]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - TRD/AliTRDseedV1.cxx
bugfix: add kSPECIES for GetIntegratedTime
[u/mrichter/AliRoot.git] / TRD / AliTRDseedV1.cxx
... / ...
CommitLineData
1/**************************************************************************
2* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3* *
4* Author: The ALICE Off-line Project. *
5* Contributors are mentioned in the code where appropriate. *
6* *
7* Permission to use, copy, modify and distribute this software and its *
8* documentation strictly for non-commercial purposes is hereby granted *
9* without fee, provided that the above copyright notice appears in all *
10* copies and that both the copyright notice and this permission notice *
11* appear in the supporting documentation. The authors make no claims *
12* about the suitability of this software for any purpose. It is *
13* provided "as is" without express or implied warranty. *
14**************************************************************************/
15
16/* $Id$ */
17
18////////////////////////////////////////////////////////////////////////////
19////
20// The TRD offline tracklet
21//
22// The running horse of the TRD reconstruction. The following tasks are preformed:
23// 1. Clusters attachment to tracks based on prior information stored at tracklet level (see AttachClusters)
24// 2. Clusters position recalculation based on track information (see GetClusterXY and Fit)
25// 3. Cluster error parametrization recalculation (see Fit)
26// 4. Linear track approximation (Fit)
27// 5. Optimal position (including z estimate for pad row cross tracklets) and covariance matrix of the track fit inside one TRD chamber (Fit)
28// 6. Tilt pad correction and systematic effects (GetCovAt)
29// 7. dEdx calculation (CookdEdx)
30// 8. PID probabilities estimation (CookPID)
31//
32// Authors: //
33// Alex Bercuci <A.Bercuci@gsi.de> //
34// Markus Fasel <M.Fasel@gsi.de> //
35// //
36////////////////////////////////////////////////////////////////////////////
37
38#include "TMath.h"
39#include "TTreeStream.h"
40#include "TGraphErrors.h"
41
42#include "AliLog.h"
43#include "AliMathBase.h"
44#include "AliRieman.h"
45#include "AliCDBManager.h"
46
47#include "AliTRDReconstructor.h"
48#include "AliTRDpadPlane.h"
49#include "AliTRDtransform.h"
50#include "AliTRDcluster.h"
51#include "AliTRDseedV1.h"
52#include "AliTRDtrackV1.h"
53#include "AliTRDcalibDB.h"
54#include "AliTRDchamberTimeBin.h"
55#include "AliTRDtrackingChamber.h"
56#include "AliTRDtrackerV1.h"
57#include "AliTRDrecoParam.h"
58#include "AliTRDCommonParam.h"
59#include "AliTRDtrackletOflHelper.h"
60
61#include "Cal/AliTRDCalTrkAttach.h"
62#include "Cal/AliTRDCalPID.h"
63#include "Cal/AliTRDCalROC.h"
64#include "Cal/AliTRDCalDet.h"
65
66class AliTracker;
67
68ClassImp(AliTRDseedV1)
69
70//____________________________________________________________________
71AliTRDseedV1::AliTRDseedV1(Int_t det)
72 :AliTRDtrackletBase()
73 ,fkReconstructor(NULL)
74 ,fClusterIter(NULL)
75 ,fExB(0.)
76 ,fVD(0.)
77 ,fT0(0.)
78 ,fS2PRF(0.)
79 ,fDiffL(0.)
80 ,fDiffT(0.)
81 ,fClusterIdx(0)
82 ,fErrorMsg(0)
83 ,fN(0)
84 ,fDet(det)
85 ,fPt(0.)
86 ,fdX(0.)
87 ,fX0(0.)
88 ,fX(0.)
89 ,fY(0.)
90 ,fZ(0.)
91 ,fS2Y(0.)
92 ,fS2Z(0.)
93 ,fChi2(0.)
94{
95 //
96 // Constructor
97 //
98 memset(fIndexes,0xFF,kNclusters*sizeof(fIndexes[0]));
99 memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*));
100 memset(fPad, 0, 4*sizeof(Float_t));
101 fYref[0] = 0.; fYref[1] = 0.;
102 fZref[0] = 0.; fZref[1] = 0.;
103 fYfit[0] = 0.; fYfit[1] = 0.;
104 fZfit[0] = 0.; fZfit[1] = 0.;
105 memset(fdEdx, 0, kNdEdxSlices*sizeof(Float_t));
106 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++) fProb[ispec] = -1.;
107 fLabels[0]=-1; fLabels[1]=-1; // most freq MC labels
108 fLabels[2]=0; // number of different labels for tracklet
109 memset(fRefCov, 0, 7*sizeof(Double_t));
110 // stand alone curvature
111 fC[0] = 0.; fC[1] = 0.;
112 // covariance matrix [diagonal]
113 // default sy = 200um and sz = 2.3 cm
114 fCov[0] = 4.e-4; fCov[1] = 0.; fCov[2] = 5.3;
115 SetStandAlone(kFALSE);
116}
117
118//____________________________________________________________________
119AliTRDseedV1::AliTRDseedV1(const AliTRDseedV1 &ref)
120 :AliTRDtrackletBase((AliTRDtrackletBase&)ref)
121 ,fkReconstructor(NULL)
122 ,fClusterIter(NULL)
123 ,fExB(0.)
124 ,fVD(0.)
125 ,fT0(0.)
126 ,fS2PRF(0.)
127 ,fDiffL(0.)
128 ,fDiffT(0.)
129 ,fClusterIdx(0)
130 ,fErrorMsg(0)
131 ,fN(0)
132 ,fDet(-1)
133 ,fPt(0.)
134 ,fdX(0.)
135 ,fX0(0.)
136 ,fX(0.)
137 ,fY(0.)
138 ,fZ(0.)
139 ,fS2Y(0.)
140 ,fS2Z(0.)
141 ,fChi2(0.)
142{
143 //
144 // Copy Constructor performing a deep copy
145 //
146 if(this != &ref){
147 ref.Copy(*this);
148 }
149 SetBit(kOwner, kFALSE);
150 SetStandAlone(ref.IsStandAlone());
151}
152
153
154//____________________________________________________________________
155AliTRDseedV1& AliTRDseedV1::operator=(const AliTRDseedV1 &ref)
156{
157 //
158 // Assignment Operator using the copy function
159 //
160
161 if(this != &ref){
162 ref.Copy(*this);
163 }
164 SetBit(kOwner, kFALSE);
165
166 return *this;
167}
168
169//____________________________________________________________________
170AliTRDseedV1::~AliTRDseedV1()
171{
172 //
173 // Destructor. The RecoParam object belongs to the underlying tracker.
174 //
175
176 //printf("I-AliTRDseedV1::~AliTRDseedV1() : Owner[%s]\n", IsOwner()?"YES":"NO");
177
178 if(IsOwner()) {
179 for(int itb=0; itb<kNclusters; itb++){
180 if(!fClusters[itb]) continue;
181 //AliInfo(Form("deleting c %p @ %d", fClusters[itb], itb));
182 delete fClusters[itb];
183 fClusters[itb] = NULL;
184 }
185 }
186}
187
188//____________________________________________________________________
189void AliTRDseedV1::Copy(TObject &ref) const
190{
191 //
192 // Copy function
193 //
194
195 //AliInfo("");
196 AliTRDseedV1 &target = (AliTRDseedV1 &)ref;
197
198 target.fkReconstructor = fkReconstructor;
199 target.fClusterIter = NULL;
200 target.fExB = fExB;
201 target.fVD = fVD;
202 target.fT0 = fT0;
203 target.fS2PRF = fS2PRF;
204 target.fDiffL = fDiffL;
205 target.fDiffT = fDiffT;
206 target.fClusterIdx = 0;
207 target.fErrorMsg = fErrorMsg;
208 target.fN = fN;
209 target.fDet = fDet;
210 target.fPt = fPt;
211 target.fdX = fdX;
212 target.fX0 = fX0;
213 target.fX = fX;
214 target.fY = fY;
215 target.fZ = fZ;
216 target.fS2Y = fS2Y;
217 target.fS2Z = fS2Z;
218 target.fChi2 = fChi2;
219
220 memcpy(target.fIndexes, fIndexes, kNclusters*sizeof(Int_t));
221 memcpy(target.fClusters, fClusters, kNclusters*sizeof(AliTRDcluster*));
222 memcpy(target.fPad, fPad, 4*sizeof(Float_t));
223 target.fYref[0] = fYref[0]; target.fYref[1] = fYref[1];
224 target.fZref[0] = fZref[0]; target.fZref[1] = fZref[1];
225 target.fYfit[0] = fYfit[0]; target.fYfit[1] = fYfit[1];
226 target.fZfit[0] = fZfit[0]; target.fZfit[1] = fZfit[1];
227 memcpy(target.fdEdx, fdEdx, kNdEdxSlices*sizeof(Float_t));
228 memcpy(target.fProb, fProb, AliPID::kSPECIES*sizeof(Float_t));
229 memcpy(target.fLabels, fLabels, 3*sizeof(Int_t));
230 memcpy(target.fRefCov, fRefCov, 7*sizeof(Double_t));
231 target.fC[0] = fC[0]; target.fC[1] = fC[1];
232 memcpy(target.fCov, fCov, 3*sizeof(Double_t));
233
234 TObject::Copy(ref);
235}
236
237
238//____________________________________________________________
239void AliTRDseedV1::Init(const AliRieman *rieman)
240{
241// Initialize this tracklet using the riemann fit information
242
243
244 fZref[0] = rieman->GetZat(fX0);
245 fZref[1] = rieman->GetDZat(fX0);
246 fYref[0] = rieman->GetYat(fX0);
247 fYref[1] = rieman->GetDYat(fX0);
248 if(fkReconstructor && fkReconstructor->IsHLT()){
249 fRefCov[0] = 1;
250 fRefCov[2] = 10;
251 }else{
252 fRefCov[0] = rieman->GetErrY(fX0);
253 fRefCov[2] = rieman->GetErrZ(fX0);
254 }
255 fC[0] = rieman->GetC();
256 fChi2 = rieman->GetChi2();
257}
258
259
260//____________________________________________________________
261Bool_t AliTRDseedV1::Init(const AliTRDtrackV1 *track)
262{
263// Initialize this tracklet using the track information
264//
265// Parameters:
266// track - the TRD track used to initialize the tracklet
267//
268// Detailed description
269// The function sets the starting point and direction of the
270// tracklet according to the information from the TRD track.
271//
272// Caution
273// The TRD track has to be propagated to the beginning of the
274// chamber where the tracklet will be constructed
275//
276
277 Double_t y, z;
278 if(!track->GetProlongation(fX0, y, z)) return kFALSE;
279 Update(track);
280 return kTRUE;
281}
282
283
284//_____________________________________________________________________________
285void AliTRDseedV1::Reset(Option_t *opt)
286{
287//
288// Reset seed. If option opt="c" is given only cluster arrays are cleared.
289//
290 for(Int_t ic=kNclusters; ic--;) fIndexes[ic] = -1;
291 memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*));
292 fN=0; SetBit(kRowCross, kFALSE);
293 if(strcmp(opt, "c")==0) return;
294
295 fExB=0.;fVD=0.;fT0=0.;fS2PRF=0.;
296 fDiffL=0.;fDiffT=0.;
297 fClusterIdx=0;
298 fErrorMsg = 0;
299 fDet=-1;
300 fPt=0.;
301 fdX=0.;fX0=0.; fX=0.; fY=0.; fZ=0.;
302 fS2Y=0.; fS2Z=0.;
303 fC[0]=0.; fC[1]=0.;
304 fChi2 = 0.;
305
306 memset(fPad, 0, 4*sizeof(Float_t));
307 fYref[0] = 0.; fYref[1] = 0.;
308 fZref[0] = 0.; fZref[1] = 0.;
309 fYfit[0] = 0.; fYfit[1] = 0.;
310 fZfit[0] = 0.; fZfit[1] = 0.;
311 memset(fdEdx, 0, kNdEdxSlices*sizeof(Float_t));
312 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++) fProb[ispec] = -1.;
313 fLabels[0]=-1; fLabels[1]=-1; // most freq MC labels
314 fLabels[2]=0; // number of different labels for tracklet
315 memset(fRefCov, 0, 7*sizeof(Double_t));
316 // covariance matrix [diagonal]
317 // default sy = 200um and sz = 2.3 cm
318 fCov[0] = 4.e-4; fCov[1] = 0.; fCov[2] = 5.3;
319}
320
321//____________________________________________________________________
322void AliTRDseedV1::Update(const AliTRDtrackV1 *trk)
323{
324 // update tracklet reference position from the TRD track
325
326 Double_t fSnp = trk->GetSnp();
327 Double_t fTgl = trk->GetTgl();
328 fPt = trk->Pt();
329 Double_t norm =1./TMath::Sqrt((1.-fSnp)*(1.+fSnp));
330 fYref[1] = fSnp*norm;
331 fZref[1] = fTgl*norm;
332 SetCovRef(trk->GetCovariance());
333
334 Double_t dx = trk->GetX() - fX0;
335 fYref[0] = trk->GetY() - dx*fYref[1];
336 fZref[0] = trk->GetZ() - dx*fZref[1];
337}
338
339//_____________________________________________________________________________
340void AliTRDseedV1::UpdateUsed()
341{
342 //
343 // Calculate number of used clusers in the tracklet
344 //
345
346 Int_t nused = 0, nshared = 0;
347 for (Int_t i = kNclusters; i--; ) {
348 if (!fClusters[i]) continue;
349 if(fClusters[i]->IsUsed()){
350 nused++;
351 } else if(fClusters[i]->IsShared()){
352 if(IsStandAlone()) nused++;
353 else nshared++;
354 }
355 }
356 SetNUsed(nused);
357 SetNShared(nshared);
358}
359
360//_____________________________________________________________________________
361void AliTRDseedV1::UseClusters()
362{
363 //
364 // Use clusters
365 //
366 // In stand alone mode:
367 // Clusters which are marked as used or shared from another track are
368 // removed from the tracklet
369 //
370 // In barrel mode:
371 // - Clusters which are used by another track become shared
372 // - Clusters which are attached to a kink track become shared
373 //
374 AliTRDcluster **c = &fClusters[0];
375 for (Int_t ic=kNclusters; ic--; c++) {
376 if(!(*c)) continue;
377 if(IsStandAlone()){
378 if((*c)->IsShared() || (*c)->IsUsed()){
379 if((*c)->IsShared()) SetNShared(GetNShared()-1);
380 else SetNUsed(GetNUsed()-1);
381 (*c) = NULL;
382 fIndexes[ic] = -1;
383 SetN(GetN()-1);
384 continue;
385 }
386 } else {
387 if((*c)->IsUsed() || IsKink()){
388 (*c)->SetShared();
389 continue;
390 }
391 }
392 (*c)->Use();
393 }
394}
395
396
397
398//____________________________________________________________________
399void AliTRDseedV1::CookdEdx(Int_t nslices)
400{
401// Calculates average dE/dx for all slices and store them in the internal array fdEdx.
402//
403// Parameters:
404// nslices : number of slices for which dE/dx should be calculated
405// Output:
406// store results in the internal array fdEdx. This can be accessed with the method
407// AliTRDseedV1::GetdEdx()
408//
409// Detailed description
410// Calculates average dE/dx for all slices. Depending on the PID methode
411// the number of slices can be 3 (LQ) or 8(NN).
412// The calculation of dQ/dl are done using the tracklet fit results (see AliTRDseedV1::GetdQdl(Int_t))
413//
414// The following effects are included in the calculation:
415// 1. calibration values for t0 and vdrift (using x coordinate to calculate slice)
416// 2. cluster sharing (optional see AliTRDrecoParam::SetClusterSharing())
417// 3. cluster size
418//
419
420 memset(fdEdx, 0, kNdEdxSlices*sizeof(Float_t));
421 const Double_t kDriftLength = (.5 * AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick());
422
423 AliTRDcluster *c(NULL);
424 for(int ic=0; ic<AliTRDtrackerV1::GetNTimeBins(); ic++){
425 if(!(c = fClusters[ic]) && !(c = fClusters[ic+kNtb])) continue;
426 Float_t dx = TMath::Abs(fX0 - c->GetX());
427
428 // Filter clusters for dE/dx calculation
429
430 // 1.consider calibration effects for slice determination
431 Int_t slice;
432 if(dx<kDriftLength){ // TODO should be replaced by c->IsInChamber()
433 slice = Int_t(dx * nslices / kDriftLength);
434 } else slice = c->GetX() < fX0 ? nslices-1 : 0;
435
436
437 // 2. take sharing into account
438 Float_t w = /*c->IsShared() ? .5 :*/ 1.;
439
440 // 3. take into account large clusters TODO
441 //w *= c->GetNPads() > 3 ? .8 : 1.;
442
443 //CHECK !!!
444 fdEdx[slice] += w * GetdQdl(ic); //fdQdl[ic];
445 } // End of loop over clusters
446}
447
448//_____________________________________________________________________________
449void AliTRDseedV1::CookLabels()
450{
451 //
452 // Cook 2 labels for seed
453 //
454
455 Int_t labels[200];
456 Int_t out[200];
457 Int_t nlab = 0;
458 for (Int_t i = 0; i < kNclusters; i++) {
459 if (!fClusters[i]) continue;
460 for (Int_t ilab = 0; ilab < 3; ilab++) {
461 if (fClusters[i]->GetLabel(ilab) >= 0) {
462 labels[nlab] = fClusters[i]->GetLabel(ilab);
463 nlab++;
464 }
465 }
466 }
467
468 fLabels[2] = AliMathBase::Freq(nlab,labels,out,kTRUE);
469 fLabels[0] = out[0];
470 if ((fLabels[2] > 1) && (out[3] > 1)) fLabels[1] = out[2];
471}
472
473//____________________________________________________________
474Float_t AliTRDseedV1::GetAnodeWireOffset(Float_t zt)
475{
476// Find position inside the amplification cell for reading drift velocity map
477
478 Float_t d = fPad[3] - zt;
479 if(d<0.){
480 AliError(Form("Fail AnodeWireOffset calculation z0[%+7.2f] zt[%+7.2f] d[%+7.2f].", fPad[3], zt, d));
481 return 0.125;
482 }
483 d -= ((Int_t)(2 * d)) / 2.0;
484 if(d > 0.25) d = 0.5 - d;
485 return d;
486}
487
488
489//____________________________________________________________________
490Float_t AliTRDseedV1::GetCharge(Bool_t useOutliers) const
491{
492// Computes total charge attached to tracklet. If "useOutliers" is set clusters
493// which are not in chamber are also used (default false)
494
495 AliTRDcluster *c(NULL); Float_t qt(0.);
496 for(int ic=0; ic<kNclusters; ic++){
497 if(!(c=fClusters[ic])) continue;
498 if(!c->IsInChamber() && !useOutliers) continue;
499 qt += TMath::Abs(c->GetQ());
500 }
501 return qt;
502}
503
504//____________________________________________________________________
505Int_t AliTRDseedV1::GetChargeGaps(Float_t sz[kNtb], Float_t pos[kNtb], Int_t isz[kNtb]) const
506{
507// Find number, size and position of charge gaps (consecutive missing time bins).
508// Returns the number of gaps and fills their size in input array "sz" and position in array "pos"
509
510 Bool_t gap(kFALSE);
511 Int_t n(0);
512 Int_t ipos[kNtb]; memset(isz, 0, kNtb*sizeof(Int_t));memset(ipos, 0, kNtb*sizeof(Int_t));
513 for(int ic(0); ic<kNtb; ic++){
514 if(fClusters[ic] || fClusters[ic+kNtb]){
515 if(gap) n++;
516 continue;
517 }
518 gap = kTRUE;
519 isz[n]++;
520 ipos[n] = ic;
521 }
522 if(!n) return 0;
523
524 // write calibrated values
525 AliTRDcluster fake;
526 for(Int_t igap(0); igap<n; igap++){
527 sz[igap] = isz[igap]*fVD/AliTRDCommonParam::Instance()->GetSamplingFrequency();
528 fake.SetPadTime(ipos[igap]);
529 pos[igap] = fake.GetXloc(fT0, fVD);
530 if(isz[igap]>1){
531 fake.SetPadTime(ipos[igap]-isz[igap]+1);
532 pos[igap] += fake.GetXloc(fT0, fVD);
533 pos[igap] /= 2.;
534 }
535 }
536 return n;
537}
538
539
540//____________________________________________________________________
541Bool_t AliTRDseedV1::GetEstimatedCrossPoint(Float_t &x, Float_t &z) const
542{
543// Algorithm to estimate cross point in the x-z plane for pad row cross tracklets.
544// Returns true in case of success.
545 if(!IsRowCross()) return kFALSE;
546
547 x=0.; z=0.;
548 AliTRDcluster *c(NULL);
549 // Find radial range for first row
550 Float_t x1[] = {0., 1.e3};
551 for(int ic=0; ic<kNtb; ic++){
552 if(!(c=fClusters[ic])) continue;
553 if(!c->IsInChamber()) continue;
554 if(c->GetX() <= x1[1]) x1[1] = c->GetX();
555 if(c->GetX() >= x1[0]) x1[0] = c->GetX();
556 z=c->GetZ();
557 }
558 if((x1[0] - x1[1])<1.e-5) return kFALSE;
559
560 // Find radial range for second row
561 Bool_t kZ(kFALSE);
562 Float_t x2[] = {0., 1.e3};
563 for(int ic=kNtb; ic<kNclusters; ic++){
564 if(!(c=fClusters[ic])) continue;
565 if(!c->IsInChamber()) continue;
566 if(c->GetX() <= x2[1]) x2[1] = c->GetX();
567 if(c->GetX() >= x2[0]) x2[0] = c->GetX();
568 if(!kZ){
569 z+=c->GetZ();
570 z*=0.5;
571 kZ=kTRUE;
572 }
573 }
574 if((x2[0] - x2[1])<1.e-5) return kFALSE;
575
576 // Find intersection of the 2 radial regions
577 x = 0.5*((x1[0]+x1[1] > x2[0]+x2[1]) ? (x1[1]+x2[0]) : (x1[0]+x2[1]));
578 return kTRUE;
579}
580
581//____________________________________________________________________
582Float_t AliTRDseedV1::GetQperTB(Int_t tb) const
583{
584 //
585 // Charge of the clusters at timebin
586 //
587 Float_t q = 0;
588 if(fClusters[tb] /*&& fClusters[tb]->IsInChamber()*/)
589 q += TMath::Abs(fClusters[tb]->GetQ());
590 if(fClusters[tb+kNtb] /*&& fClusters[tb+kNtb]->IsInChamber()*/)
591 q += TMath::Abs(fClusters[tb+kNtb]->GetQ());
592 return q/TMath::Sqrt(1. + fYref[1]*fYref[1] + fZref[1]*fZref[1]);
593}
594
595//____________________________________________________________________
596Float_t AliTRDseedV1::GetdQdl() const
597{
598// Calculate total charge / tracklet length for 1D PID
599//
600 Float_t Q = GetCharge(kTRUE);
601 return Q/TMath::Sqrt(1. + fYref[1]*fYref[1] + fZref[1]*fZref[1]);
602}
603
604//____________________________________________________________________
605Float_t AliTRDseedV1::GetdQdl(Int_t ic, Float_t *dl) const
606{
607// Using the linear approximation of the track inside one TRD chamber (TRD tracklet)
608// the charge per unit length can be written as:
609// BEGIN_LATEX
610// #frac{dq}{dl} = #frac{q_{c}}{dx * #sqrt{1 + #(){#frac{dy}{dx}}^{2}_{fit} + #(){#frac{dz}{dx}}^{2}_{ref}}}
611// END_LATEX
612// where qc is the total charge collected in the current time bin and dx is the length
613// of the time bin.
614// The following correction are applied :
615// - charge : pad row cross corrections
616// [diffusion and TRF assymetry] TODO
617// - dx : anisochronity, track inclination - see Fit and AliTRDcluster::GetXloc()
618// and AliTRDcluster::GetYloc() for the effects taken into account
619//
620//Begin_Html
621//<img src="TRD/trackletDQDT.gif">
622//End_Html
623// In the picture the energy loss measured on the tracklet as a function of drift time [left] and respectively
624// drift length [right] for different particle species is displayed.
625// Author : Alex Bercuci <A.Bercuci@gsi.de>
626//
627 Float_t dq = 0.;
628 // check whether both clusters are inside the chamber
629 Bool_t hasClusterInChamber = kFALSE;
630 if(fClusters[ic] && fClusters[ic]->IsInChamber()){
631 hasClusterInChamber = kTRUE;
632 dq += TMath::Abs(fClusters[ic]->GetQ());
633 }
634 if(fClusters[ic+kNtb] && fClusters[ic+kNtb]->IsInChamber()){
635 hasClusterInChamber = kTRUE;
636 dq += TMath::Abs(fClusters[ic+kNtb]->GetQ());
637 }
638 if(!hasClusterInChamber) return 0.;
639 if(dq<1.e-3) return 0.;
640
641 Double_t dx = fdX;
642 if(ic-1>=0 && ic+1<kNtb){
643 Float_t x2(0.), x1(0.);
644 // try to estimate upper radial position (find the cluster which is inside the chamber)
645 if(fClusters[ic-1] && fClusters[ic-1]->IsInChamber()) x2 = fClusters[ic-1]->GetX();
646 else if(fClusters[ic-1+kNtb] && fClusters[ic-1+kNtb]->IsInChamber()) x2 = fClusters[ic-1+kNtb]->GetX();
647 else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x2 = fClusters[ic]->GetX()+fdX;
648 else x2 = fClusters[ic+kNtb]->GetX()+fdX;
649 // try to estimate lower radial position (find the cluster which is inside the chamber)
650 if(fClusters[ic+1] && fClusters[ic+1]->IsInChamber()) x1 = fClusters[ic+1]->GetX();
651 else if(fClusters[ic+1+kNtb] && fClusters[ic+1+kNtb]->IsInChamber()) x1 = fClusters[ic+1+kNtb]->GetX();
652 else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x1 = fClusters[ic]->GetX()-fdX;
653 else x1 = fClusters[ic+kNtb]->GetX()-fdX;
654
655 dx = .5*(x2 - x1);
656 }
657 dx *= TMath::Sqrt(1. + fYfit[1]*fYfit[1] + fZref[1]*fZref[1]);
658 if(dl) (*dl) = dx;
659 if(dx>1.e-9) return dq/dx;
660 else return 0.;
661}
662
663//____________________________________________________________
664Float_t AliTRDseedV1::GetMomentum(Float_t *err) const
665{
666// Returns momentum of the track after update with the current tracklet as:
667// BEGIN_LATEX
668// p=#frac{1}{1/p_{t}} #sqrt{1+tgl^{2}}
669// END_LATEX
670// and optionally the momentum error (if err is not null).
671// The estimated variance of the momentum is given by:
672// BEGIN_LATEX
673// #sigma_{p}^{2} = (#frac{dp}{dp_{t}})^{2} #sigma_{p_{t}}^{2}+(#frac{dp}{dtgl})^{2} #sigma_{tgl}^{2}+2#frac{dp}{dp_{t}}#frac{dp}{dtgl} cov(tgl,1/p_{t})
674// END_LATEX
675// which can be simplified to
676// BEGIN_LATEX
677// #sigma_{p}^{2} = p^{2}p_{t}^{4}tgl^{2}#sigma_{tgl}^{2}-2p^{2}p_{t}^{3}tgl cov(tgl,1/p_{t})+p^{2}p_{t}^{2}#sigma_{1/p_{t}}^{2}
678// END_LATEX
679//
680
681 Double_t p = fPt*TMath::Sqrt(1.+fZref[1]*fZref[1]);
682 if(err){
683 Double_t p2 = p*p;
684 Double_t tgl2 = fZref[1]*fZref[1];
685 Double_t pt2 = fPt*fPt;
686 Double_t s2 =
687 p2*tgl2*pt2*pt2*fRefCov[4]
688 -2.*p2*fZref[1]*fPt*pt2*fRefCov[5]
689 +p2*pt2*fRefCov[6];
690 (*err) = TMath::Sqrt(s2);
691 }
692 return p;
693}
694
695
696//____________________________________________________________________
697Int_t AliTRDseedV1::GetTBoccupancy() const
698{
699// Returns no. of TB occupied by clusters
700
701 Int_t n(0);
702 for(int ic(0); ic<kNtb; ic++){
703 if(!fClusters[ic] && !fClusters[ic+kNtb]) continue;
704 n++;
705 }
706 return n;
707}
708
709//____________________________________________________________________
710Int_t AliTRDseedV1::GetTBcross() const
711{
712// Returns no. of TB occupied by 2 clusters for pad row cross tracklets
713
714 if(!IsRowCross()) return 0;
715 Int_t n(0);
716 for(int ic(0); ic<kNtb; ic++){
717 if(fClusters[ic] && fClusters[ic+kNtb]) n++;
718 }
719 return n;
720}
721
722//____________________________________________________________________
723Float_t* AliTRDseedV1::GetProbability(Bool_t force)
724{
725 if(!force) return &fProb[0];
726 if(!CookPID()) return NULL;
727 return &fProb[0];
728}
729
730//____________________________________________________________
731Bool_t AliTRDseedV1::CookPID()
732{
733// Fill probability array for tracklet from the DB.
734//
735// Parameters
736//
737// Output
738// returns pointer to the probability array and NULL if missing DB access
739//
740// Retrieve PID probabilities for e+-, mu+-, K+-, pi+- and p+- from the DB according to tracklet information:
741// - estimated momentum at tracklet reference point
742// - dE/dx measurements
743// - tracklet length
744// - TRD layer
745// According to the steering settings specified in the reconstruction one of the following methods are used
746// - Neural Network [default] - option "nn"
747// - 2D Likelihood - option "!nn"
748
749 AliWarning(Form("Obsolete function. Use AliTRDPIDResponse::GetResponse() instead."));
750
751 AliTRDcalibDB *calibration = AliTRDcalibDB::Instance();
752 if (!calibration) {
753 AliError("No access to calibration data");
754 return kFALSE;
755 }
756
757 if (!fkReconstructor) {
758 AliError("Reconstructor not set.");
759 return kFALSE;
760 }
761
762 // Retrieve the CDB container class with the parametric detector response
763 const AliTRDCalPID *pd = calibration->GetPIDObject(fkReconstructor->GetPIDMethod());
764 if (!pd) {
765 AliError("No access to AliTRDCalPID object");
766 return kFALSE;
767 }
768
769 // calculate tracklet length TO DO
770 Float_t length = (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick())/ TMath::Sqrt((1.0 - GetSnp()*GetSnp()) / (1.0 + GetTgl()*GetTgl()));
771
772 //calculate dE/dx
773 CookdEdx(AliTRDCalPID::kNSlicesNN);
774 AliDebug(4, Form("p=%6.4f[GeV/c] dEdx{%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f} l=%4.2f[cm]", GetMomentum(), fdEdx[0], fdEdx[1], fdEdx[2], fdEdx[3], fdEdx[4], fdEdx[5], fdEdx[6], fdEdx[7], length));
775
776 // Sets the a priori probabilities
777 Bool_t kPIDNN(fkReconstructor->GetPIDMethod()==AliTRDpidUtil::kNN);
778 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++)
779 fProb[ispec] = pd->GetProbability(ispec, GetMomentum(), &fdEdx[0], length, kPIDNN?GetPlane():fkReconstructor->GetRecoParam()->GetPIDLQslices());
780
781 return kTRUE;
782}
783
784//____________________________________________________________________
785Float_t AliTRDseedV1::GetQuality(Bool_t kZcorr) const
786{
787 //
788 // Returns a quality measurement of the current seed
789 //
790
791 Float_t zcorr = kZcorr ? GetTilt() * (fZfit[0] - fZref[0]) : 0.;
792 return
793 .5 * TMath::Abs(18.0 - GetN())
794 + 10.* TMath::Abs(fYfit[1] - fYref[1])
795 + 5. * TMath::Abs(fYfit[0] - fYref[0] + zcorr)
796 + 2. * TMath::Abs(fZfit[0] - fZref[0]) / GetPadLength();
797}
798
799//____________________________________________________________________
800void AliTRDseedV1::GetCovAt(Double_t x, Double_t *cov) const
801{
802// Computes covariance in the y-z plane at radial point x (in tracking coordinates)
803// and returns the results in the preallocated array cov[3] as :
804// cov[0] = Var(y)
805// cov[1] = Cov(yz)
806// cov[2] = Var(z)
807//
808// Details
809//
810// For the linear transformation
811// BEGIN_LATEX
812// Y = T_{x} X^{T}
813// END_LATEX
814// The error propagation has the general form
815// BEGIN_LATEX
816// C_{Y} = T_{x} C_{X} T_{x}^{T}
817// END_LATEX
818// We apply this formula 2 times. First to calculate the covariance of the tracklet
819// at point x we consider:
820// BEGIN_LATEX
821// T_{x} = (1 x); X=(y0 dy/dx); C_{X}=#(){#splitline{Var(y0) Cov(y0, dy/dx)}{Cov(y0, dy/dx) Var(dy/dx)}}
822// END_LATEX
823// and secondly to take into account the tilt angle
824// BEGIN_LATEX
825// T_{#alpha} = #(){#splitline{cos(#alpha) __ sin(#alpha)}{-sin(#alpha) __ cos(#alpha)}}; X=(y z); C_{X}=#(){#splitline{Var(y) 0}{0 Var(z)}}
826// END_LATEX
827//
828// using simple trigonometrics one can write for this last case
829// BEGIN_LATEX
830// C_{Y}=#frac{1}{1+tg^{2}#alpha} #(){#splitline{(#sigma_{y}^{2}+tg^{2}#alpha#sigma_{z}^{2}) __ tg#alpha(#sigma_{z}^{2}-#sigma_{y}^{2})}{tg#alpha(#sigma_{z}^{2}-#sigma_{y}^{2}) __ (#sigma_{z}^{2}+tg^{2}#alpha#sigma_{y}^{2})}}
831// END_LATEX
832// which can be aproximated for small alphas (2 deg) with
833// BEGIN_LATEX
834// C_{Y}=#(){#splitline{#sigma_{y}^{2} __ (#sigma_{z}^{2}-#sigma_{y}^{2})tg#alpha}{((#sigma_{z}^{2}-#sigma_{y}^{2})tg#alpha __ #sigma_{z}^{2}}}
835// END_LATEX
836//
837// before applying the tilt rotation we also apply systematic uncertainties to the tracklet
838// position which can be tunned from outside via the AliTRDrecoParam::SetSysCovMatrix(). They might
839// account for extra misalignment/miscalibration uncertainties.
840//
841// Author :
842// Alex Bercuci <A.Bercuci@gsi.de>
843// Date : Jan 8th 2009
844//
845
846
847 Double_t xr = fX0-x;
848 Double_t sy2 = fCov[0] +2.*xr*fCov[1] + xr*xr*fCov[2];
849 Double_t sz2 = fS2Z;
850 //GetPadLength()*GetPadLength()/12.;
851
852 // insert systematic uncertainties
853 if(fkReconstructor){
854 Double_t sys[15]; memset(sys, 0, 15*sizeof(Double_t));
855 fkReconstructor->GetRecoParam()->GetSysCovMatrix(sys);
856 sy2 += sys[0];
857 sz2 += sys[1];
858 }
859
860 // rotate covariance matrix if no RC
861 if(!IsRowCross()){
862 Double_t t2 = GetTilt()*GetTilt();
863 Double_t correction = 1./(1. + t2);
864 cov[0] = (sy2+t2*sz2)*correction;
865 cov[1] = GetTilt()*(sz2 - sy2)*correction;
866 cov[2] = (t2*sy2+sz2)*correction;
867 } else {
868 cov[0] = sy2; cov[1] = 0.; cov[2] = sy2;
869 }
870
871 AliDebug(4, Form("C(%6.1f %+6.3f %6.1f) RC[%c]", 1.e4*TMath::Sqrt(cov[0]), cov[1], 1.e4*TMath::Sqrt(cov[2]), IsRowCross()?'y':'n'));
872}
873
874//____________________________________________________________
875Int_t AliTRDseedV1::GetCovSqrt(const Double_t * const c, Double_t *d)
876{
877// Helper function to calculate the square root of the covariance matrix.
878// The input matrix is stored in the vector c and the result in the vector d.
879// Both arrays have to be initialized by the user with at least 3 elements. Return negative in case of failure.
880//
881// For calculating the square root of the symmetric matrix c
882// the following relation is used:
883// BEGIN_LATEX
884// C^{1/2} = VD^{1/2}V^{-1}
885// END_LATEX
886// with V being the matrix with the n eigenvectors as columns.
887// In case C is symmetric the followings are true:
888// - matrix D is diagonal with the diagonal given by the eigenvalues of C
889// - V = V^{-1}
890//
891// Author A.Bercuci <A.Bercuci@gsi.de>
892// Date Mar 19 2009
893
894 const Double_t kZero(1.e-20);
895 Double_t l[2], // eigenvalues
896 v[3]; // eigenvectors
897 // the secular equation and its solution :
898 // (c[0]-L)(c[2]-L)-c[1]^2 = 0
899 // L^2 - L*Tr(c)+DET(c) = 0
900 // L12 = [Tr(c) +- sqrt(Tr(c)^2-4*DET(c))]/2
901 Double_t tr = c[0]+c[2], // trace
902 det = c[0]*c[2]-c[1]*c[1]; // determinant
903 if(TMath::Abs(det)<kZero) return 1;
904 Double_t dd = TMath::Sqrt(tr*tr - 4*det);
905 l[0] = .5*(tr + dd*(c[0]>c[2]?-1.:1.));
906 l[1] = .5*(tr + dd*(c[0]>c[2]?1.:-1.));
907 if(l[0]<kZero || l[1]<kZero) return 2;
908 // the sym V matrix
909 // | v00 v10|
910 // | v10 v11|
911 Double_t den = (l[0]-c[0])*(l[0]-c[0])+c[1]*c[1];
912 if(den<kZero){ // almost diagonal
913 v[0] = TMath::Sign(0., c[1]);
914 v[1] = TMath::Sign(1., (l[0]-c[0]));
915 v[2] = TMath::Sign(0., c[1]*(l[0]-c[0])*(l[1]-c[2]));
916 } else {
917 Double_t tmp = 1./TMath::Sqrt(den);
918 v[0] = c[1]* tmp;
919 v[1] = (l[0]-c[0])*tmp;
920 if(TMath::Abs(l[1]-c[2])<kZero) v[2] = TMath::Sign(v[0]*(l[0]-c[0])/kZero, (l[1]-c[2]));
921 else v[2] = v[0]*(l[0]-c[0])/(l[1]-c[2]);
922 }
923 // the VD^{1/2}V is:
924 l[0] = TMath::Sqrt(l[0]); l[1] = TMath::Sqrt(l[1]);
925 d[0] = v[0]*v[0]*l[0]+v[1]*v[1]*l[1];
926 d[1] = v[0]*v[1]*l[0]+v[1]*v[2]*l[1];
927 d[2] = v[1]*v[1]*l[0]+v[2]*v[2]*l[1];
928
929 return 0;
930}
931
932//____________________________________________________________
933Double_t AliTRDseedV1::GetCovInv(const Double_t * const c, Double_t *d)
934{
935// Helper function to calculate the inverse of the covariance matrix.
936// The input matrix is stored in the vector c and the result in the vector d.
937// Both arrays have to be initialized by the user with at least 3 elements
938// The return value is the determinant or 0 in case of singularity.
939//
940// Author A.Bercuci <A.Bercuci@gsi.de>
941// Date Mar 19 2009
942
943 Double_t det = c[0]*c[2] - c[1]*c[1];
944 if(TMath::Abs(det)<1.e-20) return 0.;
945 Double_t invDet = 1./det;
946 d[0] = c[2]*invDet;
947 d[1] =-c[1]*invDet;
948 d[2] = c[0]*invDet;
949 return det;
950}
951
952//____________________________________________________________________
953UShort_t AliTRDseedV1::GetVolumeId() const
954{
955// Returns geometry volume id by delegation
956
957 for(Int_t ic(0);ic<kNclusters; ic++){
958 if(fClusters[ic]) return fClusters[ic]->GetVolumeId();
959 }
960 return 0;
961}
962
963
964//____________________________________________________________________
965void AliTRDseedV1::Calibrate()
966{
967// Retrieve calibration and position parameters from OCDB.
968// The following information are used
969// - detector index
970// - column and row position of first attached cluster. If no clusters are attached
971// to the tracklet a random central chamber position (c=70, r=7) will be used.
972//
973// The following information is cached in the tracklet
974// t0 (trigger delay)
975// drift velocity
976// PRF width
977// omega*tau = tg(a_L)
978// diffusion coefficients (longitudinal and transversal)
979//
980// Author :
981// Alex Bercuci <A.Bercuci@gsi.de>
982// Date : Jan 8th 2009
983//
984
985 AliCDBManager *cdb = AliCDBManager::Instance();
986 if(cdb->GetRun() < 0){
987 AliError("OCDB manager not properly initialized");
988 return;
989 }
990
991 AliTRDcalibDB *calib = AliTRDcalibDB::Instance();
992 AliTRDCalROC *vdROC = calib->GetVdriftROC(fDet),
993 *t0ROC = calib->GetT0ROC(fDet);;
994 const AliTRDCalDet *vdDet = calib->GetVdriftDet();
995 const AliTRDCalDet *t0Det = calib->GetT0Det();
996
997 Int_t col = 70, row = 7;
998 AliTRDcluster **c = &fClusters[0];
999 if(GetN()){
1000 Int_t ic = 0;
1001 while (ic<kNclusters && !(*c)){ic++; c++;}
1002 if(*c){
1003 col = (*c)->GetPadCol();
1004 row = (*c)->GetPadRow();
1005 }
1006 }
1007
1008 fT0 = (t0Det->GetValue(fDet) + t0ROC->GetValue(col,row)) / AliTRDCommonParam::Instance()->GetSamplingFrequency();
1009 fVD = vdDet->GetValue(fDet) * vdROC->GetValue(col, row);
1010 fS2PRF = calib->GetPRFWidth(fDet, col, row); fS2PRF *= fS2PRF;
1011 fExB = AliTRDCommonParam::Instance()->GetOmegaTau(fVD);
1012 AliTRDCommonParam::Instance()->GetDiffCoeff(fDiffL,
1013 fDiffT, fVD);
1014 AliDebug(4, Form("Calibration params for Det[%3d] Col[%3d] Row[%2d]\n t0[%f] vd[%f] s2PRF[%f] ExB[%f] Dl[%f] Dt[%f]", fDet, col, row, fT0, fVD, fS2PRF, fExB, fDiffL, fDiffT));
1015
1016
1017 SetBit(kCalib, kTRUE);
1018}
1019
1020//____________________________________________________________________
1021void AliTRDseedV1::SetOwner()
1022{
1023 //AliInfo(Form("own [%s] fOwner[%s]", own?"YES":"NO", fOwner?"YES":"NO"));
1024
1025 if(TestBit(kOwner)) return;
1026 for(int ic=0; ic<kNclusters; ic++){
1027 if(!fClusters[ic]) continue;
1028 fClusters[ic] = new AliTRDcluster(*fClusters[ic]);
1029 }
1030 SetBit(kOwner);
1031}
1032
1033//____________________________________________________________
1034void AliTRDseedV1::SetPadPlane(AliTRDpadPlane * const p)
1035{
1036// Shortcut method to initialize pad geometry.
1037 fPad[0] = p->GetLengthIPad();
1038 fPad[1] = p->GetWidthIPad();
1039 fPad[2] = TMath::Tan(TMath::DegToRad()*p->GetTiltingAngle());
1040 fPad[3] = p->GetRow0() + p->GetAnodeWireOffset();
1041}
1042
1043
1044
1045//____________________________________________________________________
1046Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *const chamber, Bool_t tilt, Bool_t chgPos, Int_t ev)
1047{
1048//
1049// Projective algorithm to attach clusters to seeding tracklets. The following steps are performed :
1050// 1. Collapse x coordinate for the full detector plane
1051// 2. truncated mean on y (r-phi) direction
1052// 3. purge clusters
1053// 4. truncated mean on z direction
1054// 5. purge clusters
1055//
1056// Parameters
1057// - chamber : pointer to tracking chamber container used to search the tracklet
1058// - tilt : switch for tilt correction during road building [default true]
1059// - chgPos : mark same[kFALSE] and opposite[kTRUE] sign tracks with respect to Bz field sign [default true]
1060// - ev : event number for debug purposes [default = -1]
1061// Output
1062// - true : if tracklet found successfully. Failure can happend because of the following:
1063// -
1064// Detailed description
1065//
1066// We start up by defining the track direction in the xy plane and roads. The roads are calculated based
1067// on tracking information (variance in the r-phi direction) and estimated variance of the standard
1068// clusters (see AliTRDcluster::SetSigmaY2()) corrected for tilt (see GetCovAt()). From this the road is
1069// BEGIN_LATEX
1070// r_{y} = 3*#sqrt{12*(#sigma^{2}_{Trk}(y) + #frac{#sigma^{2}_{cl}(y) + tg^{2}(#alpha_{L})#sigma^{2}_{cl}(z)}{1+tg^{2}(#alpha_{L})})}
1071// r_{z} = 1.5*L_{pad}
1072// END_LATEX
1073//
1074// Author : Alexandru Bercuci <A.Bercuci@gsi.de>
1075// Debug : level = 2 for calibration
1076// level = 3 for visualization in the track SR
1077// level = 4 for full visualization including digit level
1078
1079 const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); //the dynamic cast in GetRecoParam is slow, so caching the pointer to it
1080
1081 if(!recoParam){
1082 AliError("Tracklets can not be used without a valid RecoParam.");
1083 return kFALSE;
1084 }
1085 AliTRDcalibDB *calibration = AliTRDcalibDB::Instance();
1086 if (!calibration) {
1087 AliError("No access to calibration data");
1088 return kFALSE;
1089 }
1090 // Retrieve the CDB container class with the parametric likelihood
1091 const AliTRDCalTrkAttach *attach = calibration->GetAttachObject();
1092 if (!attach) {
1093 AliError("No usable AttachClusters calib object.");
1094 return kFALSE;
1095 }
1096
1097 // Initialize reco params for this tracklet
1098 // 1. first time bin in the drift region
1099 Int_t t0 = 14;
1100 Int_t kClmin = Int_t(recoParam->GetFindableClusters()*AliTRDtrackerV1::GetNTimeBins());
1101 Int_t kTBmin = 4;
1102
1103 Double_t sysCov[5]; recoParam->GetSysCovMatrix(sysCov);
1104 Double_t s2yTrk= fRefCov[0],
1105 s2yCl = 0.,
1106 s2zCl = GetPadLength()*GetPadLength()/12.,
1107 syRef = TMath::Sqrt(s2yTrk),
1108 t2 = GetTilt()*GetTilt();
1109 //define roads
1110 const Double_t kroady = 3.; //recoParam->GetRoad1y();
1111 const Double_t kroadz = GetPadLength() * recoParam->GetRoadzMultiplicator() + 1.;
1112 // define probing cluster (the perfect cluster) and default calibration
1113 Short_t sig[] = {0, 0, 10, 30, 10, 0,0};
1114 AliTRDcluster cp(fDet, 6, 75, 0, sig, 0);
1115 if(fkReconstructor->IsHLT()) cp.SetRPhiMethod(AliTRDcluster::kCOG);
1116 if(!IsCalibrated()) Calibrate();
1117
1118/* Int_t kroadyShift(0);
1119 Float_t bz(AliTrackerBase::GetBz());
1120 if(TMath::Abs(bz)>2.){
1121 if(bz<0.) kroadyShift = chgPos ? +1 : -1;
1122 else kroadyShift = chgPos ? -1 : +1;
1123 }*/
1124 AliDebug(4, Form("\n syTrk[cm]=%4.2f dydxTrk[deg]=%+6.2f Chg[%c] rY[cm]=%4.2f rZ[cm]=%5.2f TC[%c]", syRef, TMath::ATan(fYref[1])*TMath::RadToDeg(), chgPos?'+':'-', kroady, kroadz, tilt?'y':'n'));
1125 Double_t phiTrk(TMath::ATan(fYref[1])),
1126 thtTrk(TMath::ATan(fZref[1]));
1127
1128 // working variables
1129 const Int_t kNrows = 16;
1130 const Int_t kNcls = 3*kNclusters; // buffer size
1131 TObjArray clst[kNrows];
1132 Bool_t blst[kNrows][kNcls];
1133 Double_t cond[4],
1134 dx, dy, dz,
1135 yt, zt,
1136 zc[kNrows],
1137 xres[kNrows][kNcls], yres[kNrows][kNcls], zres[kNrows][kNcls], s2y[kNrows][kNcls];
1138 Int_t idxs[kNrows][kNcls], ncl[kNrows], ncls = 0;
1139 memset(ncl, 0, kNrows*sizeof(Int_t));
1140 memset(zc, 0, kNrows*sizeof(Double_t));
1141 memset(idxs, 0, kNrows*kNcls*sizeof(Int_t));
1142 memset(xres, 0, kNrows*kNcls*sizeof(Double_t));
1143 memset(yres, 0, kNrows*kNcls*sizeof(Double_t));
1144 memset(zres, 0, kNrows*kNcls*sizeof(Double_t));
1145 memset(s2y, 0, kNrows*kNcls*sizeof(Double_t));
1146 memset(blst, 0, kNrows*kNcls*sizeof(Bool_t)); //this is 8 times faster to memset than "memset(clst, 0, kNrows*kNcls*sizeof(AliTRDcluster*))"
1147
1148 Double_t roady(0.), s2Mean(0.); Int_t ns2Mean(0);
1149
1150 // Do cluster projection and pick up cluster candidates
1151 AliTRDcluster *c(NULL);
1152 AliTRDchamberTimeBin *layer(NULL);
1153 Bool_t kBUFFER = kFALSE;
1154 for (Int_t it = 0; it < kNtb; it++) {
1155 if(!(layer = chamber->GetTB(it))) continue;
1156 if(!Int_t(*layer)) continue;
1157 // get track projection at layers position
1158 dx = fX0 - layer->GetX();
1159 yt = fYref[0] - fYref[1] * dx;
1160 zt = fZref[0] - fZref[1] * dx;
1161 // get standard cluster error corrected for tilt if selected
1162 cp.SetLocalTimeBin(it);
1163 cp.SetSigmaY2(0.02, fDiffT, fExB, dx, -1./*zt*/, fYref[1]);
1164 s2yCl = cp.GetSigmaY2() + sysCov[0]; if(!tilt) s2yCl = (s2yCl + t2*s2zCl)/(1.+t2);
1165 if(TMath::Abs(it-12)<7){ s2Mean += cp.GetSigmaY2(); ns2Mean++;}
1166 // get estimated road in r-phi direction
1167 roady = TMath::Min(3.*TMath::Sqrt(12.*(s2yTrk + s2yCl)), kroady);
1168
1169 AliDebug(5, Form("\n"
1170 " %2d xd[cm]=%6.3f yt[cm]=%7.2f zt[cm]=%8.2f\n"
1171 " syTrk[um]=%6.2f syCl[um]=%6.2f syClTlt[um]=%6.2f\n"
1172 " Ry[mm]=%f"
1173 , it, dx, yt, zt
1174 , 1.e4*TMath::Sqrt(s2yTrk), 1.e4*TMath::Sqrt(cp.GetSigmaY2()+sysCov[0]), 1.e4*TMath::Sqrt(s2yCl)
1175 , 1.e1*roady));
1176
1177 // get clusters from layer
1178 cond[0] = yt/*+0.5*kroadyShift*kroady*/; cond[2] = roady;
1179 cond[1] = zt; cond[3] = kroadz;
1180 Int_t n=0, idx[6]; layer->GetClusters(cond, idx, n, 6);
1181 for(Int_t ic = n; ic--;){
1182 c = (*layer)[idx[ic]];
1183 dx = fX0 - c->GetX();
1184 yt = fYref[0] - fYref[1] * dx;
1185 zt = fZref[0] - fZref[1] * dx;
1186 dz = zt - c->GetZ();
1187 dy = yt - (c->GetY() + (tilt ? (GetTilt() * dz) : 0.));
1188 Int_t r = c->GetPadRow();
1189 clst[r].AddAtAndExpand(c, ncl[r]);
1190 blst[r][ncl[r]] = kTRUE;
1191 idxs[r][ncl[r]] = idx[ic];
1192 zres[r][ncl[r]] = dz/GetPadLength();
1193 yres[r][ncl[r]] = dy;
1194 xres[r][ncl[r]] = dx;
1195 zc[r] = c->GetZ();
1196 // TODO temporary solution to avoid divercences in error parametrization
1197 s2y[r][ncl[r]] = TMath::Min(c->GetSigmaY2()+sysCov[0], 0.025);
1198 AliDebug(5, Form(" -> dy[cm]=%+7.4f yc[cm]=%7.2f row[%d] idx[%2d]", dy, c->GetY(), r, ncl[r]));
1199 ncl[r]++; ncls++;
1200
1201 if(ncl[r] >= kNcls) {
1202 AliWarning(Form("Cluster candidates row[%d] reached buffer limit[%d]. Some may be lost.", r, kNcls));
1203 kBUFFER = kTRUE;
1204 break;
1205 }
1206 }
1207 if(kBUFFER) break;
1208 }
1209 if(ncls<kClmin){
1210 AliDebug(1, Form("CLUSTERS FOUND %d LESS THAN THRESHOLD %d.", ncls, kClmin));
1211 SetErrorMsg(kAttachClFound);
1212 for(Int_t ir(kNrows);ir--;) clst[ir].Clear();
1213 return kFALSE;
1214 }
1215 if(ns2Mean<kTBmin){
1216 AliDebug(1, Form("CLUSTERS IN TimeBins %d LESS THAN THRESHOLD %d.", ns2Mean, kTBmin));
1217 SetErrorMsg(kAttachClFound);
1218 for(Int_t ir(kNrows);ir--;) clst[ir].Clear();
1219 return kFALSE;
1220 }
1221 s2Mean /= ns2Mean; //sMean = TMath::Sqrt(s2Mean);
1222 //Double_t sRef(TMath::Sqrt(s2Mean+s2yTrk)); // reference error parameterization
1223
1224 // organize row candidates
1225 Int_t idxRow[kNrows], nrc(0); Double_t zresRow[kNrows];
1226 for(Int_t ir(0); ir<kNrows; ir++){
1227 idxRow[ir]=-1; zresRow[ir] = 999.;
1228 if(!ncl[ir]) continue;
1229 // get mean z resolution
1230 dz = 0.; for(Int_t ic = ncl[ir]; ic--;) dz += zres[ir][ic]; dz/=ncl[ir];
1231 // insert row
1232 idxRow[nrc] = ir; zresRow[nrc] = TMath::Abs(dz); nrc++;
1233 }
1234 AliDebug(4, Form("Found %d clusters in %d rows. Sorting ...", ncls, nrc));
1235
1236 // sort row candidates
1237 if(nrc>=2){
1238 if(nrc==2){
1239 if(zresRow[0]>zresRow[1]){ // swap
1240 Int_t itmp=idxRow[1]; idxRow[1] = idxRow[0]; idxRow[0] = itmp;
1241 Double_t dtmp=zresRow[1]; zresRow[1] = zresRow[0]; zresRow[0] = dtmp;
1242 }
1243 if(TMath::Abs(idxRow[1] - idxRow[0]) != 1){
1244 SetErrorMsg(kAttachRowGap);
1245 AliDebug(2, Form("Rows attached not continuous. Select first candidate.\n"
1246 " row[%2d] Ncl[%2d] <dz>[cm]=%+8.2f row[%2d] Ncl[%2d] <dz>[cm]=%+8.2f",
1247 idxRow[0], ncl[idxRow[0]], zresRow[0], idxRow[1], idxRow[1]<0?0:ncl[idxRow[1]], zresRow[1]));
1248 nrc=1; idxRow[1] = -1; zresRow[1] = 999.;
1249 }
1250 } else {
1251 Int_t idx0[kNrows];
1252 TMath::Sort(nrc, zresRow, idx0, kFALSE);
1253 nrc = 3; // select only maximum first 3 candidates
1254 Int_t iatmp[] = {-1, -1, -1}; Double_t datmp[] = {999., 999., 999.};
1255 for(Int_t irc(0); irc<nrc; irc++){
1256 iatmp[irc] = idxRow[idx0[irc]];
1257 datmp[irc] = zresRow[idx0[irc]];
1258 }
1259 idxRow[0] = iatmp[0]; zresRow[0] = datmp[0];
1260 idxRow[1] = iatmp[1]; zresRow[1] = datmp[1];
1261 idxRow[2] = iatmp[2]; zresRow[2] = datmp[2]; // temporary
1262 if(TMath::Abs(idxRow[1] - idxRow[0]) != 1){
1263 SetErrorMsg(kAttachRowGap);
1264 AliDebug(2, Form("Rows attached not continuous. Turn on selection.\n"
1265 "row[%2d] Ncl[%2d] <dz>[cm]=%+8.2f\n"
1266 "row[%2d] Ncl[%2d] <dz>[cm]=%+8.2f\n"
1267 "row[%2d] Ncl[%2d] <dz>[cm]=%+8.2f",
1268 idxRow[0], ncl[idxRow[0]], zresRow[0],
1269 idxRow[1], ncl[idxRow[1]], zresRow[1],
1270 idxRow[2], ncl[idxRow[2]], zresRow[2]));
1271 if(TMath::Abs(idxRow[0] - idxRow[2]) == 1){ // select second candidate
1272 AliDebug(2, "Solved ! Remove second candidate.");
1273 nrc = 2;
1274 idxRow[1] = idxRow[2]; zresRow[1] = zresRow[2]; // swap
1275 idxRow[2] = -1; zresRow[2] = 999.; // remove
1276 } else if(TMath::Abs(idxRow[1] - idxRow[2]) == 1){
1277 if(ncl[idxRow[1]]+ncl[idxRow[2]] > ncl[idxRow[0]]){
1278 AliDebug(2, "Solved ! Remove first candidate.");
1279 nrc = 2;
1280 idxRow[0] = idxRow[1]; zresRow[0] = zresRow[1]; // swap
1281 idxRow[1] = idxRow[2]; zresRow[1] = zresRow[2]; // swap
1282 } else {
1283 AliDebug(2, "Solved ! Remove second and third candidate.");
1284 nrc = 1;
1285 idxRow[1] = -1; zresRow[1] = 999.; // remove
1286 idxRow[2] = -1; zresRow[2] = 999.; // remove
1287 }
1288 } else {
1289 AliDebug(2, "Unsolved !!! Remove second and third candidate.");
1290 nrc = 1;
1291 idxRow[1] = -1; zresRow[1] = 999.; // remove
1292 idxRow[2] = -1; zresRow[2] = 999.; // remove
1293 }
1294 } else { // remove temporary candidate
1295 nrc = 2;
1296 idxRow[2] = -1; zresRow[2] = 999.;
1297 }
1298 }
1299 }
1300 AliDebug(4, Form("Sorted row candidates:\n"
1301 " row[%2d] Ncl[%2d] <dz>[cm]=%+8.2f row[%2d] Ncl[%2d] <dz>[cm]=%+8.2f"
1302 , idxRow[0], ncl[idxRow[0]], zresRow[0], idxRow[1], idxRow[1]<0?0:ncl[idxRow[1]], zresRow[1]));
1303
1304 // initialize debug streamer
1305 TTreeSRedirector *pstreamer(NULL);
1306 if(recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 3 && fkReconstructor->IsDebugStreaming()) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
1307 if(pstreamer){
1308 // save config. for calibration
1309 TVectorD vdy[2], vdx[2], vs2[2];
1310 for(Int_t jr(0); jr<nrc; jr++){
1311 Int_t ir(idxRow[jr]);
1312 vdx[jr].ResizeTo(ncl[ir]); vdy[jr].ResizeTo(ncl[ir]); vs2[jr].ResizeTo(ncl[ir]);
1313 for(Int_t ic(ncl[ir]); ic--;){
1314 vdx[jr](ic) = xres[ir][ic];
1315 vdy[jr](ic) = yres[ir][ic];
1316 vs2[jr](ic) = s2y[ir][ic];
1317 }
1318 }
1319 (*pstreamer) << "AttachClusters4"
1320 << "r0=" << idxRow[0]
1321 << "dz0=" << zresRow[0]
1322 << "dx0=" << &vdx[0]
1323 << "dy0=" << &vdy[0]
1324 << "s20=" << &vs2[0]
1325 << "r1=" << idxRow[1]
1326 << "dz1=" << zresRow[1]
1327 << "dx1=" << &vdx[1]
1328 << "dy1=" << &vdy[1]
1329 << "s21=" << &vs2[1]
1330 << "\n";
1331 vdx[0].Clear(); vdy[0].Clear(); vs2[0].Clear();
1332 vdx[1].Clear(); vdy[1].Clear(); vs2[1].Clear();
1333 if(recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 4){
1334 Int_t idx(idxRow[1]);
1335 if(idx<0){
1336 for(Int_t ir(0); ir<kNrows; ir++){
1337 if(clst[ir].GetEntries()>0) continue;
1338 idx = ir;
1339 break;
1340 }
1341 }
1342 (*pstreamer) << "AttachClusters5"
1343 << "c0.=" << &clst[idxRow[0]]
1344 << "c1.=" << &clst[idx]
1345 << "\n";
1346 }
1347 }
1348
1349//=======================================================================================
1350 // Analyse cluster topology
1351 Double_t f[kNcls], // likelihood factors for segments
1352 r[2][kNcls], // d(dydx) of tracklet candidate with respect to track
1353 xm[2][kNcls], // mean <x>
1354 ym[2][kNcls], // mean <y>
1355 sm[2][kNcls], // mean <s_y>
1356 s[2][kNcls], // sigma_y
1357 p[2][kNcls], // prob of Gauss
1358 q[2][kNcls]; // charge/segment
1359 memset(f, 0, kNcls*sizeof(Double_t));
1360 Int_t index[2][kNcls], n[2][kNcls];
1361 memset(n, 0, 2*kNcls*sizeof(Int_t));
1362 Int_t mts(0), nts[2] = {0, 0}; // no of tracklet segments in row
1363 AliTRDpadPlane *pp(AliTRDtransform::Geometry().GetPadPlane(fDet));
1364 AliTRDtrackletOflHelper helper;
1365 Int_t lyDet(AliTRDgeometry::GetLayer(fDet));
1366 for(Int_t jr(0), n0(0); jr<nrc; jr++){
1367 Int_t ir(idxRow[jr]);
1368 // cluster segmentation
1369 Bool_t kInit(kFALSE);
1370 if(jr==0){
1371 n0 = helper.Init(pp, &clst[ir]); kInit = kTRUE;
1372 if(!n0 || (helper.ClassifyTopology() == AliTRDtrackletOflHelper::kNormal)){
1373 nts[jr] = 1; memset(index[jr], 0, ncl[ir]*sizeof(Int_t));
1374 n[jr][0] = ncl[ir];
1375 }
1376 }
1377 if(!n[jr][0]){
1378 nts[jr] = AliTRDtrackletOflHelper::Segmentation(ncl[ir], xres[ir], yres[ir], index[jr]);
1379 for(Int_t ic(ncl[ir]);ic--;) n[jr][index[jr][ic]]++;
1380 }
1381 mts += nts[jr];
1382
1383 // tracklet segment processing
1384 for(Int_t its(0); its<nts[jr]; its++){
1385 if(n[jr][its]<=2) { // don't touch small segments
1386 xm[jr][its] = 0.;ym[jr][its] = 0.;sm[jr][its] = 0.;
1387 for(Int_t ic(ncl[ir]); ic--;){
1388 if(its != index[jr][ic]) continue;
1389 ym[jr][its] += yres[ir][ic];
1390 xm[jr][its] += xres[ir][ic];
1391 sm[jr][its] += TMath::Sqrt(s2y[ir][ic]);
1392 }
1393 if(n[jr][its]==2){ xm[jr][its] *= 0.5; ym[jr][its] *= 0.5; sm[jr][its] *= 0.5;}
1394 xm[jr][its]= fX0 - xm[jr][its];
1395 r[jr][its] = 0.;
1396 s[jr][its] = 1.e-5;
1397 p[jr][its] = 1.;
1398 q[jr][its] = -1.;
1399 continue;
1400 }
1401
1402 // for longer tracklet segments
1403 if(!kInit) n0 = helper.Init(pp, &clst[ir], index[jr], its);
1404 Int_t n1 = helper.GetRMS(r[jr][its], ym[jr][its], s[jr][its], fX0/*xm[jr][its]*/);
1405 p[jr][its] = Double_t(n1)/n0;
1406 sm[jr][its] = helper.GetSyMean();
1407 q[jr][its] = helper.GetQ()/TMath::Sqrt(1. + fYref[1]*fYref[1] + fZref[1]*fZref[1]);
1408 xm[jr][its] = fX0;
1409 Double_t dxm= fX0 - xm[jr][its];
1410 yt = fYref[0] - fYref[1]*dxm;
1411 zt = fZref[0] - fZref[1]*dxm;
1412 // correct tracklet fit for tilt
1413 ym[jr][its]+= GetTilt()*(zt - zc[ir]);
1414 r[jr][its] += GetTilt() * fZref[1];
1415 // correct tracklet fit for track position/inclination
1416 ym[jr][its] = yt - ym[jr][its];
1417 r[jr][its] = (r[jr][its] - fYref[1])/(1+r[jr][its]*fYref[1]);
1418 // report inclination in radians
1419 r[jr][its] = TMath::ATan(r[jr][its]);
1420 if(jr) continue; // calculate only for first row likelihoods
1421
1422 f[its] = attach->CookLikelihood(chgPos, lyDet, fPt, phiTrk, n[jr][its], ym[jr][its]/*sRef*/, r[jr][its]*TMath::RadToDeg(), s[jr][its]/sm[jr][its]);
1423 }
1424 }
1425 AliDebug(4, Form(" Tracklet candidates: row[%2d] = %2d row[%2d] = %2d:", idxRow[0], nts[0], idxRow[1], nts[1]));
1426 if(AliLog::GetDebugLevel("TRD", "AliTRDseedV1")>3){
1427 for(Int_t jr(0); jr<nrc; jr++){
1428 Int_t ir(idxRow[jr]);
1429 for(Int_t its(0); its<nts[jr]; its++){
1430 printf(" segId[%2d] row[%2d] Ncl[%2d] x[cm]=%7.2f dz[pu]=%4.2f dy[mm]=%+7.3f r[deg]=%+6.2f p[%%]=%6.2f s[um]=%7.2f\n",
1431 its, ir, n[jr][its], xm[jr][its], zresRow[jr], 1.e1*ym[jr][its], r[jr][its]*TMath::RadToDeg(), 100.*p[jr][its], 1.e4*s[jr][its]);
1432 }
1433 }
1434 }
1435 if(!pstreamer && recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 2 && fkReconstructor->IsDebugStreaming()) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
1436 if(pstreamer){
1437 // save config. for calibration
1438 TVectorD vidx, vn, vx, vy, vr, vs, vsm, vp, vf;
1439 vidx.ResizeTo(ncl[idxRow[0]]+(idxRow[1]<0?0:ncl[idxRow[1]]));
1440 vn.ResizeTo(mts);
1441 vx.ResizeTo(mts);
1442 vy.ResizeTo(mts);
1443 vr.ResizeTo(mts);
1444 vs.ResizeTo(mts);
1445 vsm.ResizeTo(mts);
1446 vp.ResizeTo(mts);
1447 vf.ResizeTo(mts);
1448 for(Int_t jr(0), jts(0), jc(0); jr<nrc; jr++){
1449 Int_t ir(idxRow[jr]);
1450 for(Int_t its(0); its<nts[jr]; its++, jts++){
1451 vn[jts] = n[jr][its];
1452 vx[jts] = xm[jr][its];
1453 vy[jts] = ym[jr][its];
1454 vr[jts] = r[jr][its];
1455 vs[jts] = s[jr][its];
1456 vsm[jts]= sm[jr][its];
1457 vp[jts] = p[jr][its];
1458 vf[jts] = jr?-1.:f[its];
1459 }
1460 for(Int_t ic(0); ic<ncl[ir]; ic++, jc++) vidx[jc] = index[jr][ic];
1461 }
1462 (*pstreamer) << "AttachClusters3"
1463 << "idx=" << &vidx
1464 << "n=" << &vn
1465 << "x=" << &vx
1466 << "y=" << &vy
1467 << "r=" << &vr
1468 << "s=" << &vs
1469 << "sm=" << &vsm
1470 << "p=" << &vp
1471 << "f=" << &vf
1472 << "\n";
1473 }
1474
1475//=========================================================
1476 // Get seed tracklet segment
1477 Int_t idx2[kNcls]; memset(idx2, 0, kNcls*sizeof(Int_t)); // seeding indexing
1478 if(nts[0]>1) TMath::Sort(nts[0], f, idx2);
1479 Int_t is(idx2[0]); // seed index
1480 Int_t idxTrklt[kNcls],
1481 kts(0),
1482 nTrklt(n[0][is]);
1483 Double_t fTrklt(f[is]),
1484 rTrklt(r[0][is]),
1485 yTrklt(ym[0][is]),
1486 sTrklt(s[0][is]),
1487 smTrklt(sm[0][is]),
1488 xTrklt(xm[0][is]),
1489 pTrklt(p[0][is]),
1490 qTrklt(q[0][is]);
1491 memset(idxTrklt, 0, kNcls*sizeof(Int_t));
1492 // check seed idx2[0] exit if not found
1493 if(f[is]<1.e-2){
1494 AliDebug(1, Form("Seed seg[%d] row[%2d] n[%2d] f[%f]<0.01.", is, idxRow[0], n[0][is], f[is]));
1495 SetErrorMsg(kAttachClAttach);
1496 if(!pstreamer && recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 1 && fkReconstructor->IsDebugStreaming()) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
1497 if(pstreamer){
1498 UChar_t stat(0);
1499 if(IsKink()) SETBIT(stat, 1);
1500 if(IsStandAlone()) SETBIT(stat, 2);
1501 if(IsRowCross()) SETBIT(stat, 3);
1502 SETBIT(stat, 4); // set error bit
1503 TVectorD vidx; vidx.ResizeTo(1); vidx[0] = is;
1504 (*pstreamer) << "AttachClusters2"
1505 << "stat=" << stat
1506 << "ev=" << ev
1507 << "chg=" << chgPos
1508 << "det=" << fDet
1509 << "x0=" << fX0
1510 << "y0=" << fYref[0]
1511 << "z0=" << fZref[0]
1512 << "phi=" << phiTrk
1513 << "tht=" << thtTrk
1514 << "pt=" << fPt
1515 << "s2Trk=" << s2yTrk
1516 << "s2Cl=" << s2Mean
1517 << "idx=" << &vidx
1518 << "n=" << nTrklt
1519 << "f=" << fTrklt
1520 << "x=" << xTrklt
1521 << "y=" << yTrklt
1522 << "r=" << rTrklt
1523 << "s=" << sTrklt
1524 << "sm=" << smTrklt
1525 << "p=" << pTrklt
1526 << "q=" << qTrklt
1527 << "\n";
1528 }
1529 return kFALSE;
1530 }
1531 AliDebug(2, Form("Seed seg[%d] row[%2d] n[%2d] dy[%f] r[%+5.2f] s[%+5.2f] f[%5.3f] q[%6.2f]", is, idxRow[0], n[0][is], ym[0][is], r[0][is]*TMath::RadToDeg(), s[0][is]/sm[0][is], f[is], q[0][is]));
1532
1533 // save seeding segment in the helper
1534 idxTrklt[kts++] = is;
1535 helper.Init(pp, &clst[idxRow[0]], index[0], is);
1536 AliTRDtrackletOflHelper test; // helper to test segment expantion
1537 Float_t rcLikelihood(0.); SetBit(kRowCross, kFALSE);
1538 Double_t dyRez[kNcls]; Int_t idx3[kNcls];
1539
1540 //=========================================================
1541 // Define filter parameters from OCDB
1542 Int_t kNSgmDy[2]; attach->GetNsgmDy(kNSgmDy[0], kNSgmDy[1]);
1543 Float_t kLikeMinRelDecrease[2]; attach->GetLikeMinRelDecrease(kLikeMinRelDecrease[0], kLikeMinRelDecrease[1]);
1544 Float_t kRClikeLimit(attach->GetRClikeLimit());
1545
1546 //=========================================================
1547 // Try attaching next segments from first row (if any)
1548 if(nts[0]>1){
1549 Int_t jr(0), ir(idxRow[jr]);
1550 // organize secondary sgms. in decreasing order of their distance from seed
1551 memset(dyRez, 0, nts[jr]*sizeof(Double_t));
1552 for(Int_t jts(1); jts<nts[jr]; jts++) {
1553 Int_t its(idx2[jts]);
1554 Double_t rot(TMath::Tan(r[0][is]));
1555 dyRez[its] = TMath::Abs(ym[0][is] - ym[jr][its] + rot*(xm[0][is]-xm[jr][its]));
1556 }
1557 TMath::Sort(nts[jr], dyRez, idx3, kFALSE);
1558 for (Int_t jts(1); jts<nts[jr]; jts++) {
1559 Int_t its(idx3[jts]);
1560 if(dyRez[its] > kNSgmDy[jr]*smTrklt){
1561 AliDebug(2, Form("Reject seg[%d] row[%2d] n[%2d] dy[%f] > %d*s[%f].", its, idxRow[jr], n[jr][its], dyRez[its], kNSgmDy[jr], kNSgmDy[jr]*smTrklt));
1562 continue;
1563 }
1564
1565 test = helper;
1566 Int_t n0 = test.Expand(&clst[ir], index[jr], its);
1567 Double_t rt, dyt, st, xt, smt, pt, qt, ft;
1568 Int_t n1 = test.GetRMS(rt, dyt, st, fX0/*xt*/);
1569 pt = Double_t(n1)/n0;
1570 smt = test.GetSyMean();
1571 qt = test.GetQ()/TMath::Sqrt(1. + fYref[1]*fYref[1] + fZref[1]*fZref[1]);
1572 xt = fX0;
1573 // correct position
1574 Double_t dxm= fX0 - xt;
1575 yt = fYref[0] - fYref[1]*dxm;
1576 zt = fZref[0] - fZref[1]*dxm;
1577 // correct tracklet fit for tilt
1578 dyt+= GetTilt()*(zt - zc[idxRow[0]]);
1579 rt += GetTilt() * fZref[1];
1580 // correct tracklet fit for track position/inclination
1581 dyt = yt - dyt;
1582 rt = (rt - fYref[1])/(1+rt*fYref[1]);
1583 // report inclination in radians
1584 rt = TMath::ATan(rt);
1585
1586 ft = (n0>=2) ? attach->CookLikelihood(chgPos, lyDet, fPt, phiTrk, n0, dyt/*sRef*/, rt*TMath::RadToDeg(), st/smt) : 0.;
1587 Bool_t kAccept(ft>=fTrklt*(1.-kLikeMinRelDecrease[jr]));
1588
1589 AliDebug(2, Form("%s seg[%d] row[%2d] n[%2d] dy[%f] r[%+5.2f] s[%+5.2f] f[%f] < %4.2f*F[%f].",
1590 (kAccept?"Adding":"Reject"), its, idxRow[jr], n0, dyt, rt*TMath::RadToDeg(), st/smt, ft, 1.-kLikeMinRelDecrease[jr], fTrklt*(1.-kLikeMinRelDecrease[jr])));
1591 if(kAccept){
1592 idxTrklt[kts++] = its;
1593 nTrklt = n0;
1594 fTrklt = ft;
1595 rTrklt = rt;
1596 yTrklt = dyt;
1597 sTrklt = st;
1598 smTrklt= smt;
1599 xTrklt = xt;
1600 pTrklt = pt;
1601 qTrklt = qt;
1602 helper.Expand(&clst[ir], index[jr], its);
1603 }
1604 }
1605 }
1606
1607 //=========================================================
1608 // Try attaching next segments from second row (if any)
1609 if(nts[1] && (rcLikelihood = zresRow[0]/zresRow[1]) > kRClikeLimit){
1610 // organize secondaries in decreasing order of their distance from seed
1611 Int_t jr(1), ir(idxRow[jr]);
1612 memset(dyRez, 0, nts[jr]*sizeof(Double_t));
1613 Double_t rot(TMath::Tan(r[0][is]));
1614 for(Int_t jts(0); jts<nts[jr]; jts++) {
1615 dyRez[jts] = TMath::Abs(ym[0][is] - ym[jr][jts] + rot*(xm[0][is]-xm[jr][jts]));
1616 }
1617 TMath::Sort(nts[jr], dyRez, idx3, kFALSE);
1618 for (Int_t jts(0); jts<nts[jr]; jts++) {
1619 Int_t its(idx3[jts]);
1620 if(dyRez[its] > kNSgmDy[jr]*smTrklt){
1621 AliDebug(2, Form("Reject seg[%d] row[%2d] n[%2d] dy[%f] > %d*s[%f].", its, idxRow[jr], n[jr][its], dyRez[its], kNSgmDy[jr], kNSgmDy[jr]*smTrklt));
1622 continue;
1623 }
1624
1625 test = helper;
1626 Int_t n0 = test.Expand(&clst[ir], index[jr], its);
1627 Double_t rt, dyt, st, xt, smt, pt, qt, ft;
1628 Int_t n1 = test.GetRMS(rt, dyt, st, fX0/*xt*/);
1629 pt = Double_t(n1)/n0;
1630 smt = test.GetSyMean();
1631 qt = test.GetQ()/TMath::Sqrt(1. + fYref[1]*fYref[1] + fZref[1]*fZref[1]);
1632 xt = fX0;
1633 // correct position
1634 Double_t dxm= fX0 - xt;
1635 yt = fYref[0] - fYref[1]*dxm;
1636 zt = fZref[0] - fZref[1]*dxm;
1637 // correct tracklet fit for tilt
1638 dyt+= GetTilt()*(zt - zc[idxRow[0]]);
1639 rt += GetTilt() * fZref[1];
1640 // correct tracklet fit for track position/inclination
1641 dyt = yt - dyt;
1642 rt = (rt - fYref[1])/(1+rt*fYref[1]);
1643 // report inclination in radians
1644 rt = TMath::ATan(rt);
1645
1646 ft = (n0>=2) ? attach->CookLikelihood(chgPos, lyDet, fPt, phiTrk, n0, dyt/*sRef*/, rt*TMath::RadToDeg(), st/smt) : 0.;
1647 Bool_t kAccept(ft>=fTrklt*(1.-kLikeMinRelDecrease[jr]));
1648
1649 AliDebug(2, Form("%s seg[%d] row[%2d] n[%2d] dy[%f] r[%+5.2f] s[%+5.2f] f[%f] < %4.2f*F[%f].",
1650 (kAccept?"Adding":"Reject"), its, idxRow[jr], n0, dyt, rt*TMath::RadToDeg(), st/smt, ft, 1.-kLikeMinRelDecrease[jr], fTrklt*(1.-kLikeMinRelDecrease[jr])));
1651 if(kAccept){
1652 idxTrklt[kts++] = its;
1653 nTrklt = n0;
1654 fTrklt = ft;
1655 rTrklt = rt;
1656 yTrklt = dyt;
1657 sTrklt = st;
1658 smTrklt= smt;
1659 xTrklt = xt;
1660 pTrklt = pt;
1661 qTrklt = qt;
1662 helper.Expand(&clst[ir], index[jr], its);
1663 SetBit(kRowCross, kTRUE); // mark pad row crossing
1664 }
1665 }
1666 }
1667 // clear local copy of clusters
1668 for(Int_t ir(0); ir<kNrows; ir++) clst[ir].Clear();
1669
1670 if(!pstreamer && recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 1 && fkReconstructor->IsDebugStreaming()) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
1671 if(pstreamer){
1672 UChar_t stat(0);
1673 if(IsKink()) SETBIT(stat, 1);
1674 if(IsStandAlone()) SETBIT(stat, 2);
1675 if(IsRowCross()) SETBIT(stat, 3);
1676 TVectorD vidx; vidx.ResizeTo(kts);
1677 for(Int_t its(0); its<kts; its++) vidx[its] = idxTrklt[its];
1678 (*pstreamer) << "AttachClusters2"
1679 << "stat=" << stat
1680 << "ev=" << ev
1681 << "chg=" << chgPos
1682 << "det=" << fDet
1683 << "x0=" << fX0
1684 << "y0=" << fYref[0]
1685 << "z0=" << fZref[0]
1686 << "phi=" << phiTrk
1687 << "tht=" << thtTrk
1688 << "pt=" << fPt
1689 << "s2Trk=" << s2yTrk
1690 << "s2Cl=" << s2Mean
1691 << "idx=" << &vidx
1692 << "n=" << nTrklt
1693 << "q=" << qTrklt
1694 << "f=" << fTrklt
1695 << "x=" << xTrklt
1696 << "y=" << yTrklt
1697 << "r=" << rTrklt
1698 << "s=" << sTrklt
1699 << "sm=" << smTrklt
1700 << "p=" << pTrklt
1701 << "\n";
1702 }
1703
1704
1705 //=========================================================
1706 // Store clusters
1707 Int_t nselected(0), nc(0);
1708 TObjArray *selected(helper.GetClusters());
1709 if(!selected || !(nselected = selected->GetEntriesFast())){
1710 AliError("Cluster candidates missing !!!");
1711 SetErrorMsg(kAttachClAttach);
1712 return kFALSE;
1713 }
1714 for(Int_t ic(0); ic<nselected; ic++){
1715 if(!(c = (AliTRDcluster*)selected->At(ic))) continue;
1716 Int_t it(c->GetPadTime()),
1717 jr(Int_t(helper.GetRow() != c->GetPadRow())),
1718 idx(it+kNtb*jr);
1719 if(fClusters[idx]){
1720 AliDebug(1, Form("Multiple clusters/tb for D[%03d] Tb[%02d] Row[%2d]", fDet, it, c->GetPadRow()));
1721 continue; // already booked
1722 }
1723 // TODO proper indexing of clusters !!
1724 fIndexes[idx] = chamber->GetTB(it)->GetGlobalIndex(idxs[idxRow[jr]][ic]);
1725 fClusters[idx] = c;
1726 nc++;
1727 }
1728 AliDebug(2, Form("Clusters Found[%2d] Attached[%2d] RC[%c]", nselected, nc, IsRowCross()?'y':'n'));
1729
1730 // number of minimum numbers of clusters expected for the tracklet
1731 if (nc < kClmin){
1732 AliDebug(1, Form("NOT ENOUGH CLUSTERS %d ATTACHED TO THE TRACKLET [min %d] FROM FOUND %d.", nc, kClmin, ncls));
1733 SetErrorMsg(kAttachClAttach);
1734 return kFALSE;
1735 }
1736 SetN(nc);
1737
1738 // Load calibration parameters for this tracklet
1739 //Calibrate();
1740
1741 // calculate dx for time bins in the drift region (calibration aware)
1742 Float_t x[2] = {0.,0.}; Int_t tb[2]={0,0};
1743 for (Int_t it = t0, irp=0; irp<2 && it < AliTRDtrackerV1::GetNTimeBins(); it++) {
1744 if(!fClusters[it]) continue;
1745 x[irp] = fClusters[it]->GetX();
1746 tb[irp] = fClusters[it]->GetLocalTimeBin();
1747 irp++;
1748 }
1749 Int_t dtb = tb[1] - tb[0];
1750 fdX = dtb ? (x[0] - x[1]) / dtb : 0.15;
1751 return kTRUE;
1752}
1753
1754//____________________________________________________________
1755void AliTRDseedV1::Bootstrap(const AliTRDReconstructor *rec)
1756{
1757// Fill in all derived information. It has to be called after recovery from file or HLT.
1758// The primitive data are
1759// - list of clusters
1760// - detector (as the detector will be removed from clusters)
1761// - position of anode wire (fX0) - temporary
1762// - track reference position and direction
1763// - momentum of the track
1764// - time bin length [cm]
1765//
1766// A.Bercuci <A.Bercuci@gsi.de> Oct 30th 2008
1767//
1768 fkReconstructor = rec;
1769 AliTRDgeometry g;
1770 SetPadPlane(g.GetPadPlane(fDet));
1771
1772 //fSnp = fYref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]);
1773 //fTgl = fZref[1];
1774 Int_t n = 0, nshare = 0, nused = 0;
1775 AliTRDcluster **cit = &fClusters[0];
1776 for(Int_t ic = kNclusters; ic--; cit++){
1777 if(!(*cit)) return;
1778 n++;
1779 if((*cit)->IsShared()) nshare++;
1780 if((*cit)->IsUsed()) nused++;
1781 }
1782 SetN(n); SetNUsed(nused); SetNShared(nshare);
1783 Fit();
1784 CookLabels();
1785 GetProbability();
1786}
1787
1788
1789//____________________________________________________________________
1790Bool_t AliTRDseedV1::Fit(UChar_t opt)
1791{
1792//
1793// Linear fit of the clusters attached to the tracklet
1794//
1795// Parameters :
1796// - opt : switch for tilt pad correction of cluster y position. Options are
1797// 0 no correction [default]
1798// 1 full tilt correction [dz/dx and z0]
1799// 2 pseudo tilt correction [dz/dx from pad-chamber geometry]
1800//
1801// Output :
1802// True if successful
1803//
1804// Detailed description
1805//
1806// Fit in the xy plane
1807//
1808// The fit is performed to estimate the y position of the tracklet and the track
1809// angle in the bending plane. The clusters are represented in the chamber coordinate
1810// system (with respect to the anode wire - see AliTRDtrackerV1::FollowBackProlongation()
1811// on how this is set). The x and y position of the cluster and also their variances
1812// are known from clusterizer level (see AliTRDcluster::GetXloc(), AliTRDcluster::GetYloc(),
1813// AliTRDcluster::GetSX() and AliTRDcluster::GetSY()).
1814// If gaussian approximation is used to calculate y coordinate of the cluster the position
1815// is recalculated taking into account the track angle. The general formula to calculate the
1816// error of cluster position in the gaussian approximation taking into account diffusion and track
1817// inclination is given for TRD by:
1818// BEGIN_LATEX
1819// #sigma^{2}_{y} = #sigma^{2}_{PRF} + #frac{x#delta_{t}^{2}}{(1+tg(#alpha_{L}))^{2}} + #frac{x^{2}tg^{2}(#phi-#alpha_{L})tg^{2}(#alpha_{L})}{12}
1820// END_LATEX
1821//
1822// Since errors are calculated only in the y directions, radial errors (x direction) are mapped to y
1823// by projection i.e.
1824// BEGIN_LATEX
1825// #sigma_{x|y} = tg(#phi) #sigma_{x}
1826// END_LATEX
1827// and also by the lorentz angle correction
1828//
1829// Fit in the xz plane
1830//
1831// The "fit" is performed to estimate the radial position (x direction) where pad row cross happens.
1832// If no pad row crossing the z position is taken from geometry and radial position is taken from the xy
1833// fit (see below).
1834//
1835// There are two methods to estimate the radial position of the pad row cross:
1836// 1. leading cluster radial position : Here the lower part of the tracklet is considered and the last
1837// cluster registered (at radial x0) on this segment is chosen to mark the pad row crossing. The error
1838// of the z estimate is given by :
1839// BEGIN_LATEX
1840// #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12
1841// END_LATEX
1842// The systematic errors for this estimation are generated by the following sources:
1843// - no charge sharing between pad rows is considered (sharp cross)
1844// - missing cluster at row cross (noise peak-up, under-threshold signal etc.).
1845//
1846// 2. charge fit over the crossing point : Here the full energy deposit along the tracklet is considered
1847// to estimate the position of the crossing by a fit in the qx plane. The errors in the q directions are
1848// parameterized as s_q = q^2. The systematic errors for this estimation are generated by the following sources:
1849// - no general model for the qx dependence
1850// - physical fluctuations of the charge deposit
1851// - gain calibration dependence
1852//
1853// Estimation of the radial position of the tracklet
1854//
1855// For pad row cross the radial position is taken from the xz fit (see above). Otherwise it is taken as the
1856// interpolation point of the tracklet i.e. the point where the error in y of the fit is minimum. The error
1857// in the y direction of the tracklet is (see AliTRDseedV1::GetCovAt()):
1858// BEGIN_LATEX
1859// #sigma_{y} = #sigma^{2}_{y_{0}} + 2xcov(y_{0}, dy/dx) + #sigma^{2}_{dy/dx}
1860// END_LATEX
1861// and thus the radial position is:
1862// BEGIN_LATEX
1863// x = - cov(y_{0}, dy/dx)/#sigma^{2}_{dy/dx}
1864// END_LATEX
1865//
1866// Estimation of tracklet position error
1867//
1868// The error in y direction is the error of the linear fit at the radial position of the tracklet while in the z
1869// direction is given by the cluster error or pad row cross error. In case of no pad row cross this is given by:
1870// BEGIN_LATEX
1871// #sigma_{y} = #sigma^{2}_{y_{0}} - 2cov^{2}(y_{0}, dy/dx)/#sigma^{2}_{dy/dx} + #sigma^{2}_{dy/dx}
1872// #sigma_{z} = Pad_{length}/12
1873// END_LATEX
1874// For pad row cross the full error is calculated at the radial position of the crossing (see above) and the error
1875// in z by the width of the crossing region - being a matter of parameterization.
1876// BEGIN_LATEX
1877// #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12
1878// END_LATEX
1879// In case of no tilt correction (default in the barrel tracking) the tilt is taken into account by the rotation of
1880// the covariance matrix. See AliTRDseedV1::GetCovAt() for details.
1881//
1882// Author
1883// A.Bercuci <A.Bercuci@gsi.de>
1884
1885 if(!fkReconstructor){
1886 AliError("The tracklet needs the reconstruction setup. Please initialize by SetReconstructor().");
1887 return kFALSE;
1888 }
1889 if(!IsCalibrated()) Calibrate();
1890 if(opt>2){
1891 AliWarning(Form("Option [%d] outside range [0, 2]. Using default",opt));
1892 opt=0;
1893 }
1894
1895 const Int_t kClmin = 8;
1896 const Float_t kScalePulls = 10.; // factor to scale y pulls - NOT UNDERSTOOD
1897 // get track direction
1898 Double_t y0 = fYref[0];
1899 Double_t dydx = fYref[1];
1900 Double_t z0 = fZref[0];
1901 Double_t dzdx = fZref[1];
1902
1903 AliTRDtrackerV1::AliTRDLeastSquare fitterY;
1904 AliTRDtrackerV1::AliTRDLeastSquare fitterZ;
1905
1906 // book cluster information
1907 Double_t qc[kNclusters], xc[kNclusters], yc[kNclusters], zc[kNclusters], sy[kNclusters];
1908
1909 Bool_t tilt(opt==1) // full tilt correction
1910 ,pseudo(opt==2) // pseudo tilt correction
1911 ,rc(IsRowCross()) // row cross candidate
1912 ,kDZDX(IsPrimary());// switch dzdx calculation for barrel primary tracks
1913 Int_t n(0); // clusters used in fit
1914 AliTRDcluster *c(NULL), *cc(NULL), **jc = &fClusters[0];
1915 const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); //the dynamic cast in GetRecoParam is slow, so caching the pointer to it
1916
1917 const Char_t *tcName[]={"NONE", "FULL", "HALF"};
1918 AliDebug(2, Form("Options : TC[%s] dzdx[%c]", tcName[opt], kDZDX?'Y':'N'));
1919
1920
1921 for (Int_t ic=0; ic<kNclusters; ic++, ++jc) {
1922 xc[ic] = -1.; yc[ic] = 999.; zc[ic] = 999.; sy[ic] = 0.;
1923 if(!(c = (*jc))) continue;
1924 if(!c->IsInChamber()) continue;
1925 // compute pseudo tilt correction
1926 if(kDZDX){
1927 fZfit[0] = c->GetZ();
1928 if(rc){
1929 for(Int_t kc=AliTRDseedV1::kNtb; kc<AliTRDseedV1::kNclusters; kc++){
1930 if(!(cc=fClusters[kc])) continue;
1931 if(!cc->IsInChamber()) continue;
1932 fZfit[0] += cc->GetZ(); fZfit[0] *= 0.5;
1933 break;
1934 }
1935 }
1936 fZfit[1] = fZfit[0]/fX0;
1937 if(rc){
1938 fZfit[0] += fZfit[1]*0.5*AliTRDgeometry::CdrHght();
1939 fZfit[1] = fZfit[0]/fX0;
1940 }
1941 kDZDX=kFALSE;
1942 }
1943
1944// TODO use this information to adjust cluster error parameterization
1945// Float_t w = 1.;
1946// if(c->GetNPads()>4) w = .5;
1947// if(c->GetNPads()>5) w = .2;
1948
1949 // cluster charge
1950 qc[n] = TMath::Abs(c->GetQ());
1951 // pad row of leading
1952
1953 xc[n] = fX0 - c->GetX();
1954
1955 // Recalculate cluster error based on tracking information
1956 c->SetSigmaY2(fS2PRF, fDiffT, fExB, xc[n], -1./*zcorr?zt:-1.*/, dydx);
1957 c->SetSigmaZ2(fPad[0]*fPad[0]/12.); // for HLT
1958 sy[n] = TMath::Sqrt(c->GetSigmaY2());
1959
1960 yc[n] = recoParam->UseGAUS() ?
1961 c->GetYloc(y0, sy[n], GetPadWidth()): c->GetY();
1962 zc[n] = c->GetZ();
1963
1964 //optional r-phi correction
1965 //printf(" n[%2d] yc[%7.5f] ", n, yc[n]);
1966 Float_t correction(0.);
1967 if(tilt) correction = fPad[2]*(xc[n]*dzdx + zc[n] - z0);
1968 else if(pseudo) correction = fPad[2]*(xc[n]*fZfit[1] + zc[n]-fZfit[0]);
1969 yc[n]-=correction;
1970 //printf("corr(%s%s)[%7.5f] yc1[%7.5f]\n", (tilt?"TC":""), (zcorr?"PC":""), correction, yc[n]);
1971
1972 AliDebug(5, Form(" tb[%2d] dx[%6.3f] y[%6.2f+-%6.3f]", c->GetLocalTimeBin(), xc[n], yc[n], sy[n]));
1973 fitterY.AddPoint(&xc[n], yc[n], sy[n]);
1974 if(rc) fitterZ.AddPoint(&xc[n], qc[n]*(ic<kNtb?1.:-1.), 1.);
1975 n++;
1976 }
1977
1978 // to few clusters
1979 if (n < kClmin){
1980 AliDebug(1, Form("Not enough clusters to fit. Clusters: Attached[%d] Fit[%d].", GetN(), n));
1981 SetErrorMsg(kFitCl);
1982 return kFALSE;
1983 }
1984 // fit XY
1985 if(!fitterY.Eval()){
1986 AliDebug(1, "Fit Y failed.");
1987 SetErrorMsg(kFitFailedY);
1988 return kFALSE;
1989 }
1990 fYfit[0] = fitterY.GetFunctionParameter(0);
1991 fYfit[1] = -fitterY.GetFunctionParameter(1);
1992 // store covariance
1993 Double_t p[3];
1994 fitterY.GetCovarianceMatrix(p);
1995 fCov[0] = kScalePulls*p[1]; // variance of y0
1996 fCov[1] = kScalePulls*p[2]; // covariance of y0, dydx
1997 fCov[2] = kScalePulls*p[0]; // variance of dydx
1998 // the ref radial position is set at the minimum of
1999 // the y variance of the tracklet
2000 fX = -fCov[1]/fCov[2];
2001 fS2Y = fCov[0] +2.*fX*fCov[1] + fX*fX*fCov[2];
2002
2003 Float_t xs=fX+.5*AliTRDgeometry::CamHght();
2004 if(xs < 0. || xs > AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght()){
2005 AliDebug(1, Form("Ref radial position ouside chamber x[%5.2f].", fX));
2006 SetErrorMsg(kFitFailedY);
2007 return kFALSE;
2008 }
2009
2010/* // THE LEADING CLUSTER METHOD for z fit
2011 Float_t xMin = fX0;
2012 Int_t ic=n=kNclusters-1; jc = &fClusters[ic];
2013 AliTRDcluster *c0 =0x0, **kc = &fClusters[kNtb-1];
2014 for(; ic>kNtb; ic--, --jc, --kc){
2015 if((c0 = (*kc)) && c0->IsInChamber() && (xMin>c0->GetX())) xMin = c0->GetX();
2016 if(!(c = (*jc))) continue;
2017 if(!c->IsInChamber()) continue;
2018 zc[kNclusters-1] = c->GetZ();
2019 fX = fX0 - c->GetX();
2020 }
2021 fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.;
2022 // Error parameterization
2023 fS2Z = fdX*fZref[1];
2024 fS2Z *= fS2Z; fS2Z *= 0.2887; // 1/sqrt(12)*/
2025
2026 // fit QZ
2027 if(opt!=1 && IsRowCross()){
2028 if(!fitterZ.Eval()) SetErrorMsg(kFitFailedZ);
2029 if(!HasError(kFitFailedZ) && TMath::Abs(fitterZ.GetFunctionParameter(1))>1.e-10){
2030 // TODO - one has to recalculate xy fit based on
2031 // better knowledge of z position
2032// Double_t x = -fitterZ.GetFunctionParameter(0)/fitterZ.GetFunctionParameter(1);
2033// Double_t z0 = .5*(zc[0]+zc[n-1]);
2034// fZfit[0] = z0 + fZfit[1]*x;
2035// fZfit[1] = fZfit[0]/fX0;
2036// redo fit on xy plane
2037 }
2038 // temporary external error parameterization
2039 fS2Z = 0.05+0.4*TMath::Abs(fZref[1]); fS2Z *= fS2Z;
2040 // TODO correct formula
2041 //fS2Z = sigma_x*TMath::Abs(fZref[1]);
2042 } else {
2043 //fZfit[0] = zc[0] + dzdx*0.5*AliTRDgeometry::CdrHght();
2044 fS2Z = GetPadLength()*GetPadLength()/12.;
2045 }
2046 return kTRUE;
2047}
2048
2049
2050//____________________________________________________________________
2051Bool_t AliTRDseedV1::FitRobust(Bool_t chg)
2052{
2053//
2054// Linear fit of the clusters attached to the tracklet
2055//
2056// Author
2057// A.Bercuci <A.Bercuci@gsi.de>
2058
2059 TTreeSRedirector *pstreamer(NULL);
2060 const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); if(recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 3 && fkReconstructor->IsDebugStreaming()) pstreamer = fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
2061
2062 // factor to scale y pulls.
2063 // ideally if error parametrization correct this is 1.
2064 //Float_t lyScaler = 1./(AliTRDgeometry::GetLayer(fDet)+1.);
2065 Float_t kScalePulls = 1.;
2066 AliTRDcalibDB *calibration = AliTRDcalibDB::Instance();
2067 if(!calibration){
2068 AliWarning("No access to calibration data");
2069 } else {
2070 // Retrieve the CDB container class with the parametric likelihood
2071 const AliTRDCalTrkAttach *attach = calibration->GetAttachObject();
2072 if(!attach){
2073 AliWarning("No usable AttachClusters calib object.");
2074 } else {
2075 kScalePulls = attach->GetScaleCov();//*lyScaler;
2076 }
2077 // Retrieve chamber status
2078 SetChmbGood(calibration->IsChamberGood(fDet));
2079 if(!IsChmbGood()) kScalePulls*=10.;
2080 }
2081 Double_t xc[kNclusters], yc[kNclusters], sy[kNclusters];
2082 Int_t n(0), // clusters used in fit
2083 row[]={-1, 0}; // pad row spanned by the tracklet
2084 AliTRDcluster *c(NULL), **jc = &fClusters[0];
2085 for(Int_t ic=0; ic<kNtb; ic++, ++jc) {
2086 if(!(c = (*jc))) continue;
2087 if(!c->IsInChamber()) continue;
2088 if(row[0]<0){
2089 fZfit[0] = c->GetZ();
2090 fZfit[1] = 0.;
2091 row[0] = c->GetPadRow();
2092 }
2093 xc[n] = c->GetX();
2094 yc[n] = c->GetY();
2095 sy[n] = c->GetSigmaY2()>0?(TMath::Min(TMath::Sqrt(c->GetSigmaY2()), 0.08)):0.08;
2096 n++;
2097 }
2098 Double_t corr = fPad[2]*fPad[0];
2099
2100 for(Int_t ic=kNtb; ic<kNclusters; ic++, ++jc) {
2101 if(!(c = (*jc))) continue;
2102 if(!c->IsInChamber()) continue;
2103 if(row[1]==0) row[1] = c->GetPadRow() - row[0];
2104 xc[n] = c->GetX();
2105 yc[n] = c->GetY() + corr*row[1];
2106 sy[n] = c->GetSigmaY2()>0?(TMath::Min(TMath::Sqrt(c->GetSigmaY2()), 0.08)):0.08;
2107 n++;
2108 }
2109 UChar_t status(0);
2110 Double_t par[3] = {0.,0.,fX0}, cov[3];
2111 if(!AliTRDtrackletOflHelper::Fit(n, xc, yc, sy, par, 1.5, cov)){
2112 AliDebug(1, Form("Tracklet fit failed D[%03d].", fDet));
2113 SetErrorMsg(kFitCl);
2114 return kFALSE;
2115 }
2116 fYfit[0] = par[0];
2117 fYfit[1] = par[1];
2118 // store covariance
2119 fCov[0] = kScalePulls*cov[0]; // variance of y0
2120 fCov[1] = kScalePulls*cov[2]; // covariance of y0, dydx
2121 fCov[2] = kScalePulls*cov[1]; // variance of dydx
2122 // the ref radial position is set at the minimum of
2123 // the y variance of the tracklet
2124 fX = 0.;//-fCov[1]/fCov[2];
2125 // check radial position
2126 Float_t xs=fX+.5*AliTRDgeometry::CamHght();
2127 if(xs < 0. || xs > AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght()){
2128 AliDebug(1, Form("Ref radial position x[%5.2f] ouside D[%3d].", fX, fDet));
2129 SetErrorMsg(kFitFailedY);
2130 return kFALSE;
2131 }
2132 fS2Y = fCov[0] + fX*fCov[1];
2133 fS2Z = fPad[0]*fPad[0]/12.;
2134 AliDebug(2, Form("[I] x[cm]=%6.2f y[cm]=%+5.2f z[cm]=%+6.2f dydx[deg]=%+5.2f sy[um]=%6.2f sz[cm]=%6.2f", GetX(), GetY(), GetZ(), TMath::ATan(fYfit[1])*TMath::RadToDeg(), TMath::Sqrt(fS2Y)*1.e4, TMath::Sqrt(fS2Z)));
2135 if(IsRowCross()){
2136 Float_t x,z;
2137 if(!GetEstimatedCrossPoint(x,z)){
2138 AliDebug(2, Form("Failed(I) getting crossing point D[%03d].", fDet));
2139 SetErrorMsg(kFitFailedY);
2140 return kTRUE;
2141 }
2142 //if(IsPrimary()){
2143 fZfit[0] = fX0*z/x;
2144 fZfit[1] = z/x;
2145 fS2Z = 0.05+0.4*TMath::Abs(fZfit[1]); fS2Z *= fS2Z;
2146 //}
2147 AliDebug(2, Form("s2y[%f] s2z[%f]", fS2Y, fS2Z));
2148 AliDebug(2, Form("[II] x[cm]=%6.2f y[cm]=%+5.2f z[cm]=%+6.2f dydx[deg]=%+5.2f sy[um]=%6.2f sz[um]=%6.2f dzdx[deg]=%+5.2f", GetX(), GetY(), GetZ(), TMath::ATan(fYfit[1])*TMath::RadToDeg(), TMath::Sqrt(fS2Y)*1.e4, TMath::Sqrt(fS2Z)*1.e4, TMath::ATan(fZfit[1])*TMath::RadToDeg()));
2149 }
2150
2151 if(pstreamer){
2152 Float_t x= fX0 -fX,
2153 y = GetY(),
2154 yt = fYref[0]-fX*fYref[1];
2155 SETBIT(status, 2);
2156 TVectorD vcov(3); vcov[0]=cov[0];vcov[1]=cov[1];vcov[2]=cov[2];
2157 Double_t sm(0.), chi2(0.), tmp, dy[kNclusters];
2158 for(Int_t ic(0); ic<n; ic++){
2159 sm += sy[ic];
2160 dy[ic] = yc[ic]-(fYfit[0]+(xc[ic]-fX0)*fYfit[1]); tmp = dy[ic]/sy[ic];
2161 chi2 += tmp*tmp;
2162 }
2163 sm /= n; chi2 = TMath::Sqrt(chi2);
2164 Double_t m(0.), s(0.);
2165 AliMathBase::EvaluateUni(n, dy, m, s, 0);
2166 (*pstreamer) << "FitRobust4"
2167 << "stat=" << status
2168 << "chg=" << chg
2169 << "ncl=" << n
2170 << "det=" << fDet
2171 << "x0=" << fX0
2172 << "y0=" << fYfit[0]
2173 << "x=" << x
2174 << "y=" << y
2175 << "dydx=" << fYfit[1]
2176 << "pt=" << fPt
2177 << "yt=" << yt
2178 << "dydxt="<< fYref[1]
2179 << "cov=" << &vcov
2180 << "chi2=" << chi2
2181 << "sm=" << sm
2182 << "ss=" << s
2183 << "\n";
2184 }
2185 return kTRUE;
2186}
2187
2188//___________________________________________________________________
2189void AliTRDseedV1::Print(Option_t *o) const
2190{
2191 //
2192 // Printing the seedstatus
2193 //
2194
2195 AliInfo(Form("Det[%3d] X0[%7.2f] Pad{L[%5.2f] W[%5.2f] Tilt[%+6.2f]}", fDet, fX0, GetPadLength(), GetPadWidth(), GetTilt()));
2196 AliInfo(Form("N[%2d] Nused[%2d] Nshared[%2d] [%d]", GetN(), GetNUsed(), GetNShared(), fN));
2197 AliInfo(Form("FLAGS : RC[%c] Kink[%c] SA[%c]", IsRowCross()?'y':'n', IsKink()?'y':'n', IsStandAlone()?'y':'n'));
2198 AliInfo(Form("CALIB PARAMS : T0[%5.2f] Vd[%5.2f] s2PRF[%5.2f] ExB[%5.2f] Dl[%5.2f] Dt[%5.2f]", fT0, fVD, fS2PRF, fExB, fDiffL, fDiffT));
2199
2200 Double_t cov[3], x=GetX();
2201 GetCovAt(x, cov);
2202 AliInfo(" | x[cm] | y[cm] | z[cm] | dydx | dzdx |");
2203 AliInfo(Form("Fit | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | ----- |", x, GetY(), TMath::Sqrt(cov[0]), GetZ(), TMath::Sqrt(cov[2]), fYfit[1]));
2204 AliInfo(Form("Ref | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | %5.2f |", x, fYref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[0]), fZref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[2]), fYref[1], fZref[1]));
2205 AliInfo(Form("P / Pt [GeV/c] = %f / %f", GetMomentum(), fPt));
2206 if(IsStandAlone()) AliInfo(Form("C Rieman / Vertex [1/cm] = %f / %f", fC[0], fC[1]));
2207 AliInfo(Form("dEdx [a.u.] = %f / %f / %f / %f / %f/ %f / %f / %f", fdEdx[0], fdEdx[1], fdEdx[2], fdEdx[3], fdEdx[4], fdEdx[5], fdEdx[6], fdEdx[7]));
2208 AliInfo(Form("PID = %5.3f / %5.3f / %5.3f / %5.3f / %5.3f", fProb[0], fProb[1], fProb[2], fProb[3], fProb[4]));
2209
2210 if(strcmp(o, "a")!=0) return;
2211
2212 AliTRDcluster* const* jc = &fClusters[0];
2213 for(int ic=0; ic<kNclusters; ic++, jc++) {
2214 if(!(*jc)) continue;
2215 (*jc)->Print(o);
2216 }
2217}
2218
2219
2220//___________________________________________________________________
2221Bool_t AliTRDseedV1::IsEqual(const TObject *o) const
2222{
2223 // Checks if current instance of the class has the same essential members
2224 // as the given one
2225
2226 if(!o) return kFALSE;
2227 const AliTRDseedV1 *inTracklet = dynamic_cast<const AliTRDseedV1*>(o);
2228 if(!inTracklet) return kFALSE;
2229
2230 for (Int_t i = 0; i < 2; i++){
2231 if ( fYref[i] != inTracklet->fYref[i] ) return kFALSE;
2232 if ( fZref[i] != inTracklet->fZref[i] ) return kFALSE;
2233 }
2234
2235 if ( TMath::Abs(fS2Y - inTracklet->fS2Y)>1.e-10 ) return kFALSE;
2236 if ( TMath::Abs(GetTilt() - inTracklet->GetTilt())>1.e-10 ) return kFALSE;
2237 if ( TMath::Abs(GetPadLength() - inTracklet->GetPadLength())>1.e-10 ) return kFALSE;
2238
2239 for (Int_t i = 0; i < kNclusters; i++){
2240// if ( fX[i] != inTracklet->GetX(i) ) return kFALSE;
2241// if ( fY[i] != inTracklet->GetY(i) ) return kFALSE;
2242// if ( fZ[i] != inTracklet->GetZ(i) ) return kFALSE;
2243 if ( fIndexes[i] != inTracklet->fIndexes[i] ) return kFALSE;
2244 }
2245// if ( fUsable != inTracklet->fUsable ) return kFALSE;
2246
2247 for (Int_t i=0; i < 2; i++){
2248 if ( fYfit[i] != inTracklet->fYfit[i] ) return kFALSE;
2249 if ( fZfit[i] != inTracklet->fZfit[i] ) return kFALSE;
2250 if ( fLabels[i] != inTracklet->fLabels[i] ) return kFALSE;
2251 }
2252
2253/* if ( fMeanz != inTracklet->GetMeanz() ) return kFALSE;
2254 if ( fZProb != inTracklet->GetZProb() ) return kFALSE;*/
2255 if ( fN != inTracklet->fN ) return kFALSE;
2256 //if ( fNUsed != inTracklet->fNUsed ) return kFALSE;
2257 //if ( fFreq != inTracklet->GetFreq() ) return kFALSE;
2258 //if ( fNChange != inTracklet->GetNChange() ) return kFALSE;
2259
2260 if ( TMath::Abs(fC[0] - inTracklet->fC[0])>1.e-10 ) return kFALSE;
2261 //if ( fCC != inTracklet->GetCC() ) return kFALSE;
2262 if ( TMath::Abs(fChi2 - inTracklet->fChi2)>1.e-10 ) return kFALSE;
2263 // if ( fChi2Z != inTracklet->GetChi2Z() ) return kFALSE;
2264
2265 if ( fDet != inTracklet->fDet ) return kFALSE;
2266 if ( TMath::Abs(fPt - inTracklet->fPt)>1.e-10 ) return kFALSE;
2267 if ( TMath::Abs(fdX - inTracklet->fdX)>1.e-10 ) return kFALSE;
2268
2269 for (Int_t iCluster = 0; iCluster < kNclusters; iCluster++){
2270 AliTRDcluster *curCluster = fClusters[iCluster];
2271 AliTRDcluster *inCluster = inTracklet->fClusters[iCluster];
2272 if (curCluster && inCluster){
2273 if (! curCluster->IsEqual(inCluster) ) {
2274 curCluster->Print();
2275 inCluster->Print();
2276 return kFALSE;
2277 }
2278 } else {
2279 // if one cluster exists, and corresponding
2280 // in other tracklet doesn't - return kFALSE
2281 if(curCluster || inCluster) return kFALSE;
2282 }
2283 }
2284 return kTRUE;
2285}
2286