]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - TRD/AliTRDseedV1.cxx
correct conversion of run type from esd into eventspecie
[u/mrichter/AliRoot.git] / TRD / AliTRDseedV1.cxx
... / ...
CommitLineData
1/**************************************************************************
2* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3* *
4* Author: The ALICE Off-line Project. *
5* Contributors are mentioned in the code where appropriate. *
6* *
7* Permission to use, copy, modify and distribute this software and its *
8* documentation strictly for non-commercial purposes is hereby granted *
9* without fee, provided that the above copyright notice appears in all *
10* copies and that both the copyright notice and this permission notice *
11* appear in the supporting documentation. The authors make no claims *
12* about the suitability of this software for any purpose. It is *
13* provided "as is" without express or implied warranty. *
14**************************************************************************/
15
16/* $Id$ */
17
18////////////////////////////////////////////////////////////////////////////
19////
20// The TRD offline tracklet
21//
22// The running horse of the TRD reconstruction. The following tasks are preformed:
23// 1. Clusters attachment to tracks based on prior information stored at tracklet level (see AttachClusters)
24// 2. Clusters position recalculation based on track information (see GetClusterXY and Fit)
25// 3. Cluster error parametrization recalculation (see Fit)
26// 4. Linear track approximation (Fit)
27// 5. Optimal position (including z estimate for pad row cross tracklets) and covariance matrix of the track fit inside one TRD chamber (Fit)
28// 6. Tilt pad correction and systematic effects (GetCovAt)
29// 7. dEdx calculation (CookdEdx)
30// 8. PID probabilities estimation (CookPID)
31//
32// Authors: //
33// Alex Bercuci <A.Bercuci@gsi.de> //
34// Markus Fasel <M.Fasel@gsi.de> //
35// //
36////////////////////////////////////////////////////////////////////////////
37
38#include "TMath.h"
39#include <TTreeStream.h>
40
41#include "AliLog.h"
42#include "AliMathBase.h"
43#include "AliCDBManager.h"
44#include "AliTracker.h"
45
46#include "AliTRDpadPlane.h"
47#include "AliTRDcluster.h"
48#include "AliTRDseedV1.h"
49#include "AliTRDtrackV1.h"
50#include "AliTRDcalibDB.h"
51#include "AliTRDchamberTimeBin.h"
52#include "AliTRDtrackingChamber.h"
53#include "AliTRDtrackerV1.h"
54#include "AliTRDrecoParam.h"
55#include "AliTRDCommonParam.h"
56
57#include "Cal/AliTRDCalPID.h"
58#include "Cal/AliTRDCalROC.h"
59#include "Cal/AliTRDCalDet.h"
60
61ClassImp(AliTRDseedV1)
62
63//____________________________________________________________________
64AliTRDseedV1::AliTRDseedV1(Int_t det)
65 :AliTRDtrackletBase()
66 ,fkReconstructor(NULL)
67 ,fClusterIter(NULL)
68 ,fExB(0.)
69 ,fVD(0.)
70 ,fT0(0.)
71 ,fS2PRF(0.)
72 ,fDiffL(0.)
73 ,fDiffT(0.)
74 ,fClusterIdx(0)
75 ,fErrorMsg(0)
76 ,fN(0)
77 ,fDet(det)
78 ,fPt(0.)
79 ,fdX(0.)
80 ,fX0(0.)
81 ,fX(0.)
82 ,fY(0.)
83 ,fZ(0.)
84 ,fS2Y(0.)
85 ,fS2Z(0.)
86 ,fC(0.)
87 ,fChi2(0.)
88{
89 //
90 // Constructor
91 //
92 memset(fIndexes,0xFF,kNclusters*sizeof(fIndexes[0]));
93 memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*));
94 memset(fPad, 0, 3*sizeof(Float_t));
95 fYref[0] = 0.; fYref[1] = 0.;
96 fZref[0] = 0.; fZref[1] = 0.;
97 fYfit[0] = 0.; fYfit[1] = 0.;
98 fZfit[0] = 0.; fZfit[1] = 0.;
99 memset(fdEdx, 0, kNslices*sizeof(Float_t));
100 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++) fProb[ispec] = -1.;
101 fLabels[0]=-1; fLabels[1]=-1; // most freq MC labels
102 fLabels[2]=0; // number of different labels for tracklet
103 memset(fRefCov, 0, 7*sizeof(Double_t));
104 // covariance matrix [diagonal]
105 // default sy = 200um and sz = 2.3 cm
106 fCov[0] = 4.e-4; fCov[1] = 0.; fCov[2] = 5.3;
107 SetStandAlone(kFALSE);
108}
109
110//____________________________________________________________________
111AliTRDseedV1::AliTRDseedV1(const AliTRDseedV1 &ref)
112 :AliTRDtrackletBase((AliTRDtrackletBase&)ref)
113 ,fkReconstructor(NULL)
114 ,fClusterIter(NULL)
115 ,fExB(0.)
116 ,fVD(0.)
117 ,fT0(0.)
118 ,fS2PRF(0.)
119 ,fDiffL(0.)
120 ,fDiffT(0.)
121 ,fClusterIdx(0)
122 ,fErrorMsg(0)
123 ,fN(0)
124 ,fDet(-1)
125 ,fPt(0.)
126 ,fdX(0.)
127 ,fX0(0.)
128 ,fX(0.)
129 ,fY(0.)
130 ,fZ(0.)
131 ,fS2Y(0.)
132 ,fS2Z(0.)
133 ,fC(0.)
134 ,fChi2(0.)
135{
136 //
137 // Copy Constructor performing a deep copy
138 //
139 if(this != &ref){
140 ref.Copy(*this);
141 }
142 SetBit(kOwner, kFALSE);
143 SetStandAlone(ref.IsStandAlone());
144}
145
146
147//____________________________________________________________________
148AliTRDseedV1& AliTRDseedV1::operator=(const AliTRDseedV1 &ref)
149{
150 //
151 // Assignment Operator using the copy function
152 //
153
154 if(this != &ref){
155 ref.Copy(*this);
156 }
157 SetBit(kOwner, kFALSE);
158
159 return *this;
160}
161
162//____________________________________________________________________
163AliTRDseedV1::~AliTRDseedV1()
164{
165 //
166 // Destructor. The RecoParam object belongs to the underlying tracker.
167 //
168
169 //printf("I-AliTRDseedV1::~AliTRDseedV1() : Owner[%s]\n", IsOwner()?"YES":"NO");
170
171 if(IsOwner()) {
172 for(int itb=0; itb<kNclusters; itb++){
173 if(!fClusters[itb]) continue;
174 //AliInfo(Form("deleting c %p @ %d", fClusters[itb], itb));
175 delete fClusters[itb];
176 fClusters[itb] = NULL;
177 }
178 }
179}
180
181//____________________________________________________________________
182void AliTRDseedV1::Copy(TObject &ref) const
183{
184 //
185 // Copy function
186 //
187
188 //AliInfo("");
189 AliTRDseedV1 &target = (AliTRDseedV1 &)ref;
190
191 target.fkReconstructor = fkReconstructor;
192 target.fClusterIter = NULL;
193 target.fExB = fExB;
194 target.fVD = fVD;
195 target.fT0 = fT0;
196 target.fS2PRF = fS2PRF;
197 target.fDiffL = fDiffL;
198 target.fDiffT = fDiffT;
199 target.fClusterIdx = 0;
200 target.fErrorMsg = fErrorMsg;
201 target.fN = fN;
202 target.fDet = fDet;
203 target.fPt = fPt;
204 target.fdX = fdX;
205 target.fX0 = fX0;
206 target.fX = fX;
207 target.fY = fY;
208 target.fZ = fZ;
209 target.fS2Y = fS2Y;
210 target.fS2Z = fS2Z;
211 target.fC = fC;
212 target.fChi2 = fChi2;
213
214 memcpy(target.fIndexes, fIndexes, kNclusters*sizeof(Int_t));
215 memcpy(target.fClusters, fClusters, kNclusters*sizeof(AliTRDcluster*));
216 memcpy(target.fPad, fPad, 3*sizeof(Float_t));
217 target.fYref[0] = fYref[0]; target.fYref[1] = fYref[1];
218 target.fZref[0] = fZref[0]; target.fZref[1] = fZref[1];
219 target.fYfit[0] = fYfit[0]; target.fYfit[1] = fYfit[1];
220 target.fZfit[0] = fZfit[0]; target.fZfit[1] = fZfit[1];
221 memcpy(target.fdEdx, fdEdx, kNslices*sizeof(Float_t));
222 memcpy(target.fProb, fProb, AliPID::kSPECIES*sizeof(Float_t));
223 memcpy(target.fLabels, fLabels, 3*sizeof(Int_t));
224 memcpy(target.fRefCov, fRefCov, 7*sizeof(Double_t));
225 memcpy(target.fCov, fCov, 3*sizeof(Double_t));
226
227 TObject::Copy(ref);
228}
229
230
231//____________________________________________________________
232Bool_t AliTRDseedV1::Init(AliTRDtrackV1 *track)
233{
234// Initialize this tracklet using the track information
235//
236// Parameters:
237// track - the TRD track used to initialize the tracklet
238//
239// Detailed description
240// The function sets the starting point and direction of the
241// tracklet according to the information from the TRD track.
242//
243// Caution
244// The TRD track has to be propagated to the beginning of the
245// chamber where the tracklet will be constructed
246//
247
248 Double_t y, z;
249 if(!track->GetProlongation(fX0, y, z)) return kFALSE;
250 Update(track);
251 return kTRUE;
252}
253
254
255//_____________________________________________________________________________
256void AliTRDseedV1::Reset(Option_t *opt)
257{
258//
259// Reset seed. If option opt="c" is given only cluster arrays are cleared.
260//
261 for(Int_t ic=kNclusters; ic--;) fIndexes[ic] = -1;
262 memset(fClusters, 0, kNclusters*sizeof(AliTRDcluster*));
263 fN=0; SetBit(kRowCross, kFALSE);
264 if(strcmp(opt, "c")==0) return;
265
266 fExB=0.;fVD=0.;fT0=0.;fS2PRF=0.;
267 fDiffL=0.;fDiffT=0.;
268 fClusterIdx=0;
269 fErrorMsg = 0;
270 fDet=-1;
271 fPt=0.;
272 fdX=0.;fX0=0.; fX=0.; fY=0.; fZ=0.;
273 fS2Y=0.; fS2Z=0.;
274 fC=0.; fChi2 = 0.;
275
276 memset(fPad, 0, 3*sizeof(Float_t));
277 fYref[0] = 0.; fYref[1] = 0.;
278 fZref[0] = 0.; fZref[1] = 0.;
279 fYfit[0] = 0.; fYfit[1] = 0.;
280 fZfit[0] = 0.; fZfit[1] = 0.;
281 memset(fdEdx, 0, kNslices*sizeof(Float_t));
282 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++) fProb[ispec] = -1.;
283 fLabels[0]=-1; fLabels[1]=-1; // most freq MC labels
284 fLabels[2]=0; // number of different labels for tracklet
285 memset(fRefCov, 0, 7*sizeof(Double_t));
286 // covariance matrix [diagonal]
287 // default sy = 200um and sz = 2.3 cm
288 fCov[0] = 4.e-4; fCov[1] = 0.; fCov[2] = 5.3;
289}
290
291//____________________________________________________________________
292void AliTRDseedV1::Update(const AliTRDtrackV1 *trk)
293{
294 // update tracklet reference position from the TRD track
295
296 Double_t fSnp = trk->GetSnp();
297 Double_t fTgl = trk->GetTgl();
298 fPt = trk->Pt();
299 Double_t norm =1./TMath::Sqrt((1.-fSnp)*(1.+fSnp));
300 fYref[1] = fSnp*norm;
301 fZref[1] = fTgl*norm;
302 SetCovRef(trk->GetCovariance());
303
304 Double_t dx = trk->GetX() - fX0;
305 fYref[0] = trk->GetY() - dx*fYref[1];
306 fZref[0] = trk->GetZ() - dx*fZref[1];
307}
308
309//_____________________________________________________________________________
310void AliTRDseedV1::UpdateUsed()
311{
312 //
313 // Calculate number of used clusers in the tracklet
314 //
315
316 Int_t nused = 0, nshared = 0;
317 for (Int_t i = kNclusters; i--; ) {
318 if (!fClusters[i]) continue;
319 if(fClusters[i]->IsUsed()){
320 nused++;
321 } else if(fClusters[i]->IsShared()){
322 if(IsStandAlone()) nused++;
323 else nshared++;
324 }
325 }
326 SetNUsed(nused);
327 SetNShared(nshared);
328}
329
330//_____________________________________________________________________________
331void AliTRDseedV1::UseClusters()
332{
333 //
334 // Use clusters
335 //
336 // In stand alone mode:
337 // Clusters which are marked as used or shared from another track are
338 // removed from the tracklet
339 //
340 // In barrel mode:
341 // - Clusters which are used by another track become shared
342 // - Clusters which are attached to a kink track become shared
343 //
344 AliTRDcluster **c = &fClusters[0];
345 for (Int_t ic=kNclusters; ic--; c++) {
346 if(!(*c)) continue;
347 if(IsStandAlone()){
348 if((*c)->IsShared() || (*c)->IsUsed()){
349 if((*c)->IsShared()) SetNShared(GetNShared()-1);
350 else SetNUsed(GetNUsed()-1);
351 (*c) = NULL;
352 fIndexes[ic] = -1;
353 SetN(GetN()-1);
354 continue;
355 }
356 } else {
357 if((*c)->IsUsed() || IsKink()){
358 (*c)->SetShared();
359 continue;
360 }
361 }
362 (*c)->Use();
363 }
364}
365
366
367
368//____________________________________________________________________
369void AliTRDseedV1::CookdEdx(Int_t nslices)
370{
371// Calculates average dE/dx for all slices and store them in the internal array fdEdx.
372//
373// Parameters:
374// nslices : number of slices for which dE/dx should be calculated
375// Output:
376// store results in the internal array fdEdx. This can be accessed with the method
377// AliTRDseedV1::GetdEdx()
378//
379// Detailed description
380// Calculates average dE/dx for all slices. Depending on the PID methode
381// the number of slices can be 3 (LQ) or 8(NN).
382// The calculation of dQ/dl are done using the tracklet fit results (see AliTRDseedV1::GetdQdl(Int_t))
383//
384// The following effects are included in the calculation:
385// 1. calibration values for t0 and vdrift (using x coordinate to calculate slice)
386// 2. cluster sharing (optional see AliTRDrecoParam::SetClusterSharing())
387// 3. cluster size
388//
389
390 memset(fdEdx, 0, kNslices*sizeof(Float_t));
391 const Double_t kDriftLength = (.5 * AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick());
392
393 AliTRDcluster *c(NULL);
394 for(int ic=0; ic<AliTRDtrackerV1::GetNTimeBins(); ic++){
395 if(!(c = fClusters[ic]) && !(c = fClusters[ic+kNtb])) continue;
396 Float_t dx = TMath::Abs(fX0 - c->GetX());
397
398 // Filter clusters for dE/dx calculation
399
400 // 1.consider calibration effects for slice determination
401 Int_t slice;
402 if(dx<kDriftLength){ // TODO should be replaced by c->IsInChamber()
403 slice = Int_t(dx * nslices / kDriftLength);
404 } else slice = c->GetX() < fX0 ? nslices-1 : 0;
405
406
407 // 2. take sharing into account
408 Float_t w = /*c->IsShared() ? .5 :*/ 1.;
409
410 // 3. take into account large clusters TODO
411 //w *= c->GetNPads() > 3 ? .8 : 1.;
412
413 //CHECK !!!
414 fdEdx[slice] += w * GetdQdl(ic); //fdQdl[ic];
415 } // End of loop over clusters
416}
417
418//_____________________________________________________________________________
419void AliTRDseedV1::CookLabels()
420{
421 //
422 // Cook 2 labels for seed
423 //
424
425 Int_t labels[200];
426 Int_t out[200];
427 Int_t nlab = 0;
428 for (Int_t i = 0; i < kNclusters; i++) {
429 if (!fClusters[i]) continue;
430 for (Int_t ilab = 0; ilab < 3; ilab++) {
431 if (fClusters[i]->GetLabel(ilab) >= 0) {
432 labels[nlab] = fClusters[i]->GetLabel(ilab);
433 nlab++;
434 }
435 }
436 }
437
438 fLabels[2] = AliMathBase::Freq(nlab,labels,out,kTRUE);
439 fLabels[0] = out[0];
440 if ((fLabels[2] > 1) && (out[3] > 1)) fLabels[1] = out[2];
441}
442
443
444//____________________________________________________________________
445Float_t AliTRDseedV1::GetdQdl(Int_t ic, Float_t *dl) const
446{
447// Using the linear approximation of the track inside one TRD chamber (TRD tracklet)
448// the charge per unit length can be written as:
449// BEGIN_LATEX
450// #frac{dq}{dl} = #frac{q_{c}}{dx * #sqrt{1 + #(){#frac{dy}{dx}}^{2}_{fit} + #(){#frac{dz}{dx}}^{2}_{ref}}}
451// END_LATEX
452// where qc is the total charge collected in the current time bin and dx is the length
453// of the time bin.
454// The following correction are applied :
455// - charge : pad row cross corrections
456// [diffusion and TRF assymetry] TODO
457// - dx : anisochronity, track inclination - see Fit and AliTRDcluster::GetXloc()
458// and AliTRDcluster::GetYloc() for the effects taken into account
459//
460//Begin_Html
461//<img src="TRD/trackletDQDT.gif">
462//End_Html
463// In the picture the energy loss measured on the tracklet as a function of drift time [left] and respectively
464// drift length [right] for different particle species is displayed.
465// Author : Alex Bercuci <A.Bercuci@gsi.de>
466//
467 Float_t dq = 0.;
468 // check whether both clusters are inside the chamber
469 Bool_t hasClusterInChamber = kFALSE;
470 if(fClusters[ic] && fClusters[ic]->IsInChamber()){
471 hasClusterInChamber = kTRUE;
472 dq += TMath::Abs(fClusters[ic]->GetQ());
473 }else if(fClusters[ic+kNtb] && fClusters[ic+kNtb]->IsInChamber()){
474 hasClusterInChamber = kTRUE;
475 dq += TMath::Abs(fClusters[ic+kNtb]->GetQ());
476 }
477 if(!hasClusterInChamber) return 0.;
478 if(dq<1.e-3) return 0.;
479
480 Double_t dx = fdX;
481 if(ic-1>=0 && ic+1<kNtb){
482 Float_t x2(0.), x1(0.);
483 // try to estimate upper radial position (find the cluster which is inside the chamber)
484 if(fClusters[ic-1] && fClusters[ic-1]->IsInChamber()) x2 = fClusters[ic-1]->GetX();
485 else if(fClusters[ic-1+kNtb] && fClusters[ic-1+kNtb]->IsInChamber()) x2 = fClusters[ic-1+kNtb]->GetX();
486 else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x2 = fClusters[ic]->GetX()+fdX;
487 else x2 = fClusters[ic+kNtb]->GetX()+fdX;
488 // try to estimate lower radial position (find the cluster which is inside the chamber)
489 if(fClusters[ic+1] && fClusters[ic+1]->IsInChamber()) x1 = fClusters[ic+1]->GetX();
490 else if(fClusters[ic+1+kNtb] && fClusters[ic+1+kNtb]->IsInChamber()) x1 = fClusters[ic+1+kNtb]->GetX();
491 else if(fClusters[ic] && fClusters[ic]->IsInChamber()) x1 = fClusters[ic]->GetX()-fdX;
492 else x1 = fClusters[ic+kNtb]->GetX()-fdX;
493
494 dx = .5*(x2 - x1);
495 }
496 dx *= TMath::Sqrt(1. + fYfit[1]*fYfit[1] + fZref[1]*fZref[1]);
497 if(dl) (*dl) = dx;
498 if(dx>1.e-9) return dq/dx;
499 else return 0.;
500}
501
502//____________________________________________________________
503Float_t AliTRDseedV1::GetMomentum(Float_t *err) const
504{
505// Returns momentum of the track after update with the current tracklet as:
506// BEGIN_LATEX
507// p=#frac{1}{1/p_{t}} #sqrt{1+tgl^{2}}
508// END_LATEX
509// and optionally the momentum error (if err is not null).
510// The estimated variance of the momentum is given by:
511// BEGIN_LATEX
512// #sigma_{p}^{2} = (#frac{dp}{dp_{t}})^{2} #sigma_{p_{t}}^{2}+(#frac{dp}{dtgl})^{2} #sigma_{tgl}^{2}+2#frac{dp}{dp_{t}}#frac{dp}{dtgl} cov(tgl,1/p_{t})
513// END_LATEX
514// which can be simplified to
515// BEGIN_LATEX
516// #sigma_{p}^{2} = p^{2}p_{t}^{4}tgl^{2}#sigma_{tgl}^{2}-2p^{2}p_{t}^{3}tgl cov(tgl,1/p_{t})+p^{2}p_{t}^{2}#sigma_{1/p_{t}}^{2}
517// END_LATEX
518//
519
520 Double_t p = fPt*TMath::Sqrt(1.+fZref[1]*fZref[1]);
521 Double_t p2 = p*p;
522 Double_t tgl2 = fZref[1]*fZref[1];
523 Double_t pt2 = fPt*fPt;
524 if(err){
525 Double_t s2 =
526 p2*tgl2*pt2*pt2*fRefCov[4]
527 -2.*p2*fZref[1]*fPt*pt2*fRefCov[5]
528 +p2*pt2*fRefCov[6];
529 (*err) = TMath::Sqrt(s2);
530 }
531 return p;
532}
533
534//____________________________________________________________________
535Float_t AliTRDseedV1::GetOccupancyTB() const
536{
537// Returns procentage of TB occupied by clusters
538
539 Int_t n(0);
540 AliTRDcluster *c(NULL);
541 for(int ic=0; ic<AliTRDtrackerV1::GetNTimeBins(); ic++){
542 if(!(c = fClusters[ic]) && !(c = fClusters[ic+kNtb])) continue;
543 n++;
544 }
545
546 return Float_t(n)/AliTRDtrackerV1::GetNTimeBins();
547}
548
549//____________________________________________________________________
550Float_t* AliTRDseedV1::GetProbability(Bool_t force)
551{
552 if(!force) return &fProb[0];
553 if(!CookPID()) return NULL;
554 return &fProb[0];
555}
556
557//____________________________________________________________
558Bool_t AliTRDseedV1::CookPID()
559{
560// Fill probability array for tracklet from the DB.
561//
562// Parameters
563//
564// Output
565// returns pointer to the probability array and NULL if missing DB access
566//
567// Retrieve PID probabilities for e+-, mu+-, K+-, pi+- and p+- from the DB according to tracklet information:
568// - estimated momentum at tracklet reference point
569// - dE/dx measurements
570// - tracklet length
571// - TRD layer
572// According to the steering settings specified in the reconstruction one of the following methods are used
573// - Neural Network [default] - option "nn"
574// - 2D Likelihood - option "!nn"
575
576 AliTRDcalibDB *calibration = AliTRDcalibDB::Instance();
577 if (!calibration) {
578 AliError("No access to calibration data");
579 return kFALSE;
580 }
581
582 if (!fkReconstructor) {
583 AliError("Reconstructor not set.");
584 return kFALSE;
585 }
586
587 // Retrieve the CDB container class with the parametric detector response
588 const AliTRDCalPID *pd = calibration->GetPIDObject(fkReconstructor->GetPIDMethod());
589 if (!pd) {
590 AliError("No access to AliTRDCalPID object");
591 return kFALSE;
592 }
593
594 // calculate tracklet length TO DO
595 Float_t length = (AliTRDgeometry::AmThick() + AliTRDgeometry::DrThick())/ TMath::Sqrt((1.0 - GetSnp()*GetSnp()) / (1.0 + GetTgl()*GetTgl()));
596
597 //calculate dE/dx
598 CookdEdx(AliTRDCalPID::kNSlicesNN);
599 AliDebug(4, Form("p=%6.4f[GeV/c] dEdx{%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f} l=%4.2f[cm]", GetMomentum(), fdEdx[0], fdEdx[1], fdEdx[2], fdEdx[3], fdEdx[4], fdEdx[5], fdEdx[6], fdEdx[7], length));
600
601 // Sets the a priori probabilities
602 Bool_t kPIDNN(fkReconstructor->GetPIDMethod()==AliTRDpidUtil::kNN);
603 for(int ispec=0; ispec<AliPID::kSPECIES; ispec++)
604 fProb[ispec] = pd->GetProbability(ispec, GetMomentum(), &fdEdx[0], length, kPIDNN?GetPlane():fkReconstructor->GetRecoParam()->GetPIDLQslices());
605
606 return kTRUE;
607}
608
609//____________________________________________________________________
610Float_t AliTRDseedV1::GetQuality(Bool_t kZcorr) const
611{
612 //
613 // Returns a quality measurement of the current seed
614 //
615
616 Float_t zcorr = kZcorr ? GetTilt() * (fZfit[0] - fZref[0]) : 0.;
617 return
618 .5 * TMath::Abs(18.0 - GetN())
619 + 10.* TMath::Abs(fYfit[1] - fYref[1])
620 + 5. * TMath::Abs(fYfit[0] - fYref[0] + zcorr)
621 + 2. * TMath::Abs(fZfit[0] - fZref[0]) / GetPadLength();
622}
623
624//____________________________________________________________________
625void AliTRDseedV1::GetCovAt(Double_t x, Double_t *cov) const
626{
627// Computes covariance in the y-z plane at radial point x (in tracking coordinates)
628// and returns the results in the preallocated array cov[3] as :
629// cov[0] = Var(y)
630// cov[1] = Cov(yz)
631// cov[2] = Var(z)
632//
633// Details
634//
635// For the linear transformation
636// BEGIN_LATEX
637// Y = T_{x} X^{T}
638// END_LATEX
639// The error propagation has the general form
640// BEGIN_LATEX
641// C_{Y} = T_{x} C_{X} T_{x}^{T}
642// END_LATEX
643// We apply this formula 2 times. First to calculate the covariance of the tracklet
644// at point x we consider:
645// BEGIN_LATEX
646// T_{x} = (1 x); X=(y0 dy/dx); C_{X}=#(){#splitline{Var(y0) Cov(y0, dy/dx)}{Cov(y0, dy/dx) Var(dy/dx)}}
647// END_LATEX
648// and secondly to take into account the tilt angle
649// BEGIN_LATEX
650// T_{#alpha} = #(){#splitline{cos(#alpha) __ sin(#alpha)}{-sin(#alpha) __ cos(#alpha)}}; X=(y z); C_{X}=#(){#splitline{Var(y) 0}{0 Var(z)}}
651// END_LATEX
652//
653// using simple trigonometrics one can write for this last case
654// BEGIN_LATEX
655// C_{Y}=#frac{1}{1+tg^{2}#alpha} #(){#splitline{(#sigma_{y}^{2}+tg^{2}#alpha#sigma_{z}^{2}) __ tg#alpha(#sigma_{z}^{2}-#sigma_{y}^{2})}{tg#alpha(#sigma_{z}^{2}-#sigma_{y}^{2}) __ (#sigma_{z}^{2}+tg^{2}#alpha#sigma_{y}^{2})}}
656// END_LATEX
657// which can be aproximated for small alphas (2 deg) with
658// BEGIN_LATEX
659// C_{Y}=#(){#splitline{#sigma_{y}^{2} __ (#sigma_{z}^{2}-#sigma_{y}^{2})tg#alpha}{((#sigma_{z}^{2}-#sigma_{y}^{2})tg#alpha __ #sigma_{z}^{2}}}
660// END_LATEX
661//
662// before applying the tilt rotation we also apply systematic uncertainties to the tracklet
663// position which can be tunned from outside via the AliTRDrecoParam::SetSysCovMatrix(). They might
664// account for extra misalignment/miscalibration uncertainties.
665//
666// Author :
667// Alex Bercuci <A.Bercuci@gsi.de>
668// Date : Jan 8th 2009
669//
670
671
672 Double_t xr = fX0-x;
673 Double_t sy2 = fCov[0] +2.*xr*fCov[1] + xr*xr*fCov[2];
674 Double_t sz2 = fS2Z;
675 //GetPadLength()*GetPadLength()/12.;
676
677 // insert systematic uncertainties
678 if(fkReconstructor){
679 Double_t sys[15]; memset(sys, 0, 15*sizeof(Double_t));
680 fkReconstructor->GetRecoParam()->GetSysCovMatrix(sys);
681 sy2 += sys[0];
682 sz2 += sys[1];
683 }
684 // rotate covariance matrix
685 Double_t t2 = GetTilt()*GetTilt();
686 Double_t correction = 1./(1. + t2);
687 cov[0] = (sy2+t2*sz2)*correction;
688 cov[1] = GetTilt()*(sz2 - sy2)*correction;
689 cov[2] = (t2*sy2+sz2)*correction;
690
691 //printf("C(%6.1f %+6.3f %6.1f) [%s]\n", 1.e4*TMath::Sqrt(cov[0]), cov[1], 1.e4*TMath::Sqrt(cov[2]), IsRowCross()?" RC ":"-");
692}
693
694//____________________________________________________________
695Double_t AliTRDseedV1::GetCovSqrt(const Double_t * const c, Double_t *d)
696{
697// Helper function to calculate the square root of the covariance matrix.
698// The input matrix is stored in the vector c and the result in the vector d.
699// Both arrays have to be initialized by the user with at least 3 elements. Return negative in case of failure.
700//
701// For calculating the square root of the symmetric matrix c
702// the following relation is used:
703// BEGIN_LATEX
704// C^{1/2} = VD^{1/2}V^{-1}
705// END_LATEX
706// with V being the matrix with the n eigenvectors as columns.
707// In case C is symmetric the followings are true:
708// - matrix D is diagonal with the diagonal given by the eigenvalues of C
709// - V = V^{-1}
710//
711// Author A.Bercuci <A.Bercuci@gsi.de>
712// Date Mar 19 2009
713
714 Double_t l[2], // eigenvalues
715 v[3]; // eigenvectors
716 // the secular equation and its solution :
717 // (c[0]-L)(c[2]-L)-c[1]^2 = 0
718 // L^2 - L*Tr(c)+DET(c) = 0
719 // L12 = [Tr(c) +- sqrt(Tr(c)^2-4*DET(c))]/2
720 Double_t tr = c[0]+c[2], // trace
721 det = c[0]*c[2]-c[1]*c[1]; // determinant
722 if(TMath::Abs(det)<1.e-20) return -1.;
723 Double_t dd = TMath::Sqrt(tr*tr - 4*det);
724 l[0] = .5*(tr + dd);
725 l[1] = .5*(tr - dd);
726 if(l[0]<0. || l[1]<0.) return -1.;
727
728 // the sym V matrix
729 // | v00 v10|
730 // | v10 v11|
731 Double_t tmp = (l[0]-c[0])/c[1];
732 v[0] = TMath::Sqrt(1./(tmp*tmp+1));
733 v[1] = tmp*v[0];
734 v[2] = v[1]*c[1]/(l[1]-c[2]);
735 // the VD^{1/2}V is:
736 l[0] = TMath::Sqrt(l[0]); l[1] = TMath::Sqrt(l[1]);
737 d[0] = v[0]*v[0]*l[0]+v[1]*v[1]*l[1];
738 d[1] = v[0]*v[1]*l[0]+v[1]*v[2]*l[1];
739 d[2] = v[1]*v[1]*l[0]+v[2]*v[2]*l[1];
740
741 return 1.;
742}
743
744//____________________________________________________________
745Double_t AliTRDseedV1::GetCovInv(const Double_t * const c, Double_t *d)
746{
747// Helper function to calculate the inverse of the covariance matrix.
748// The input matrix is stored in the vector c and the result in the vector d.
749// Both arrays have to be initialized by the user with at least 3 elements
750// The return value is the determinant or 0 in case of singularity.
751//
752// Author A.Bercuci <A.Bercuci@gsi.de>
753// Date Mar 19 2009
754
755 Double_t det = c[0]*c[2] - c[1]*c[1];
756 if(TMath::Abs(det)<1.e-20) return 0.;
757 Double_t invDet = 1./det;
758 d[0] = c[2]*invDet;
759 d[1] =-c[1]*invDet;
760 d[2] = c[0]*invDet;
761 return det;
762}
763
764//____________________________________________________________________
765UShort_t AliTRDseedV1::GetVolumeId() const
766{
767 for(Int_t ic(0);ic<kNclusters; ic++){
768 if(fClusters[ic]) return fClusters[ic]->GetVolumeId();
769 }
770 return 0;
771}
772
773
774//____________________________________________________________________
775void AliTRDseedV1::Calibrate()
776{
777// Retrieve calibration and position parameters from OCDB.
778// The following information are used
779// - detector index
780// - column and row position of first attached cluster. If no clusters are attached
781// to the tracklet a random central chamber position (c=70, r=7) will be used.
782//
783// The following information is cached in the tracklet
784// t0 (trigger delay)
785// drift velocity
786// PRF width
787// omega*tau = tg(a_L)
788// diffusion coefficients (longitudinal and transversal)
789//
790// Author :
791// Alex Bercuci <A.Bercuci@gsi.de>
792// Date : Jan 8th 2009
793//
794
795 AliCDBManager *cdb = AliCDBManager::Instance();
796 if(cdb->GetRun() < 0){
797 AliError("OCDB manager not properly initialized");
798 return;
799 }
800
801 AliTRDcalibDB *calib = AliTRDcalibDB::Instance();
802 AliTRDCalROC *vdROC = calib->GetVdriftROC(fDet),
803 *t0ROC = calib->GetT0ROC(fDet);;
804 const AliTRDCalDet *vdDet = calib->GetVdriftDet();
805 const AliTRDCalDet *t0Det = calib->GetT0Det();
806
807 Int_t col = 70, row = 7;
808 AliTRDcluster **c = &fClusters[0];
809 if(GetN()){
810 Int_t ic = 0;
811 while (ic<kNclusters && !(*c)){ic++; c++;}
812 if(*c){
813 col = (*c)->GetPadCol();
814 row = (*c)->GetPadRow();
815 }
816 }
817
818 fT0 = (t0Det->GetValue(fDet) + t0ROC->GetValue(col,row)) / AliTRDCommonParam::Instance()->GetSamplingFrequency();
819 fVD = vdDet->GetValue(fDet) * vdROC->GetValue(col, row);
820 fS2PRF = calib->GetPRFWidth(fDet, col, row); fS2PRF *= fS2PRF;
821 fExB = AliTRDCommonParam::Instance()->GetOmegaTau(fVD);
822 AliTRDCommonParam::Instance()->GetDiffCoeff(fDiffL,
823 fDiffT, fVD);
824 AliDebug(4, Form("Calibration params for Det[%3d] Col[%3d] Row[%2d]\n t0[%f] vd[%f] s2PRF[%f] ExB[%f] Dl[%f] Dt[%f]", fDet, col, row, fT0, fVD, fS2PRF, fExB, fDiffL, fDiffT));
825
826
827 SetBit(kCalib, kTRUE);
828}
829
830//____________________________________________________________________
831void AliTRDseedV1::SetOwner()
832{
833 //AliInfo(Form("own [%s] fOwner[%s]", own?"YES":"NO", fOwner?"YES":"NO"));
834
835 if(TestBit(kOwner)) return;
836 for(int ic=0; ic<kNclusters; ic++){
837 if(!fClusters[ic]) continue;
838 fClusters[ic] = new AliTRDcluster(*fClusters[ic]);
839 }
840 SetBit(kOwner);
841}
842
843//____________________________________________________________
844void AliTRDseedV1::SetPadPlane(AliTRDpadPlane *p)
845{
846// Shortcut method to initialize pad geometry.
847 if(!p) return;
848 SetTilt(TMath::Tan(TMath::DegToRad()*p->GetTiltingAngle()));
849 SetPadLength(p->GetLengthIPad());
850 SetPadWidth(p->GetWidthIPad());
851}
852
853
854//____________________________________________________________________
855Bool_t AliTRDseedV1::AttachClusters(AliTRDtrackingChamber *const chamber, Bool_t tilt)
856{
857//
858// Projective algorithm to attach clusters to seeding tracklets. The following steps are performed :
859// 1. Collapse x coordinate for the full detector plane
860// 2. truncated mean on y (r-phi) direction
861// 3. purge clusters
862// 4. truncated mean on z direction
863// 5. purge clusters
864//
865// Parameters
866// - chamber : pointer to tracking chamber container used to search the tracklet
867// - tilt : switch for tilt correction during road building [default true]
868// Output
869// - true : if tracklet found successfully. Failure can happend because of the following:
870// -
871// Detailed description
872//
873// We start up by defining the track direction in the xy plane and roads. The roads are calculated based
874// on tracking information (variance in the r-phi direction) and estimated variance of the standard
875// clusters (see AliTRDcluster::SetSigmaY2()) corrected for tilt (see GetCovAt()). From this the road is
876// BEGIN_LATEX
877// r_{y} = 3*#sqrt{12*(#sigma^{2}_{Trk}(y) + #frac{#sigma^{2}_{cl}(y) + tg^{2}(#alpha_{L})#sigma^{2}_{cl}(z)}{1+tg^{2}(#alpha_{L})})}
878// r_{z} = 1.5*L_{pad}
879// END_LATEX
880//
881// Author : Alexandru Bercuci <A.Bercuci@gsi.de>
882// Debug : level >3
883
884 const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); //the dynamic cast in GetRecoParam is slow, so caching the pointer to it
885
886 if(!recoParam){
887 AliError("Tracklets can not be used without a valid RecoParam.");
888 return kFALSE;
889 }
890 // Initialize reco params for this tracklet
891 // 1. first time bin in the drift region
892 Int_t t0 = 14;
893 Int_t kClmin = Int_t(recoParam->GetFindableClusters()*AliTRDtrackerV1::GetNTimeBins());
894
895 Double_t sysCov[5]; recoParam->GetSysCovMatrix(sysCov);
896 Double_t s2yTrk= fRefCov[0],
897 s2yCl = 0.,
898 s2zCl = GetPadLength()*GetPadLength()/12.,
899 syRef = TMath::Sqrt(s2yTrk),
900 t2 = GetTilt()*GetTilt();
901 //define roads
902 Double_t kroady = 1., //recoParam->GetRoad1y();
903 kroadz = GetPadLength() * recoParam->GetRoadzMultiplicator() + 1.;
904 // define probing cluster (the perfect cluster) and default calibration
905 Short_t sig[] = {0, 0, 10, 30, 10, 0,0};
906 AliTRDcluster cp(fDet, 6, 75, 0, sig, 0);
907 if(fkReconstructor->IsHLT()) cp.SetRPhiMethod(AliTRDcluster::kCOG);
908 if(!IsCalibrated()) Calibrate();
909
910 AliDebug(4, "");
911 AliDebug(4, Form("syKalman[%f] rY[%f] rZ[%f]", syRef, kroady, kroadz));
912
913 // working variables
914 const Int_t kNrows = 16;
915 const Int_t kNcls = 3*kNclusters; // buffer size
916 AliTRDcluster *clst[kNrows][kNcls];
917 Bool_t blst[kNrows][kNcls];
918 Double_t cond[4], dx, dy, yt, zt, yres[kNrows][kNcls];
919 Int_t idxs[kNrows][kNcls], ncl[kNrows], ncls = 0;
920 memset(ncl, 0, kNrows*sizeof(Int_t));
921 memset(yres, 0, kNrows*kNcls*sizeof(Double_t));
922 memset(blst, 0, kNrows*kNcls*sizeof(Bool_t)); //this is 8 times faster to memset than "memset(clst, 0, kNrows*kNcls*sizeof(AliTRDcluster*))"
923
924 // Do cluster projection
925 AliTRDcluster *c = NULL;
926 AliTRDchamberTimeBin *layer = NULL;
927 Bool_t kBUFFER = kFALSE;
928 for (Int_t it = 0; it < kNtb; it++) {
929 if(!(layer = chamber->GetTB(it))) continue;
930 if(!Int_t(*layer)) continue;
931 // get track projection at layers position
932 dx = fX0 - layer->GetX();
933 yt = fYref[0] - fYref[1] * dx;
934 zt = fZref[0] - fZref[1] * dx;
935 // get standard cluster error corrected for tilt
936 cp.SetLocalTimeBin(it);
937 cp.SetSigmaY2(0.02, fDiffT, fExB, dx, -1./*zt*/, fYref[1]);
938 s2yCl = (cp.GetSigmaY2() + sysCov[0] + t2*s2zCl)/(1.+t2);
939 // get estimated road
940 kroady = 3.*TMath::Sqrt(12.*(s2yTrk + s2yCl));
941
942 AliDebug(5, Form(" %2d x[%f] yt[%f] zt[%f]", it, dx, yt, zt));
943
944 AliDebug(5, Form(" syTrk[um]=%6.2f syCl[um]=%6.2f syClTlt[um]=%6.2f Ry[mm]=%f", 1.e4*TMath::Sqrt(s2yTrk), 1.e4*TMath::Sqrt(cp.GetSigmaY2()), 1.e4*TMath::Sqrt(s2yCl), 1.e1*kroady));
945
946 // select clusters
947 cond[0] = yt; cond[2] = kroady;
948 cond[1] = zt; cond[3] = kroadz;
949 Int_t n=0, idx[6];
950 layer->GetClusters(cond, idx, n, 6);
951 for(Int_t ic = n; ic--;){
952 c = (*layer)[idx[ic]];
953 dy = yt - c->GetY();
954 dy += tilt ? GetTilt() * (c->GetZ() - zt) : 0.;
955 // select clusters on a 3 sigmaKalman level
956/* if(tilt && TMath::Abs(dy) > 3.*syRef){
957 printf("too large !!!\n");
958 continue;
959 }*/
960 Int_t r = c->GetPadRow();
961 AliDebug(5, Form(" -> dy[%f] yc[%f] r[%d]", TMath::Abs(dy), c->GetY(), r));
962 clst[r][ncl[r]] = c;
963 blst[r][ncl[r]] = kTRUE;
964 idxs[r][ncl[r]] = idx[ic];
965 yres[r][ncl[r]] = dy;
966 ncl[r]++; ncls++;
967
968 if(ncl[r] >= kNcls) {
969 AliWarning(Form("Cluster candidates row[%d] reached buffer limit[%d]. Some may be lost.", r, kNcls));
970 kBUFFER = kTRUE;
971 break;
972 }
973 }
974 if(kBUFFER) break;
975 }
976 AliDebug(4, Form("Found %d clusters. Processing ...", ncls));
977 if(ncls<kClmin){
978 AliDebug(1, Form("CLUSTERS FOUND %d LESS THAN THRESHOLD %d.", ncls, kClmin));
979 SetErrorMsg(kAttachClFound);
980 return kFALSE;
981 }
982
983 // analyze each row individualy
984 Bool_t kRowSelection(kFALSE);
985 Double_t mean[]={1.e3, 1.e3, 1.3}, syDis[]={1.e3, 1.e3, 1.3};
986 Int_t nrow[] = {0, 0, 0}, rowId[] = {-1, -1, -1}, nr = 0, lr=-1;
987 TVectorD vdy[3];
988 for(Int_t ir=0; ir<kNrows; ir++){
989 if(!(ncl[ir])) continue;
990 if(lr>0 && ir-lr != 1){
991 AliDebug(2, "Rows attached not continuous. Turn on selection.");
992 kRowSelection=kTRUE;
993 }
994
995 AliDebug(5, Form(" r[%d] n[%d]", ir, ncl[ir]));
996 // Evaluate truncated mean on the y direction
997 if(ncl[ir] < 4) continue;
998 AliMathBase::EvaluateUni(ncl[ir], yres[ir], mean[nr], syDis[nr], Int_t(ncl[ir]*.8));
999
1000 // TODO check mean and sigma agains cluster resolution !!
1001 AliDebug(4, Form(" m_%d[%+5.3f (%5.3fs)] s[%f]", nr, mean[nr], TMath::Abs(mean[nr]/syDis[nr]), syDis[nr]));
1002 // remove outliers based on a 3 sigmaDistr level
1003 Bool_t kFOUND = kFALSE;
1004 for(Int_t ic = ncl[ir]; ic--;){
1005 if(yres[ir][ic] - mean[nr] > 3. * syDis[nr]){
1006 blst[ir][ic] = kFALSE; continue;
1007 }
1008 nrow[nr]++; rowId[nr]=ir; kFOUND = kTRUE;
1009 }
1010 if(kFOUND){
1011 vdy[nr].Use(nrow[nr], yres[ir]);
1012 nr++;
1013 }
1014 lr = ir; if(nr>=3) break;
1015 }
1016 if(recoParam->GetStreamLevel(AliTRDrecoParam::kTracker) > 3 && fkReconstructor->IsDebugStreaming()){
1017 TTreeSRedirector &cstreamer = *fkReconstructor->GetDebugStream(AliTRDrecoParam::kTracker);
1018 UChar_t stat(0);
1019 if(IsKink()) SETBIT(stat, 1);
1020 if(IsStandAlone()) SETBIT(stat, 2);
1021 cstreamer << "AttachClusters"
1022 << "stat=" << stat
1023 << "det=" << fDet
1024 << "pt=" << fPt
1025 << "s2y=" << s2yTrk
1026 << "r0=" << rowId[0]
1027 << "dy0=" << &vdy[0]
1028 << "m0=" << mean[0]
1029 << "s0=" << syDis[0]
1030 << "r1=" << rowId[1]
1031 << "dy1=" << &vdy[1]
1032 << "m1=" << mean[1]
1033 << "s1=" << syDis[1]
1034 << "r2=" << rowId[2]
1035 << "dy2=" << &vdy[2]
1036 << "m2=" << mean[2]
1037 << "s2=" << syDis[2]
1038 << "\n";
1039 }
1040
1041
1042 // analyze gap in rows attached
1043 if(kRowSelection){
1044 SetErrorMsg(kAttachRowGap);
1045 Int_t rowRemove(-1);
1046 if(nr==2){ // select based on minimum distance to track projection
1047 if(TMath::Abs(mean[0])<TMath::Abs(mean[1])){
1048 if(nrow[1]>nrow[0]) AliDebug(2, Form("Conflicting mean[%f < %f] but ncl[%d < %d].", TMath::Abs(mean[0]), TMath::Abs(mean[1]), nrow[0], nrow[1]));
1049 }else{
1050 if(nrow[1]<nrow[0]) AliDebug(2, Form("Conflicting mean[%f > %f] but ncl[%d > %d].", TMath::Abs(mean[0]), TMath::Abs(mean[1]), nrow[0], nrow[1]));
1051 Swap(nrow[0],nrow[1]); Swap(rowId[0],rowId[1]);
1052 Swap(mean[0],mean[1]); Swap(syDis[0],syDis[1]);
1053 }
1054 rowRemove=1; nr=1;
1055 } else if(nr==3){ // select based on 2 consecutive rows
1056 if(rowId[1]==rowId[0]+1 && rowId[1]!=rowId[2]-1){
1057 nr=2;rowRemove=2;
1058 } else if(rowId[1]!=rowId[0]+1 && rowId[1]==rowId[2]-1){
1059 Swap(nrow[0],nrow[2]); Swap(rowId[0],rowId[2]);
1060 Swap(mean[0],mean[2]); Swap(syDis[0],syDis[2]);
1061 nr=2; rowRemove=2;
1062 }
1063 }
1064 if(rowRemove>0){nrow[rowRemove]=0; rowId[rowRemove]=-1;}
1065 }
1066 AliDebug(4, Form(" Ncl[%d[%d] + %d[%d] + %d[%d]]", nrow[0], rowId[0], nrow[1], rowId[1], nrow[2], rowId[2]));
1067
1068 if(nr==3){
1069 SetBit(kRowCross, kTRUE); // mark pad row crossing
1070 SetErrorMsg(kAttachRow);
1071 const Float_t am[]={TMath::Abs(mean[0]), TMath::Abs(mean[1]), TMath::Abs(mean[2])};
1072 AliDebug(4, Form("complex row configuration\n"
1073 " r[%d] n[%d] m[%6.3f] s[%6.3f]\n"
1074 " r[%d] n[%d] m[%6.3f] s[%6.3f]\n"
1075 " r[%d] n[%d] m[%6.3f] s[%6.3f]\n"
1076 , rowId[0], nrow[0], am[0], syDis[0]
1077 , rowId[1], nrow[1], am[1], syDis[1]
1078 , rowId[2], nrow[2], am[2], syDis[2]));
1079 Int_t id[]={0,1,2}; TMath::Sort(3, am, id, kFALSE);
1080 // backup
1081 Int_t rnn[3]; memcpy(rnn, nrow, 3*sizeof(Int_t));
1082 Int_t rid[3]; memcpy(rid, rowId, 3*sizeof(Int_t));
1083 Double_t rm[3]; memcpy(rm, mean, 3*sizeof(Double_t));
1084 Double_t rs[3]; memcpy(rs, syDis, 3*sizeof(Double_t));
1085 nrow[0]=rnn[id[0]]; rowId[0]=rid[id[0]]; mean[0]=rm[id[0]]; syDis[0]=rs[id[0]];
1086 nrow[1]=rnn[id[1]]; rowId[1]=rid[id[1]]; mean[1]=rm[id[1]]; syDis[1]=rs[id[1]];
1087 nrow[2]=0; rowId[2]=-1; mean[2] = 1.e3; syDis[2] = 1.e3;
1088 AliDebug(4, Form("solved configuration\n"
1089 " r[%d] n[%d] m[%+6.3f] s[%6.3f]\n"
1090 " r[%d] n[%d] m[%+6.3f] s[%6.3f]\n"
1091 " r[%d] n[%d] m[%+6.3f] s[%6.3f]\n"
1092 , rowId[0], nrow[0], mean[0], syDis[0]
1093 , rowId[1], nrow[1], mean[1], syDis[1]
1094 , rowId[2], nrow[2], mean[2], syDis[2]));
1095 nr=2;
1096 } else if(nr==2) {
1097 SetBit(kRowCross, kTRUE); // mark pad row crossing
1098 if(nrow[1] > nrow[0]){ // swap row order
1099 Swap(nrow[0],nrow[1]); Swap(rowId[0],rowId[1]);
1100 Swap(mean[0],mean[1]); Swap(syDis[0],syDis[1]);
1101 }
1102 }
1103
1104 // Select and store clusters
1105 // We should consider here :
1106 // 1. How far is the chamber boundary
1107 // 2. How big is the mean
1108 Int_t n(0); Float_t dyc[kNclusters]; memset(dyc,0,kNclusters*sizeof(Float_t));
1109 for (Int_t ir = 0; ir < nr; ir++) {
1110 Int_t jr(rowId[ir]);
1111 AliDebug(4, Form(" Attaching Ncl[%d]=%d ...", jr, ncl[jr]));
1112 for (Int_t ic = 0; ic < ncl[jr]; ic++) {
1113 if(!blst[jr][ic])continue;
1114 c = clst[jr][ic];
1115 Int_t it(c->GetPadTime());
1116 Int_t idx(it+kNtb*ir);
1117 if(fClusters[idx]){
1118 AliDebug(4, Form("Many cluster candidates on row[%2d] tb[%2d].", jr, it));
1119 // TODO should save also the information on where the multiplicity happened and its size
1120 SetErrorMsg(kAttachMultipleCl);
1121 // TODO should also compare with mean and sigma for this row
1122 if(yres[jr][ic] > dyc[idx]) continue;
1123 }
1124
1125 // TODO proper indexing of clusters !!
1126 fIndexes[idx] = chamber->GetTB(it)->GetGlobalIndex(idxs[jr][ic]);
1127 fClusters[idx] = c;
1128 dyc[idx] = yres[jr][ic];
1129 n++;
1130 }
1131 }
1132 SetN(n);
1133
1134 // number of minimum numbers of clusters expected for the tracklet
1135 if (GetN() < kClmin){
1136 AliDebug(1, Form("NOT ENOUGH CLUSTERS %d ATTACHED TO THE TRACKLET [min %d] FROM FOUND %d.", GetN(), kClmin, n));
1137 SetErrorMsg(kAttachClAttach);
1138 return kFALSE;
1139 }
1140
1141 // Load calibration parameters for this tracklet
1142 Calibrate();
1143
1144 // calculate dx for time bins in the drift region (calibration aware)
1145 Float_t x[2] = {0.,0.}; Int_t tb[2]={0,0};
1146 for (Int_t it = t0, irp=0; irp<2 && it < AliTRDtrackerV1::GetNTimeBins(); it++) {
1147 if(!fClusters[it]) continue;
1148 x[irp] = fClusters[it]->GetX();
1149 tb[irp] = fClusters[it]->GetLocalTimeBin();
1150 irp++;
1151 }
1152 Int_t dtb = tb[1] - tb[0];
1153 fdX = dtb ? (x[0] - x[1]) / dtb : 0.15;
1154 return kTRUE;
1155}
1156
1157//____________________________________________________________
1158void AliTRDseedV1::Bootstrap(const AliTRDReconstructor *rec)
1159{
1160// Fill in all derived information. It has to be called after recovery from file or HLT.
1161// The primitive data are
1162// - list of clusters
1163// - detector (as the detector will be removed from clusters)
1164// - position of anode wire (fX0) - temporary
1165// - track reference position and direction
1166// - momentum of the track
1167// - time bin length [cm]
1168//
1169// A.Bercuci <A.Bercuci@gsi.de> Oct 30th 2008
1170//
1171 fkReconstructor = rec;
1172 AliTRDgeometry g;
1173 AliTRDpadPlane *pp = g.GetPadPlane(fDet);
1174 fPad[0] = pp->GetLengthIPad();
1175 fPad[1] = pp->GetWidthIPad();
1176 fPad[2] = TMath::Tan(TMath::DegToRad()*pp->GetTiltingAngle());
1177 //fSnp = fYref[1]/TMath::Sqrt(1+fYref[1]*fYref[1]);
1178 //fTgl = fZref[1];
1179 Int_t n = 0, nshare = 0, nused = 0;
1180 AliTRDcluster **cit = &fClusters[0];
1181 for(Int_t ic = kNclusters; ic--; cit++){
1182 if(!(*cit)) return;
1183 n++;
1184 if((*cit)->IsShared()) nshare++;
1185 if((*cit)->IsUsed()) nused++;
1186 }
1187 SetN(n); SetNUsed(nused); SetNShared(nshare);
1188 Fit();
1189 CookLabels();
1190 GetProbability();
1191}
1192
1193
1194//____________________________________________________________________
1195Bool_t AliTRDseedV1::Fit(Bool_t tilt, Bool_t zcorr)
1196{
1197//
1198// Linear fit of the clusters attached to the tracklet
1199//
1200// Parameters :
1201// - tilt : switch for tilt pad correction of cluster y position based on
1202// the z, dzdx info from outside [default false].
1203// - zcorr : switch for using z information to correct for anisochronity
1204// and a finner error parameterization estimation [default false]
1205// Output :
1206// True if successful
1207//
1208// Detailed description
1209//
1210// Fit in the xy plane
1211//
1212// The fit is performed to estimate the y position of the tracklet and the track
1213// angle in the bending plane. The clusters are represented in the chamber coordinate
1214// system (with respect to the anode wire - see AliTRDtrackerV1::FollowBackProlongation()
1215// on how this is set). The x and y position of the cluster and also their variances
1216// are known from clusterizer level (see AliTRDcluster::GetXloc(), AliTRDcluster::GetYloc(),
1217// AliTRDcluster::GetSX() and AliTRDcluster::GetSY()).
1218// If gaussian approximation is used to calculate y coordinate of the cluster the position
1219// is recalculated taking into account the track angle. The general formula to calculate the
1220// error of cluster position in the gaussian approximation taking into account diffusion and track
1221// inclination is given for TRD by:
1222// BEGIN_LATEX
1223// #sigma^{2}_{y} = #sigma^{2}_{PRF} + #frac{x#delta_{t}^{2}}{(1+tg(#alpha_{L}))^{2}} + #frac{x^{2}tg^{2}(#phi-#alpha_{L})tg^{2}(#alpha_{L})}{12}
1224// END_LATEX
1225//
1226// Since errors are calculated only in the y directions, radial errors (x direction) are mapped to y
1227// by projection i.e.
1228// BEGIN_LATEX
1229// #sigma_{x|y} = tg(#phi) #sigma_{x}
1230// END_LATEX
1231// and also by the lorentz angle correction
1232//
1233// Fit in the xz plane
1234//
1235// The "fit" is performed to estimate the radial position (x direction) where pad row cross happens.
1236// If no pad row crossing the z position is taken from geometry and radial position is taken from the xy
1237// fit (see below).
1238//
1239// There are two methods to estimate the radial position of the pad row cross:
1240// 1. leading cluster radial position : Here the lower part of the tracklet is considered and the last
1241// cluster registered (at radial x0) on this segment is chosen to mark the pad row crossing. The error
1242// of the z estimate is given by :
1243// BEGIN_LATEX
1244// #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12
1245// END_LATEX
1246// The systematic errors for this estimation are generated by the following sources:
1247// - no charge sharing between pad rows is considered (sharp cross)
1248// - missing cluster at row cross (noise peak-up, under-threshold signal etc.).
1249//
1250// 2. charge fit over the crossing point : Here the full energy deposit along the tracklet is considered
1251// to estimate the position of the crossing by a fit in the qx plane. The errors in the q directions are
1252// parameterized as s_q = q^2. The systematic errors for this estimation are generated by the following sources:
1253// - no general model for the qx dependence
1254// - physical fluctuations of the charge deposit
1255// - gain calibration dependence
1256//
1257// Estimation of the radial position of the tracklet
1258//
1259// For pad row cross the radial position is taken from the xz fit (see above). Otherwise it is taken as the
1260// interpolation point of the tracklet i.e. the point where the error in y of the fit is minimum. The error
1261// in the y direction of the tracklet is (see AliTRDseedV1::GetCovAt()):
1262// BEGIN_LATEX
1263// #sigma_{y} = #sigma^{2}_{y_{0}} + 2xcov(y_{0}, dy/dx) + #sigma^{2}_{dy/dx}
1264// END_LATEX
1265// and thus the radial position is:
1266// BEGIN_LATEX
1267// x = - cov(y_{0}, dy/dx)/#sigma^{2}_{dy/dx}
1268// END_LATEX
1269//
1270// Estimation of tracklet position error
1271//
1272// The error in y direction is the error of the linear fit at the radial position of the tracklet while in the z
1273// direction is given by the cluster error or pad row cross error. In case of no pad row cross this is given by:
1274// BEGIN_LATEX
1275// #sigma_{y} = #sigma^{2}_{y_{0}} - 2cov^{2}(y_{0}, dy/dx)/#sigma^{2}_{dy/dx} + #sigma^{2}_{dy/dx}
1276// #sigma_{z} = Pad_{length}/12
1277// END_LATEX
1278// For pad row cross the full error is calculated at the radial position of the crossing (see above) and the error
1279// in z by the width of the crossing region - being a matter of parameterization.
1280// BEGIN_LATEX
1281// #sigma_{z} = tg(#theta) #Delta x_{x_{0}}/12
1282// END_LATEX
1283// In case of no tilt correction (default in the barrel tracking) the tilt is taken into account by the rotation of
1284// the covariance matrix. See AliTRDseedV1::GetCovAt() for details.
1285//
1286// Author
1287// A.Bercuci <A.Bercuci@gsi.de>
1288
1289 if(!fkReconstructor){
1290 AliError("The tracklet needs the reconstruction setup. Please initialize by SetReconstructor().");
1291 return kFALSE;
1292 }
1293 if(!IsCalibrated()) Calibrate();
1294
1295 const Int_t kClmin = 8;
1296
1297 // get track direction
1298 Double_t y0 = fYref[0];
1299 Double_t dydx = fYref[1];
1300 Double_t z0 = fZref[0];
1301 Double_t dzdx = fZref[1];
1302 Double_t yt, zt;
1303
1304 AliTRDtrackerV1::AliTRDLeastSquare fitterY;
1305 AliTRDtrackerV1::AliTRDLeastSquare fitterZ;
1306
1307 // book cluster information
1308 Double_t qc[kNclusters], xc[kNclusters], yc[kNclusters], zc[kNclusters], sy[kNclusters];
1309
1310 Int_t n = 0;
1311 AliTRDcluster *c=NULL, **jc = &fClusters[0];
1312 const AliTRDrecoParam* const recoParam = fkReconstructor->GetRecoParam(); //the dynamic cast in GetRecoParam is slow, so caching the pointer to it
1313 for (Int_t ic=0; ic<kNtb; ic++, ++jc) {
1314 xc[ic] = -1.;
1315 yc[ic] = 999.;
1316 zc[ic] = 999.;
1317 sy[ic] = 0.;
1318 if(!(c = (*jc))) continue;
1319 if(!c->IsInChamber()) continue;
1320
1321 Float_t w = 1.;
1322 if(c->GetNPads()>4) w = .5;
1323 if(c->GetNPads()>5) w = .2;
1324
1325 // cluster charge
1326 qc[n] = TMath::Abs(c->GetQ());
1327 // pad row of leading
1328
1329 // Radial cluster position
1330 //Int_t jc = TMath::Max(fN-3, 0);
1331 //xc[fN] = c->GetXloc(fT0, fVD, &qc[jc], &xc[jc]/*, z0 - c->GetX()*dzdx*/);
1332 xc[n] = fX0 - c->GetX();
1333
1334 // extrapolated track to cluster position
1335 yt = y0 - xc[n]*dydx;
1336 zt = z0 - xc[n]*dzdx;
1337
1338 // Recalculate cluster error based on tracking information
1339 c->SetSigmaY2(fS2PRF, fDiffT, fExB, xc[n], zcorr?zt:-1., dydx);
1340 sy[n] = TMath::Sqrt(c->GetSigmaY2());
1341
1342 yc[n] = recoParam->UseGAUS() ?
1343 c->GetYloc(y0, sy[n], GetPadWidth()): c->GetY();
1344 zc[n] = c->GetZ();
1345 //optional tilt correction
1346 if(tilt) yc[n] -= (GetTilt()*(zc[n] - zt));
1347
1348 AliDebug(5, Form(" tb[%2d] dx[%6.3f] y[%6.2f+-%6.3f]", c->GetLocalTimeBin(), xc[n], yc[n], sy[n]));
1349 fitterY.AddPoint(&xc[n], yc[n], sy[n]);
1350 if(IsRowCross()) fitterZ.AddPoint(&xc[n], qc[n], 1.);
1351 n++;
1352 }
1353
1354 // to few clusters
1355 if (n < kClmin) return kFALSE;
1356
1357 // fit XY
1358 if(!fitterY.Eval()){
1359 SetErrorMsg(kFitFailed);
1360 return kFALSE;
1361 }
1362 fYfit[0] = fitterY.GetFunctionParameter(0);
1363 fYfit[1] = -fitterY.GetFunctionParameter(1);
1364 // store covariance
1365 Double_t p[3];
1366 fitterY.GetCovarianceMatrix(p);
1367 fCov[0] = p[1]; // variance of y0
1368 fCov[1] = p[2]; // covariance of y0, dydx
1369 fCov[2] = p[0]; // variance of dydx
1370 // the ref radial position is set at the minimum of
1371 // the y variance of the tracklet
1372 fX = -fCov[1]/fCov[2];
1373 Float_t xs=fX+.5*AliTRDgeometry::CamHght();
1374 if(xs < 0. || xs > AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght()){
1375 AliDebug(1, Form("Ref radial position ouside chamber x[%5.2f].", fX));
1376 SetErrorMsg(kFitOutside);
1377 return kFALSE;
1378 }
1379
1380 // collect second row clusters
1381 Int_t m(0);
1382 if(IsRowCross()){
1383/* // THE LEADING CLUSTER METHOD
1384 Float_t xMin = fX0;
1385 Int_t ic=n=kNclusters-1; jc = &fClusters[ic];
1386 AliTRDcluster *c0 =0x0, **kc = &fClusters[kNtb-1];
1387 for(; ic>kNtb; ic--, --jc, --kc){
1388 if((c0 = (*kc)) && c0->IsInChamber() && (xMin>c0->GetX())) xMin = c0->GetX();
1389 if(!(c = (*jc))) continue;
1390 if(!c->IsInChamber()) continue;
1391 zc[kNclusters-1] = c->GetZ();
1392 fX = fX0 - c->GetX();
1393 }
1394 fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.;
1395 // Error parameterization
1396 fS2Z = fdX*fZref[1];
1397 fS2Z *= fS2Z; fS2Z *= 0.2887; // 1/sqrt(12)*/
1398
1399 // THE FIT X-Q PLANE METHOD
1400 Int_t ic=n=kNclusters-1; jc = &fClusters[ic];
1401 for(; ic>kNtb; ic--, --jc){
1402 if(!(c = (*jc))) continue;
1403 if(!c->IsInChamber()) continue;
1404 qc[n] = TMath::Abs(c->GetQ());
1405 xc[n] = fX0 - c->GetX();
1406 zc[n] = c->GetZ();
1407 fitterZ.AddPoint(&xc[n], -qc[n], 1.);
1408 n--;m++;
1409 }
1410 }
1411 // fit XZ
1412 if(m && IsRowCross()){
1413 fitterZ.Eval();
1414 if(fitterZ.GetFunctionParameter(1)!=0.){
1415 fX = -fitterZ.GetFunctionParameter(0)/fitterZ.GetFunctionParameter(1);
1416 fX=(fX<0.)?0.:fX;
1417 Float_t dl = .5*AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght();
1418 fX=(fX> dl)?dl:fX;
1419 fX-=.055; // TODO to be understood
1420 }
1421
1422 fZfit[0] = .5*(zc[0]+zc[kNclusters-1]); fZfit[1] = 0.;
1423 // temporary external error parameterization
1424 fS2Z = 0.05+0.4*TMath::Abs(fZref[1]); fS2Z *= fS2Z;
1425 // TODO correct formula
1426 //fS2Z = sigma_x*TMath::Abs(fZref[1]);
1427 } else {
1428 if(IsRowCross() && !m){
1429 AliDebug(1, "Tracklet crossed row but no clusters found in neighbor row.");
1430 }
1431 fZfit[0] = zc[0]; fZfit[1] = 0.;
1432 fS2Z = GetPadLength()*GetPadLength()/12.;
1433 }
1434 fS2Y = fCov[0] +2.*fX*fCov[1] + fX*fX*fCov[2];
1435 return kTRUE;
1436}
1437
1438
1439/*
1440//_____________________________________________________________________________
1441void AliTRDseedV1::FitMI()
1442{
1443//
1444// Fit the seed.
1445// Marian Ivanov's version
1446//
1447// linear fit on the y direction with respect to the reference direction.
1448// The residuals for each x (x = xc - x0) are deduced from:
1449// dy = y - yt (1)
1450// the tilting correction is written :
1451// y = yc + h*(zc-zt) (2)
1452// yt = y0+dy/dx*x (3)
1453// zt = z0+dz/dx*x (4)
1454// from (1),(2),(3) and (4)
1455// dy = yc - y0 - (dy/dx + h*dz/dx)*x + h*(zc-z0)
1456// the last term introduces the correction on y direction due to tilting pads. There are 2 ways to account for this:
1457// 1. use tilting correction for calculating the y
1458// 2. neglect tilting correction here and account for it in the error parametrization of the tracklet.
1459 const Float_t kRatio = 0.8;
1460 const Int_t kClmin = 5;
1461 const Float_t kmaxtan = 2;
1462
1463 if (TMath::Abs(fYref[1]) > kmaxtan){
1464 //printf("Exit: Abs(fYref[1]) = %3.3f, kmaxtan = %3.3f\n", TMath::Abs(fYref[1]), kmaxtan);
1465 return; // Track inclined too much
1466 }
1467
1468 Float_t sigmaexp = 0.05 + TMath::Abs(fYref[1] * 0.25); // Expected r.m.s in y direction
1469 Float_t ycrosscor = GetPadLength() * GetTilt() * 0.5; // Y correction for crossing
1470 Int_t fNChange = 0;
1471
1472 Double_t sumw;
1473 Double_t sumwx;
1474 Double_t sumwx2;
1475 Double_t sumwy;
1476 Double_t sumwxy;
1477 Double_t sumwz;
1478 Double_t sumwxz;
1479
1480 // Buffering: Leave it constant fot Performance issues
1481 Int_t zints[kNtb]; // Histograming of the z coordinate
1482 // Get 1 and second max probable coodinates in z
1483 Int_t zouts[2*kNtb];
1484 Float_t allowedz[kNtb]; // Allowed z for given time bin
1485 Float_t yres[kNtb]; // Residuals from reference
1486 //Float_t anglecor = GetTilt() * fZref[1]; // Correction to the angle
1487
1488 Float_t pos[3*kNtb]; memset(pos, 0, 3*kNtb*sizeof(Float_t));
1489 Float_t *fX = &pos[0], *fY = &pos[kNtb], *fZ = &pos[2*kNtb];
1490
1491 Int_t fN = 0; AliTRDcluster *c = 0x0;
1492 fN2 = 0;
1493 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) {
1494 yres[i] = 10000.0;
1495 if (!(c = fClusters[i])) continue;
1496 if(!c->IsInChamber()) continue;
1497 // Residual y
1498 //yres[i] = fY[i] - fYref[0] - (fYref[1] + anglecor) * fX[i] + GetTilt()*(fZ[i] - fZref[0]);
1499 fX[i] = fX0 - c->GetX();
1500 fY[i] = c->GetY();
1501 fZ[i] = c->GetZ();
1502 yres[i] = fY[i] - GetTilt()*(fZ[i] - (fZref[0] - fX[i]*fZref[1]));
1503 zints[fN] = Int_t(fZ[i]);
1504 fN++;
1505 }
1506
1507 if (fN < kClmin){
1508 //printf("Exit fN < kClmin: fN = %d\n", fN);
1509 return;
1510 }
1511 Int_t nz = AliTRDtrackerV1::Freq(fN, zints, zouts, kFALSE);
1512 Float_t fZProb = zouts[0];
1513 if (nz <= 1) zouts[3] = 0;
1514 if (zouts[1] + zouts[3] < kClmin) {
1515 //printf("Exit zouts[1] = %d, zouts[3] = %d\n",zouts[1],zouts[3]);
1516 return;
1517 }
1518
1519 // Z distance bigger than pad - length
1520 if (TMath::Abs(zouts[0]-zouts[2]) > 12.0) zouts[3] = 0;
1521
1522 Int_t breaktime = -1;
1523 Bool_t mbefore = kFALSE;
1524 Int_t cumul[kNtb][2];
1525 Int_t counts[2] = { 0, 0 };
1526
1527 if (zouts[3] >= 3) {
1528
1529 //
1530 // Find the break time allowing one chage on pad-rows
1531 // with maximal number of accepted clusters
1532 //
1533 fNChange = 1;
1534 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) {
1535 cumul[i][0] = counts[0];
1536 cumul[i][1] = counts[1];
1537 if (TMath::Abs(fZ[i]-zouts[0]) < 2) counts[0]++;
1538 if (TMath::Abs(fZ[i]-zouts[2]) < 2) counts[1]++;
1539 }
1540 Int_t maxcount = 0;
1541 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins(); i++) {
1542 Int_t after = cumul[AliTRDtrackerV1::GetNTimeBins()][0] - cumul[i][0];
1543 Int_t before = cumul[i][1];
1544 if (after + before > maxcount) {
1545 maxcount = after + before;
1546 breaktime = i;
1547 mbefore = kFALSE;
1548 }
1549 after = cumul[AliTRDtrackerV1::GetNTimeBins()-1][1] - cumul[i][1];
1550 before = cumul[i][0];
1551 if (after + before > maxcount) {
1552 maxcount = after + before;
1553 breaktime = i;
1554 mbefore = kTRUE;
1555 }
1556 }
1557 breaktime -= 1;
1558 }
1559
1560 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1561 if (i > breaktime) allowedz[i] = mbefore ? zouts[2] : zouts[0];
1562 if (i <= breaktime) allowedz[i] = (!mbefore) ? zouts[2] : zouts[0];
1563 }
1564
1565 if (((allowedz[0] > allowedz[AliTRDtrackerV1::GetNTimeBins()]) && (fZref[1] < 0)) ||
1566 ((allowedz[0] < allowedz[AliTRDtrackerV1::GetNTimeBins()]) && (fZref[1] > 0))) {
1567 //
1568 // Tracklet z-direction not in correspondance with track z direction
1569 //
1570 fNChange = 0;
1571 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1572 allowedz[i] = zouts[0]; // Only longest taken
1573 }
1574 }
1575
1576 if (fNChange > 0) {
1577 //
1578 // Cross pad -row tracklet - take the step change into account
1579 //
1580 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1581 if (!fClusters[i]) continue;
1582 if(!fClusters[i]->IsInChamber()) continue;
1583 if (TMath::Abs(fZ[i] - allowedz[i]) > 2) continue;
1584 // Residual y
1585 //yres[i] = fY[i] - fYref[0] - (fYref[1] + anglecor) * fX[i] + GetTilt()*(fZ[i] - fZref[0]);
1586 yres[i] = fY[i] - GetTilt()*(fZ[i] - (fZref[0] - fX[i]*fZref[1]));
1587// if (TMath::Abs(fZ[i] - fZProb) > 2) {
1588// if (fZ[i] > fZProb) yres[i] += GetTilt() * GetPadLength();
1589// if (fZ[i] < fZProb) yres[i] -= GetTilt() * GetPadLength();
1590 }
1591 }
1592 }
1593
1594 Double_t yres2[kNtb];
1595 Double_t mean;
1596 Double_t sigma;
1597 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1598 if (!fClusters[i]) continue;
1599 if(!fClusters[i]->IsInChamber()) continue;
1600 if (TMath::Abs(fZ[i] - allowedz[i]) > 2) continue;
1601 yres2[fN2] = yres[i];
1602 fN2++;
1603 }
1604 if (fN2 < kClmin) {
1605 //printf("Exit fN2 < kClmin: fN2 = %d\n", fN2);
1606 fN2 = 0;
1607 return;
1608 }
1609 AliMathBase::EvaluateUni(fN2,yres2,mean,sigma, Int_t(fN2*kRatio-2.));
1610 if (sigma < sigmaexp * 0.8) {
1611 sigma = sigmaexp;
1612 }
1613 //Float_t fSigmaY = sigma;
1614
1615 // Reset sums
1616 sumw = 0;
1617 sumwx = 0;
1618 sumwx2 = 0;
1619 sumwy = 0;
1620 sumwxy = 0;
1621 sumwz = 0;
1622 sumwxz = 0;
1623
1624 fN2 = 0;
1625 Float_t fMeanz = 0;
1626 Float_t fMPads = 0;
1627 fUsable = 0;
1628 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1629 if (!fClusters[i]) continue;
1630 if (!fClusters[i]->IsInChamber()) continue;
1631 if (TMath::Abs(fZ[i] - allowedz[i]) > 2){fClusters[i] = 0x0; continue;}
1632 if (TMath::Abs(yres[i] - mean) > 4.0 * sigma){fClusters[i] = 0x0; continue;}
1633 SETBIT(fUsable,i);
1634 fN2++;
1635 fMPads += fClusters[i]->GetNPads();
1636 Float_t weight = 1.0;
1637 if (fClusters[i]->GetNPads() > 4) weight = 0.5;
1638 if (fClusters[i]->GetNPads() > 5) weight = 0.2;
1639
1640
1641 Double_t x = fX[i];
1642 //printf("x = %7.3f dy = %7.3f fit %7.3f\n", x, yres[i], fY[i]-yres[i]);
1643
1644 sumw += weight;
1645 sumwx += x * weight;
1646 sumwx2 += x*x * weight;
1647 sumwy += weight * yres[i];
1648 sumwxy += weight * (yres[i]) * x;
1649 sumwz += weight * fZ[i];
1650 sumwxz += weight * fZ[i] * x;
1651
1652 }
1653
1654 if (fN2 < kClmin){
1655 //printf("Exit fN2 < kClmin(2): fN2 = %d\n",fN2);
1656 fN2 = 0;
1657 return;
1658 }
1659 fMeanz = sumwz / sumw;
1660 Float_t correction = 0;
1661 if (fNChange > 0) {
1662 // Tracklet on boundary
1663 if (fMeanz < fZProb) correction = ycrosscor;
1664 if (fMeanz > fZProb) correction = -ycrosscor;
1665 }
1666
1667 Double_t det = sumw * sumwx2 - sumwx * sumwx;
1668 fYfit[0] = (sumwx2 * sumwy - sumwx * sumwxy) / det;
1669 fYfit[1] = (sumw * sumwxy - sumwx * sumwy) / det;
1670
1671 fS2Y = 0;
1672 for (Int_t i = 0; i < AliTRDtrackerV1::GetNTimeBins()+1; i++) {
1673 if (!TESTBIT(fUsable,i)) continue;
1674 Float_t delta = yres[i] - fYfit[0] - fYfit[1] * fX[i];
1675 fS2Y += delta*delta;
1676 }
1677 fS2Y = TMath::Sqrt(fS2Y / Float_t(fN2-2));
1678 // TEMPORARY UNTIL covariance properly calculated
1679 fS2Y = TMath::Max(fS2Y, Float_t(.1));
1680
1681 fZfit[0] = (sumwx2 * sumwz - sumwx * sumwxz) / det;
1682 fZfit[1] = (sumw * sumwxz - sumwx * sumwz) / det;
1683// fYfitR[0] += fYref[0] + correction;
1684// fYfitR[1] += fYref[1];
1685// fYfit[0] = fYfitR[0];
1686 fYfit[1] = -fYfit[1];
1687
1688 UpdateUsed();
1689}*/
1690
1691//___________________________________________________________________
1692void AliTRDseedV1::Print(Option_t *o) const
1693{
1694 //
1695 // Printing the seedstatus
1696 //
1697
1698 AliInfo(Form("Det[%3d] X0[%7.2f] Pad{L[%5.2f] W[%5.2f] Tilt[%+6.2f]}", fDet, fX0, GetPadLength(), GetPadWidth(), GetTilt()));
1699 AliInfo(Form("N[%2d] Nused[%2d] Nshared[%2d] [%d]", GetN(), GetNUsed(), GetNShared(), fN));
1700 AliInfo(Form("FLAGS : RC[%c] Kink[%c] SA[%c]", IsRowCross()?'y':'n', IsKink()?'y':'n', IsStandAlone()?'y':'n'));
1701 AliInfo(Form("CALIB PARAMS : T0[%5.2f] Vd[%5.2f] s2PRF[%5.2f] ExB[%5.2f] Dl[%5.2f] Dt[%5.2f]", fT0, fVD, fS2PRF, fExB, fDiffL, fDiffT));
1702
1703 Double_t cov[3], x=GetX();
1704 GetCovAt(x, cov);
1705 AliInfo(" | x[cm] | y[cm] | z[cm] | dydx | dzdx |");
1706 AliInfo(Form("Fit | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | ----- |", x, GetY(), TMath::Sqrt(cov[0]), GetZ(), TMath::Sqrt(cov[2]), fYfit[1]));
1707 AliInfo(Form("Ref | %7.2f | %7.2f+-%7.2f | %7.2f+-%7.2f| %5.2f | %5.2f |", x, fYref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[0]), fZref[0]-fX*fYref[1], TMath::Sqrt(fRefCov[2]), fYref[1], fZref[1]))
1708 AliInfo(Form("P / Pt [GeV/c] = %f / %f", GetMomentum(), fPt));
1709 AliInfo(Form("dEdx [a.u.] = %f / %f / %f / %f / %f/ %f / %f / %f", fdEdx[0], fdEdx[1], fdEdx[2], fdEdx[3], fdEdx[4], fdEdx[5], fdEdx[6], fdEdx[7]));
1710 AliInfo(Form("PID = %5.3f / %5.3f / %5.3f / %5.3f / %5.3f", fProb[0], fProb[1], fProb[2], fProb[3], fProb[4]));
1711
1712 if(strcmp(o, "a")!=0) return;
1713
1714 AliTRDcluster* const* jc = &fClusters[0];
1715 for(int ic=0; ic<kNclusters; ic++, jc++) {
1716 if(!(*jc)) continue;
1717 (*jc)->Print(o);
1718 }
1719}
1720
1721
1722//___________________________________________________________________
1723Bool_t AliTRDseedV1::IsEqual(const TObject *o) const
1724{
1725 // Checks if current instance of the class has the same essential members
1726 // as the given one
1727
1728 if(!o) return kFALSE;
1729 const AliTRDseedV1 *inTracklet = dynamic_cast<const AliTRDseedV1*>(o);
1730 if(!inTracklet) return kFALSE;
1731
1732 for (Int_t i = 0; i < 2; i++){
1733 if ( fYref[i] != inTracklet->fYref[i] ) return kFALSE;
1734 if ( fZref[i] != inTracklet->fZref[i] ) return kFALSE;
1735 }
1736
1737 if ( fS2Y != inTracklet->fS2Y ) return kFALSE;
1738 if ( GetTilt() != inTracklet->GetTilt() ) return kFALSE;
1739 if ( GetPadLength() != inTracklet->GetPadLength() ) return kFALSE;
1740
1741 for (Int_t i = 0; i < kNclusters; i++){
1742// if ( fX[i] != inTracklet->GetX(i) ) return kFALSE;
1743// if ( fY[i] != inTracklet->GetY(i) ) return kFALSE;
1744// if ( fZ[i] != inTracklet->GetZ(i) ) return kFALSE;
1745 if ( fIndexes[i] != inTracklet->fIndexes[i] ) return kFALSE;
1746 }
1747// if ( fUsable != inTracklet->fUsable ) return kFALSE;
1748
1749 for (Int_t i=0; i < 2; i++){
1750 if ( fYfit[i] != inTracklet->fYfit[i] ) return kFALSE;
1751 if ( fZfit[i] != inTracklet->fZfit[i] ) return kFALSE;
1752 if ( fLabels[i] != inTracklet->fLabels[i] ) return kFALSE;
1753 }
1754
1755/* if ( fMeanz != inTracklet->GetMeanz() ) return kFALSE;
1756 if ( fZProb != inTracklet->GetZProb() ) return kFALSE;*/
1757 if ( fN != inTracklet->fN ) return kFALSE;
1758 //if ( fNUsed != inTracklet->fNUsed ) return kFALSE;
1759 //if ( fFreq != inTracklet->GetFreq() ) return kFALSE;
1760 //if ( fNChange != inTracklet->GetNChange() ) return kFALSE;
1761
1762 if ( fC != inTracklet->fC ) return kFALSE;
1763 //if ( fCC != inTracklet->GetCC() ) return kFALSE;
1764 if ( fChi2 != inTracklet->fChi2 ) return kFALSE;
1765 // if ( fChi2Z != inTracklet->GetChi2Z() ) return kFALSE;
1766
1767 if ( fDet != inTracklet->fDet ) return kFALSE;
1768 if ( fPt != inTracklet->fPt ) return kFALSE;
1769 if ( fdX != inTracklet->fdX ) return kFALSE;
1770
1771 for (Int_t iCluster = 0; iCluster < kNclusters; iCluster++){
1772 AliTRDcluster *curCluster = fClusters[iCluster];
1773 AliTRDcluster *inCluster = inTracklet->fClusters[iCluster];
1774 if (curCluster && inCluster){
1775 if (! curCluster->IsEqual(inCluster) ) {
1776 curCluster->Print();
1777 inCluster->Print();
1778 return kFALSE;
1779 }
1780 } else {
1781 // if one cluster exists, and corresponding
1782 // in other tracklet doesn't - return kFALSE
1783 if(curCluster || inCluster) return kFALSE;
1784 }
1785 }
1786 return kTRUE;
1787}
1788