]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - TRD/AliTRDseedV1.cxx
- fixing bug in cluster analyser
[u/mrichter/AliRoot.git] / TRD / AliTRDseedV1.cxx
... / ...
CommitLineData
1/**************************************************************************
2* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3* *
4* Author: The ALICE Off-line Project. *
5* Contributors are mentioned in the code where appropriate. *
6* *
7* Permission to use, copy, modify and distribute this software and its *
8* documentation strictly for non-commercial purposes is hereby granted *
9* without fee, provided that the above copyright notice appears in all *
10* copies and that both the copyright notice and this permission notice *
11* appear in the supporting documentation. The authors make no claims *
12* about the suitability of this software for any purpose. It is *
13* provided "as is" without express or implied warranty. *
14**************************************************************************/
15
16/* $Id$ */
17
18////////////////////////////////////////////////////////////////////////////
19////
20// The TRD offline tracklet
21//
22// The running horse of the TRD reconstruction. The following tasks are preformed:
23// 1. Clusters attachment to tracks based on prior information stored at tracklet level (see AttachClusters)
24// 2. Clusters position recalculation based on track information (see GetClusterXY and Fit)
25// 3. Cluster error parametrization recalculation (see Fit)
26// 4. Linear track approximation (Fit)
27// 5. Optimal position (including z estimate for pad row cross tracklets) and covariance matrix of the track fit inside one TRD chamber (Fit)
28// 6. Tilt pad correction and systematic effects (GetCovAt)
29// 7. dEdx calculation (CookdEdx)
30// 8. PID probabilities estimation (CookPID)
31//
32// Authors: //
33// Alex Bercuci <A.Bercuci@gsi.de> //
34// Markus Fasel <M.Fasel@gsi.de> //
35// //
36////////////////////////////////////////////////////////////////////////////
37
38#include "TMath.h"
39#include <TTreeStream.h>
40
41#include "AliLog.h"
42#include "AliMathBase.h"
43#include "AliCDBManager.h"
44#include "AliTracker.h"
45
46#include "AliTRDpadPlane.h"
47#include "AliTRDcluster.h"
48#include "AliTRDseedV1.h"
49#include "AliTRDtrackV1.h"
50#include "AliTRDcalibDB.h"
51#include "AliTRDchamberTimeBin.h"
52#include "AliTRDtrackingChamber.h"
53#include "AliTRDtrackerV1.h"
54#include "AliTRDrecoParam.h"
55#include "AliTRDCommonParam.h"
56
57#include "Cal/AliTRDCalPID.h"
58#include "Cal/AliTRDCalROC.h"
59#include "Cal/AliTRDCalDet.h"
60
61ClassImp(AliTRDseedV1)
62
63//____________________________________________________________________
64AliTRDseedV1::AliTRDseedV1(Int_t det)
65 :AliTRDtrackletBase()
66 ,fkReconstructor(NULL)
67 ,fClusterIter(NULL)
68 ,fExB(0.)
69 ,fVD(0.)
70 ,fT0(0.)
71 ,fS2PRF(0.)
72 ,fDiffL(0.)
73 ,fDiffT(0.)
74 ,fClusterIdx(0)
75 ,fErrorMsg(0)
76 ,fN(0)
77 ,fDet(det)
78 ,fPt(0.)
79 ,fdX(0.)
80 ,fX0(0.)
81 ,fX(0.)
82 ,fY(0.)
83 ,fZ(0.)
84 ,fS2Y(0.)
85 ,fS2Z(0.)
86 ,fC(0.)
87 ,fChi2(0.)
88{
89 //
90 // Constructor
91 //
92 memset(fIndexes,0xFF,kNclusters*sizeof(fIndexes[0]));
93 memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*));
94 memset(fPad, 0, 3*sizeof(Float_t));
95 fYref[0] = 0.; fYref[1] = 0.;
96 fZref[0] = 0.; fZref[1] = 0.;
97 fYfit[0] = 0.; fYfit[1] = 0.;
98 fZfit[0] = 0.; fZfit[1] = 0.;
99 memset(fdEdx, 0, kNslices*sizeof(Float_t));
100 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++) fProb[ispec] = -1.;
101 fLabels[0]=-1; fLabels[1]=-1; // most freq MC labels
102 fLabels[2]=0; // number of different labels for tracklet
103 memset(fRefCov, 0, 7*sizeof(Double_t));
104 // covariance matrix [diagonal]
105 // default sy = 200um and sz = 2.3 cm
106 fCov[0] = 4.e-4; fCov[1] = 0.; fCov[2] = 5.3;
107 SetStandAlone(kFALSE);
108}
109
110//____________________________________________________________________
111AliTRDseedV1::AliTRDseedV1(const AliTRDseedV1 &ref)
112 :AliTRDtrackletBase((AliTRDtrackletBase&)ref)
113 ,fkReconstructor(NULL)
114 ,fClusterIter(NULL)
115 ,fExB(0.)
116 ,fVD(0.)
117 ,fT0(0.)
118 ,fS2PRF(0.)
119 ,fDiffL(0.)
120 ,fDiffT(0.)
121 ,fClusterIdx(0)
122 ,fErrorMsg(0)
123 ,fN(0)
124 ,fDet(-1)
125 ,fPt(0.)
126 ,fdX(0.)
127 ,fX0(0.)
128 ,fX(0.)
129 ,fY(0.)
130 ,fZ(0.)
131 ,fS2Y(0.)
132 ,fS2Z(0.)
133 ,fC(0.)
134 ,fChi2(0.)
135{
136 //
137 // Copy Constructor performing a deep copy
138 //
139 if(this != &ref){
140 ref.Copy(*this);
141 }
142 SetBit(kOwner, kFALSE);
143 SetStandAlone(ref.IsStandAlone());
144}
145
146
147//____________________________________________________________________
148AliTRDseedV1& AliTRDseedV1::operator=(const AliTRDseedV1 &ref)
149{
150 //
151 // Assignment Operator using the copy function
152 //
153
154 if(this != &ref){
155 ref.Copy(*this);
156 }
157 SetBit(kOwner, kFALSE);
158
159 return *this;
160}
161
162//____________________________________________________________________
163AliTRDseedV1::~AliTRDseedV1()
164{
165 //
166 // Destructor. The RecoParam object belongs to the underlying tracker.
167 //
168
169 //printf("I-AliTRDseedV1::~AliTRDseedV1() : Owner[%s]\n", IsOwner()?"YES":"NO");
170
171 if(IsOwner()) {
172 for(int itb=0; itb<kNclusters; itb++){
173 if(!fClusters[itb]) continue;
174 //AliInfo(Form("deleting c %p @ %d", fClusters[itb], itb));
175 delete fClusters[itb];
176 fClusters[itb] = NULL;
177 }
178 }
179}
180
181//____________________________________________________________________
182void AliTRDseedV1::Copy(TObject &ref) const
183{
184 //
185 // Copy function
186 //
187
188 //AliInfo("");
189 AliTRDseedV1 &target = (AliTRDseedV1 &)ref;
190
191 target.fkReconstructor = fkReconstructor;
192 target.fClusterIter = NULL;
193 target.fExB = fExB;
194 target.fVD = fVD;
195 target.fT0 = fT0;
196 target.fS2PRF = fS2PRF;
197 target.fDiffL = fDiffL;
198 target.fDiffT = fDiffT;
199 target.fClusterIdx = 0;
200 target.fErrorMsg = fErrorMsg;
201 target.fN = fN;
202 target.fDet = fDet;
203 target.fPt = fPt;
204 target.fdX = fdX;
205 target.fX0 = fX0;
206 target.fX = fX;
207 target.fY = fY;
208 target.fZ = fZ;
209 target.fS2Y = fS2Y;
210 target.fS2Z = fS2Z;
211 target.fC = fC;
212 target.fChi2 = fChi2;
213
214 memcpy(target.fIndexes, fIndexes, kNclusters*sizeof(Int_t));
215 memcpy(target.fClusters, fClusters, kNclusters*sizeof(AliTRDcluster*));
216 memcpy(target.fPad, fPad, 3*sizeof(Float_t));
217 target.fYref[0] = fYref[0]; target.fYref[1] = fYref[1];
218 target.fZref[0] = fZref[0]; target.fZref[1] = fZref[1];
219 target.fYfit[0] = fYfit[0]; target.fYfit[1] = fYfit[1];
220 target.fZfit[0] = fZfit[0]; target.fZfit[1] = fZfit[1];
221 memcpy(target.fdEdx, fdEdx, kNslices*sizeof(Float_t));
222 memcpy(target.fProb, fProb, AliPID::kSPECIES*sizeof(Float_t));
223 memcpy(target.fLabels, fLabels, 3*sizeof(Int_t));
224 memcpy(target.fRefCov, fRefCov, 7*sizeof(Double_t));
225 memcpy(target.fCov, fCov, 3*sizeof(Double_t));
226
227 TObject::Copy(ref);
228}
229
230
231//____________________________________________________________
232Bool_t AliTRDseedV1::Init(AliTRDtrackV1 *track)
233{
234// Initialize this tracklet using the track information
235//
236// Parameters:
237// track - the TRD track used to initialize the tracklet
238//
239// Detailed description
240// The function sets the starting point and direction of the
241// tracklet according to the information from the TRD track.
242//
243// Caution
244// The TRD track has to be propagated to the beginning of the
245// chamber where the tracklet will be constructed
246//
247
248 Double_t y, z;
249 if(!track->GetProlongation(fX0, y, z)) return kFALSE;
250 Update(track);
251 return kTRUE;
252}
253
254
255//_____________________________________________________________________________
256void AliTRDseedV1::Reset(Option_t *opt)
257{
258//
259// Reset seed. If option opt="c" is given only cluster arrays are cleared.
260//
261 for(Int_t ic=kNclusters; ic--;) fIndexes[ic] = -1;
262 memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*));
263 fN=0; SetBit(kRowCross, kFALSE);
264 if(strcmp(opt, "c")==0) return;
265
266 fExB=0.;fVD=0.;fT0=0.;fS2PRF=0.;
267 fDiffL=0.;fDiffT=0.;
268 fClusterIdx=0;
269 fErrorMsg = 0;
270 fDet=-1;
271 fPt=0.;
272 fdX=0.;fX0=0.; fX=0.; fY=0.; fZ=0.;
273 fS2Y=0.; fS2Z=0.;
274 fC=0.; fChi2 = 0.;
275
276 memset(fPad, 0, 3*sizeof(Float_t));
277 fYref[0] = 0.; fYref[1] = 0.;
278 fZref[0] = 0.; fZref[1] = 0.;
279 fYfit[0] = 0.; fYfit[1] = 0.;
280 fZfit[0] = 0.; fZfit[1] = 0.;
281 memset(fdEdx, 0, kNslices*sizeof(Float_t));
282 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++) fProb[ispec] = -1.;
283 fLabels[0]=-1; fLabels[1]=-1; // most freq MC labels
284 fLabels[2]=0; // number of different labels for tracklet
285 memset(fRefCov, 0, 7*sizeof(Double_t));
286 // covariance matrix [diagonal]
287 // default sy = 200um and sz = 2.3 cm
288 fCov[0] = 4.e-4; fCov[1] = 0.; fCov[2] = 5.3;
289}
290
291//____________________________________________________________________
292void AliTRDseedV1::Update(const AliTRDtrackV1 *trk)
293{
294 // update tracklet reference position from the TRD track
295
296 Double_t fSnp = trk->GetSnp();
297 Double_t fTgl = trk->GetTgl();
298 fPt = trk->Pt();
299 Double_t norm =1./TMath::Sqrt((1.-fSnp)*(1.+fSnp));
300 fYref[1] = fSnp*norm;
301 fZref[1] = fTgl*norm;
302 SetCovRef(trk->GetCovariance());
303
304 Double_t dx = trk->GetX() - fX0;
305 fYref[0] = trk->GetY() - dx*fYref[1];
306 fZref[0] = trk->GetZ() - dx*fZref[1];
307}
308
309//_____________________________________________________________________________
310void AliTRDseedV1::UpdateUsed()
311{
312 //
313 // Calculate number of used clusers in the tracklet
314 //
315
316 Int_t nused = 0, nshared = 0;
317 for (Int_t i = kNclusters; i--; ) {
318 if (!fClusters[i]) continue;
319 if(fClusters[i]->IsUsed()){
320 nused++;
321 } else if(fClusters[i]->IsShared()){
322 if(IsStandAlone()) nused++;
323 else nshared++;
324 }
325 }
326 SetNUsed(nused);
327 SetNShared(nshared);
328}
329
330//_____________________________________________________________________________
331void AliTRDseedV1::UseClusters()
332{
333 //
334 // Use clusters
335 //
336 // In stand alone mode:
337 // Clusters which are marked as used or shared from another track are
338 // removed from the tracklet
339 //
340 // In barrel mode:
341 // - Clusters which are used by another track become shared
342 // - Clusters which are attached to a kink track become shared
343 //
344 AliTRDcluster **c = &fClusters[0];
345 for (Int_t ic=kNclusters; ic--; c++) {
346 if(!(*c)) continue;
347 if(IsStandAlone()){
348 if((*c)->IsShared() || (*c)->IsUsed()){
349 if((*c)->IsShared()) SetNShared(GetNShared()-1);
350 else SetNUsed(GetNUsed()-1);
351 (*c) = NULL;
352 fIndexes[ic] = -1;
353 SetN(GetN()-1);
354 continue;
355 }
356 } else {
357 if((*c)->IsUsed() || IsKink()){
358 (*c)->SetShared();
359 continue;
360 }
361 }
362 (*c)->Use();
363 }
364}
365
366
367
368//____________________________________________________________________
369void AliTRDseedV1::CookdEdx(Int_t nslices)
370{
371// Calculates average dE/dx for all slices and store them in the internal array fdEdx.
372//
373// Parameters:
374// nslices : number of slices for which dE/dx should be calculated
375// Output:
376// store results in the internal array fdEdx. This can be accessed with the method
377// AliTRDseedV1::GetdEdx()
378//
379// Detailed description
380// Calculates average dE/dx for all slices. Depending on the PID methode
381// the number of slices can be 3 (LQ) or 8(NN).
382// The calculation of dQ/dl are done using the tracklet fit results (see AliTRDseedV1::GetdQdl(Int_t))
383//
384// The following effects are included in the calculation:
385// 1. calibration values for t0 and vdrift (using x coordinate to calculate slice)
386// 2. cluster sharing (optional see AliTRDrecoParam::SetClusterSharing())
387// 3. cluster size
388//
389
390 memset(fdEdx, 0, kNslices*sizeof(Float_t));
391 const Double_t kDriftLength = (.5 * AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick());
392
393 AliTRDcluster *c(NULL);
394 for(int ic=0; ic<AliTRDtrackerV1::GetNTimeBins(); ic++){
395 if(!(c = fClusters[ic]) && !(c = fClusters[ic+kNtb])) continue;
396 Float_t dx = TMath::Abs(fX0 - c->GetX());
397
398 // Filter clusters for dE/dx calculation
399
400 // 1.consider calibration effects for slice determination
401 Int_t slice;
402 if(dx<kDriftLength){ // TODO should be replaced by c->IsInChamber()
403 slice = Int_t(dx * nslices / kDriftLength);
404 } else slice = c->GetX() < fX0 ? nslices-1 : 0;
405
406
407 // 2. take sharing into account
408 Float_t w = /*c->IsShared() ? .5 :*/ 1.;
409
410 // 3. take into account large clusters TODO
411 //w *= c->GetNPads() > 3 ? .8 : 1.;
412
413 //CHECK !!!
414 fdEdx[slice] += w * GetdQdl(ic); //fdQdl[ic];
415 } // End of loop over clusters
416}
417
418//_____________________________________________________________________________
419void AliTRDseedV1::CookLabels()
420{
421 //
422 // Cook 2 labels for seed
423 //
424
425 Int_t labels[200];
426 Int_t out[200];
427 Int_t nlab = 0;
428 for (Int_t i = 0; i < kNclusters; i++) {
429 if (!fClusters[i]) continue;
430 for (Int_t ilab = 0; ilab < 3; ilab++) {
431 if (fClusters[i]->GetLabel(ilab) >= 0) {
432 labels[nlab] = fClusters[i]->GetLabel(ilab);
433 nlab++;
434 }
435 }
436 }
437
438 fLabels[2] = AliMathBase::Freq(nlab,labels,out,kTRUE);
439 fLabels[0] = out[0];
440 if ((fLabels[2] > 1) && (out[3] > 1)) fLabels[1] = out[2];
441}
442
443
444//____________________________________________________________________
445Float_t AliTRDseedV1::GetdQdl(Int_t ic, Float_t *dl) const
446{
447// Using the linear approximation of the track inside one TRD chamber (TRD tracklet)
448// the charge per unit length can be written as:
449// BEGIN_LATEX
450// #frac{dq}{dl} = #frac{q_{c}}{dx * #sqrt{1 + #(){#frac{dy}{dx}}^{2}_{fit} + #(){#frac{dz}{dx}}^{2}_{ref}}}
451// END_LATEX
452// where qc is the total charge collected in the current time bin and dx is the length
453// of the time bin.
454// The following correction are applied :
455// - charge : pad row cross corrections
456// [diffusion and TRF assymetry] TODO
457// - dx : anisochronity, track inclination - see Fit and AliTRDcluster::GetXloc()
458// and AliTRDcluster::GetYloc() for the effects taken into account
459//
460//Begin_Html
461//<img src="TRD/trackletDQDT.gif">
462//End_Html
463// In the picture the energy loss measured on the tracklet as a function of drift time [left] and respectively
464// drift length [right] for different particle species is displayed.
465// Author : Alex Bercuci <A.Bercuci@gsi.de>
466//
467 Float_t dq = 0.;
468 // check whether both clusters are inside the chamber
469 Bool_t hasClusterInChamber = kFALSE;
470 if(fClusters[ic] && fClusters[ic]->IsInChamber()){
471 hasClusterInChamber = kTRUE;
472 dq += TMath::Abs(fClusters[ic]->GetQ());
473 }else if(fClusters[ic+kNtb] && fClusters[ic+kNtb]->IsInChamber()){
474 hasClusterInChamber = kTRUE;
475 dq += TMath::Abs(fClusters[ic+kNtb]->GetQ());
476 }
477 if(!hasClusterInChamber) return 0.;
478 if(dq<1.e-3) return 0.;
479
480 Double_t dx = fdX;
481 if(ic-1>=0 && ic+1<kNtb){
482 Float_t x2(0.), x1(0.);
483 // try to estimate upper radial position (find the cluster which is inside the chamber)
484 if(fClusters[ic-1] && fClusters[ic-1]->IsInChamber()) x2 = fClusters[ic-1]->GetX();
485 else if(fClusters[ic-1+kNtb] && fClusters[ic-1+kNtb]->IsInChamber()) x2 = fClusters[ic-1+kNtb]->GetX();
486 else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x2 = fClusters[ic]->GetX()+fdX;
487 else x2 = fClusters[ic+kNtb]->GetX()+fdX;
488 // try to estimate lower radial position (find the cluster which is inside the chamber)
489 if(fClusters[ic+1] && fClusters[ic+1]->IsInChamber()) x1 = fClusters[ic+1]->GetX();
490 else if(fClusters[ic+1+kNtb] && fClusters[ic+1+kNtb]->IsInChamber()) x1 = fClusters[ic+1+kNtb]->GetX();
491 else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x1 = fClusters[ic]->GetX()-fdX;
492 else x1 = fClusters[ic+kNtb]->GetX()-fdX;
493
494 dx = .5*(x2 - x1);
495 }
496 dx *= TMath::Sqrt(1. + fYfit[1]*fYfit[1] + fZref[1]*fZref[1]);
497 if(dl) (*dl) = dx;
498 if(dx>1.e-9) return dq/dx;
499 else return 0.;
500}
501
502//____________________________________________________________
503Float_t AliTRDseedV1::GetMomentum(Float_t *err) const
504{
505// Returns momentum of the track after update with the current tracklet as:
506// BEGIN_LATEX
507// p=#frac{1}{1/p_{t}} #sqrt{1+tgl^{2}}
508// END_LATEX
509// and optionally the momentum error (if err is not null).
510// The estimated variance of the momentum is given by:
511// BEGIN_LATEX
512// #sigma_{p}^{2} = (#frac{dp}{dp_{t}})^{2} #sigma_{p_{t}}^{2}+(#frac{dp}{dtgl})^{2} #sigma_{tgl}^{2}+2#frac{dp}{dp_{t}}#frac{dp}{dtgl} cov(tgl,1/p_{t})
513// END_LATEX
514// which can be simplified to
515// BEGIN_LATEX
516// #sigma_{p}^{2} = p^{2}p_{t}^{4}tgl^{2}#sigma_{tgl}^{2}-2p^{2}p_{t}^{3}tgl cov(tgl,1/p_{t})+p^{2}p_{t}^{2}#sigma_{1/p_{t}}^{2}
517// END_LATEX
518//
519
520 Double_t p = fPt*TMath::Sqrt(1.+fZref[1]*fZref[1]);
521 Double_t p2 = p*p;
522 Double_t tgl2 = fZref[1]*fZref[1];
523 Double_t pt2 = fPt*fPt;
524 if(err){
525 Double_t s2 =
526 p2*tgl2*pt2*pt2*fRefCov[4]
527 -2.*p2*fZref[1]*fPt*pt2*fRefCov[5]
528 +p2*pt2*fRefCov[6];
529 (*err) = TMath::Sqrt(s2);
530 }
531 return p;
532}
533
534
535//____________________________________________________________________
536Float_t* AliTRDseedV1::GetProbability(Bool_t force)
537{
538 if(!force) return &fProb[0];
539 if(!CookPID()) return NULL;
540 return &fProb[0];
541}
542
543//____________________________________________________________
544Bool_t AliTRDseedV1::CookPID()
545{
546// Fill probability array for tracklet from the DB.
547//
548// Parameters
549//
550// Output
551// returns pointer to the probability array and NULL if missing DB access
552//
553// Retrieve PID probabilities for e+-, mu+-, K+-, pi+- and p+- from the DB according to tracklet information:
554// - estimated momentum at tracklet reference point
555// - dE/dx measurements
556// - tracklet length
557// - TRD layer
558// According to the steering settings specified in the reconstruction one of the following methods are used
559// - Neural Network [default] - option "nn"
560// - 2D Likelihood - option "!nn"
561
562 AliTRDcalibDB *calibration = AliTRDcalibDB::Instance();
563 if (!calibration) {
564 AliError("No access to calibration data");
565 return kFALSE;
566 }
567
568 if (!fkReconstructor) {
569 AliError("Reconstructor not set.");
570 return kFALSE;
571 }
572
573 // Retrieve the CDB container class with the parametric detector response
574 const AliTRDCalPID *pd = calibration->GetPIDObject(fkReconstructor->GetPIDMethod());
575 if (!pd) {
576 AliError("No access to AliTRDCalPID object");
577 return kFALSE;
578 }
579
580 // calculate tracklet length TO DO
581 Float_t length = (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick())/ TMath::Sqrt((1.0 - GetSnp()*GetSnp()) / (1.0 + GetTgl()*GetTgl()));
582
583 //calculate dE/dx
584 CookdEdx(AliTRDCalPID::kNSlicesNN);
585 AliDebug(4, Form("p=%6.4f[GeV/c] dEdx{%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f} l=%4.2f[cm]", GetMomentum(), fdEdx[0], fdEdx[1], fdEdx[2], fdEdx[3], fdEdx[4], fdEdx[5], fdEdx[6], fdEdx[7], length));
586
587 // Sets the a priori probabilities
588 Bool_t kPIDNN(fkReconstructor->GetPIDMethod()==AliTRDpidUtil::kNN);
589 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++)
590 fProb[ispec] = pd->GetProbability(ispec, GetMomentum(), &fdEdx[0], length, kPIDNN?GetPlane():fkReconstructor->GetRecoParam()->GetPIDLQslices());
591
592 return kTRUE;
593}
594
595//____________________________________________________________________
596Float_t AliTRDseedV1::GetQuality(Bool_t kZcorr) const
597{
598 //
599 // Returns a quality measurement of the current seed
600 //
601
602 Float_t zcorr = kZcorr ? GetTilt() * (fZfit[0] - fZref[0]) : 0.;
603 return
604 .5 * TMath::Abs(18.0 - GetN())
605 + 10.* TMath::Abs(fYfit[1] - fYref[1])
606 + 5. * TMath::Abs(fYfit[0] - fYref[0] + zcorr)
607 + 2. * TMath::Abs(fZfit[0] - fZref[0]) / GetPadLength();
608}
609
610//____________________________________________________________________
611void AliTRDseedV1::GetCovAt(Double_t x, Double_t *cov) const
612{
613// Computes covariance in the y-z plane at radial point x (in tracking coordinates)
614// and returns the results in the preallocated array cov[3] as :
615// cov[0] = Var(y)
616// cov[1] = Cov(yz)
617// cov[2] = Var(z)
618//
619// Details
620//
621// For the linear transformation
622// BEGIN_LATEX
623// Y = T_{x} X^{T}
624// END_LATEX
625// The error propagation has the general form
626// BEGIN_LATEX
627// C_{Y} = T_{x} C_{X} T_{x}^{T}
628// END_LATEX
629// We apply this formula 2 times. First to calculate the covariance of the tracklet
630// at point x we consider:
631// BEGIN_LATEX
632// T_{x} = (1 x); X=(y0 dy/dx); C_{X}=#(){#splitline{Var(y0) Cov(y0, dy/dx)}{Cov(y0, dy/dx) Var(dy/dx)}}
633// END_LATEX
634// and secondly to take into account the tilt angle
635// BEGIN_LATEX
636// T_{#alpha} = #(){#splitline{cos(#alpha) __ sin(#alpha)}{-sin(#alpha) __ cos(#alpha)}}; X=(y z); C_{X}=#(){#splitline{Var(y) 0}{0 Var(z)}}
637// END_LATEX
638//
639// using simple trigonometrics one can write for this last case
640// BEGIN_LATEX
641// C_{Y}=#frac{1}{1+tg^{2}#alpha} #(){#splitline{(#sigma_{y}^{2}+tg^{2}#alpha#sigma_{z}^{2}) __ tg#alpha(#sigma_{z}^{2}-#sigma_{y}^{2})}{tg#alpha(#sigma_{z}^{2}-#sigma_{y}^{2}) __ (#sigma_{z}^{2}+tg^{2}#alpha#sigma_{y}^{2})}}
642// END_LATEX
643// which can be aproximated for small alphas (2 deg) with
644// BEGIN_LATEX
645// C_{Y}=#(){#splitline{#sigma_{y}^{2} __ (#sigma_{z}^{2}-#sigma_{y}^{2})tg#alpha}{((#sigma_{z}^{2}-#sigma_{y}^{2})tg#alpha __ #sigma_{z}^{2}}}
646// END_LATEX
647//
648// before applying the tilt rotation we also apply systematic uncertainties to the tracklet
649// position which can be tunned from outside via the AliTRDrecoParam::SetSysCovMatrix(). They might
650// account for extra misalignment/miscalibration uncertainties.
651//
652// Author :
653// Alex Bercuci <A.Bercuci@gsi.de>
654// Date : Jan 8th 2009
655//
656
657
658 Double_t xr = fX0-x;
659 Double_t sy2 = fCov[0] +2.*xr*fCov[1] + xr*xr*fCov[2];
660 Double_t sz2 = fS2Z;
661 //GetPadLength()*GetPadLength()/12.;
662
663 // insert systematic uncertainties
664 if(fkReconstructor){
665 Double_t sys[15]; memset(sys, 0, 15*sizeof(Double_t));
666 fkReconstructor->GetRecoParam()->GetSysCovMatrix(sys);
667 sy2 += sys[0];
668 sz2 += sys[1];
669 }
670 // rotate covariance matrix
671 Double_t t2 = GetTilt()*GetTilt();
672 Double_t correction = 1./(1. + t2);
673 cov[0] = (sy2+t2*sz2)*correction;
674 cov[1] = GetTilt()*(sz2 - sy2)*correction;
675 cov[2] = (t2*sy2+sz2)*correction;
676
677 //printf("C(%6.1f %+6.3f %6.1f) [%s]\n", 1.e4*TMath::Sqrt(cov[0]), cov[1], 1.e4*TMath::Sqrt(cov[2]), IsRowCross()?" RC ":"-");
678}
679
680//____________________________________________________________
681Double_t AliTRDseedV1::GetCovSqrt(const Double_t * const c, Double_t *d)
682{
683// Helper function to calculate the square root of the covariance matrix.
684// The input matrix is stored in the vector c and the result in the vector d.
685// Both arrays have to be initialized by the user with at least 3 elements. Return negative in case of failure.
686//
687// For calculating the square root of the symmetric matrix c
688// the following relation is used:
689// BEGIN_LATEX
690// C^{1/2} = VD^{1/2}V^{-1}
691// END_LATEX
692// with V being the matrix with the n eigenvectors as columns.
693// In case C is symmetric the followings are true:
694// - matrix D is diagonal with the diagonal given by the eigenvalues of C
695// - V = V^{-1}
696//
697// Author A.Bercuci <A.Bercuci@gsi.de>
698// Date Mar 19 2009
699
700 Double_t l[2], // eigenvalues
701 v[3]; // eigenvectors
702 // the secular equation and its solution :
703 // (c[0]-L)(c[2]-L)-c[1]^2 = 0
704 // L^2 - L*Tr(c)+DET(c) = 0
705 // L12 = [Tr(c) +- sqrt(Tr(c)^2-4*DET(c))]/2
706 Double_t tr = c[0]+c[2], // trace
707 det = c[0]*c[2]-c[1]*c[1]; // determinant
708 if(TMath::Abs(det)<1.e-20) return -1.;
709 Double_t dd = TMath::Sqrt(tr*tr - 4*det);
710 l[0] = .5*(tr + dd);
711 l[1] = .5*(tr - dd);
712 if(l[0]<0. || l[1]<0.) return -1.;
713
714 // the sym V matrix
715 // | v00 v10|
716 // | v10 v11|
717 Double_t tmp = (l[0]-c[0])/c[1];
718 v[0] = TMath::Sqrt(1./(tmp*tmp+1));
719 v[1] = tmp*v[0];
720 v[2] = v[1]*c[1]/(l[1]-c[2]);
721 // the VD^{1/2}V is:
722 l[0] = TMath::Sqrt(l[0]); l[1] = TMath::Sqrt(l[1]);
723 d[0] = v[0]*v[0]*l[0]+v[1]*v[1]*l[1];
724 d[1] = v[0]*v[1]*l[0]+v[1]*v[2]*l[1];
725 d[2] = v[1]*v[1]*l[0]+v[2]*v[2]*l[1];
726
727 return 1.;
728}
729
730//____________________________________________________________
731Double_t AliTRDseedV1::GetCovInv(const Double_t * const c, Double_t *d)
732{
733// Helper function to calculate the inverse of the covariance matrix.
734// The input matrix is stored in the vector c and the result in the vector d.
735// Both arrays have to be initialized by the user with at least 3 elements
736// The return value is the determinant or 0 in case of singularity.
737//
738// Author A.Bercuci <A.Bercuci@gsi.de>
739// Date Mar 19 2009
740
741 Double_t det = c[0]*c[2] - c[1]*c[1];
742 if(TMath::Abs(det)<1.e-20) return 0.;
743 Double_t invDet = 1./det;
744 d[0] = c[2]*invDet;
745 d[1] =-c[1]*invDet;
746 d[2] = c[0]*invDet;
747 return det;
748}
749
750//____________________________________________________________________
751UShort_t AliTRDseedV1::GetVolumeId() const
752{
753 for(Int_t ic(0);ic<kNclusters; ic++){
754 if(fClusters[ic]) return fClusters[ic]->GetVolumeId();
755 }
756 return 0;
757}
758
759
760//____________________________________________________________________
761void AliTRDseedV1::Calibrate()
762{
763// Retrieve calibration and position parameters from OCDB.
764// The following information are used
765// - detector index
766// - column and row position of first attached cluster. If no clusters are attached
767// to the tracklet a random central chamber position (c=70, r=7) will be used.
768//
769// The following information is cached in the tracklet
770// t0 (trigger delay)
771// drift velocity
772// PRF width
773// omega*tau = tg(a_L)
774// diffusion coefficients (longitudinal and transversal)
775//
776// Author :
777// Alex Bercuci <A.Bercuci@gsi.de>
778// Date : Jan 8th 2009
779//
780
781 AliCDBManager *cdb = AliCDBManager::Instance();
782 if(cdb->GetRun() < 0){
783 AliError("OCDB manager not properly initialized");
784 return;
785 }
786
787 AliTRDcalibDB *calib = AliTRDcalibDB::Instance();
788 AliTRDCalROC *vdROC = calib->GetVdriftROC(fDet),
789 *t0ROC = calib->GetT0ROC(fDet);;
790 const AliTRDCalDet *vdDet = calib->GetVdriftDet();
791 const AliTRDCalDet *t0Det = calib->GetT0Det();
792
793 Int_t col = 70, row = 7;
794 AliTRDcluster **c = &fClusters[0];
795 if(GetN()){
796 Int_t ic = 0;
797 while (ic<kNclusters && !(*c)){ic++; c++;}
798 if(*c){
799 col = (*c)->GetPadCol();
800 row = (*c)->GetPadRow();
801 }
802 }
803
804 fT0 = (t0Det->GetValue(fDet) + t0ROC->GetValue(col,row)) / AliTRDCommonParam::Instance()->GetSamplingFrequency();
805 fVD = vdDet->GetValue(fDet) * vdROC->GetValue(col, row);
806 fS2PRF = calib->GetPRFWidth(fDet, col, row); fS2PRF *= fS2PRF;
807 fExB = AliTRDCommonParam::Instance()->GetOmegaTau(fVD);
808 AliTRDCommonParam::Instance()->GetDiffCoeff(fDiffL,
809 fDiffT, fVD);
810 AliDebug(4, Form("Calibration params for Det[%3d] Col[%3d] Row[%2d]\n t0[%f] vd[%f] s2PRF[%f] ExB[%f] Dl[%f] Dt[%f]", fDet, col, row, fT0, fVD, fS2PRF, fExB, fDiffL, fDiffT));
811
812
813 SetBit(kCalib, kTRUE);
814}
815
816//____________________________________________________________________
817void AliTRDseedV1::SetOwner()
818{
819 //AliInfo(Form("own [%s] fOwner[%s]", own?"YES":"NO", fOwner?"YES":"NO"));
820
821 if(TestBit(kOwner)) return;
822 for(int ic=0; ic<kNclusters; ic++){
823 if(!fClusters[ic]) continue;
824 fClusters[ic] = new AliTRDcluster(*fClusters[ic]);
825 }
826 SetBit(kOwner);
827}
828
829//____________________________________________________________
830void AliTRDseedV1::SetPadPlane(AliTRDpadPlane *p)
831{
832// Shortcut method to initialize pad geometry.
833 if(!p) return;
834 SetTilt(TMath::Tan(TMath::DegToRad()*p->GetTiltingAngle()));
835 SetPadLength(p->GetLengthIPad());
836 SetPadWidth(p->GetWidthIPad());
837}
838
839
840//____________________________________________________________________
841Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *const chamber, Bool_t tilt)
842{
843//
844// Projective algorithm to attach clusters to seeding tracklets. The following steps are performed :
845// 1. Collapse x coordinate for the full detector plane
846// 2. truncated mean on y (r-phi) direction
847// 3. purge clusters
848// 4. truncated mean on z direction
849// 5. purge clusters
850//
851// Parameters
852// - chamber : pointer to tracking chamber container used to search the tracklet
853// - tilt : switch for tilt correction during road building [default true]
854// Output
855// - true : if tracklet found successfully. Failure can happend because of the following:
856// -
857// Detailed description
858//
859// We start up by defining the track direction in the xy plane and roads. The roads are calculated based
860// on tracking information (variance in the r-phi direction) and estimated variance of the standard
861// clusters (see AliTRDcluster::SetSigmaY2()) corrected for tilt (see GetCovAt()). From this the road is
862// BEGIN_LATEX
863// r_{y} = 3*#sqrt{12*(#sigma^{2}_{Trk}(y) + #frac{#sigma^{2}_{cl}(y) + tg^{2}(#alpha_{L})#sigma^{2}_{cl}(z)}{1+tg^{2}(#alpha_{L})})}
864// r_{z} = 1.5*L_{pad}
865// END_LATEX
866//
867// Author : Alexandru Bercuci <A.Bercuci@gsi.de>
868// Debug : level >3
869
870 const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); //the dynamic cast in GetRecoParam is slow, so caching the pointer to it
871
872 if(!recoParam){
873 AliError("Tracklets can not be used without a valid RecoParam.");
874 return kFALSE;
875 }
876 // Initialize reco params for this tracklet
877 // 1. first time bin in the drift region
878 Int_t t0 = 14;
879 Int_t kClmin = Int_t(recoParam->GetFindableClusters()*AliTRDtrackerV1::GetNTimeBins());
880
881 Double_t sysCov[5]; recoParam->GetSysCovMatrix(sysCov);
882 Double_t s2yTrk= fRefCov[0],
883 s2yCl = 0.,
884 s2zCl = GetPadLength()*GetPadLength()/12.,
885 syRef = TMath::Sqrt(s2yTrk),
886 t2 = GetTilt()*GetTilt();
887 //define roads
888 Double_t kroady = 1., //recoParam->GetRoad1y();
889 kroadz = GetPadLength() * recoParam->GetRoadzMultiplicator() + 1.;
890 // define probing cluster (the perfect cluster) and default calibration
891 Short_t sig[] = {0, 0, 10, 30, 10, 0,0};
892 AliTRDcluster cp(fDet, 6, 75, 0, sig, 0);
893 if(fkReconstructor->IsHLT()) cp.SetRPhiMethod(AliTRDcluster::kCOG);
894 if(!IsCalibrated()) Calibrate();
895
896 AliDebug(4, "");
897 AliDebug(4, Form("syKalman[%f] rY[%f] rZ[%f]", syRef, kroady, kroadz));
898
899 // working variables
900 const Int_t kNrows = 16;
901 const Int_t kNcls = 3*kNclusters; // buffer size
902 AliTRDcluster *clst[kNrows][kNcls];
903 Bool_t blst[kNrows][kNcls];
904 Double_t cond[4], dx, dy, yt, zt, yres[kNrows][kNcls];
905 Int_t idxs[kNrows][kNcls], ncl[kNrows], ncls = 0;
906 memset(ncl, 0, kNrows*sizeof(Int_t));
907 memset(yres, 0, kNrows*kNcls*sizeof(Double_t));
908 memset(blst, 0, kNrows*kNcls*sizeof(Bool_t)); //this is 8 times faster to memset than "memset(clst, 0, kNrows*kNcls*sizeof(AliTRDcluster*))"
909
910 // Do cluster projection
911 AliTRDcluster *c = NULL;
912 AliTRDchamberTimeBin *layer = NULL;
913 Bool_t kBUFFER = kFALSE;
914 for (Int_t it = 0; it < kNtb; it++) {
915 if(!(layer = chamber->GetTB(it))) continue;
916 if(!Int_t(*layer)) continue;
917 // get track projection at layers position
918 dx = fX0 - layer->GetX();
919 yt = fYref[0] - fYref[1] * dx;
920 zt = fZref[0] - fZref[1] * dx;
921 // get standard cluster error corrected for tilt
922 cp.SetLocalTimeBin(it);
923 cp.SetSigmaY2(0.02, fDiffT, fExB, dx, -1./*zt*/, fYref[1]);
924 s2yCl = (cp.GetSigmaY2() + sysCov[0] + t2*s2zCl)/(1.+t2);
925 // get estimated road
926 kroady = 3.*TMath::Sqrt(12.*(s2yTrk + s2yCl));
927
928 AliDebug(5, Form(" %2d x[%f] yt[%f] zt[%f]", it, dx, yt, zt));
929
930 AliDebug(5, Form(" syTrk[um]=%6.2f syCl[um]=%6.2f syClTlt[um]=%6.2f Ry[mm]=%f", 1.e4*TMath::Sqrt(s2yTrk), 1.e4*TMath::Sqrt(cp.GetSigmaY2()), 1.e4*TMath::Sqrt(s2yCl), 1.e1*kroady));
931
932 // select clusters
933 cond[0] = yt; cond[2] = kroady;
934 cond[1] = zt; cond[3] = kroadz;
935 Int_t n=0, idx[6];
936 layer->GetClusters(cond, idx, n, 6);
937 for(Int_t ic = n; ic--;){
938 c = (*layer)[idx[ic]];
939 dy = yt - c->GetY();
940 dy += tilt ? GetTilt() * (c->GetZ() - zt) : 0.;
941 // select clusters on a 3 sigmaKalman level
942/* if(tilt && TMath::Abs(dy) > 3.*syRef){
943 printf("too large !!!\n");
944 continue;
945 }*/
946 Int_t r = c->GetPadRow();
947 AliDebug(5, Form(" -> dy[%f] yc[%f] r[%d]", TMath::Abs(dy), c->GetY(), r));
948 clst[r][ncl[r]] = c;
949 blst[r][ncl[r]] = kTRUE;
950 idxs[r][ncl[r]] = idx[ic];
951 yres[r][ncl[r]] = dy;
952 ncl[r]++; ncls++;
953
954 if(ncl[r] >= kNcls) {
955 AliWarning(Form("Cluster candidates row[%d] reached buffer limit[%d]. Some may be lost.", r, kNcls));
956 kBUFFER = kTRUE;
957 break;
958 }
959 }
960 if(kBUFFER) break;
961 }
962 AliDebug(4, Form("Found %d clusters. Processing ...", ncls));
963 if(ncls<kClmin){
964 AliDebug(1, Form("CLUSTERS FOUND %d LESS THAN THRESHOLD %d.", ncls, kClmin));
965 SetErrorMsg(kAttachClFound);
966 return kFALSE;
967 }
968
969 // analyze each row individualy
970 Bool_t kRowSelection(kFALSE);
971 Double_t mean[]={1.e3, 1.e3, 1.3}, syDis[]={1.e3, 1.e3, 1.3};
972 Int_t nrow[] = {0, 0, 0}, rowId[] = {-1, -1, -1}, nr = 0, lr=-1;
973 TVectorD vdy[3];
974 for(Int_t ir=0; ir<kNrows; ir++){
975 if(!(ncl[ir])) continue;
976 if(lr>0 && ir-lr != 1){
977 AliDebug(2, "Rows attached not continuous. Turn on selection.");
978 kRowSelection=kTRUE;
979 }
980
981 AliDebug(5, Form(" r[%d] n[%d]", ir, ncl[ir]));
982 // Evaluate truncated mean on the y direction
983 if(ncl[ir] < 4) continue;
984 AliMathBase::EvaluateUni(ncl[ir], yres[ir], mean[nr], syDis[nr], Int_t(ncl[ir]*.8));
985
986 // TODO check mean and sigma agains cluster resolution !!
987 AliDebug(4, Form(" m_%d[%+5.3f (%5.3fs)] s[%f]", nr, mean[nr], TMath::Abs(mean[nr]/syDis[nr]), syDis[nr]));
988 // remove outliers based on a 3 sigmaDistr level
989 Bool_t kFOUND = kFALSE;
990 for(Int_t ic = ncl[ir]; ic--;){
991 if(yres[ir][ic] - mean[nr] > 3. * syDis[nr]){
992 blst[ir][ic] = kFALSE; continue;
993 }
994 nrow[nr]++; rowId[nr]=ir; kFOUND = kTRUE;
995 }
996 if(kFOUND){
997 vdy[nr].Use(nrow[nr], yres[ir]);
998 nr++;
999 }
1000 lr = ir; if(nr>=3) break;
1001 }
1002 if(recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 3 && fkReconstructor->IsDebugStreaming()){
1003 TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
1004 UChar_t stat(0);
1005 if(IsKink()) SETBIT(stat, 1);
1006 if(IsStandAlone()) SETBIT(stat, 2);
1007 cstreamer << "AttachClusters"
1008 << "stat=" << stat
1009 << "det=" << fDet
1010 << "pt=" << fPt
1011 << "s2y=" << s2yTrk
1012 << "r0=" << rowId[0]
1013 << "dy0=" << &vdy[0]
1014 << "m0=" << mean[0]
1015 << "s0=" << syDis[0]
1016 << "r1=" << rowId[1]
1017 << "dy1=" << &vdy[1]
1018 << "m1=" << mean[1]
1019 << "s1=" << syDis[1]
1020 << "r2=" << rowId[2]
1021 << "dy2=" << &vdy[2]
1022 << "m2=" << mean[2]
1023 << "s2=" << syDis[2]
1024 << "\n";
1025 }
1026
1027
1028 // analyze gap in rows attached
1029 if(kRowSelection){
1030 SetErrorMsg(kAttachRowGap);
1031 Int_t rowRemove(-1);
1032 if(nr==2){ // select based on minimum distance to track projection
1033 if(TMath::Abs(mean[0])<TMath::Abs(mean[1])){
1034 if(nrow[1]>nrow[0]) AliDebug(2, Form("Conflicting mean[%f < %f] but ncl[%d < %d].", TMath::Abs(mean[0]), TMath::Abs(mean[1]), nrow[0], nrow[1]));
1035 }else{
1036 if(nrow[1]<nrow[0]) AliDebug(2, Form("Conflicting mean[%f > %f] but ncl[%d > %d].", TMath::Abs(mean[0]), TMath::Abs(mean[1]), nrow[0], nrow[1]));
1037 Swap(nrow[0],nrow[1]); Swap(rowId[0],rowId[1]);
1038 Swap(mean[0],mean[1]); Swap(syDis[0],syDis[1]);
1039 }
1040 rowRemove=1; nr=1;
1041 } else if(nr==3){ // select based on 2 consecutive rows
1042 if(rowId[1]==rowId[0]+1 && rowId[1]!=rowId[2]-1){
1043 nr=2;rowRemove=2;
1044 } else if(rowId[1]!=rowId[0]+1 && rowId[1]==rowId[2]-1){
1045 Swap(nrow[0],nrow[2]); Swap(rowId[0],rowId[2]);
1046 Swap(mean[0],mean[2]); Swap(syDis[0],syDis[2]);
1047 nr=2; rowRemove=2;
1048 }
1049 }
1050 if(rowRemove>0){nrow[rowRemove]=0; rowId[rowRemove]=-1;}
1051 }
1052 AliDebug(4, Form(" Ncl[%d[%d] + %d[%d] + %d[%d]]", nrow[0], rowId[0], nrow[1], rowId[1], nrow[2], rowId[2]));
1053
1054 if(nr==3){
1055 SetBit(kRowCross, kTRUE); // mark pad row crossing
1056 SetErrorMsg(kAttachRow);
1057 const Float_t am[]={TMath::Abs(mean[0]), TMath::Abs(mean[1]), TMath::Abs(mean[2])};
1058 AliDebug(4, Form("complex row configuration\n"
1059 " r[%d] n[%d] m[%6.3f] s[%6.3f]\n"
1060 " r[%d] n[%d] m[%6.3f] s[%6.3f]\n"
1061 " r[%d] n[%d] m[%6.3f] s[%6.3f]\n"
1062 , rowId[0], nrow[0], am[0], syDis[0]
1063 , rowId[1], nrow[1], am[1], syDis[1]
1064 , rowId[2], nrow[2], am[2], syDis[2]));
1065 Int_t id[]={0,1,2}; TMath::Sort(3, am, id, kFALSE);
1066 // backup
1067 Int_t rnn[3]; memcpy(rnn, nrow, 3*sizeof(Int_t));
1068 Int_t rid[3]; memcpy(rid, rowId, 3*sizeof(Int_t));
1069 Double_t rm[3]; memcpy(rm, mean, 3*sizeof(Double_t));
1070 Double_t rs[3]; memcpy(rs, syDis, 3*sizeof(Double_t));
1071 nrow[0]=rnn[id[0]]; rowId[0]=rid[id[0]]; mean[0]=rm[id[0]]; syDis[0]=rs[id[0]];
1072 nrow[1]=rnn[id[1]]; rowId[1]=rid[id[1]]; mean[1]=rm[id[1]]; syDis[1]=rs[id[1]];
1073 nrow[2]=0; rowId[2]=-1; mean[2] = 1.e3; syDis[2] = 1.e3;
1074 AliDebug(4, Form("solved configuration\n"
1075 " r[%d] n[%d] m[%+6.3f] s[%6.3f]\n"
1076 " r[%d] n[%d] m[%+6.3f] s[%6.3f]\n"
1077 " r[%d] n[%d] m[%+6.3f] s[%6.3f]\n"
1078 , rowId[0], nrow[0], mean[0], syDis[0]
1079 , rowId[1], nrow[1], mean[1], syDis[1]
1080 , rowId[2], nrow[2], mean[2], syDis[2]));
1081 nr=2;
1082 } else if(nr==2) {
1083 SetBit(kRowCross, kTRUE); // mark pad row crossing
1084 if(nrow[1] > nrow[0]){ // swap row order
1085 Swap(nrow[0],nrow[1]); Swap(rowId[0],rowId[1]);
1086 Swap(mean[0],mean[1]); Swap(syDis[0],syDis[1]);
1087 }
1088 }
1089
1090 // Select and store clusters
1091 // We should consider here :
1092 // 1. How far is the chamber boundary
1093 // 2. How big is the mean
1094 Int_t n(0); Float_t dyc[kNclusters]; memset(dyc,0,kNclusters*sizeof(Float_t));
1095 for (Int_t ir = 0; ir < nr; ir++) {
1096 Int_t jr(rowId[ir]);
1097 AliDebug(4, Form(" Attaching Ncl[%d]=%d ...", jr, ncl[jr]));
1098 for (Int_t ic = 0; ic < ncl[jr]; ic++) {
1099 if(!blst[jr][ic])continue;
1100 c = clst[jr][ic];
1101 Int_t it(c->GetPadTime());
1102 Int_t idx(it+kNtb*ir);
1103 if(fClusters[idx]){
1104 AliDebug(4, Form("Many cluster candidates on row[%2d] tb[%2d].", jr, it));
1105 // TODO should save also the information on where the multiplicity happened and its size
1106 SetErrorMsg(kAttachMultipleCl);
1107 // TODO should also compare with mean and sigma for this row
1108 if(yres[jr][ic] > dyc[idx]) continue;
1109 }
1110
1111 // TODO proper indexing of clusters !!
1112 fIndexes[idx] = chamber->GetTB(it)->GetGlobalIndex(idxs[jr][ic]);
1113 fClusters[idx] = c;
1114 dyc[idx] = yres[jr][ic];
1115 n++;
1116 }
1117 }
1118 SetN(n);
1119
1120 // number of minimum numbers of clusters expected for the tracklet
1121 if (GetN() < kClmin){
1122 AliDebug(1, Form("NOT ENOUGH CLUSTERS %d ATTACHED TO THE TRACKLET [min %d] FROM FOUND %d.", GetN(), kClmin, n));
1123 SetErrorMsg(kAttachClAttach);
1124 return kFALSE;
1125 }
1126
1127 // Load calibration parameters for this tracklet
1128 Calibrate();
1129
1130 // calculate dx for time bins in the drift region (calibration aware)
1131 Float_t x[2] = {0.,0.}; Int_t tb[2]={0,0};
1132 for (Int_t it = t0, irp=0; irp<2 && it < AliTRDtrackerV1::GetNTimeBins(); it++) {
1133 if(!fClusters[it]) continue;
1134 x[irp] = fClusters[it]->GetX();
1135 tb[irp] = fClusters[it]->GetLocalTimeBin();
1136 irp++;
1137 }
1138 Int_t dtb = tb[1] - tb[0];
1139 fdX = dtb ? (x[0] - x[1]) / dtb : 0.15;
1140 return kTRUE;
1141}
1142
1143//____________________________________________________________
1144void AliTRDseedV1::Bootstrap(const AliTRDReconstructor *rec)
1145{
1146// Fill in all derived information. It has to be called after recovery from file or HLT.
1147// The primitive data are
1148// - list of clusters
1149// - detector (as the detector will be removed from clusters)
1150// - position of anode wire (fX0) - temporary
1151// - track reference position and direction
1152// - momentum of the track
1153// - time bin length [cm]
1154//
1155// A.Bercuci <A.Bercuci@gsi.de> Oct 30th 2008
1156//
1157 fkReconstructor = rec;
1158 AliTRDgeometry g;
1159 AliTRDpadPlane *pp = g.GetPadPlane(fDet);
1160 fPad[0] = pp->GetLengthIPad();
1161 fPad[1] = pp->GetWidthIPad();
1162 fPad[2] = TMath::Tan(TMath::DegToRad()*pp->GetTiltingAngle());
1163 //fSnp = fYref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]);
1164 //fTgl = fZref[1];
1165 Int_t n = 0, nshare = 0, nused = 0;
1166 AliTRDcluster **cit = &fClusters[0];
1167 for(Int_t ic = kNclusters; ic--; cit++){
1168 if(!(*cit)) return;
1169 n++;
1170 if((*cit)->IsShared()) nshare++;
1171 if((*cit)->IsUsed()) nused++;
1172 }
1173 SetN(n); SetNUsed(nused); SetNShared(nshare);
1174 Fit();
1175 CookLabels();
1176 GetProbability();
1177}
1178
1179
1180//____________________________________________________________________
1181Bool_t AliTRDseedV1::Fit(Bool_t tilt, Bool_t zcorr)
1182{
1183//
1184// Linear fit of the clusters attached to the tracklet
1185//
1186// Parameters :
1187// - tilt : switch for tilt pad correction of cluster y position based on
1188// the z, dzdx info from outside [default false].
1189// - zcorr : switch for using z information to correct for anisochronity
1190// and a finner error parameterization estimation [default false]
1191// Output :
1192// True if successful
1193//
1194// Detailed description
1195//
1196// Fit in the xy plane
1197//
1198// The fit is performed to estimate the y position of the tracklet and the track
1199// angle in the bending plane. The clusters are represented in the chamber coordinate
1200// system (with respect to the anode wire - see AliTRDtrackerV1::FollowBackProlongation()
1201// on how this is set). The x and y position of the cluster and also their variances
1202// are known from clusterizer level (see AliTRDcluster::GetXloc(), AliTRDcluster::GetYloc(),
1203// AliTRDcluster::GetSX() and AliTRDcluster::GetSY()).
1204// If gaussian approximation is used to calculate y coordinate of the cluster the position
1205// is recalculated taking into account the track angle. The general formula to calculate the
1206// error of cluster position in the gaussian approximation taking into account diffusion and track
1207// inclination is given for TRD by:
1208// BEGIN_LATEX
1209// #sigma^{2}_{y} = #sigma^{2}_{PRF} + #frac{x#delta_{t}^{2}}{(1+tg(#alpha_{L}))^{2}} + #frac{x^{2}tg^{2}(#phi-#alpha_{L})tg^{2}(#alpha_{L})}{12}
1210// END_LATEX
1211//
1212// Since errors are calculated only in the y directions, radial errors (x direction) are mapped to y
1213// by projection i.e.
1214// BEGIN_LATEX
1215// #sigma_{x|y} = tg(#phi) #sigma_{x}
1216// END_LATEX
1217// and also by the lorentz angle correction
1218//
1219// Fit in the xz plane
1220//
1221// The "fit" is performed to estimate the radial position (x direction) where pad row cross happens.
1222// If no pad row crossing the z position is taken from geometry and radial position is taken from the xy
1223// fit (see below).
1224//
1225// There are two methods to estimate the radial position of the pad row cross:
1226// 1. leading cluster radial position : Here the lower part of the tracklet is considered and the last
1227// cluster registered (at radial x0) on this segment is chosen to mark the pad row crossing. The error
1228// of the z estimate is given by :
1229// BEGIN_LATEX
1230// #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12
1231// END_LATEX
1232// The systematic errors for this estimation are generated by the following sources:
1233// - no charge sharing between pad rows is considered (sharp cross)
1234// - missing cluster at row cross (noise peak-up, under-threshold signal etc.).
1235//
1236// 2. charge fit over the crossing point : Here the full energy deposit along the tracklet is considered
1237// to estimate the position of the crossing by a fit in the qx plane. The errors in the q directions are
1238// parameterized as s_q = q^2. The systematic errors for this estimation are generated by the following sources:
1239// - no general model for the qx dependence
1240// - physical fluctuations of the charge deposit
1241// - gain calibration dependence
1242//
1243// Estimation of the radial position of the tracklet
1244//
1245// For pad row cross the radial position is taken from the xz fit (see above). Otherwise it is taken as the
1246// interpolation point of the tracklet i.e. the point where the error in y of the fit is minimum. The error
1247// in the y direction of the tracklet is (see AliTRDseedV1::GetCovAt()):
1248// BEGIN_LATEX
1249// #sigma_{y} = #sigma^{2}_{y_{0}} + 2xcov(y_{0}, dy/dx) + #sigma^{2}_{dy/dx}
1250// END_LATEX
1251// and thus the radial position is:
1252// BEGIN_LATEX
1253// x = - cov(y_{0}, dy/dx)/#sigma^{2}_{dy/dx}
1254// END_LATEX
1255//
1256// Estimation of tracklet position error
1257//
1258// The error in y direction is the error of the linear fit at the radial position of the tracklet while in the z
1259// direction is given by the cluster error or pad row cross error. In case of no pad row cross this is given by:
1260// BEGIN_LATEX
1261// #sigma_{y} = #sigma^{2}_{y_{0}} - 2cov^{2}(y_{0}, dy/dx)/#sigma^{2}_{dy/dx} + #sigma^{2}_{dy/dx}
1262// #sigma_{z} = Pad_{length}/12
1263// END_LATEX
1264// For pad row cross the full error is calculated at the radial position of the crossing (see above) and the error
1265// in z by the width of the crossing region - being a matter of parameterization.
1266// BEGIN_LATEX
1267// #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12
1268// END_LATEX
1269// In case of no tilt correction (default in the barrel tracking) the tilt is taken into account by the rotation of
1270// the covariance matrix. See AliTRDseedV1::GetCovAt() for details.
1271//
1272// Author
1273// A.Bercuci <A.Bercuci@gsi.de>
1274
1275 if(!fkReconstructor){
1276 AliError("The tracklet needs the reconstruction setup. Please initialize by SetReconstructor().");
1277 return kFALSE;
1278 }
1279 if(!IsCalibrated()) Calibrate();
1280
1281 const Int_t kClmin = 8;
1282
1283 // get track direction
1284 Double_t y0 = fYref[0];
1285 Double_t dydx = fYref[1];
1286 Double_t z0 = fZref[0];
1287 Double_t dzdx = fZref[1];
1288 Double_t yt, zt;
1289
1290 AliTRDtrackerV1::AliTRDLeastSquare fitterY;
1291 AliTRDtrackerV1::AliTRDLeastSquare fitterZ;
1292
1293 // book cluster information
1294 Double_t qc[kNclusters], xc[kNclusters], yc[kNclusters], zc[kNclusters], sy[kNclusters];
1295
1296 Int_t n = 0;
1297 AliTRDcluster *c=NULL, **jc = &fClusters[0];
1298 const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); //the dynamic cast in GetRecoParam is slow, so caching the pointer to it
1299 for (Int_t ic=0; ic<kNtb; ic++, ++jc) {
1300 xc[ic] = -1.;
1301 yc[ic] = 999.;
1302 zc[ic] = 999.;
1303 sy[ic] = 0.;
1304 if(!(c = (*jc))) continue;
1305 if(!c->IsInChamber()) continue;
1306
1307 Float_t w = 1.;
1308 if(c->GetNPads()>4) w = .5;
1309 if(c->GetNPads()>5) w = .2;
1310
1311 // cluster charge
1312 qc[n] = TMath::Abs(c->GetQ());
1313 // pad row of leading
1314
1315 // Radial cluster position
1316 //Int_t jc = TMath::Max(fN-3, 0);
1317 //xc[fN] = c->GetXloc(fT0, fVD, &qc[jc], &xc[jc]/*, z0 - c->GetX()*dzdx*/);
1318 xc[n] = fX0 - c->GetX();
1319
1320 // extrapolated track to cluster position
1321 yt = y0 - xc[n]*dydx;
1322 zt = z0 - xc[n]*dzdx;
1323
1324 // Recalculate cluster error based on tracking information
1325 c->SetSigmaY2(fS2PRF, fDiffT, fExB, xc[n], zcorr?zt:-1., dydx);
1326 sy[n] = TMath::Sqrt(c->GetSigmaY2());
1327
1328 yc[n] = recoParam->UseGAUS() ?
1329 c->GetYloc(y0, sy[n], GetPadWidth()): c->GetY();
1330 zc[n] = c->GetZ();
1331 //optional tilt correction
1332 if(tilt) yc[n] -= (GetTilt()*(zc[n] - zt));
1333
1334 AliDebug(5, Form(" tb[%2d] dx[%6.3f] y[%6.2f+-%6.3f]", c->GetLocalTimeBin(), xc[n], yc[n], sy[n]));
1335 fitterY.AddPoint(&xc[n], yc[n], sy[n]);
1336 if(IsRowCross()) fitterZ.AddPoint(&xc[n], qc[n], 1.);
1337 n++;
1338 }
1339
1340 // to few clusters
1341 if (n < kClmin) return kFALSE;
1342
1343 // fit XY
1344 if(!fitterY.Eval()){
1345 SetErrorMsg(kFitFailed);
1346 return kFALSE;
1347 }
1348 fYfit[0] = fitterY.GetFunctionParameter(0);
1349 fYfit[1] = -fitterY.GetFunctionParameter(1);
1350 // store covariance
1351 Double_t p[3];
1352 fitterY.GetCovarianceMatrix(p);
1353 fCov[0] = p[1]; // variance of y0
1354 fCov[1] = p[2]; // covariance of y0, dydx
1355 fCov[2] = p[0]; // variance of dydx
1356 // the ref radial position is set at the minimum of
1357 // the y variance of the tracklet
1358 fX = -fCov[1]/fCov[2];
1359 Float_t xs=fX+.5*AliTRDgeometry::CamHght();
1360 if(xs < 0. || xs > AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght()){
1361 AliDebug(1, Form("Ref radial position ouside chamber x[%5.2f].", fX));
1362 SetErrorMsg(kFitOutside);
1363 return kFALSE;
1364 }
1365
1366 // collect second row clusters
1367 Int_t m(0);
1368 if(IsRowCross()){
1369/* // THE LEADING CLUSTER METHOD
1370 Float_t xMin = fX0;
1371 Int_t ic=n=kNclusters-1; jc = &fClusters[ic];
1372 AliTRDcluster *c0 =0x0, **kc = &fClusters[kNtb-1];
1373 for(; ic>kNtb; ic--, --jc, --kc){
1374 if((c0 = (*kc)) && c0->IsInChamber() && (xMin>c0->GetX())) xMin = c0->GetX();
1375 if(!(c = (*jc))) continue;
1376 if(!c->IsInChamber()) continue;
1377 zc[kNclusters-1] = c->GetZ();
1378 fX = fX0 - c->GetX();
1379 }
1380 fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.;
1381 // Error parameterization
1382 fS2Z = fdX*fZref[1];
1383 fS2Z *= fS2Z; fS2Z *= 0.2887; // 1/sqrt(12)*/
1384
1385 // THE FIT X-Q PLANE METHOD
1386 Int_t ic=n=kNclusters-1; jc = &fClusters[ic];
1387 for(; ic>kNtb; ic--, --jc){
1388 if(!(c = (*jc))) continue;
1389 if(!c->IsInChamber()) continue;
1390 qc[n] = TMath::Abs(c->GetQ());
1391 xc[n] = fX0 - c->GetX();
1392 zc[n] = c->GetZ();
1393 fitterZ.AddPoint(&xc[n], -qc[n], 1.);
1394 n--;m++;
1395 }
1396 }
1397 // fit XZ
1398 if(m && IsRowCross()){
1399 fitterZ.Eval();
1400 if(fitterZ.GetFunctionParameter(1)!=0.){
1401 fX = -fitterZ.GetFunctionParameter(0)/fitterZ.GetFunctionParameter(1);
1402 fX=(fX<0.)?0.:fX;
1403 Float_t dl = .5*AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght();
1404 fX=(fX> dl)?dl:fX;
1405 fX-=.055; // TODO to be understood
1406 }
1407
1408 fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.;
1409 // temporary external error parameterization
1410 fS2Z = 0.05+0.4*TMath::Abs(fZref[1]); fS2Z *= fS2Z;
1411 // TODO correct formula
1412 //fS2Z = sigma_x*TMath::Abs(fZref[1]);
1413 } else {
1414 if(IsRowCross() && !m){
1415 AliDebug(1, "Tracklet crossed row but no clusters found in neighbor row.");
1416 }
1417 fZfit[0] = zc[0]; fZfit[1] = 0.;
1418 fS2Z = GetPadLength()*GetPadLength()/12.;
1419 }
1420 fS2Y = fCov[0] +2.*fX*fCov[1] + fX*fX*fCov[2];
1421 return kTRUE;
1422}
1423
1424
1425/*
1426//_____________________________________________________________________________
1427void AliTRDseedV1::FitMI()
1428{
1429//
1430// Fit the seed.
1431// Marian Ivanov's version
1432//
1433// linear fit on the y direction with respect to the reference direction.
1434// The residuals for each x (x = xc - x0) are deduced from:
1435// dy = y - yt (1)
1436// the tilting correction is written :
1437// y = yc + h*(zc-zt) (2)
1438// yt = y0+dy/dx*x (3)
1439// zt = z0+dz/dx*x (4)
1440// from (1),(2),(3) and (4)
1441// dy = yc - y0 - (dy/dx + h*dz/dx)*x + h*(zc-z0)
1442// the last term introduces the correction on y direction due to tilting pads. There are 2 ways to account for this:
1443// 1. use tilting correction for calculating the y
1444// 2. neglect tilting correction here and account for it in the error parametrization of the tracklet.
1445 const Float_t kRatio = 0.8;
1446 const Int_t kClmin = 5;
1447 const Float_t kmaxtan = 2;
1448
1449 if (TMath::Abs(fYref[1]) > kmaxtan){
1450 //printf("Exit: Abs(fYref[1]) = %3.3f, kmaxtan = %3.3f\n", TMath::Abs(fYref[1]), kmaxtan);
1451 return; // Track inclined too much
1452 }
1453
1454 Float_t sigmaexp = 0.05 + TMath::Abs(fYref[1] * 0.25); // Expected r.m.s in y direction
1455 Float_t ycrosscor = GetPadLength() * GetTilt() * 0.5; // Y correction for crossing
1456 Int_t fNChange = 0;
1457
1458 Double_t sumw;
1459 Double_t sumwx;
1460 Double_t sumwx2;
1461 Double_t sumwy;
1462 Double_t sumwxy;
1463 Double_t sumwz;
1464 Double_t sumwxz;
1465
1466 // Buffering: Leave it constant fot Performance issues
1467 Int_t zints[kNtb]; // Histograming of the z coordinate
1468 // Get 1 and second max probable coodinates in z
1469 Int_t zouts[2*kNtb];
1470 Float_t allowedz[kNtb]; // Allowed z for given time bin
1471 Float_t yres[kNtb]; // Residuals from reference
1472 //Float_t anglecor = GetTilt() * fZref[1]; // Correction to the angle
1473
1474 Float_t pos[3*kNtb]; memset(pos, 0, 3*kNtb*sizeof(Float_t));
1475 Float_t *fX = &pos[0], *fY = &pos[kNtb], *fZ = &pos[2*kNtb];
1476
1477 Int_t fN = 0; AliTRDcluster *c = 0x0;
1478 fN2 = 0;
1479 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) {
1480 yres[i] = 10000.0;
1481 if (!(c = fClusters[i])) continue;
1482 if(!c->IsInChamber()) continue;
1483 // Residual y
1484 //yres[i] = fY[i] - fYref[0] - (fYref[1] + anglecor) * fX[i] + GetTilt()*(fZ[i] - fZref[0]);
1485 fX[i] = fX0 - c->GetX();
1486 fY[i] = c->GetY();
1487 fZ[i] = c->GetZ();
1488 yres[i] = fY[i] - GetTilt()*(fZ[i] - (fZref[0] - fX[i]*fZref[1]));
1489 zints[fN] = Int_t(fZ[i]);
1490 fN++;
1491 }
1492
1493 if (fN < kClmin){
1494 //printf("Exit fN < kClmin: fN = %d\n", fN);
1495 return;
1496 }
1497 Int_t nz = AliTRDtrackerV1::Freq(fN, zints, zouts, kFALSE);
1498 Float_t fZProb = zouts[0];
1499 if (nz <= 1) zouts[3] = 0;
1500 if (zouts[1] + zouts[3] < kClmin) {
1501 //printf("Exit zouts[1] = %d, zouts[3] = %d\n",zouts[1],zouts[3]);
1502 return;
1503 }
1504
1505 // Z distance bigger than pad - length
1506 if (TMath::Abs(zouts[0]-zouts[2]) > 12.0) zouts[3] = 0;
1507
1508 Int_t breaktime = -1;
1509 Bool_t mbefore = kFALSE;
1510 Int_t cumul[kNtb][2];
1511 Int_t counts[2] = { 0, 0 };
1512
1513 if (zouts[3] >= 3) {
1514
1515 //
1516 // Find the break time allowing one chage on pad-rows
1517 // with maximal number of accepted clusters
1518 //
1519 fNChange = 1;
1520 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) {
1521 cumul[i][0] = counts[0];
1522 cumul[i][1] = counts[1];
1523 if (TMath::Abs(fZ[i]-zouts[0]) < 2) counts[0]++;
1524 if (TMath::Abs(fZ[i]-zouts[2]) < 2) counts[1]++;
1525 }
1526 Int_t maxcount = 0;
1527 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) {
1528 Int_t after = cumul[AliTRDtrackerV1::GetNTimeBins()][0] - cumul[i][0];
1529 Int_t before = cumul[i][1];
1530 if (after + before > maxcount) {
1531 maxcount = after + before;
1532 breaktime = i;
1533 mbefore = kFALSE;
1534 }
1535 after = cumul[AliTRDtrackerV1::GetNTimeBins()-1][1] - cumul[i][1];
1536 before = cumul[i][0];
1537 if (after + before > maxcount) {
1538 maxcount = after + before;
1539 breaktime = i;
1540 mbefore = kTRUE;
1541 }
1542 }
1543 breaktime -= 1;
1544 }
1545
1546 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1547 if (i > breaktime) allowedz[i] = mbefore ? zouts[2] : zouts[0];
1548 if (i <= breaktime) allowedz[i] = (!mbefore) ? zouts[2] : zouts[0];
1549 }
1550
1551 if (((allowedz[0] > allowedz[AliTRDtrackerV1::GetNTimeBins()]) && (fZref[1] < 0)) ||
1552 ((allowedz[0] < allowedz[AliTRDtrackerV1::GetNTimeBins()]) && (fZref[1] > 0))) {
1553 //
1554 // Tracklet z-direction not in correspondance with track z direction
1555 //
1556 fNChange = 0;
1557 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1558 allowedz[i] = zouts[0]; // Only longest taken
1559 }
1560 }
1561
1562 if (fNChange > 0) {
1563 //
1564 // Cross pad -row tracklet - take the step change into account
1565 //
1566 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1567 if (!fClusters[i]) continue;
1568 if(!fClusters[i]->IsInChamber()) continue;
1569 if (TMath::Abs(fZ[i] - allowedz[i]) > 2) continue;
1570 // Residual y
1571 //yres[i] = fY[i] - fYref[0] - (fYref[1] + anglecor) * fX[i] + GetTilt()*(fZ[i] - fZref[0]);
1572 yres[i] = fY[i] - GetTilt()*(fZ[i] - (fZref[0] - fX[i]*fZref[1]));
1573// if (TMath::Abs(fZ[i] - fZProb) > 2) {
1574// if (fZ[i] > fZProb) yres[i] += GetTilt() * GetPadLength();
1575// if (fZ[i] < fZProb) yres[i] -= GetTilt() * GetPadLength();
1576 }
1577 }
1578 }
1579
1580 Double_t yres2[kNtb];
1581 Double_t mean;
1582 Double_t sigma;
1583 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1584 if (!fClusters[i]) continue;
1585 if(!fClusters[i]->IsInChamber()) continue;
1586 if (TMath::Abs(fZ[i] - allowedz[i]) > 2) continue;
1587 yres2[fN2] = yres[i];
1588 fN2++;
1589 }
1590 if (fN2 < kClmin) {
1591 //printf("Exit fN2 < kClmin: fN2 = %d\n", fN2);
1592 fN2 = 0;
1593 return;
1594 }
1595 AliMathBase::EvaluateUni(fN2,yres2,mean,sigma, Int_t(fN2*kRatio-2.));
1596 if (sigma < sigmaexp * 0.8) {
1597 sigma = sigmaexp;
1598 }
1599 //Float_t fSigmaY = sigma;
1600
1601 // Reset sums
1602 sumw = 0;
1603 sumwx = 0;
1604 sumwx2 = 0;
1605 sumwy = 0;
1606 sumwxy = 0;
1607 sumwz = 0;
1608 sumwxz = 0;
1609
1610 fN2 = 0;
1611 Float_t fMeanz = 0;
1612 Float_t fMPads = 0;
1613 fUsable = 0;
1614 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1615 if (!fClusters[i]) continue;
1616 if (!fClusters[i]->IsInChamber()) continue;
1617 if (TMath::Abs(fZ[i] - allowedz[i]) > 2){fClusters[i] = 0x0; continue;}
1618 if (TMath::Abs(yres[i] - mean) > 4.0 * sigma){fClusters[i] = 0x0; continue;}
1619 SETBIT(fUsable,i);
1620 fN2++;
1621 fMPads += fClusters[i]->GetNPads();
1622 Float_t weight = 1.0;
1623 if (fClusters[i]->GetNPads() > 4) weight = 0.5;
1624 if (fClusters[i]->GetNPads() > 5) weight = 0.2;
1625
1626
1627 Double_t x = fX[i];
1628 //printf("x = %7.3f dy = %7.3f fit %7.3f\n", x, yres[i], fY[i]-yres[i]);
1629
1630 sumw += weight;
1631 sumwx += x * weight;
1632 sumwx2 += x*x * weight;
1633 sumwy += weight * yres[i];
1634 sumwxy += weight * (yres[i]) * x;
1635 sumwz += weight * fZ[i];
1636 sumwxz += weight * fZ[i] * x;
1637
1638 }
1639
1640 if (fN2 < kClmin){
1641 //printf("Exit fN2 < kClmin(2): fN2 = %d\n",fN2);
1642 fN2 = 0;
1643 return;
1644 }
1645 fMeanz = sumwz / sumw;
1646 Float_t correction = 0;
1647 if (fNChange > 0) {
1648 // Tracklet on boundary
1649 if (fMeanz < fZProb) correction = ycrosscor;
1650 if (fMeanz > fZProb) correction = -ycrosscor;
1651 }
1652
1653 Double_t det = sumw * sumwx2 - sumwx * sumwx;
1654 fYfit[0] = (sumwx2 * sumwy - sumwx * sumwxy) / det;
1655 fYfit[1] = (sumw * sumwxy - sumwx * sumwy) / det;
1656
1657 fS2Y = 0;
1658 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1659 if (!TESTBIT(fUsable,i)) continue;
1660 Float_t delta = yres[i] - fYfit[0] - fYfit[1] * fX[i];
1661 fS2Y += delta*delta;
1662 }
1663 fS2Y = TMath::Sqrt(fS2Y / Float_t(fN2-2));
1664 // TEMPORARY UNTIL covariance properly calculated
1665 fS2Y = TMath::Max(fS2Y, Float_t(.1));
1666
1667 fZfit[0] = (sumwx2 * sumwz - sumwx * sumwxz) / det;
1668 fZfit[1] = (sumw * sumwxz - sumwx * sumwz) / det;
1669// fYfitR[0] += fYref[0] + correction;
1670// fYfitR[1] += fYref[1];
1671// fYfit[0] = fYfitR[0];
1672 fYfit[1] = -fYfit[1];
1673
1674 UpdateUsed();
1675}*/
1676
1677//___________________________________________________________________
1678void AliTRDseedV1::Print(Option_t *o) const
1679{
1680 //
1681 // Printing the seedstatus
1682 //
1683
1684 AliInfo(Form("Det[%3d] X0[%7.2f] Pad{L[%5.2f] W[%5.2f] Tilt[%+6.2f]}", fDet, fX0, GetPadLength(), GetPadWidth(), GetTilt()));
1685 AliInfo(Form("N[%2d] Nused[%2d] Nshared[%2d] [%d]", GetN(), GetNUsed(), GetNShared(), fN));
1686 AliInfo(Form("FLAGS : RC[%c] Kink[%c] SA[%c]", IsRowCross()?'y':'n', IsKink()?'y':'n', IsStandAlone()?'y':'n'));
1687 AliInfo(Form("CALIB PARAMS : T0[%5.2f] Vd[%5.2f] s2PRF[%5.2f] ExB[%5.2f] Dl[%5.2f] Dt[%5.2f]", fT0, fVD, fS2PRF, fExB, fDiffL, fDiffT));
1688
1689 Double_t cov[3], x=GetX();
1690 GetCovAt(x, cov);
1691 AliInfo(" | x[cm] | y[cm] | z[cm] | dydx | dzdx |");
1692 AliInfo(Form("Fit | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | ----- |", x, GetY(), TMath::Sqrt(cov[0]), GetZ(), TMath::Sqrt(cov[2]), fYfit[1]));
1693 AliInfo(Form("Ref | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | %5.2f |", x, fYref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[0]), fZref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[2]), fYref[1], fZref[1]))
1694 AliInfo(Form("P / Pt [GeV/c] = %f / %f", GetMomentum(), fPt));
1695 AliInfo(Form("dEdx [a.u.] = %f / %f / %f / %f / %f/ %f / %f / %f", fdEdx[0], fdEdx[1], fdEdx[2], fdEdx[3], fdEdx[4], fdEdx[5], fdEdx[6], fdEdx[7]));
1696 AliInfo(Form("PID = %5.3f / %5.3f / %5.3f / %5.3f / %5.3f", fProb[0], fProb[1], fProb[2], fProb[3], fProb[4]));
1697
1698 if(strcmp(o, "a")!=0) return;
1699
1700 AliTRDcluster* const* jc = &fClusters[0];
1701 for(int ic=0; ic<kNclusters; ic++, jc++) {
1702 if(!(*jc)) continue;
1703 (*jc)->Print(o);
1704 }
1705}
1706
1707
1708//___________________________________________________________________
1709Bool_t AliTRDseedV1::IsEqual(const TObject *o) const
1710{
1711 // Checks if current instance of the class has the same essential members
1712 // as the given one
1713
1714 if(!o) return kFALSE;
1715 const AliTRDseedV1 *inTracklet = dynamic_cast<const AliTRDseedV1*>(o);
1716 if(!inTracklet) return kFALSE;
1717
1718 for (Int_t i = 0; i < 2; i++){
1719 if ( fYref[i] != inTracklet->fYref[i] ) return kFALSE;
1720 if ( fZref[i] != inTracklet->fZref[i] ) return kFALSE;
1721 }
1722
1723 if ( fS2Y != inTracklet->fS2Y ) return kFALSE;
1724 if ( GetTilt() != inTracklet->GetTilt() ) return kFALSE;
1725 if ( GetPadLength() != inTracklet->GetPadLength() ) return kFALSE;
1726
1727 for (Int_t i = 0; i < kNclusters; i++){
1728// if ( fX[i] != inTracklet->GetX(i) ) return kFALSE;
1729// if ( fY[i] != inTracklet->GetY(i) ) return kFALSE;
1730// if ( fZ[i] != inTracklet->GetZ(i) ) return kFALSE;
1731 if ( fIndexes[i] != inTracklet->fIndexes[i] ) return kFALSE;
1732 }
1733// if ( fUsable != inTracklet->fUsable ) return kFALSE;
1734
1735 for (Int_t i=0; i < 2; i++){
1736 if ( fYfit[i] != inTracklet->fYfit[i] ) return kFALSE;
1737 if ( fZfit[i] != inTracklet->fZfit[i] ) return kFALSE;
1738 if ( fLabels[i] != inTracklet->fLabels[i] ) return kFALSE;
1739 }
1740
1741/* if ( fMeanz != inTracklet->GetMeanz() ) return kFALSE;
1742 if ( fZProb != inTracklet->GetZProb() ) return kFALSE;*/
1743 if ( fN != inTracklet->fN ) return kFALSE;
1744 //if ( fNUsed != inTracklet->fNUsed ) return kFALSE;
1745 //if ( fFreq != inTracklet->GetFreq() ) return kFALSE;
1746 //if ( fNChange != inTracklet->GetNChange() ) return kFALSE;
1747
1748 if ( fC != inTracklet->fC ) return kFALSE;
1749 //if ( fCC != inTracklet->GetCC() ) return kFALSE;
1750 if ( fChi2 != inTracklet->fChi2 ) return kFALSE;
1751 // if ( fChi2Z != inTracklet->GetChi2Z() ) return kFALSE;
1752
1753 if ( fDet != inTracklet->fDet ) return kFALSE;
1754 if ( fPt != inTracklet->fPt ) return kFALSE;
1755 if ( fdX != inTracklet->fdX ) return kFALSE;
1756
1757 for (Int_t iCluster = 0; iCluster < kNclusters; iCluster++){
1758 AliTRDcluster *curCluster = fClusters[iCluster];
1759 AliTRDcluster *inCluster = inTracklet->fClusters[iCluster];
1760 if (curCluster && inCluster){
1761 if (! curCluster->IsEqual(inCluster) ) {
1762 curCluster->Print();
1763 inCluster->Print();
1764 return kFALSE;
1765 }
1766 } else {
1767 // if one cluster exists, and corresponding
1768 // in other tracklet doesn't - return kFALSE
1769 if(curCluster || inCluster) return kFALSE;
1770 }
1771 }
1772 return kTRUE;
1773}
1774