gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
1187 gMC->Gspos(cTagV,3,"UTI2", xpos,ypos,zpos,0,"ONLY");
1188 gMC->Gspos(cTagV,5,"UTI3", xpos,ypos,zpos,0,"ONLY");
1189 ypos = -ypos;
1190 gMC->Gspos(cTagV,2,"UTI1", xpos,ypos,zpos,0,"ONLY");
1191 gMC->Gspos(cTagV,4,"UTI2", xpos,ypos,zpos,0,"ONLY");
1192 gMC->Gspos(cTagV,6,"UTI3", xpos,ypos,zpos,0,"ONLY");
1193
1194 }
1195
1196 //
1197 // The aymmetric flat frame in the middle
1198 //
1199
1200 // The envelope volume (aluminum)
1201 parTRD[0] = 87.60/2.0;
1202 parTRD[1] = 114.00/2.0;
1203 parTRD[2] = 1.20/2.0;
1204 parTRD[3] = 71.30/2.0;
1205 gMC->Gsvolu("USDB","TRD1",idtmed[1301-1],parTRD,kNparTRD);
1206 // Empty spaces (air)
1207 parTRP[ 0] = 1.20/2.0;
1208 parTRP[ 1] = 0.0;
1209 parTRP[ 2] = 0.0;
1210 parTRP[ 3] = 27.00/2.0;
1211 parTRP[ 4] = 50.60/2.0;
1212 parTRP[ 5] = 5.00/2.0;
1213 parTRP[ 6] = 3.5;
1214 parTRP[ 7] = 27.00/2.0;
1215 parTRP[ 8] = 50.60/2.0;
1216 parTRP[ 9] = 5.00/2.0;
1217 parTRP[10] = 3.5;
1218 gMC->Gsvolu("USD1","TRAP",idtmed[1302-1],parTRP,kNparTRP);
1219 xpos = 18.0;
1220 ypos = 0.0;
1221 zpos = 27.00/2.0 - 71.3/2.0;
1222 gMC->Gspos("USD1",1,"USDB", xpos, ypos, zpos,matrix[2],"ONLY");
1223 // Empty spaces (air)
1224 parTRP[ 0] = 1.20/2.0;
1225 parTRP[ 1] = 0.0;
1226 parTRP[ 2] = 0.0;
1227 parTRP[ 3] = 33.00/2.0;
1228 parTRP[ 4] = 5.00/2.0;
1229 parTRP[ 5] = 62.10/2.0;
1230 parTRP[ 6] = 3.5;
1231 parTRP[ 7] = 33.00/2.0;
1232 parTRP[ 8] = 5.00/2.0;
1233 parTRP[ 9] = 62.10/2.0;
1234 parTRP[10] = 3.5;
1235 gMC->Gsvolu("USD2","TRAP",idtmed[1302-1],parTRP,kNparTRP);
1236 xpos = 21.0;
1237 ypos = 0.0;
1238 zpos = 71.3/2.0 - 33.0/2.0;
1239 gMC->Gspos("USD2",1,"USDB", xpos, ypos, zpos,matrix[2],"ONLY");
1240 // Empty spaces (air)
1241 parBOX[ 0] = 22.50/2.0;
1242 parBOX[ 1] = 1.20/2.0;
1243 parBOX[ 2] = 70.50/2.0;
1244 gMC->Gsvolu("USD3","BOX ",idtmed[1302-1],parBOX,kNparBOX);
1245 xpos = -25.75;
1246 ypos = 0.0;
1247 zpos = 0.4;
1248 gMC->Gspos("USD3",1,"USDB", xpos, ypos, zpos, 0,"ONLY");
1249 // Empty spaces (air)
1250 parTRP[ 0] = 1.20/2.0;
1251 parTRP[ 1] = 0.0;
1252 parTRP[ 2] = 0.0;
1253 parTRP[ 3] = 25.50/2.0;
1254 parTRP[ 4] = 5.00/2.0;
1255 parTRP[ 5] = 65.00/2.0;
1256 parTRP[ 6] = -1.0;
1257 parTRP[ 7] = 25.50/2.0;
1258 parTRP[ 8] = 5.00/2.0;
1259 parTRP[ 9] = 65.00/2.0;
1260 parTRP[10] = -1.0;
1261 gMC->Gsvolu("USD4","TRAP",idtmed[1302-1],parTRP,kNparTRP);
1262 xpos = 2.0;
1263 ypos = 0.0;
1264 zpos = -1.6;
1265 gMC->Gspos("USD4",1,"USDB", xpos, ypos, zpos,matrix[6],"ONLY");
1266 // Empty spaces (air)
1267 parTRP[ 0] = 1.20/2.0;
1268 parTRP[ 1] = 0.0;
1269 parTRP[ 2] = 0.0;
1270 parTRP[ 3] = 23.50/2.0;
1271 parTRP[ 4] = 63.50/2.0;
1272 parTRP[ 5] = 5.00/2.0;
1273 parTRP[ 6] = 16.0;
1274 parTRP[ 7] = 23.50/2.0;
1275 parTRP[ 8] = 63.50/2.0;
1276 parTRP[ 9] = 5.00/2.0;
1277 parTRP[10] = 16.0;
1278 gMC->Gsvolu("USD5","TRAP",idtmed[1302-1],parTRP,kNparTRP);
1279 xpos = 36.5;
1280 ypos = 0.0;
1281 zpos = -1.5;
1282 gMC->Gspos("USD5",1,"USDB", xpos, ypos, zpos,matrix[5],"ONLY");
1283 // Empty spaces (air)
1284 parTRP[ 0] = 1.20/2.0;
1285 parTRP[ 1] = 0.0;
1286 parTRP[ 2] = 0.0;
1287 parTRP[ 3] = 70.50/2.0;
1288 parTRP[ 4] = 4.50/2.0;
1289 parTRP[ 5] = 16.50/2.0;
1290 parTRP[ 6] = -5.0;
1291 parTRP[ 7] = 70.50/2.0;
1292 parTRP[ 8] = 4.50/2.0;
1293 parTRP[ 9] = 16.50/2.0;
1294 parTRP[10] = -5.0;
1295 gMC->Gsvolu("USD6","TRAP",idtmed[1302-1],parTRP,kNparTRP);
1296 xpos = -43.7;
1297 ypos = 0.0;
1298 zpos = 0.4;
1299 gMC->Gspos("USD6",1,"USDB", xpos, ypos, zpos,matrix[2],"ONLY");
1300 xpos = 0.0;
1301 ypos = fClength[5][2]/2.0;
1302 zpos = 0.04;
1303 gMC->Gspos("USDB",1,"UTI1", xpos, ypos, zpos, 0,"ONLY");
1304 gMC->Gspos("USDB",2,"UTI1", xpos,-ypos, zpos, 0,"ONLY");
1305 gMC->Gspos("USDB",3,"UTI2", xpos, ypos, zpos, 0,"ONLY");
1306 gMC->Gspos("USDB",4,"UTI2", xpos,-ypos, zpos, 0,"ONLY");
1307 gMC->Gspos("USDB",5,"UTI3", xpos, ypos, zpos, 0,"ONLY");
1308 gMC->Gspos("USDB",6,"UTI3", xpos,-ypos, zpos, 0,"ONLY");
1309 // Upper bar (aluminum)
1310 parBOX[0] = 95.00/2.0;
1311 parBOX[1] = 1.20/2.0;
1312 parBOX[2] = 3.00/2.0;
1313 gMC->Gsvolu("USD7","BOX ",idtmed[1301-1],parBOX,kNparBOX);
1314 xpos = 0.0;
1315 ypos = fClength[5][2]/2.0;
1316 zpos = fgkSheight/2.0 - fgkSMpltT - 3.00/2.0;
1317 gMC->Gspos("USD7",1,"UTI1", xpos, ypos, zpos, 0,"ONLY");
1318 gMC->Gspos("USD7",2,"UTI1", xpos,-ypos, zpos, 0,"ONLY");
1319 gMC->Gspos("USD7",3,"UTI2", xpos, ypos, zpos, 0,"ONLY");
1320 gMC->Gspos("USD7",4,"UTI2", xpos,-ypos, zpos, 0,"ONLY");
1321 gMC->Gspos("USD7",5,"UTI3", xpos, ypos, zpos, 0,"ONLY");
1322 gMC->Gspos("USD7",6,"UTI3", xpos,-ypos, zpos, 0,"ONLY");
1323 // Lower bar (aluminum)
1324 parBOX[0] = 90.22/2.0;
1325 parBOX[1] = 1.20/2.0;
1326 parBOX[2] = 1.74/2.0;
1327 gMC->Gsvolu("USD8","BOX ",idtmed[1301-1],parBOX,kNparBOX);
1328 xpos = 0.0;
1329 ypos = fClength[5][2]/2.0 - 0.1;
1330 zpos = -fgkSheight/2.0 + fgkSMpltT + 2.27;
1331 gMC->Gspos("USD8",1,"UTI1", xpos, ypos, zpos, 0,"ONLY");
1332 gMC->Gspos("USD8",2,"UTI1", xpos,-ypos, zpos, 0,"ONLY");
1333 gMC->Gspos("USD8",3,"UTI2", xpos, ypos, zpos, 0,"ONLY");
1334 gMC->Gspos("USD8",4,"UTI2", xpos,-ypos, zpos, 0,"ONLY");
1335 gMC->Gspos("USD8",5,"UTI3", xpos, ypos, zpos, 0,"ONLY");
1336 gMC->Gspos("USD8",6,"UTI3", xpos,-ypos, zpos, 0,"ONLY");
1337 // Lower bar (aluminum)
1338 parBOX[0] = 82.60/2.0;
1339 parBOX[1] = 1.20/2.0;
1340 parBOX[2] = 1.40/2.0;
1341 gMC->Gsvolu("USD9","BOX ",idtmed[1301-1],parBOX,kNparBOX);
1342 xpos = 0.0;
1343 ypos = fClength[5][2]/2.0;
1344 zpos = -fgkSheight/2.0 + fgkSMpltT + 1.40/2.0;
1345 gMC->Gspos("USD9",1,"UTI1", xpos, ypos, zpos, 0,"ONLY");
1346 gMC->Gspos("USD9",2,"UTI1", xpos,-ypos, zpos, 0,"ONLY");
1347 gMC->Gspos("USD9",3,"UTI2", xpos, ypos, zpos, 0,"ONLY");
1348 gMC->Gspos("USD9",4,"UTI2", xpos,-ypos, zpos, 0,"ONLY");
1349 gMC->Gspos("USD9",5,"UTI3", xpos, ypos, zpos, 0,"ONLY");
1350 gMC->Gspos("USD9",6,"UTI3", xpos,-ypos, zpos, 0,"ONLY");
1351 // Front sheet (aluminum)
1352 parTRP[ 0] = 0.10/2.0;
1353 parTRP[ 1] = 0.0;
1354 parTRP[ 2] = 0.0;
1355 parTRP[ 3] = 74.50/2.0;
1356 parTRP[ 4] = 31.70/2.0;
1357 parTRP[ 5] = 44.00/2.0;
1358 parTRP[ 6] = -5.0;
1359 parTRP[ 7] = 74.50/2.0;
1360 parTRP[ 8] = 31.70/2.0;
1361 parTRP[ 9] = 44.00/2.0;
1362 parTRP[10] = -5.0;
1363 gMC->Gsvolu("USDF","TRAP",idtmed[1302-1],parTRP,kNparTRP);
1364 xpos = -32.0;
1365 ypos = fClength[5][2]/2.0 + 1.20/2.0 + 0.10/2.0;
1366 zpos = 0.0;
1367 gMC->Gspos("USDF",1,"UTI1", xpos, ypos, zpos,matrix[2],"ONLY");
1368 gMC->Gspos("USDF",2,"UTI1", xpos,-ypos, zpos,matrix[2],"ONLY");
1369 gMC->Gspos("USDF",3,"UTI2", xpos, ypos, zpos,matrix[2],"ONLY");
1370 gMC->Gspos("USDF",4,"UTI2", xpos,-ypos, zpos,matrix[2],"ONLY");
1371 gMC->Gspos("USDF",5,"UTI3", xpos, ypos, zpos,matrix[2],"ONLY");
1372 gMC->Gspos("USDF",6,"UTI3", xpos,-ypos, zpos,matrix[2],"ONLY");
1373
1374 //
1375 // The flat frame in front of the chambers
1376 //
1377
1378 // The envelope volume (aluminum)
1379 parTRD[0] = 90.00/2.0 - 0.1;
1380 parTRD[1] = 114.00/2.0 - 0.1;
1381 parTRD[2] = 1.50/2.0;
1382 parTRD[3] = 70.30/2.0;
1383 gMC->Gsvolu("USCB","TRD1",idtmed[1301-1],parTRD,kNparTRD);
1384 // Empty spaces (air)
1385 parTRD[0] = 87.00/2.0;
1386 parTRD[1] = 10.00/2.0;
1387 parTRD[2] = 1.50/2.0;
1388 parTRD[3] = 26.35/2.0;
1389 gMC->Gsvolu("USC1","TRD1",idtmed[1302-1],parTRD,kNparTRD);
1390 xpos = 0.0;
1391 ypos = 0.0;
1392 zpos = 26.35/2.0 - 70.3/2.0;
1393 gMC->Gspos("USC1",1,"USCB",xpos,ypos,zpos,0,"ONLY");
1394 // Empty spaces (air)
1395 parTRD[0] = 10.00/2.0;
1396 parTRD[1] = 111.00/2.0;
1397 parTRD[2] = 1.50/2.0;
1398 parTRD[3] = 35.05/2.0;
1399 gMC->Gsvolu("USC2","TRD1",idtmed[1302-1],parTRD,kNparTRD);
1400 xpos = 0.0;
1401 ypos = 0.0;
1402 zpos = 70.3/2.0 - 35.05/2.0;
1403 gMC->Gspos("USC2",1,"USCB",xpos,ypos,zpos,0,"ONLY");
1404 // Empty spaces (air)
1405 parTRP[ 0] = 1.50/2.0;
1406 parTRP[ 1] = 0.0;
1407 parTRP[ 2] = 0.0;
1408 parTRP[ 3] = 37.60/2.0;
1409 parTRP[ 4] = 63.90/2.0;
1410 parTRP[ 5] = 8.86/2.0;
1411 parTRP[ 6] = 16.0;
1412 parTRP[ 7] = 37.60/2.0;
1413 parTRP[ 8] = 63.90/2.0;
1414 parTRP[ 9] = 8.86/2.0;
1415 parTRP[10] = 16.0;
1416 gMC->Gsvolu("USC3","TRAP",idtmed[1302-1],parTRP,kNparTRP);
1417 xpos = -30.5;
1418 ypos = 0.0;
1419 zpos = -2.0;
1420 gMC->Gspos("USC3",1,"USCB", xpos, ypos, zpos,matrix[4],"ONLY");
1421 gMC->Gspos("USC3",2,"USCB",-xpos, ypos, zpos,matrix[5],"ONLY");
1422 xpos = 0.0;
1423 ypos = fClength[5][2]/2.0 + fClength[5][1] + fClength[5][0];
1424 zpos = 0.0;
1425 gMC->Gspos("USCB",1,"UTI1", xpos, ypos, zpos, 0,"ONLY");
1426 gMC->Gspos("USCB",2,"UTI1", xpos,-ypos, zpos, 0,"ONLY");
1427 gMC->Gspos("USCB",3,"UTI2", xpos, ypos, zpos, 0,"ONLY");
1428 gMC->Gspos("USCB",4,"UTI2", xpos,-ypos, zpos, 0,"ONLY");
1429 gMC->Gspos("USCB",5,"UTI3", xpos, ypos, zpos, 0,"ONLY");
1430 gMC->Gspos("USCB",6,"UTI3", xpos,-ypos, zpos, 0,"ONLY");
1431 // Upper bar (aluminum)
1432 parBOX[0] = 95.00/2.0;
1433 parBOX[1] = 1.50/2.0;
1434 parBOX[2] = 3.00/2.0;
1435 gMC->Gsvolu("USC4","BOX ",idtmed[1301-1],parBOX,kNparBOX);
1436 xpos = 0.0;
1437 ypos = fClength[5][2]/2.0 + fClength[5][1] + fClength[5][0];
1438 zpos = fgkSheight/2.0 - fgkSMpltT - 3.00/2.0;
1439 gMC->Gspos("USC4",1,"UTI1", xpos, ypos, zpos, 0,"ONLY");
1440 gMC->Gspos("USC4",2,"UTI1", xpos,-ypos, zpos, 0,"ONLY");
1441 gMC->Gspos("USC4",3,"UTI2", xpos, ypos, zpos, 0,"ONLY");
1442 gMC->Gspos("USC4",4,"UTI2", xpos,-ypos, zpos, 0,"ONLY");
1443 gMC->Gspos("USC4",5,"UTI3", xpos, ypos, zpos, 0,"ONLY");
1444 gMC->Gspos("USC4",6,"UTI3", xpos,-ypos, zpos, 0,"ONLY");
1445 // Lower bar (aluminum)
1446 parBOX[0] = 90.22/2.0;
1447 parBOX[1] = 1.50/2.0;
1448 parBOX[2] = 2.00/2.0;
1449 gMC->Gsvolu("USC5","BOX ",idtmed[1301-1],parBOX,kNparBOX);
1450 xpos = 0.0;
1451 ypos = fClength[5][2]/2.0 + fClength[5][1] + fClength[5][0];
1452 zpos = -fgkSheight/2.0 + fgkSMpltT + 2.60;
1453 gMC->Gspos("USC5",1,"UTI1", xpos, ypos, zpos, 0,"ONLY");
1454 gMC->Gspos("USC5",2,"UTI1", xpos,-ypos, zpos, 0,"ONLY");
1455 gMC->Gspos("USC5",3,"UTI2", xpos, ypos, zpos, 0,"ONLY");
1456 gMC->Gspos("USC5",4,"UTI2", xpos,-ypos, zpos, 0,"ONLY");
1457 gMC->Gspos("USC5",5,"UTI3", xpos, ypos, zpos, 0,"ONLY");
1458 gMC->Gspos("USC5",6,"UTI3", xpos,-ypos, zpos, 0,"ONLY");
1459 // Lower bar (aluminum)
1460 parBOX[0] = 82.60/2.0;
1461 parBOX[1] = 1.50/2.0;
1462 parBOX[2] = 1.60/2.0;
1463 gMC->Gsvolu("USC6","BOX ",idtmed[1301-1],parBOX,kNparBOX);
1464 xpos = 0.0;
1465 ypos = fClength[5][2]/2.0 + fClength[5][1] + fClength[5][0];
1466 zpos = -fgkSheight/2.0 + fgkSMpltT + 1.60/2.0;
1467 gMC->Gspos("USC6",1,"UTI1", xpos, ypos, zpos, 0,"ONLY");
1468 gMC->Gspos("USC6",2,"UTI1", xpos,-ypos, zpos, 0,"ONLY");
1469 gMC->Gspos("USC6",3,"UTI2", xpos, ypos, zpos, 0,"ONLY");
1470 gMC->Gspos("USC6",4,"UTI2", xpos,-ypos, zpos, 0,"ONLY");
1471 gMC->Gspos("USC6",5,"UTI3", xpos, ypos, zpos, 0,"ONLY");
1472 gMC->Gspos("USC6",6,"UTI3", xpos,-ypos, zpos, 0,"ONLY");
1473
1474 //
1475 // The long corner ledges
1476 //
1477
1478 const Int_t kNparSCL = 3;
1479 Float_t parSCL[kNparSCL];
1480 const Int_t kNparSCLb = 11;
1481 Float_t parSCLb[kNparSCLb];
1482
1483 // Upper ledges
1484 // Thickness of the corner ledges
1485 const Float_t kSCLthkUa = 0.6;
1486 const Float_t kSCLthkUb = 0.6;
1487 // Width of the corner ledges
1488 const Float_t kSCLwidUa = 3.2;
1489 const Float_t kSCLwidUb = 4.8;
1490 // Position of the corner ledges
1491 const Float_t kSCLposxUa = 0.7;
1492 const Float_t kSCLposxUb = 3.3;
1493 const Float_t kSCLposzUa = 1.65;
1494 const Float_t kSCLposzUb = 0.3;
1495 // Vertical
1496 parSCL[0] = kSCLthkUa /2.0;
1497 parSCL[1] = fgkSlength/2.0;
1498 parSCL[2] = kSCLwidUa /2.0;
1499 gMC->Gsvolu("USL1","BOX ",idtmed[1301-1],parSCL,kNparSCL);
1500 xpos = fgkSwidth2/2.0 - fgkSMpltT - kSCLposxUa;
1501 ypos = 0.0;
1502 zpos = fgkSheight/2.0 - fgkSMpltT - kSCLposzUa;
1503 gMC->Gspos("USL1",1,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY");
1504 xpos = -xpos;
1505 gMC->Gspos("USL1",2,"UTI1", xpos,ypos,zpos,matrix[1],"ONLY");
1506 // Horizontal
1507 parSCL[0] = kSCLwidUb /2.0;
1508 parSCL[1] = fgkSlength/2.0;
1509 parSCL[2] = kSCLthkUb /2.0;
1510 gMC->Gsvolu("USL2","BOX ",idtmed[1301-1],parSCL,kNparSCL);
1511 xpos = fgkSwidth2/2.0 - fgkSMpltT - kSCLposxUb;
1512 ypos = 0.0;
1513 zpos = fgkSheight/2.0 - fgkSMpltT - kSCLposzUb;
1514 gMC->Gspos("USL2",1,"UTI1", xpos,ypos,zpos, 0,"ONLY");
1515 gMC->Gspos("USL2",3,"UTI2", xpos,ypos,zpos, 0,"ONLY");
1516 gMC->Gspos("USL2",5,"UTI3", xpos,ypos,zpos, 0,"ONLY");
1517 xpos = -xpos;
1518 gMC->Gspos("USL2",2,"UTI1", xpos,ypos,zpos, 0,"ONLY");
1519 gMC->Gspos("USL2",4,"UTI2", xpos,ypos,zpos, 0,"ONLY");
1520 gMC->Gspos("USL2",6,"UTI3", xpos,ypos,zpos, 0,"ONLY");
1521
1522 // Lower ledges
1523 // Thickness of the corner ledges
1524 const Float_t kSCLthkLa = 2.464;
1525 const Float_t kSCLthkLb = 1.0;
1526 // Width of the corner ledges
1527 const Float_t kSCLwidLa = 8.5;
1528 const Float_t kSCLwidLb = 3.3;
1529 // Position of the corner ledges
1530 const Float_t kSCLposxLa = 0.15;
1531 const Float_t kSCLposxLb = 2.7;
1532 const Float_t kSCLposzLa = -4.25;
1533 const Float_t kSCLposzLb = -0.5;
1534 // Vertical
1535 // Trapezoidal shape
1536 parSCLb[ 0] = fgkSlength/2.0;
1537 parSCLb[ 1] = 0.0;
1538 parSCLb[ 2] = 0.0;
1539 parSCLb[ 3] = kSCLwidLa /2.0;
1540 parSCLb[ 4] = kSCLthkLb /2.0;
1541 parSCLb[ 5] = kSCLthkLa /2.0;
1542 parSCLb[ 6] = 5.0;
1543 parSCLb[ 7] = kSCLwidLa /2.0;
1544 parSCLb[ 8] = kSCLthkLb /2.0;
1545 parSCLb[ 9] = kSCLthkLa /2.0;
1546 parSCLb[10] = 5.0;
1547 gMC->Gsvolu("USL3","TRAP",idtmed[1301-1],parSCLb,kNparSCLb);
1548 xpos = fgkSwidth1/2.0 - fgkSMpltT - kSCLposxLa;
1549 ypos = 0.0;
1550 zpos = - fgkSheight/2.0 + fgkSMpltT - kSCLposzLa;
1551 gMC->Gspos("USL3",1,"UTI1", xpos,ypos,zpos,matrix[2],"ONLY");
1552 gMC->Gspos("USL3",3,"UTI2", xpos,ypos,zpos,matrix[2],"ONLY");
1553 gMC->Gspos("USL3",5,"UTI3", xpos,ypos,zpos,matrix[2],"ONLY");
1554 xpos = -xpos;
1555 gMC->Gspos("USL3",2,"UTI1", xpos,ypos,zpos,matrix[3],"ONLY");
1556 gMC->Gspos("USL3",4,"UTI2", xpos,ypos,zpos,matrix[3],"ONLY");
1557 gMC->Gspos("USL3",6,"UTI3", xpos,ypos,zpos,matrix[3],"ONLY");
1558 // Horizontal
1559 parSCL[0] = kSCLwidLb /2.0;
1560 parSCL[1] = fgkSlength/2.0;
1561 parSCL[2] = kSCLthkLb /2.0;
1562 gMC->Gsvolu("USL4","BOX ",idtmed[1301-1],parSCL,kNparSCL);
1563 xpos = fgkSwidth1/2.0 - fgkSMpltT - kSCLposxLb;
1564 ypos = 0.0;
1565 zpos = - fgkSheight/2.0 + fgkSMpltT - kSCLposzLb;
1566 gMC->Gspos("USL4",1,"UTI1", xpos,ypos,zpos, 0,"ONLY");
1567 gMC->Gspos("USL4",3,"UTI2", xpos,ypos,zpos, 0,"ONLY");
1568 gMC->Gspos("USL4",5,"UTI3", xpos,ypos,zpos, 0,"ONLY");
1569 xpos = -xpos;
1570 gMC->Gspos("USL4",2,"UTI1", xpos,ypos,zpos, 0,"ONLY");
1571 gMC->Gspos("USL4",4,"UTI2", xpos,ypos,zpos, 0,"ONLY");
1572 gMC->Gspos("USL4",6,"UTI3", xpos,ypos,zpos, 0,"ONLY");
1573
1574 //
1575 // Aluminum plates in the front part of the super modules
1576 //
1577
1578 const Int_t kNparTrd = 4;
1579 Float_t parTrd[kNparTrd];
1580 parTrd[0] = fgkSwidth1/2.0 - 2.5;
1581 parTrd[1] = fgkSwidth2/2.0 - 2.5;
1582 parTrd[2] = fgkSMpltT /2.0;
1583 parTrd[3] = fgkSheight/2.0 - 1.0;
1584 gMC->Gsvolu("UTA1","TRD1",idtmed[1301-1],parTrd,kNparTrd);
1585 xpos = 0.0;
1586 ypos = fgkSMpltT/2.0 - fgkFlength/2.0;
1587 zpos = -0.5;
1588 gMC->Gspos("UTA1",1,"UTF1",xpos, ypos,zpos, 0,"ONLY");
1589 gMC->Gspos("UTA1",2,"UTF2",xpos,-ypos,zpos, 0,"ONLY");
1590
1591 const Int_t kNparPlt = 3;
1592 Float_t parPlt[kNparPlt];
1593 parPlt[0] = 0.0;
1594 parPlt[1] = 0.0;
1595 parPlt[2] = 0.0;
1596 gMC->Gsvolu("UTA2","BOX ",idtmed[1301-1],parPlt,0);
1597 xpos = 0.0;
1598 ypos = 0.0;
1599 zpos = fgkSheight/2.0 - fgkSMpltT/2.0;
1600 parPlt[0] = fgkSwidth2/2.0 - 0.2;
1601 parPlt[1] = fgkFlength/2.0;
1602 parPlt[2] = fgkSMpltT /2.0;
1603 gMC->Gsposp("UTA2",1,"UTF2",xpos,ypos,zpos
1604 , 0,"ONLY",parPlt,kNparPlt);
1605 xpos = (fgkSwidth1 + fgkSwidth2)/4.0 - fgkSMpltT/2.0 - 0.0016;
1606 ypos = 0.0;
1607 zpos = 0.0;
1608 parPlt[0] = fgkSMpltT /2.0;
1609 parPlt[1] = fgkFlength/2.0;
1610 parPlt[2] = fgkSheight/2.0;
1611 gMC->Gsposp("UTA2",2,"UTF2", xpos,ypos,zpos
1612 ,matrix[0],"ONLY",parPlt,kNparPlt);
1613 gMC->Gsposp("UTA2",3,"UTF2",-xpos,ypos,zpos
1614 ,matrix[1],"ONLY",parPlt,kNparPlt);
1615
1616 // Additional aluminum bar
1617 parBOX[0] = 80.0/2.0;
1618 parBOX[1] = 1.0/2.0;
1619 parBOX[2] = 10.0/2.0;
1620 gMC->Gsvolu("UTA3","BOX ",idtmed[1301-1],parBOX,kNparBOX);
1621 xpos = 0.0;
1622 ypos = 1.0/2.0 + fgkSMpltT - fgkFlength/2.0;
1623 zpos = fgkSheight/2.0 - 1.5 - 10.0/2.0;
1624 gMC->Gspos("UTA3",1,"UTF1", xpos, ypos, zpos, 0,"ONLY");
1625 gMC->Gspos("UTA3",2,"UTF2", xpos,-ypos, zpos, 0,"ONLY");
1626
1627}
1628
1629//_____________________________________________________________________________
1630void AliTRDgeometry::CreateServices(Int_t *idtmed)
1631{
1632 //
1633 // Create the geometry of the services
1634 //
1635 // Names of the TRD services volumina
1636 //
1637 // UTC1 Cooling arterias (Al)
1638 // UTC2 Cooling arterias (Water)
1639 // UUxx Volumes for the services at the chambers (Air)
1640 // UTP1 Power bars (Cu)
1641 // UTCP Cooling pipes (Fe)
1642 // UTCH Cooling pipes (Water)
1643 // UTPL Power lines (Cu)
1644 // UMCM Readout MCMs (G10/Cu/Si)
1645 // UTGD Gas distribution box (V2A)
1646 //
1647
1648 Int_t ilayer = 0;
1649 Int_t istack = 0;
1650
1651 Float_t xpos = 0.0;
1652 Float_t ypos = 0.0;
1653 Float_t zpos = 0.0;
1654
1655 Char_t cTagV[5];
1656
1657 const Int_t kNparBox = 3;
1658 Float_t parBox[kNparBox];
1659
1660 const Int_t kNparTube = 3;
1661 Float_t parTube[kNparTube];
1662
1663 // Services inside the baby frame
1664 const Float_t kBBMdz = 223.0;
1665 const Float_t kBBSdz = 8.5;
1666
1667 // Services inside the back frame
1668 const Float_t kBFMdz = 118.0;
1669 const Float_t kBFSdz = 8.5;
1670
1671 // The rotation matrices
1672 const Int_t kNmatrix = 10;
1673 Int_t matrix[kNmatrix];
1674 gMC->Matrix(matrix[0], 100.0, 0.0, 90.0, 90.0, 10.0, 0.0); // rotation around y-axis
1675 gMC->Matrix(matrix[1], 80.0, 0.0, 90.0, 90.0, 10.0, 180.0); // rotation around y-axis
1676 gMC->Matrix(matrix[2], 0.0, 0.0, 90.0, 90.0, 90.0, 0.0);
1677 gMC->Matrix(matrix[3], 180.0, 0.0, 90.0, 90.0, 90.0, 180.0);
1678 gMC->Matrix(matrix[4], 90.0, 0.0, 0.0, 0.0, 90.0, 90.0);
1679 gMC->Matrix(matrix[5], 100.0, 0.0, 90.0, 270.0, 10.0, 0.0);
1680 gMC->Matrix(matrix[6], 80.0, 0.0, 90.0, 270.0, 10.0, 180.0);
1681 gMC->Matrix(matrix[7], 90.0, 10.0, 90.0, 100.0, 0.0, 0.0); // rotation around z-axis
1682 gMC->Matrix(matrix[8], 90.0, 350.0, 90.0, 80.0, 0.0, 0.0); // rotation around z-axis
1683 gMC->Matrix(matrix[9], 90.0, 90.0, 90.0, 180.0, 0.0, 0.0); // rotation around z-axis
1684
1685 //
1686 // The cooling arterias
1687 //
1688
1689 // Width of the cooling arterias
1690 const Float_t kCOLwid = 0.8;
1691 // Height of the cooling arterias
1692 const Float_t kCOLhgt = 6.5;
1693 // Positioning of the cooling
1694 const Float_t kCOLposx = 1.8;
1695 const Float_t kCOLposz = -0.1;
1696 // Thickness of the walls of the cooling arterias
1697 const Float_t kCOLthk = 0.1;
1698 const Int_t kNparCOL = 3;
1699 Float_t parCOL[kNparCOL];
1700 parCOL[0] = 0.0;
1701 parCOL[1] = 0.0;
1702 parCOL[2] = 0.0;
1703 gMC->Gsvolu("UTC1","BOX ",idtmed[1308-1],parCOL,0);
1704 gMC->Gsvolu("UTC3","BOX ",idtmed[1308-1],parCOL,0);
1705 parCOL[0] = kCOLwid/2.0 - kCOLthk;
1706 parCOL[1] = -1.0;
1707 parCOL[2] = kCOLhgt/2.0 - kCOLthk;
1708 gMC->Gsvolu("UTC2","BOX ",idtmed[1314-1],parCOL,kNparCOL);
1709 gMC->Gsvolu("UTC4","BOX ",idtmed[1314-1],parCOL,kNparCOL);
1710
1711 xpos = 0.0;
1712 ypos = 0.0;
1713 zpos = 0.0;
1714 gMC->Gspos("UTC2",1,"UTC1", xpos,ypos,zpos,0,"ONLY");
1715 gMC->Gspos("UTC4",1,"UTC3", xpos,ypos,zpos,0,"ONLY");
1716
1717 for (ilayer = 1; ilayer < kNlayer; ilayer++) {
1718
1719 // Along the chambers
1720 xpos = fCwidth[ilayer]/2.0 + kCOLwid/2.0 + kCOLposx;
1721 ypos = 0.0;
1722 zpos = fgkVrocsm + fgkSMpltT + kCOLhgt/2.0 - fgkSheight/2.0 + kCOLposz
1723 + ilayer * (fgkCH + fgkVspace);
1724 parCOL[0] = kCOLwid /2.0;
1725 parCOL[1] = fgkSlength/2.0;
1726 parCOL[2] = kCOLhgt /2.0;
1727 gMC->Gsposp("UTC1",ilayer ,"UTI1", xpos,ypos,zpos
1728 ,matrix[0],"ONLY",parCOL,kNparCOL);
1729 gMC->Gsposp("UTC1",ilayer+ kNlayer,"UTI1",-xpos,ypos,zpos
1730 ,matrix[1],"ONLY",parCOL,kNparCOL);
1731 gMC->Gsposp("UTC1",ilayer+6*kNlayer,"UTI2", xpos,ypos,zpos
1732 ,matrix[0],"ONLY",parCOL,kNparCOL);
1733 gMC->Gsposp("UTC1",ilayer+7*kNlayer,"UTI2",-xpos,ypos,zpos
1734 ,matrix[1],"ONLY",parCOL,kNparCOL);
1735 gMC->Gsposp("UTC1",ilayer+8*kNlayer ,"UTI3", xpos,ypos,zpos
1736 ,matrix[0],"ONLY",parCOL,kNparCOL);
1737 gMC->Gsposp("UTC1",ilayer+9*kNlayer,"UTI3",-xpos,ypos,zpos
1738 ,matrix[1],"ONLY",parCOL,kNparCOL);
1739
1740 // Front of supermodules
1741 xpos = fCwidth[ilayer]/2.0 + kCOLwid/2.0 + kCOLposx;
1742 ypos = 0.0;
1743 zpos = fgkVrocsm + fgkSMpltT + kCOLhgt/2.0 - fgkSheight/2.0 + kCOLposz
1744 + ilayer * (fgkCH + fgkVspace);
1745 parCOL[0] = kCOLwid /2.0;
1746 parCOL[1] = fgkFlength/2.0;
1747 parCOL[2] = kCOLhgt /2.0;
1748 gMC->Gsposp("UTC3",ilayer+2*kNlayer,"UTF1", xpos,ypos,zpos
1749 ,matrix[0],"ONLY",parCOL,kNparCOL);
1750 gMC->Gsposp("UTC3",ilayer+3*kNlayer,"UTF1",-xpos,ypos,zpos
1751 ,matrix[1],"ONLY",parCOL,kNparCOL);
1752 gMC->Gsposp("UTC3",ilayer+4*kNlayer,"UTF2", xpos,ypos,zpos
1753 ,matrix[0],"ONLY",parCOL,kNparCOL);
1754 gMC->Gsposp("UTC3",ilayer+5*kNlayer,"UTF2",-xpos,ypos,zpos
1755 ,matrix[1],"ONLY",parCOL,kNparCOL);
1756
1757 }
1758
1759 for (ilayer = 1; ilayer < kNlayer; ilayer++) {
1760
1761 // In baby frame
1762 xpos = fCwidth[ilayer]/2.0 + kCOLwid/2.0 - 1.04;
1763 ypos = kBBSdz/2.0 - kBBMdz/2.0;
1764 zpos = fgkVrocsm + fgkSMpltT + kCOLhgt/2.0 - fgkSheight/2.0 + kCOLposz
1765 + ilayer * (fgkCH + fgkVspace);
1766 parCOL[0] = kCOLwid/2.0;
1767 parCOL[1] = kBBSdz /2.0;
1768 parCOL[2] = kCOLhgt/2.0;
1769 gMC->Gsposp("UTC3",ilayer+6*kNlayer,"BBTRD", xpos, ypos, zpos
1770 ,matrix[0],"ONLY",parCOL,kNparCOL);
1771 gMC->Gsposp("UTC3",ilayer+7*kNlayer,"BBTRD",-xpos, ypos, zpos
1772 ,matrix[1],"ONLY",parCOL,kNparCOL);
1773
1774 }
1775
1776 for (ilayer = 1; ilayer < kNlayer; ilayer++) {
1777
1778 // In back frame
1779 xpos = fCwidth[ilayer]/2.0 + kCOLwid/2.0 + kCOLposx;
1780 ypos = -kBFSdz/2.0 + kBFMdz/2.0;
1781 zpos = fgkVrocsm + fgkSMpltT + kCOLhgt/2.0 - fgkSheight/2.0 + kCOLposz
1782 + ilayer * (fgkCH + fgkVspace);
1783 parCOL[0] = kCOLwid/2.0;
1784 parCOL[1] = kBFSdz /2.0;
1785 parCOL[2] = kCOLhgt/2.0;
1786 gMC->Gsposp("UTC3",ilayer+6*kNlayer,"BFTRD", xpos,ypos,zpos
1787 ,matrix[0],"ONLY",parCOL,kNparCOL);
1788 gMC->Gsposp("UTC3",ilayer+7*kNlayer,"BFTRD",-xpos,ypos,zpos
1789 ,matrix[1],"ONLY",parCOL,kNparCOL);
1790
1791 }
1792
1793 // The upper most layer (reaching into TOF acceptance)
1794 // Along the chambers
1795 xpos = fCwidth[5]/2.0 - kCOLhgt/2.0 - 1.3;
1796 ypos = 0.0;
1797 zpos = fgkSheight/2.0 - fgkSMpltT - 0.4 - kCOLwid/2.0;
1798 parCOL[0] = kCOLwid /2.0;
1799 parCOL[1] = fgkSlength/2.0;
1800 parCOL[2] = kCOLhgt /2.0;
1801 gMC->Gsposp("UTC1",6 ,"UTI1", xpos,ypos,zpos
1802 ,matrix[3],"ONLY",parCOL,kNparCOL);
1803 gMC->Gsposp("UTC1",6+ kNlayer,"UTI1",-xpos,ypos,zpos
1804 ,matrix[3],"ONLY",parCOL,kNparCOL);
1805 gMC->Gsposp("UTC1",6+6*kNlayer,"UTI2", xpos,ypos,zpos
1806 ,matrix[3],"ONLY",parCOL,kNparCOL);
1807 gMC->Gsposp("UTC1",6+7*kNlayer,"UTI2",-xpos,ypos,zpos
1808 ,matrix[3],"ONLY",parCOL,kNparCOL);
1809 gMC->Gsposp("UTC1",6+8*kNlayer,"UTI3", xpos,ypos,zpos
1810 ,matrix[3],"ONLY",parCOL,kNparCOL);
1811 gMC->Gsposp("UTC1",6+9*kNlayer,"UTI3",-xpos,ypos,zpos
1812 ,matrix[3],"ONLY",parCOL,kNparCOL);
1813 // Front of supermodules
1814 xpos = fCwidth[5]/2.0 - kCOLhgt/2.0 - 1.3;
1815 ypos = 0.0;
1816 zpos = fgkSheight/2.0 - fgkSMpltT - 0.4 - kCOLwid/2.0;
1817 parCOL[0] = kCOLwid /2.0;
1818 parCOL[1] = fgkFlength/2.0;
1819 parCOL[2] = kCOLhgt /2.0;
1820 gMC->Gsposp("UTC3",6+2*kNlayer,"UTF1", xpos,ypos,zpos
1821 ,matrix[3],"ONLY",parCOL,kNparCOL);
1822 gMC->Gsposp("UTC3",6+3*kNlayer,"UTF1",-xpos,ypos,zpos
1823 ,matrix[3],"ONLY",parCOL,kNparCOL);
1824 gMC->Gsposp("UTC3",6+4*kNlayer,"UTF2", xpos,ypos,zpos
1825 ,matrix[3],"ONLY",parCOL,kNparCOL);
1826 gMC->Gsposp("UTC3",6+5*kNlayer,"UTF2",-xpos,ypos,zpos
1827 ,matrix[3],"ONLY",parCOL,kNparCOL);
1828 // In baby frame
1829 xpos = fCwidth[5]/2.0 - kCOLhgt/2.0 - 3.1;
1830 ypos = kBBSdz/2.0 - kBBMdz/2.0;
1831 zpos = fgkSheight/2.0 - fgkSMpltT - 0.4 - kCOLwid/2.0;
1832 parCOL[0] = kCOLwid/2.0;
1833 parCOL[1] = kBBSdz /2.0;
1834 parCOL[2] = kCOLhgt/2.0;
1835 gMC->Gsposp("UTC3",6+6*kNlayer,"BBTRD", xpos, ypos, zpos
1836 ,matrix[3],"ONLY",parCOL,kNparCOL);
1837 gMC->Gsposp("UTC3",6+7*kNlayer,"BBTRD",-xpos, ypos, zpos
1838 ,matrix[3],"ONLY",parCOL,kNparCOL);
1839 // In back frame
1840 xpos = fCwidth[5]/2.0 - kCOLhgt/2.0 - 1.3;
1841 ypos = -kBFSdz/2.0 + kBFMdz/2.0;
1842 zpos = fgkSheight/2.0 - fgkSMpltT - 0.4 - kCOLwid/2.0;
1843 parCOL[0] = kCOLwid/2.0;
1844 parCOL[1] = kBFSdz /2.0;
1845 parCOL[2] = kCOLhgt/2.0;
1846 gMC->Gsposp("UTC3",6+6*kNlayer,"BFTRD", xpos,ypos,zpos
1847 ,matrix[3],"ONLY",parCOL,kNparCOL);
1848 gMC->Gsposp("UTC3",6+7*kNlayer,"BFTRD",-xpos,ypos,zpos
1849 ,matrix[3],"ONLY",parCOL,kNparCOL);
1850
1851 //
1852 // The power bars
1853 //
1854
1855 const Float_t kPWRwid = 0.6;
1856 const Float_t kPWRhgt = 5.0;
1857 const Float_t kPWRposx = 1.4;
1858 const Float_t kPWRposz = 1.9;
1859 const Int_t kNparPWR = 3;
1860 Float_t parPWR[kNparPWR];
1861 parPWR[0] = 0.0;
1862 parPWR[1] = 0.0;
1863 parPWR[2] = 0.0;
1864 gMC->Gsvolu("UTP1","BOX ",idtmed[1325-1],parPWR,0);
1865 gMC->Gsvolu("UTP3","BOX ",idtmed[1325-1],parPWR,0);
1866
1867 for (ilayer = 1; ilayer < kNlayer; ilayer++) {
1868
1869 // Along the chambers
1870 xpos = fCwidth[ilayer]/2.0 + kPWRwid/2.0 + kPWRposx;
1871 ypos = 0.0;
1872 zpos = fgkVrocsm + fgkSMpltT + kPWRhgt/2.0 - fgkSheight/2.0 + kPWRposz
1873 + ilayer * (fgkCH + fgkVspace);
1874 parPWR[0] = kPWRwid /2.0;
1875 parPWR[1] = fgkSlength/2.0;
1876 parPWR[2] = kPWRhgt /2.0;
1877 gMC->Gsposp("UTP1",ilayer ,"UTI1", xpos,ypos,zpos
1878 ,matrix[0],"ONLY",parPWR,kNparPWR);
1879 gMC->Gsposp("UTP1",ilayer+ kNlayer,"UTI1",-xpos,ypos,zpos
1880 ,matrix[1],"ONLY",parPWR,kNparPWR);
1881 gMC->Gsposp("UTP1",ilayer+6*kNlayer,"UTI2", xpos,ypos,zpos
1882 ,matrix[0],"ONLY",parPWR,kNparPWR);
1883 gMC->Gsposp("UTP1",ilayer+7*kNlayer,"UTI2",-xpos,ypos,zpos
1884 ,matrix[1],"ONLY",parPWR,kNparPWR);
1885 gMC->Gsposp("UTP1",ilayer+8*kNlayer,"UTI3", xpos,ypos,zpos
1886 ,matrix[0],"ONLY",parPWR,kNparPWR);
1887 gMC->Gsposp("UTP1",ilayer+9*kNlayer,"UTI3",-xpos,ypos,zpos
1888 ,matrix[1],"ONLY",parPWR,kNparPWR);
1889
1890 // Front of supermodule
1891 xpos = fCwidth[ilayer]/2.0 + kPWRwid/2.0 + kPWRposx;
1892 ypos = 0.0;
1893 zpos = fgkVrocsm + fgkSMpltT + kPWRhgt/2.0 - fgkSheight/2.0 + kPWRposz
1894 + ilayer * (fgkCH + fgkVspace);
1895 parPWR[0] = kPWRwid /2.0;
1896 parPWR[1] = fgkFlength/2.0;
1897 parPWR[2] = kPWRhgt /2.0;
1898 gMC->Gsposp("UTP3",ilayer+2*kNlayer,"UTF1", xpos,ypos,zpos
1899 ,matrix[0],"ONLY",parPWR,kNparPWR);
1900 gMC->Gsposp("UTP3",ilayer+3*kNlayer,"UTF1",-xpos,ypos,zpos
1901 ,matrix[1],"ONLY",parPWR,kNparPWR);
1902 gMC->Gsposp("UTP3",ilayer+4*kNlayer,"UTF2", xpos,ypos,zpos
1903 ,matrix[0],"ONLY",parPWR,kNparPWR);
1904 gMC->Gsposp("UTP3",ilayer+5*kNlayer,"UTF2",-xpos,ypos,zpos
1905 ,matrix[1],"ONLY",parPWR,kNparPWR);
1906
1907 }
1908
1909 for (ilayer = 1; ilayer < kNlayer; ilayer++) {
1910
1911 // In baby frame
1912 xpos = fCwidth[ilayer]/2.0 + kPWRwid/2.0;
1913 ypos = kBBSdz/2.0 - kBBMdz/2.0;
1914 zpos = fgkVrocsm + fgkSMpltT + kPWRhgt/2.0 - fgkSheight/2.0 + kPWRposz
1915 + ilayer * (fgkCH + fgkVspace);
1916 parPWR[0] = kPWRwid/2.0;
1917 parPWR[1] = kBBSdz /2.0;
1918 parPWR[2] = kPWRhgt/2.0;
1919 gMC->Gsposp("UTP3",ilayer+6*kNlayer,"BBTRD", xpos, ypos, zpos
1920 ,matrix[0],"ONLY",parPWR,kNparPWR);
1921 gMC->Gsposp("UTP3",ilayer+7*kNlayer,"BBTRD",-xpos, ypos, zpos
1922 ,matrix[1],"ONLY",parPWR,kNparPWR);
1923
1924 }
1925
1926 for (ilayer = 1; ilayer < kNlayer; ilayer++) {
1927
1928 // In back frame
1929 xpos = fCwidth[ilayer]/2.0 + kPWRwid/2.0 + kPWRposx;
1930 ypos = -kBFSdz/2.0 + kBFMdz/2.0;
1931 zpos = fgkVrocsm + fgkSMpltT + kPWRhgt/2.0 - fgkSheight/2.0 + kPWRposz
1932 + ilayer * (fgkCH + fgkVspace);
1933 parPWR[0] = kPWRwid/2.0;
1934 parPWR[1] = kBFSdz /2.0;
1935 parPWR[2] = kPWRhgt/2.0;
1936 gMC->Gsposp("UTP3",ilayer+8*kNlayer,"BFTRD", xpos,ypos,zpos
1937 ,matrix[0],"ONLY",parPWR,kNparPWR);
1938 gMC->Gsposp("UTP3",ilayer+9*kNlayer,"BFTRD",-xpos,ypos,zpos
1939 ,matrix[1],"ONLY",parPWR,kNparPWR);
1940
1941 }
1942
1943 // The upper most layer
1944 // Along the chambers
1945 xpos = fCwidth[5]/2.0 + kPWRhgt/2.0 - 1.3;
1946 ypos = 0.0;
1947 zpos = fgkSheight/2.0 - fgkSMpltT - 0.6 - kPWRwid/2.0;
1948 parPWR[0] = kPWRwid /2.0;
1949 parPWR[1] = fgkSlength/2.0;
1950 parPWR[2] = kPWRhgt /2.0;
1951 gMC->Gsposp("UTP1",6 ,"UTI1", xpos,ypos,zpos
1952 ,matrix[3],"ONLY",parPWR,kNparPWR);
1953 gMC->Gsposp("UTP1",6+ kNlayer,"UTI1",-xpos,ypos,zpos
1954 ,matrix[3],"ONLY",parPWR,kNparPWR);
1955 gMC->Gsposp("UTP1",6+6*kNlayer,"UTI2", xpos,ypos,zpos
1956 ,matrix[3],"ONLY",parPWR,kNparPWR);
1957 gMC->Gsposp("UTP1",6+7*kNlayer,"UTI2",-xpos,ypos,zpos
1958 ,matrix[3],"ONLY",parPWR,kNparPWR);
1959 gMC->Gsposp("UTP1",6+8*kNlayer,"UTI3", xpos,ypos,zpos
1960 ,matrix[3],"ONLY",parPWR,kNparPWR);
1961 gMC->Gsposp("UTP1",6+9*kNlayer,"UTI3",-xpos,ypos,zpos
1962 ,matrix[3],"ONLY",parPWR,kNparPWR);
1963 // Front of supermodules
1964 xpos = fCwidth[5]/2.0 + kPWRhgt/2.0 - 1.3;
1965 ypos = 0.0;
1966 zpos = fgkSheight/2.0 - fgkSMpltT - 0.6 - kPWRwid/2.0;
1967 parPWR[0] = kPWRwid /2.0;
1968 parPWR[1] = fgkFlength/2.0;
1969 parPWR[2] = kPWRhgt /2.0;
1970 gMC->Gsposp("UTP3",6+2*kNlayer,"UTF1", xpos,ypos,zpos
1971 ,matrix[3],"ONLY",parPWR,kNparPWR);
1972 gMC->Gsposp("UTP3",6+3*kNlayer,"UTF1",-xpos,ypos,zpos
1973 ,matrix[3],"ONLY",parPWR,kNparPWR);
1974 gMC->Gsposp("UTP3",6+4*kNlayer,"UTF2", xpos,ypos,zpos
1975 ,matrix[3],"ONLY",parPWR,kNparPWR);
1976 gMC->Gsposp("UTP3",6+5*kNlayer,"UTF2",-xpos,ypos,zpos
1977 ,matrix[3],"ONLY",parPWR,kNparPWR);
1978 // In baby frame
1979 xpos = fCwidth[5]/2.0 + kPWRhgt/2.0 - 3.0;
1980 ypos = kBBSdz/2.0 - kBBMdz/2.0;
1981 zpos = fgkSheight/2.0 - fgkSMpltT - 0.6 - kPWRwid/2.0;
1982 parPWR[0] = kPWRwid/2.0;
1983 parPWR[1] = kBBSdz /2.0;
1984 parPWR[2] = kPWRhgt/2.0;
1985 gMC->Gsposp("UTP3",6+6*kNlayer,"BBTRD", xpos, ypos, zpos
1986 ,matrix[3],"ONLY",parPWR,kNparPWR);
1987 gMC->Gsposp("UTP3",6+7*kNlayer,"BBTRD",-xpos, ypos, zpos
1988 ,matrix[3],"ONLY",parPWR,kNparPWR);
1989 // In back frame
1990 xpos = fCwidth[5]/2.0 + kPWRhgt/2.0 - 1.3;
1991 ypos = -kBFSdz/2.0 + kBFMdz/2.0;
1992 zpos = fgkSheight/2.0 - fgkSMpltT - 0.6 - kPWRwid/2.0;
1993 parPWR[0] = kPWRwid/2.0;
1994 parPWR[1] = kBFSdz /2.0;
1995 parPWR[2] = kPWRhgt/2.0;
1996 gMC->Gsposp("UTP3",6+8*kNlayer,"BFTRD", xpos,ypos,zpos
1997 ,matrix[3],"ONLY",parPWR,kNparPWR);
1998 gMC->Gsposp("UTP3",6+9*kNlayer,"BFTRD",-xpos,ypos,zpos
1999 ,matrix[3],"ONLY",parPWR,kNparPWR);
2000
2001 //
2002 // The gas tubes connecting the chambers in the super modules with holes
2003 // Material: Stainless steel
2004 //
2005
2006 parTube[0] = 0.0;
2007 parTube[1] = 2.2/2.0;
2008 parTube[2] = fClength[5][2]/2.0 - fgkHspace/2.0;
2009 gMC->Gsvolu("UTG1","TUBE",idtmed[1308-1],parTube,kNparTube);
2010 parTube[0] = 0.0;
2011 parTube[1] = 2.1/2.0;
2012 parTube[2] = fClength[5][2]/2.0 - fgkHspace/2.0;
2013 gMC->Gsvolu("UTG2","TUBE",idtmed[1309-1],parTube,kNparTube);
2014 xpos = 0.0;
2015 ypos = 0.0;
2016 zpos = 0.0;
2017 gMC->Gspos("UTG2",1,"UTG1",xpos,ypos,zpos,0,"ONLY");
2018 for (ilayer = 0; ilayer < kNlayer; ilayer++) {
2019 xpos = fCwidth[ilayer]/2.0 + kCOLwid/2.0 - 1.5;
2020 ypos = 0.0;
2021 zpos = fgkVrocsm + fgkSMpltT + kCOLhgt/2.0 - fgkSheight/2.0 + 5.0
2022 + ilayer * (fgkCH + fgkVspace);
2023 gMC->Gspos("UTG1",1+ilayer,"UTI3", xpos, ypos, zpos,matrix[4],"ONLY");
2024 gMC->Gspos("UTG1",7+ilayer,"UTI3",-xpos, ypos, zpos,matrix[4],"ONLY");
2025 }
2026
2027 //
2028 // The volumes for the services at the chambers
2029 //
2030
2031 const Int_t kNparServ = 3;
2032 Float_t parServ[kNparServ];
2033
2034 for (istack = 0; istack < kNstack; istack++) {
2035 for (ilayer = 0; ilayer < kNlayer; ilayer++) {
2036
2037 Int_t iDet = GetDetectorSec(ilayer,istack);
2038
2039 sprintf(cTagV,"UU%02d",iDet);
2040 parServ[0] = fCwidth[ilayer] /2.0;
2041 parServ[1] = fClength[ilayer][istack]/2.0 - fgkHspace/2.0;
2042 parServ[2] = fgkVspace /2.0 - 0.742/2.0;
2043 fChamberUUboxd[iDet][0] = parServ[0];
2044 fChamberUUboxd[iDet][1] = parServ[1];
2045 fChamberUUboxd[iDet][2] = parServ[2];
2046 gMC->Gsvolu(cTagV,"BOX",idtmed[1302-1],parServ,kNparServ);
2047
2048 xpos = 0.0;
2049 ypos = fClength[ilayer][0] + fClength[ilayer][1] + fClength[ilayer][2]/2.0;
2050 for (Int_t ic = 0; ic < istack; ic++) {
2051 ypos -= fClength[ilayer][ic];
2052 }
2053 ypos -= fClength[ilayer][istack]/2.0;
2054 zpos = fgkVrocsm + fgkSMpltT + fgkCH + fgkVspace/2.0 - fgkSheight/2.0
2055 + ilayer * (fgkCH + fgkVspace);
2056 zpos -= 0.742/2.0;
2057 fChamberUUorig[iDet][0] = xpos;
2058 fChamberUUorig[iDet][1] = ypos;
2059 fChamberUUorig[iDet][2] = zpos;
2060
2061 }
2062 }
2063
2064 //
2065 // The cooling pipes inside the service volumes
2066 //
2067
2068 // The cooling pipes
2069 parTube[0] = 0.0;
2070 parTube[1] = 0.0;
2071 parTube[2] = 0.0;
2072 gMC->Gsvolu("UTCP","TUBE",idtmed[1324-1],parTube,0);
2073 // The cooling water
2074 parTube[0] = 0.0;
2075 parTube[1] = 0.2/2.0;
2076 parTube[2] = -1.0;
2077 gMC->Gsvolu("UTCH","TUBE",idtmed[1314-1],parTube,kNparTube);
2078 // Water inside the cooling pipe
2079 xpos = 0.0;
2080 ypos = 0.0;
2081 zpos = 0.0;
2082 gMC->Gspos("UTCH",1,"UTCP",xpos,ypos,zpos,0,"ONLY");
2083
2084 // Position the cooling pipes in the mother volume
2085 for (istack = 0; istack < kNstack; istack++) {
2086 for (ilayer = 0; ilayer < kNlayer; ilayer++) {
2087 Int_t iDet = GetDetectorSec(ilayer,istack);
2088 Int_t iCopy = GetDetector(ilayer,istack,0) * 100;
2089 Int_t nMCMrow = GetRowMax(ilayer,istack,0);
2090 Float_t ySize = (GetChamberLength(ilayer,istack) - 2.0*fgkRpadW)
2091 / ((Float_t) nMCMrow);
2092 sprintf(cTagV,"UU%02d",iDet);
2093 for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
2094 xpos = 0.0;
2095 ypos = (0.5 + iMCMrow) * ySize - 1.9
2096 - fClength[ilayer][istack]/2.0 + fgkHspace/2.0;
2097 zpos = 0.0 + 0.742/2.0;
2098 // The cooling pipes
2099 parTube[0] = 0.0;
2100 parTube[1] = 0.3/2.0; // Thickness of the cooling pipes
2101 parTube[2] = fCwidth[ilayer]/2.0;
2102 gMC->Gsposp("UTCP",iCopy+iMCMrow,cTagV,xpos,ypos,zpos
2103 ,matrix[2],"ONLY",parTube,kNparTube);
2104 }
2105 }
2106 }
2107
2108 //
2109 // The power lines
2110 //
2111
2112 // The copper power lines
2113 parTube[0] = 0.0;
2114 parTube[1] = 0.0;
2115 parTube[2] = 0.0;
2116 gMC->Gsvolu("UTPL","TUBE",idtmed[1305-1],parTube,0);
2117
2118 // Position the power lines in the mother volume
2119 for (istack = 0; istack < kNstack; istack++) {
2120 for (ilayer = 0; ilayer < kNlayer; ilayer++) {
2121 Int_t iDet = GetDetectorSec(ilayer,istack);
2122 Int_t iCopy = GetDetector(ilayer,istack,0) * 100;
2123 Int_t nMCMrow = GetRowMax(ilayer,istack,0);
2124 Float_t ySize = (GetChamberLength(ilayer,istack) - 2.0*fgkRpadW)
2125 / ((Float_t) nMCMrow);
2126 sprintf(cTagV,"UU%02d",iDet);
2127 for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
2128 xpos = 0.0;
2129 ypos = (0.5 + iMCMrow) * ySize - 1.0
2130 - fClength[ilayer][istack]/2.0 + fgkHspace/2.0;
2131 zpos = -0.4 + 0.742/2.0;
2132 parTube[0] = 0.0;
2133 parTube[1] = 0.2/2.0; // Thickness of the power lines
2134 parTube[2] = fCwidth[ilayer]/2.0;
2135 gMC->Gsposp("UTPL",iCopy+iMCMrow,cTagV,xpos,ypos,zpos
2136 ,matrix[2],"ONLY",parTube,kNparTube);
2137 }
2138 }
2139 }
2140
2141 //
2142 // The MCMs
2143 //
2144
2145 const Float_t kMCMx = 3.0;
2146 const Float_t kMCMy = 3.0;
2147 const Float_t kMCMz = 0.3;
2148
2149 const Float_t kMCMpcTh = 0.1;
2150 const Float_t kMCMcuTh = 0.0025;
2151 const Float_t kMCMsiTh = 0.03;
2152 const Float_t kMCMcoTh = 0.04;
2153
2154 // The mother volume for the MCMs (air)
2155 const Int_t kNparMCM = 3;
2156 Float_t parMCM[kNparMCM];
2157 parMCM[0] = kMCMx /2.0;
2158 parMCM[1] = kMCMy /2.0;
2159 parMCM[2] = kMCMz /2.0;
2160 gMC->Gsvolu("UMCM","BOX",idtmed[1302-1],parMCM,kNparMCM);
2161
2162 // The MCM carrier G10 layer
2163 parMCM[0] = kMCMx /2.0;
2164 parMCM[1] = kMCMy /2.0;
2165 parMCM[2] = kMCMpcTh/2.0;
2166 gMC->Gsvolu("UMC1","BOX",idtmed[1319-1],parMCM,kNparMCM);
2167 // The MCM carrier Cu layer
2168 parMCM[0] = kMCMx /2.0;
2169 parMCM[1] = kMCMy /2.0;
2170 parMCM[2] = kMCMcuTh/2.0;
2171 gMC->Gsvolu("UMC2","BOX",idtmed[1318-1],parMCM,kNparMCM);
2172 // The silicon of the chips
2173 parMCM[0] = kMCMx /2.0;
2174 parMCM[1] = kMCMy /2.0;
2175 parMCM[2] = kMCMsiTh/2.0;
2176 gMC->Gsvolu("UMC3","BOX",idtmed[1320-1],parMCM,kNparMCM);
2177 // The aluminum of the cooling plates
2178 parMCM[0] = kMCMx /2.0;
2179 parMCM[1] = kMCMy /2.0;
2180 parMCM[2] = kMCMcoTh/2.0;
2181 gMC->Gsvolu("UMC4","BOX",idtmed[1324-1],parMCM,kNparMCM);
2182
2183 // Put the MCM material inside the MCM mother volume
2184 xpos = 0.0;
2185 ypos = 0.0;
2186 zpos = -kMCMz /2.0 + kMCMpcTh/2.0;
2187 gMC->Gspos("UMC1",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
2188 zpos += kMCMpcTh/2.0 + kMCMcuTh/2.0;
2189 gMC->Gspos("UMC2",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
2190 zpos += kMCMcuTh/2.0 + kMCMsiTh/2.0;
2191 gMC->Gspos("UMC3",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
2192 zpos += kMCMsiTh/2.0 + kMCMcoTh/2.0;
2193 gMC->Gspos("UMC4",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
2194
2195 // Position the MCMs in the mother volume
2196 for (istack = 0; istack < kNstack; istack++) {
2197 for (ilayer = 0; ilayer < kNlayer; ilayer++) {
2198 Int_t iDet = GetDetectorSec(ilayer,istack);
2199 Int_t iCopy = GetDetector(ilayer,istack,0) * 1000;
2200 Int_t nMCMrow = GetRowMax(ilayer,istack,0);
2201 Float_t ySize = (GetChamberLength(ilayer,istack) - 2.0*fgkRpadW)
2202 / ((Float_t) nMCMrow);
2203 Int_t nMCMcol = 8;
2204 Float_t xSize = (GetChamberWidth(ilayer) - 2.0*fgkCpadW)
2205 / ((Float_t) nMCMcol + 6); // Introduce 6 gaps
2206 Int_t iMCM[8] = { 1, 2, 3, 5, 8, 9, 10, 12 }; // 0..7 MCM + 6 gap structure
2207 sprintf(cTagV,"UU%02d",iDet);
2208 for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
2209 for (Int_t iMCMcol = 0; iMCMcol < nMCMcol; iMCMcol++) {
2210 xpos = (0.5 + iMCM[iMCMcol]) * xSize + 1.0
2211 - fCwidth[ilayer]/2.0;
2212 ypos = (0.5 + iMCMrow) * ySize + 1.0
2213 - fClength[ilayer][istack]/2.0 + fgkHspace/2.0;
2214 zpos = -0.4 + 0.742/2.0;
2215 gMC->Gspos("UMCM",iCopy+iMCMrow*10+iMCMcol,cTagV
2216 ,xpos,ypos,zpos,0,"ONLY");
2217 }
2218 }
2219
2220 }
2221 }
2222
2223 //
2224 // Services in front of the super module
2225 //
2226
2227 // Gas in-/outlet pipes (INOX)
2228 parTube[0] = 0.0;
2229 parTube[1] = 0.0;
2230 parTube[2] = 0.0;
2231 gMC->Gsvolu("UTG3","TUBE",idtmed[1308-1],parTube,0);
2232 // The gas inside the in-/outlet pipes (Xe)
2233 parTube[0] = 0.0;
2234 parTube[1] = 1.2/2.0;
2235 parTube[2] = -1.0;
2236 gMC->Gsvolu("UTG4","TUBE",idtmed[1309-1],parTube,kNparTube);
2237 xpos = 0.0;
2238 ypos = 0.0;
2239 zpos = 0.0;
2240 gMC->Gspos("UTG4",1,"UTG3",xpos,ypos,zpos,0,"ONLY");
2241 for (ilayer = 0; ilayer < kNlayer-1; ilayer++) {
2242 xpos = 0.0;
2243 ypos = fClength[ilayer][2]/2.0
2244 + fClength[ilayer][1]
2245 + fClength[ilayer][0];
2246 zpos = 9.0 - fgkSheight/2.0
2247 + ilayer * (fgkCH + fgkVspace);
2248 parTube[0] = 0.0;
2249 parTube[1] = 1.5/2.0;
2250 parTube[2] = fCwidth[ilayer]/2.0 - 2.5;
2251 gMC->Gsposp("UTG3",ilayer+1 ,"UTI1", xpos, ypos, zpos
2252 ,matrix[2],"ONLY",parTube,kNparTube);
2253 gMC->Gsposp("UTG3",ilayer+1+1*kNlayer,"UTI1", xpos,-ypos, zpos
2254 ,matrix[2],"ONLY",parTube,kNparTube);
2255 gMC->Gsposp("UTG3",ilayer+1+2*kNlayer,"UTI2", xpos, ypos, zpos
2256 ,matrix[2],"ONLY",parTube,kNparTube);
2257 gMC->Gsposp("UTG3",ilayer+1+3*kNlayer,"UTI2", xpos,-ypos, zpos
2258 ,matrix[2],"ONLY",parTube,kNparTube);
2259 gMC->Gsposp("UTG3",ilayer+1+4*kNlayer,"UTI3", xpos, ypos, zpos
2260 ,matrix[2],"ONLY",parTube,kNparTube);
2261 gMC->Gsposp("UTG3",ilayer+1+5*kNlayer,"UTI3", xpos,-ypos, zpos
2262 ,matrix[2],"ONLY",parTube,kNparTube);
2263 }
2264
2265 // Gas distribution box
2266 parBox[0] = 14.50/2.0;
2267 parBox[1] = 4.52/2.0;
2268 parBox[2] = 5.00/2.0;
2269 gMC->Gsvolu("UTGD","BOX ",idtmed[1308-1],parBox,kNparBox);
2270 parBox[0] = 14.50/2.0;
2271 parBox[1] = 4.00/2.0;
2272 parBox[2] = 4.40/2.0;
2273 gMC->Gsvolu("UTGI","BOX ",idtmed[1309-1],parBox,kNparBox);
2274 parTube[0] = 0.0;
2275 parTube[1] = 4.0/2.0;
2276 parTube[2] = 8.0/2.0;
2277 gMC->Gsvolu("UTGT","TUBE",idtmed[1308-1],parTube,kNparTube);
2278 parTube[0] = 0.0;
2279 parTube[1] = 3.4/2.0;
2280 parTube[2] = 8.0/2.0;
2281 gMC->Gsvolu("UTGG","TUBE",idtmed[1309-1],parTube,kNparTube);
2282 xpos = 0.0;
2283 ypos = 0.0;
2284 zpos = 0.0;
2285 gMC->Gspos("UTGI",1,"UTGD",xpos,ypos,zpos, 0,"ONLY");
2286 gMC->Gspos("UTGG",1,"UTGT",xpos,ypos,zpos, 0,"ONLY");
2287 xpos = 0.0;
2288 ypos = 0.0;
2289 zpos = 0.0;
2290 gMC->Gspos("UTGD",1,"UTF1",xpos,ypos,zpos, 0,"ONLY");
2291 xpos = -3.0;
2292 ypos = 0.0;
2293 zpos = 6.5;
2294 gMC->Gspos("UTGT",1,"UTF1",xpos,ypos,zpos, 0,"ONLY");
2295 xpos = -11.25;
2296 ypos = 0.0;
2297 zpos = 0.5;
2298 gMC->Gspos("UTGT",3,"UTF1",xpos,ypos,zpos,matrix[2],"ONLY");
2299 xpos = 11.25;
2300 ypos = 0.0;
2301 zpos = 0.5;
2302 gMC->Gspos("UTGT",5,"UTF1",xpos,ypos,zpos,matrix[2],"ONLY");
2303
2304 // Cooling manifolds
2305 parBox[0] = 5.0/2.0;
2306 parBox[1] = 23.0/2.0;
2307 parBox[2] = 70.0/2.0;
2308 gMC->Gsvolu("UTCM","BOX ",idtmed[1302-1],parBox,kNparBox);
2309 parBox[0] = 5.0/2.0;
2310 parBox[1] = 5.0/2.0;
2311 parBox[2] = 70.0/2.0;
2312 gMC->Gsvolu("UTCA","BOX ",idtmed[1308-1],parBox,kNparBox);
2313 parBox[0] = 5.0/2.0 - 0.3;
2314 parBox[1] = 5.0/2.0 - 0.3;
2315 parBox[2] = 70.0/2.0 - 0.3;
2316 gMC->Gsvolu("UTCW","BOX ",idtmed[1314-1],parBox,kNparBox);
2317 xpos = 0.0;
2318 ypos = 0.0;
2319 zpos = 0.0;
2320 gMC->Gspos("UTCW",1,"UTCA", xpos, ypos, zpos, 0,"ONLY");
2321 xpos = 0.0;
2322 ypos = 5.0/2.0 - 23.0/2.0;
2323 zpos = 0.0;
2324 gMC->Gspos("UTCA",1,"UTCM", xpos, ypos, zpos, 0,"ONLY");
2325 parTube[0] = 0.0;
2326 parTube[1] = 3.0/2.0;
2327 parTube[2] = 18.0/2.0;
2328 gMC->Gsvolu("UTCO","TUBE",idtmed[1308-1],parTube,kNparTube);
2329 parTube[0] = 0.0;
2330 parTube[1] = 3.0/2.0 - 0.3;
2331 parTube[2] = 18.0/2.0;
2332 gMC->Gsvolu("UTCL","TUBE",idtmed[1314-1],parTube,kNparTube);
2333 xpos = 0.0;
2334 ypos = 0.0;
2335 zpos = 0.0;
2336 gMC->Gspos("UTCL",1,"UTCO", xpos, ypos, zpos, 0,"ONLY");
2337 xpos = 0.0;
2338 ypos = 2.5;
2339 zpos = -70.0/2.0 + 7.0;
2340 gMC->Gspos("UTCO",1,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
2341 zpos += 7.0;
2342 gMC->Gspos("UTCO",2,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
2343 zpos += 7.0;
2344 gMC->Gspos("UTCO",3,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
2345 zpos += 7.0;
2346 gMC->Gspos("UTCO",4,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
2347 zpos += 7.0;
2348 gMC->Gspos("UTCO",5,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
2349 zpos += 7.0;
2350 gMC->Gspos("UTCO",6,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
2351 zpos += 7.0;
2352 gMC->Gspos("UTCO",7,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
2353 zpos += 7.0;
2354 gMC->Gspos("UTCO",8,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
2355
2356 xpos = 40.0;
2357 ypos = fgkFlength/2.0 - 23.0/2.0;
2358 zpos = 0.0;
2359 gMC->Gspos("UTCM",1,"UTF1", xpos, ypos, zpos,matrix[0],"ONLY");
2360 gMC->Gspos("UTCM",2,"UTF1",-xpos, ypos, zpos,matrix[1],"ONLY");
2361 gMC->Gspos("UTCM",3,"UTF2", xpos,-ypos, zpos,matrix[5],"ONLY");
2362 gMC->Gspos("UTCM",4,"UTF2",-xpos,-ypos, zpos,matrix[6],"ONLY");
2363
2364 // Power connection boards (Cu)
2365 parBox[0] = 0.5/2.0;
2366 parBox[1] = 15.0/2.0;
2367 parBox[2] = 7.0/2.0;
2368 gMC->Gsvolu("UTPC","BOX ",idtmed[1325-1],parBox,kNparBox);
2369 for (ilayer = 0; ilayer < kNlayer-1; ilayer++) {
2370 xpos = fCwidth[ilayer]/2.0 + kPWRwid/2.0;
2371 ypos = 0.0;
2372 zpos = fgkVrocsm + fgkSMpltT + kPWRhgt/2.0 - fgkSheight/2.0 + kPWRposz
2373 + (ilayer+1) * (fgkCH + fgkVspace);
2374 gMC->Gspos("UTPC",ilayer ,"UTF1", xpos,ypos,zpos,matrix[0],"ONLY");
2375 gMC->Gspos("UTPC",ilayer+kNlayer,"UTF1",-xpos,ypos,zpos,matrix[1],"ONLY");
2376 }
2377 xpos = fCwidth[5]/2.0 + kPWRhgt/2.0 - 2.0;
2378 ypos = 0.0;
2379 zpos = fgkSheight/2.0 - fgkSMpltT - 2.0;
2380 gMC->Gspos("UTPC",5 ,"UTF1", xpos,ypos,zpos,matrix[3],"ONLY");
2381 gMC->Gspos("UTPC",5+kNlayer,"UTF1",-xpos,ypos,zpos,matrix[3],"ONLY");
2382
2383 // Power connection panel (Al)
2384 parBox[0] = 60.0/2.0;
2385 parBox[1] = 10.0/2.0;
2386 parBox[2] = 3.0/2.0;
2387 gMC->Gsvolu("UTPP","BOX ",idtmed[1301-1],parBox,kNparBox);
2388 xpos = 0.0;
2389 ypos = 0.0;
2390 zpos = 18.0;
2391 gMC->Gspos("UTPP",1,"UTF1", xpos,ypos,zpos,0,"ONLY");
2392
2393 //
2394 // Electronics boxes
2395 //
2396
2397 // Casing (INOX)
2398 parBox[0] = 60.0/2.0;
2399 parBox[1] = 10.0/2.0;
2400 parBox[2] = 6.0/2.0;
2401 gMC->Gsvolu("UTE1","BOX ",idtmed[1308-1],parBox,kNparBox);
2402 // Interior (air)
2403 parBox[0] = parBox[0] - 0.5;
2404 parBox[1] = parBox[1] - 0.5;
2405 parBox[2] = parBox[2] - 0.5;
2406 gMC->Gsvolu("UTE2","BOX ",idtmed[1302-1],parBox,kNparBox);
2407 xpos = 0.0;
2408 ypos = 0.0;
2409 zpos = 0.0;
2410 gMC->Gspos("UTE2",1,"UTE1",xpos,ypos,zpos,0,"ONLY");
2411 xpos = 0.0;
2412 ypos = fgkSlength/2.0 - 10.0/2.0 - 3.0;
2413 zpos = -fgkSheight/2.0 + 6.0/2.0 + 1.0;
2414 gMC->Gspos("UTE1",1,"UTI1", xpos,ypos,zpos,0,"ONLY");
2415 gMC->Gspos("UTE1",2,"UTI2", xpos,ypos,zpos,0,"ONLY");
2416 gMC->Gspos("UTE1",3,"UTI3", xpos,ypos,zpos,0,"ONLY");
2417
2418 // Casing (INOX)
2419 parBox[0] = 50.0/2.0;
2420 parBox[1] = 15.0/2.0;
2421 parBox[2] = 20.0/2.0;
2422 gMC->Gsvolu("UTE3","BOX ",idtmed[1308-1],parBox,kNparBox);
2423 // Interior (air)
2424 parBox[0] = parBox[0] - 0.5;
2425 parBox[1] = parBox[1] - 0.5;
2426 parBox[2] = parBox[2] - 0.5;
2427 gMC->Gsvolu("UTE4","BOX ",idtmed[1302-1],parBox,kNparBox);
2428 xpos = 0.0;
2429 ypos = 0.0;
2430 zpos = 0.0;
2431 gMC->Gspos("UTE4",1,"UTE3",xpos,ypos,zpos,0,"ONLY");
2432 xpos = 0.0;
2433 ypos = -fgkSlength/2.0 + 15.0/2.0 + 3.0;
2434 zpos = -fgkSheight/2.0 + 20.0/2.0 + 1.0;
2435 gMC->Gspos("UTE3",1,"UTI1", xpos,ypos,zpos,0,"ONLY");
2436 gMC->Gspos("UTE3",2,"UTI2", xpos,ypos,zpos,0,"ONLY");
2437 gMC->Gspos("UTE3",3,"UTI3", xpos,ypos,zpos,0,"ONLY");
2438
2439 // Casing (INOX)
2440 parBox[0] = 20.0/2.0;
2441 parBox[1] = 7.0/2.0;
2442 parBox[2] = 20.0/2.0;
2443 gMC->Gsvolu("UTE5","BOX ",idtmed[1308-1],parBox,kNparBox);
2444 // Interior (air)
2445 parBox[0] = parBox[0] - 0.5;
2446 parBox[1] = parBox[1] - 0.5;
2447 parBox[2] = parBox[2] - 0.5;
2448 gMC->Gsvolu("UTE6","BOX ",idtmed[1302-1],parBox,kNparBox);
2449 xpos = 0.0;
2450 ypos = 0.0;
2451 zpos = 0.0;
2452 gMC->Gspos("UTE6",1,"UTE5",xpos,ypos,zpos,0,"ONLY");
2453 xpos = 20.0;
2454 ypos = -fgkSlength/2.0 + 7.0/2.0 + 3.0;
2455 zpos = 0.0;
2456 gMC->Gspos("UTE5",1,"UTI1", xpos,ypos,zpos,0,"ONLY");
2457 gMC->Gspos("UTE5",2,"UTI2", xpos,ypos,zpos,0,"ONLY");
2458 gMC->Gspos("UTE5",3,"UTI3", xpos,ypos,zpos,0,"ONLY");
2459 xpos = -xpos;
2460 gMC->Gspos("UTE5",4,"UTI1", xpos,ypos,zpos,0,"ONLY");
2461 gMC->Gspos("UTE5",5,"UTI2", xpos,ypos,zpos,0,"ONLY");
2462 gMC->Gspos("UTE5",6,"UTI3", xpos,ypos,zpos,0,"ONLY");
2463
2464}
2465
2466//_____________________________________________________________________________
2467void AliTRDgeometry::GroupChamber(Int_t ilayer, Int_t istack, Int_t *idtmed)
2468{
2469 //
2470 // Group volumes UA, UD, UF, UU in a single chamber (Air)
2471 // UA, UD, UF, UU are boxes
2472 // UT will be a box
2473 //
2474
2475 const Int_t kNparCha = 3;
2476
2477 Int_t iDet = GetDetectorSec(ilayer,istack);
2478
2479 Float_t xyzMin[3];
2480 Float_t xyzMax[3];
2481 Float_t xyzOrig[3];
2482 Float_t xyzBoxd[3];
2483
2484 Char_t cTagV[5];
2485 Char_t cTagM[5];
2486
2487 for (Int_t i = 0; i < 3; i++) {
2488 xyzMin[i] = +9999.0;
2489 xyzMax[i] = -9999.0;
2490 }
2491
2492 for (Int_t i = 0; i < 3; i++) {
2493
2494 xyzMin[i] = TMath::Min(xyzMin[i],fChamberUAorig[iDet][i]-fChamberUAboxd[iDet][i]);
2495 xyzMax[i] = TMath::Max(xyzMax[i],fChamberUAorig[iDet][i]+fChamberUAboxd[iDet][i]);
2496
2497 xyzMin[i] = TMath::Min(xyzMin[i],fChamberUDorig[iDet][i]-fChamberUDboxd[iDet][i]);
2498 xyzMax[i] = TMath::Max(xyzMax[i],fChamberUDorig[iDet][i]+fChamberUDboxd[iDet][i]);
2499
2500 xyzMin[i] = TMath::Min(xyzMin[i],fChamberUForig[iDet][i]-fChamberUFboxd[iDet][i]);
2501 xyzMax[i] = TMath::Max(xyzMax[i],fChamberUForig[iDet][i]+fChamberUFboxd[iDet][i]);
2502
2503 xyzMin[i] = TMath::Min(xyzMin[i],fChamberUUorig[iDet][i]-fChamberUUboxd[iDet][i]);
2504 xyzMax[i] = TMath::Max(xyzMax[i],fChamberUUorig[iDet][i]+fChamberUUboxd[iDet][i]);
2505
2506 xyzOrig[i] = 0.5*(xyzMax[i]+xyzMin[i]);
2507 xyzBoxd[i] = 0.5*(xyzMax[i]-xyzMin[i]);
2508
2509 }
2510
2511 sprintf(cTagM,"UT%02d",iDet);
2512 gMC->Gsvolu(cTagM,"BOX ",idtmed[1302-1],xyzBoxd,kNparCha);
2513
2514 sprintf(cTagV,"UA%02d",iDet);
2515 gMC->Gspos(cTagV,1,cTagM
2516 ,fChamberUAorig[iDet][0]-xyzOrig[0]
2517 ,fChamberUAorig[iDet][1]-xyzOrig[1]
2518 ,fChamberUAorig[iDet][2]-xyzOrig[2]
2519 ,0,"ONLY");
2520
2521 sprintf(cTagV,"UZ%02d",iDet);
2522 gMC->Gspos(cTagV,1,cTagM
2523 ,fChamberUAorig[iDet][0]-xyzOrig[0] + fChamberUAboxd[iDet][0] - fgkCroW/2.0
2524 ,fChamberUAorig[iDet][1]-xyzOrig[1]
2525 ,fChamberUAorig[iDet][2]-xyzOrig[2] + fgkCraH/2.0 + fgkCdrH/2.0 - fgkCalW/2.0
2526 ,0,"ONLY");
2527 gMC->Gspos(cTagV,2,cTagM
2528 ,fChamberUAorig[iDet][0]-xyzOrig[0] - fChamberUAboxd[iDet][0] + fgkCroW/2.0
2529 ,fChamberUAorig[iDet][1]-xyzOrig[1]
2530 ,fChamberUAorig[iDet][2]-xyzOrig[2] + fgkCraH/2.0 + fgkCdrH/2.0 - fgkCalW/2.0
2531 ,0,"ONLY");
2532
2533 sprintf(cTagV,"UD%02d",iDet);
2534 gMC->Gspos(cTagV,1,cTagM
2535 ,fChamberUDorig[iDet][0]-xyzOrig[0]
2536 ,fChamberUDorig[iDet][1]-xyzOrig[1]
2537 ,fChamberUDorig[iDet][2]-xyzOrig[2]
2538 ,0,"ONLY");
2539
2540 sprintf(cTagV,"UF%02d",iDet);
2541 gMC->Gspos(cTagV,1,cTagM
2542 ,fChamberUForig[iDet][0]-xyzOrig[0]
2543 ,fChamberUForig[iDet][1]-xyzOrig[1]
2544 ,fChamberUForig[iDet][2]-xyzOrig[2]
2545 ,0,"ONLY");
2546
2547 sprintf(cTagV,"UU%02d",iDet);
2548 gMC->Gspos(cTagV,1,cTagM
2549 ,fChamberUUorig[iDet][0]-xyzOrig[0]
2550 ,fChamberUUorig[iDet][1]-xyzOrig[1]
2551 ,fChamberUUorig[iDet][2]-xyzOrig[2]
2552 ,0,"ONLY");
2553
2554 sprintf(cTagV,"UT%02d",iDet);
2555 gMC->Gspos(cTagV,1,"UTI1"
2556 ,xyzOrig[0]
2557 ,xyzOrig[1]
2558 ,xyzOrig[2]
2559 ,0,"ONLY");
2560 gMC->Gspos(cTagV,1,"UTI2"
2561 ,xyzOrig[0]
2562 ,xyzOrig[1]
2563 ,xyzOrig[2]
2564 ,0,"ONLY");
2565 if (istack != 2) {
2566 // W/o middle stack
2567 gMC->Gspos(cTagV,1,"UTI3"
2568 ,xyzOrig[0]
2569 ,xyzOrig[1]
2570 ,xyzOrig[2]
2571 ,0,"ONLY");
2572 }
2573
2574}
2575
2576//_____________________________________________________________________________
2577Bool_t AliTRDgeometry::RotateBack(Int_t det, Double_t *loc, Double_t *glb) const
2578{
2579 //
2580 // Rotates a chambers to transform the corresponding local frame
2581 // coordinates <loc> into the coordinates of the ALICE restframe <glb>.
2582 //
2583
2584 Int_t sector = GetSector(det);
2585
2586 glb[0] = loc[0] * fRotB11[sector] - loc[1] * fRotB12[sector];
2587 glb[1] = loc[0] * fRotB21[sector] + loc[1] * fRotB22[sector];
2588 glb[2] = loc[2];
2589
2590 return kTRUE;
2591
2592}
2593
2594//_____________________________________________________________________________
2595Int_t AliTRDgeometry::GetDetectorSec(Int_t layer, Int_t stack)
2596{
2597 //
2598 // Convert plane / stack into detector number for one single sector
2599 //
2600
2601 return (layer + stack * fgkNlayer);
2602
2603}
2604
2605//_____________________________________________________________________________
2606Int_t AliTRDgeometry::GetDetector(Int_t layer, Int_t stack, Int_t sector)
2607{
2608 //
2609 // Convert layer / stack / sector into detector number
2610 //
2611
2612 return (layer + stack * fgkNlayer + sector * fgkNlayer * fgkNstack);
2613
2614}
2615
2616//_____________________________________________________________________________
2617Int_t AliTRDgeometry::GetLayer(Int_t det)
2618{
2619 //
2620 // Reconstruct the layer number from the detector number
2621 //
2622
2623 return ((Int_t) (det % fgkNlayer));
2624
2625}
2626
2627//_____________________________________________________________________________
2628Int_t AliTRDgeometry::GetStack(Int_t det)
2629{
2630 //
2631 // Reconstruct the stack number from the detector number
2632 //
2633
2634 return ((Int_t) (det % (fgkNlayer * fgkNstack)) / fgkNlayer);
2635
2636}
2637
2638//_____________________________________________________________________________
2639Int_t AliTRDgeometry::GetStack(Double_t z, Int_t layer)
2640{
2641 //
2642 // Reconstruct the chamber number from the z position and layer number
2643 //
2644 // The return function has to be protected for positiveness !!
2645 //
2646
2647 if ((layer < 0) ||
2648 (layer >= fgkNlayer)) return -1;
2649
2650 Int_t istck = fgkNstack;
2651 Double_t zmin;
2652 Double_t zmax;
2653
2654 do {
2655 istck--;
2656 if (istck < 0) break;
2657 AliTRDpadPlane *pp = GetPadPlane(layer,istck);
2658 zmax = pp->GetRow0();
2659 Int_t nrows = pp->GetNrows();
2660 zmin = zmax - 2 * pp->GetLengthOPad()
2661 - (nrows-2) * pp->GetLengthIPad()
2662 - (nrows-1) * pp->GetRowSpacing();
2663 } while((z < zmin) || (z > zmax));
2664
2665 return istck;
2666
2667}
2668
2669//_____________________________________________________________________________
2670Int_t AliTRDgeometry::GetSector(Int_t det)
2671{
2672 //
2673 // Reconstruct the sector number from the detector number
2674 //
2675
2676 return ((Int_t) (det / (fgkNlayer * fgkNstack)));
2677
2678}
2679
2680//_____________________________________________________________________________
2681AliTRDpadPlane *AliTRDgeometry::GetPadPlane(Int_t layer, Int_t stack)
2682{
2683 //
2684 // Returns the pad plane for a given plane <pl> and stack <st> number
2685 //
2686
2687 if (!fPadPlaneArray) {
2688 CreatePadPlaneArray();
2689 }
2690
2691 Int_t ipp = GetDetectorSec(layer,stack);
2692 return ((AliTRDpadPlane *) fPadPlaneArray->At(ipp));
2693
2694}
2695
2696//_____________________________________________________________________________
2697Int_t AliTRDgeometry::GetRowMax(Int_t layer, Int_t stack, Int_t /*sector*/)
2698{
2699 //
2700 // Returns the number of rows on the pad plane
2701 //
2702
2703 return GetPadPlane(layer,stack)->GetNrows();
2704
2705}
2706
2707//_____________________________________________________________________________
2708Int_t AliTRDgeometry::GetColMax(Int_t layer)
2709{
2710 //
2711 // Returns the number of rows on the pad plane
2712 //
2713
2714 return GetPadPlane(layer,0)->GetNcols();
2715
2716}
2717
2718//_____________________________________________________________________________
2719Double_t AliTRDgeometry::GetRow0(Int_t layer, Int_t stack, Int_t /*sector*/)
2720{
2721 //
2722 // Returns the position of the border of the first pad in a row
2723 //
2724
2725 return GetPadPlane(layer,stack)->GetRow0();
2726
2727}
2728
2729//_____________________________________________________________________________
2730Double_t AliTRDgeometry::GetCol0(Int_t layer)
2731{
2732 //
2733 // Returns the position of the border of the first pad in a column
2734 //
2735
2736 return GetPadPlane(layer,0)->GetCol0();
2737
2738}
2739
2740//_____________________________________________________________________________
2741Bool_t AliTRDgeometry::CreateClusterMatrixArray()
2742{
2743 //
2744 // Create the matrices to transform cluster coordinates from the
2745 // local chamber system to the tracking coordinate system
2746 //
2747
2748 if (!gGeoManager) {
2749 return kFALSE;
2750 }
2751
2752 TString volPath;
2753 TString vpStr = "ALIC_1/B077_1/BSEGMO";
2754 TString vpApp1 = "_1/BTRD";
2755 TString vpApp2 = "_1";
2756 TString vpApp3a = "/UTR1_1/UTS1_1/UTI1_1";
2757 TString vpApp3b = "/UTR2_1/UTS2_1/UTI2_1";
2758 TString vpApp3c = "/UTR3_1/UTS3_1/UTI3_1";
2759
2760 fClusterMatrixArray = new TObjArray(kNdet);
2761 AliAlignObjParams o;
2762
2763 for (Int_t iLayer = AliGeomManager::kTRD1; iLayer <= AliGeomManager::kTRD6; iLayer++) {
2764 for (Int_t iModule = 0; iModule < AliGeomManager::LayerSize(iLayer); iModule++) {
2765
2766 Int_t isector = iModule/Nstack();
2767 Int_t istack = iModule%Nstack();
2768 Int_t iLayerTRD = iLayer - AliGeomManager::kTRD1;
2769 Int_t lid = GetDetector(iLayerTRD,istack,isector);
2770
2771 // Check for disabled supermodules
2772 volPath = vpStr;
2773 volPath += isector;
2774 volPath += vpApp1;
2775 volPath += isector;
2776 volPath += vpApp2;
2777 switch (isector) {
2778 case 13:
2779 case 14:
2780 case 15:
2781 if (istack == 2) {
2782 continue;
2783 }
2784 volPath += vpApp3c;
2785 break;
2786 case 11:
2787 case 12:
2788 volPath += vpApp3b;
2789 break;
2790 default:
2791 volPath += vpApp3a;
2792 };
2793 if (!gGeoManager->CheckPath(volPath)) {
2794 continue;
2795 }
2796
2797 // Check for holes in from of PHOS
2798 if (((isector == 13) || (isector == 14) || (isector == 15)) &&
2799 (istack == 2)) {
2800 continue;
2801 }
2802
2803 UShort_t volid = AliGeomManager::LayerToVolUID(iLayer,iModule);
2804 const char *symname = AliGeomManager::SymName(volid);
2805 TGeoPNEntry *pne = gGeoManager->GetAlignableEntry(symname);
2806 const char *path = symname;
2807 if (pne) {
2808 path = pne->GetTitle();
2809 }
2810 else {
2811 continue;
2812 }
2813 if (!strstr(path,"ALIC")) {
2814 AliDebug(1,Form("Not a valid path: %s\n",path));
2815 continue;
2816 }
2817 if (!gGeoManager->cd(path)) {
2818 AliError(Form("Cannot go to path: %s\n",path));
2819 continue;
2820 }
2821 TGeoHMatrix *m = gGeoManager->GetCurrentMatrix();
2822
2823 TGeoRotation mchange;
2824 mchange.RotateY(90);
2825 mchange.RotateX(90);
2826
2827 //
2828 // Cluster transformation matrix
2829 //
2830 TGeoHMatrix rotMatrix(mchange.Inverse());
2831 rotMatrix.MultiplyLeft(m);
2832 Double_t sectorAngle = 20.0 * (isector % 18) + 10.0;
2833 TGeoHMatrix rotSector;
2834 rotSector.RotateZ(sectorAngle);
2835 rotMatrix.MultiplyLeft(&rotSector.Inverse());
2836
2837 fClusterMatrixArray->AddAt(new TGeoHMatrix(rotMatrix),lid);
2838
2839 }
2840 }
2841
2842 return kTRUE;
2843
2844}
2845
2846//_____________________________________________________________________________
2847Bool_t AliTRDgeometry::ChamberInGeometry(Int_t det)
2848{
2849 //
2850 // Checks whether the given detector is part of the current geometry
2851 //
2852
2853 if (!fClusterMatrixArray) {
2854 CreateClusterMatrixArray();
2855 }
2856
2857 if (!GetClusterMatrix(det)) {
2858 return kFALSE;
2859 }
2860 else {
2861 return kTRUE;
2862 }
2863
2864}