]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - TRD/AliTRDtrack.cxx
Add information about digits in neighborhood of the cluster (M.Ivanov)
[u/mrichter/AliRoot.git] / TRD / AliTRDtrack.cxx
... / ...
CommitLineData
1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18#include <Riostream.h>
19#include <TObject.h>
20
21#include "AliTRDgeometry.h"
22#include "AliTRDcluster.h"
23#include "AliTRDtrack.h"
24#include "AliTRDclusterCorrection.h"
25#include "AliTrackReference.h"
26
27ClassImp(AliTRDtracklet)
28ClassImp(AliTRDtrack)
29
30
31 AliTRDtracklet::AliTRDtracklet():fY(0),fX(0),fAlpha(0),fSigma2(0),fP0(0),fP1(0),fNFound(0),fNCross(0),fPlane(0),fExpectedSigma2(0),fChi2(0),fMaxPos(0),fMaxPos4(0),fMaxPos5(0){
32}
33
34//_____________________________________________________________________________
35
36AliTRDtrack::AliTRDtrack(const AliTRDcluster *c, UInt_t index,
37 const Double_t xx[5], const Double_t cc[15],
38 Double_t xref, Double_t alpha) : AliKalmanTrack() {
39 //-----------------------------------------------------------------
40 // This is the main track constructor.
41 //-----------------------------------------------------------------
42
43 fSeedLab = -1;
44
45 fAlpha=alpha;
46 if (fAlpha<-TMath::Pi()) fAlpha += 2*TMath::Pi();
47 if (fAlpha>=TMath::Pi()) fAlpha -= 2*TMath::Pi();
48
49 fX=xref;
50
51 fY=xx[0]; fZ=xx[1]; fE=xx[2]; fT=xx[3]; fC=xx[4];
52
53 SaveLocalConvConst();
54
55 fCyy=cc[0];
56 fCzy=cc[1]; fCzz=cc[2];
57 fCey=cc[3]; fCez=cc[4]; fCee=cc[5];
58 fCty=cc[6]; fCtz=cc[7]; fCte=cc[8]; fCtt=cc[9];
59 fCcy=cc[10]; fCcz=cc[11]; fCce=cc[12]; fCct=cc[13]; fCcc=cc[14];
60
61 fIndex[0]=index;
62 SetNumberOfClusters(1);
63
64 fdEdx=0.;
65 fdEdxT=0.;
66 fDE=0.;
67 for (Int_t i=0;i<kNPlane;i++){
68 fdEdxPlane[i] = 0.;
69 fTimBinPlane[i] = -1;
70 }
71
72 fLhElectron = 0.0;
73 fNWrong = 0;
74 fNRotate = 0;
75 fStopped = 0;
76 fNCross =0;
77 fNLast =0;
78 fChi2Last=0;
79 fNExpected=0;
80 fNExpectedLast=0;
81 fNdedx=0;
82 Double_t q = TMath::Abs(c->GetQ());
83 Double_t s = fX*fC - fE, t=fT;
84 if(s*s < 1) q *= TMath::Sqrt((1-s*s)/(1+t*t));
85
86 fdQdl[0] = q;
87
88 // initialisation [SR, GSI 18.02.2003] (i startd for 1)
89 for(UInt_t i=1; i<kMAX_CLUSTERS_PER_TRACK; i++) {
90 fdQdl[i] = 0;
91 fIndex[i] = 0;
92 fIndexBackup[i] = 0; //bacup indexes MI
93 }
94 for (Int_t i=0;i<3;i++) { fBudget[i]=0;};
95 fBackupTrack =0;
96}
97
98//_____________________________________________________________________________
99AliTRDtrack::AliTRDtrack(const AliTRDtrack& t) : AliKalmanTrack(t) {
100 //
101 // Copy constructor.
102 //
103
104 SetLabel(t.GetLabel());
105 fSeedLab=t.GetSeedLabel();
106
107 SetChi2(t.GetChi2());
108 fdEdx=t.fdEdx;
109 fdEdxT=t.fdEdxT;
110 fDE=t.fDE;
111 for (Int_t i=0;i<kNPlane;i++){
112 fdEdxPlane[i] = t.fdEdxPlane[i];
113 fTimBinPlane[i] = t.fTimBinPlane[i];
114 }
115
116 fLhElectron = 0.0;
117 fNWrong = t.fNWrong;
118 fNRotate = t.fNRotate;
119 fStopped = t.fStopped;
120 fNCross = t.fNCross;
121 fNExpected = t.fNExpected;
122 fNExpectedLast = t.fNExpectedLast;
123 fNdedx = t.fNdedx;
124 fNLast = t.fNLast;
125 fChi2Last = t.fChi2Last;
126 fBackupTrack =0;
127 fAlpha=t.fAlpha;
128 fX=t.fX;
129
130
131 fY=t.fY; fZ=t.fZ; fE=t.fE; fT=t.fT; fC=t.fC;
132
133 fCyy=t.fCyy;
134 fCzy=t.fCzy; fCzz=t.fCzz;
135 fCey=t.fCey; fCez=t.fCez; fCee=t.fCee;
136 fCty=t.fCty; fCtz=t.fCtz; fCte=t.fCte; fCtt=t.fCtt;
137 fCcy=t.fCcy; fCcz=t.fCcz; fCce=t.fCce; fCct=t.fCct; fCcc=t.fCcc;
138
139 Int_t n=t.GetNumberOfClusters();
140 SetNumberOfClusters(n);
141 for (Int_t i=0; i<n; i++) {
142 fIndex[i]=t.fIndex[i];
143 fIndexBackup[i]=t.fIndex[i]; // MI - backup indexes
144 fdQdl[i]=t.fdQdl[i];
145 }
146
147 // initialisation (i starts from n) [SR, GSI, 18.02.2003]
148 for(UInt_t i=n; i<kMAX_CLUSTERS_PER_TRACK; i++) {
149 fdQdl[i] = 0;
150 fIndex[i] = 0;
151 fIndexBackup[i] = 0; //MI backup indexes
152 }
153 for (Int_t i=0;i<6;i++){
154 fTracklets[i] = t.fTracklets[i];
155 }
156 for (Int_t i=0;i<3;i++) { fBudget[i]=t.fBudget[i];};
157}
158
159//_____________________________________________________________________________
160AliTRDtrack::AliTRDtrack(const AliKalmanTrack& t, Double_t alpha)
161 :AliKalmanTrack(t) {
162 //
163 // Constructor from AliTPCtrack or AliITStrack .
164 //
165
166 SetLabel(t.GetLabel());
167 SetChi2(0.);
168 SetMass(t.GetMass());
169 SetNumberOfClusters(0);
170
171 fdEdx=t.GetPIDsignal();
172 for (Int_t i=0;i<kNPlane;i++){
173 fdEdxPlane[i] = 0.0;
174 fTimBinPlane[i] = -1;
175 }
176
177 fLhElectron = 0.0;
178 fNWrong = 0;
179 fNRotate = 0;
180 fStopped = 0;
181 fNExpected=0;
182 fNExpectedLast=0;
183 fNdedx =0;
184 fNCross =0;
185 fNLast =0;
186 fChi2Last =0;
187 fBackupTrack =0;
188
189 fAlpha = alpha;
190 if (fAlpha < -TMath::Pi()) fAlpha += 2*TMath::Pi();
191 else if (fAlpha >= TMath::Pi()) fAlpha -= 2*TMath::Pi();
192
193 Double_t x, p[5]; t.GetExternalParameters(x,p);
194
195 fX=x;
196
197 fY=p[0];
198 fZ=p[1];
199 fT=p[3]; x=GetLocalConvConst();
200 fC=p[4]/x;
201 fE=fC*fX - p[2];
202
203 //Conversion of the covariance matrix
204 Double_t c[15]; t.GetExternalCovariance(c);
205
206 c[10]/=x; c[11]/=x; c[12]/=x; c[13]/=x; c[14]/=x*x;
207
208 Double_t c22=fX*fX*c[14] - 2*fX*c[12] + c[5];
209 Double_t c32=fX*c[13] - c[8];
210 Double_t c20=fX*c[10] - c[3], c21=fX*c[11] - c[4], c42=fX*c[14] - c[12];
211
212 fCyy=c[0 ];
213 fCzy=c[1 ]; fCzz=c[2 ];
214 fCey=c20; fCez=c21; fCee=c22;
215 fCty=c[6 ]; fCtz=c[7 ]; fCte=c32; fCtt=c[9 ];
216 fCcy=c[10]; fCcz=c[11]; fCce=c42; fCct=c[13]; fCcc=c[14];
217
218 // Initialization [SR, GSI, 18.02.2003]
219 for(UInt_t i=0; i<kMAX_CLUSTERS_PER_TRACK; i++) {
220 fdQdl[i] = 0;
221 fIndex[i] = 0;
222 fIndexBackup[i] = 0; // MI backup indexes
223 }
224
225 for (Int_t i=0;i<3;i++) { fBudget[i]=0;};
226}
227//_____________________________________________________________________________
228AliTRDtrack::AliTRDtrack(const AliESDtrack& t)
229 :AliKalmanTrack() {
230 //
231 // Constructor from AliESDtrack
232 //
233 fDE =0;
234 SetLabel(t.GetLabel());
235 SetChi2(0.);
236 SetMass(t.GetMass());
237 SetNumberOfClusters(t.GetTRDclusters(fIndex));
238 Int_t ncl = t.GetTRDclusters(fIndexBackup);
239 for (UInt_t i=ncl;i<kMAX_CLUSTERS_PER_TRACK;i++) {
240 fIndexBackup[i]=0;
241 fIndex[i] = 0; //MI store indexes
242 }
243 fdEdx=t.GetTRDsignal();
244 for (Int_t i=0;i<kNPlane;i++){
245 fdEdxPlane[i] = t.GetTRDsignals(i);
246 fTimBinPlane[i] = t.GetTRDTimBin(i);
247 }
248
249 fLhElectron = 0.0;
250 fNWrong = 0;
251 fStopped = 0;
252 fNRotate = 0;
253 fNExpected =0;
254 fNExpectedLast=0;
255 fNdedx = 0;
256 fNCross =0;
257 fNLast =0;
258 fChi2Last =0;
259 fBackupTrack =0;
260
261 fAlpha = t.GetAlpha();
262 if (fAlpha < -TMath::Pi()) fAlpha += 2*TMath::Pi();
263 else if (fAlpha >= TMath::Pi()) fAlpha -= 2*TMath::Pi();
264
265 Double_t x, p[5]; t.GetExternalParameters(x,p);
266 //Conversion of the covariance matrix
267 Double_t c[15]; t.GetExternalCovariance(c);
268 if (t.GetStatus()&AliESDtrack::kTRDbackup){
269 t.GetTRDExternalParameters(x,fAlpha,p,c);
270 if (fAlpha < -TMath::Pi()) fAlpha += 2*TMath::Pi();
271 else if (fAlpha >= TMath::Pi()) fAlpha -= 2*TMath::Pi();
272 }
273
274 fX=x;
275
276 fY=p[0];
277 fZ=p[1]; SaveLocalConvConst();
278 fT=p[3]; x=GetLocalConvConst();
279 fC=p[4]/x;
280 fE=fC*fX - p[2];
281
282
283 c[10]/=x; c[11]/=x; c[12]/=x; c[13]/=x; c[14]/=x*x;
284
285 Double_t c22=fX*fX*c[14] - 2*fX*c[12] + c[5];
286 Double_t c32=fX*c[13] - c[8];
287 Double_t c20=fX*c[10] - c[3], c21=fX*c[11] - c[4], c42=fX*c[14] - c[12];
288
289 fCyy=c[0 ];
290 fCzy=c[1 ]; fCzz=c[2 ];
291 fCey=c20; fCez=c21; fCee=c22;
292 fCty=c[6 ]; fCtz=c[7 ]; fCte=c32; fCtt=c[9 ];
293 fCcy=c[10]; fCcz=c[11]; fCce=c42; fCct=c[13]; fCcc=c[14];
294
295 // Initialization [SR, GSI, 18.02.2003]
296 for(UInt_t i=0; i<kMAX_CLUSTERS_PER_TRACK; i++) {
297 fdQdl[i] = 0;
298 // fIndex[i] = 0; //MI store indexes
299 }
300
301 for (Int_t i=0;i<3;i++) { fBudget[i]=0;};
302 if ((t.GetStatus()&AliESDtrack::kTIME) == 0) return;
303 StartTimeIntegral();
304 Double_t times[10]; t.GetIntegratedTimes(times); SetIntegratedTimes(times);
305 SetIntegratedLength(t.GetIntegratedLength());
306
307}
308
309
310AliTRDtrack * AliTRDtrack::MakeTrack(const AliTrackReference *ref, Double_t mass)
311{
312 //
313 // Make dummy track from the track reference
314 // negative mass means opposite charge
315 //
316 Double_t xx[5];
317 Double_t cc[15];
318 for (Int_t i=0;i<15;i++) cc[i]=0;
319 Double_t x = ref->X(), y = ref->Y(), z = ref->Z();
320 Double_t alpha = TMath::ATan2(y,x);
321 Double_t xr = TMath::Sqrt(x*x+y*y);
322 xx[0] = 0;
323 xx[1] = z;
324 xx[3] = ref->Pz()/ref->Pt();
325 Float_t b[3];
326 Float_t xyz[3]={x,y,z};
327 Float_t convConst = 0;
328 (AliKalmanTrack::GetFieldMap())->Field(xyz,b);
329 convConst=1000/0.299792458/(1e-13 - b[2]);
330 xx[4] = 1./(convConst*ref->Pt());
331 if (mass<0) xx[4]*=-1.; // negative mass - negative direction
332 Double_t lcos = (x*ref->Px()+y*ref->Py())/(xr*ref->Pt());
333 Double_t lsin = TMath::Sin(TMath::ACos(lcos));
334 if (mass<0) lsin*=-1.;
335 xx[2] = xr*xx[4]-lsin;
336 AliTRDcluster cl;
337 AliTRDtrack * track = new AliTRDtrack(&cl,100,xx,cc,xr,alpha);
338 track->SetMass(TMath::Abs(mass));
339 track->StartTimeIntegral();
340 return track;
341}
342
343
344AliTRDtrack::~AliTRDtrack()
345{
346 //
347 //
348
349 if (fBackupTrack) delete fBackupTrack;
350 fBackupTrack=0;
351
352}
353
354
355Float_t AliTRDtrack::StatusForTOF()
356{
357
358 Float_t res = (0.2 + 0.8*(fN/(fNExpected+5.)))*(0.4+0.6*fTracklets[5].GetN()/20.);
359 res *= (0.25+0.8*40./(40.+fBudget[2]));
360 return res;
361
362 Int_t status=0;
363 if (GetNumberOfClusters()<20) return 0; //
364 if (fN>110&&fChi2/(Float_t(fN))<3) return 3; //gold
365 if (fNLast>30&&fChi2Last/(Float_t(fNLast))<3) return 3; //gold
366 if (fNLast>20&&fChi2Last/(Float_t(fNLast))<2) return 3; //gold
367 if (fNLast/(fNExpectedLast+3.)>0.8 && fChi2Last/Float_t(fNLast)<5&&fNLast>20) return 2; //silber
368 if (fNLast>5 &&((fNLast+1.)/(fNExpectedLast+1.))>0.8&&fChi2Last/(fNLast-5.)<6) return 1;
369 //
370
371 return status;
372}
373
374
375//____________________________________________________________________________
376void AliTRDtrack::GetExternalParameters(Double_t& xr, Double_t x[5]) const {
377 //
378 // This function returns external TRD track representation
379 //
380 xr=fX;
381 x[0]=GetY();
382 x[1]=GetZ();
383 x[2]=GetSnp();
384 x[3]=GetTgl();
385 x[4]=Get1Pt();
386}
387
388//_____________________________________________________________________________
389void AliTRDtrack::GetExternalCovariance(Double_t cc[15]) const {
390 //
391 // This function returns external representation of the covriance matrix.
392 //
393 Double_t a=GetLocalConvConst();
394
395 Double_t c22=fX*fX*fCcc-2*fX*fCce+fCee;
396 Double_t c32=fX*fCct-fCte;
397 Double_t c20=fX*fCcy-fCey, c21=fX*fCcz-fCez, c42=fX*fCcc-fCce;
398
399 cc[0 ]=fCyy;
400 cc[1 ]=fCzy; cc[2 ]=fCzz;
401 cc[3 ]=c20; cc[4 ]=c21; cc[5 ]=c22;
402 cc[6 ]=fCty; cc[7 ]=fCtz; cc[8 ]=c32; cc[9 ]=fCtt;
403 cc[10]=fCcy*a; cc[11]=fCcz*a; cc[12]=c42*a; cc[13]=fCct*a; cc[14]=fCcc*a*a;
404
405}
406
407
408//_____________________________________________________________________________
409void AliTRDtrack::GetCovariance(Double_t cc[15]) const {
410
411 cc[0]=fCyy;
412 cc[1]=fCzy; cc[2]=fCzz;
413 cc[3]=fCey; cc[4]=fCez; cc[5]=fCee;
414 cc[6]=fCcy; cc[7]=fCcz; cc[8]=fCce; cc[9]=fCcc;
415 cc[10]=fCty; cc[11]=fCtz; cc[12]=fCte; cc[13]=fCct; cc[14]=fCtt;
416
417}
418
419//_____________________________________________________________________________
420Int_t AliTRDtrack::Compare(const TObject *o) const {
421
422// Compares tracks according to their Y2 or curvature
423
424 AliTRDtrack *t=(AliTRDtrack*)o;
425 // Double_t co=t->GetSigmaY2();
426 // Double_t c =GetSigmaY2();
427
428 Double_t co=TMath::Abs(t->GetC());
429 Double_t c =TMath::Abs(GetC());
430
431 if (c>co) return 1;
432 else if (c<co) return -1;
433 return 0;
434}
435
436//_____________________________________________________________________________
437void AliTRDtrack::CookdEdx(Double_t low, Double_t up) {
438 //-----------------------------------------------------------------
439 // Calculates dE/dX within the "low" and "up" cuts.
440 //-----------------------------------------------------------------
441
442 Int_t i;
443 //Int_t nc=GetNumberOfClusters();
444 Int_t nc=fNdedx;
445 if (nc<10) {
446 SetdEdx(0);
447 return;
448 }
449
450 Float_t sorted[kMAX_CLUSTERS_PER_TRACK];
451 for (i=0; i < nc; i++) {
452 sorted[i]=fdQdl[i];
453 }
454 Int_t nl=Int_t(low*nc), nu=Int_t(up*nc);
455 Float_t dedx=0;
456 //for (i=nl; i<=nu; i++) dedx += sorted[i];
457 //dedx /= (nu-nl+1);
458 for (i=0; i<nc; i++) dedx += sorted[i]; // ADDED by PS
459 if((nu-nl)) dedx /= (nu-nl); // ADDED by PS
460
461 SetdEdx(dedx);
462 //
463 // now real truncated mean
464 for (i=0; i < nc; i++) {
465 sorted[i]=TMath::Abs(fdQdl[i]);
466 }
467 Int_t * index = new Int_t[nc];
468 TMath::Sort(nc, sorted, index,kFALSE);
469 dedx=0;
470 for (i=nl; i<=nu; i++) dedx += sorted[index[i]];
471 dedx /= (nu-nl+1);
472 fdEdxT = dedx;
473 delete [] index;
474}
475
476
477//_____________________________________________________________________________
478Int_t AliTRDtrack::PropagateTo(Double_t xk,Double_t x0,Double_t rho)
479{
480 // Propagates a track of particle with mass=pm to a reference plane
481 // defined by x=xk through media of density=rho and radiationLength=x0
482
483 if (xk == fX) return 1;
484
485 if (TMath::Abs(fC*xk - fE) >= 0.90000) {
486 // Int_t n=GetNumberOfClusters();
487 //if (n>4) cerr << n << " AliTRDtrack: Propagation failed, \tPt = "
488 // << GetPt() << "\t" << GetLabel() << "\t" << GetMass() << endl;
489 return 0;
490 }
491 Double_t lcc=GetLocalConvConst();
492
493 // track Length measurement [SR, GSI, 17.02.2003]
494 Double_t oldX = fX, oldY = fY, oldZ = fZ;
495
496 Double_t x1=fX, x2=x1+(xk-x1), dx=x2-x1, y1=fY, z1=fZ;
497 Double_t c1=fC*x1 - fE;
498 if((c1*c1) > 1) return 0;
499 Double_t r1=sqrt(1.- c1*c1);
500 Double_t c2=fC*x2 - fE;
501 if((c2*c2) > 1) return 0;
502 Double_t r2=sqrt(1.- c2*c2);
503
504 fY += dx*(c1+c2)/(r1+r2);
505 fZ += dx*(c1+c2)/(c1*r2 + c2*r1)*fT;
506
507 //f = F - 1
508 Double_t rr=r1+r2, cc=c1+c2, xx=x1+x2;
509 Double_t f02=-dx*(2*rr + cc*(c1/r1 + c2/r2))/(rr*rr);
510 Double_t f04= dx*(rr*xx + cc*(c1*x1/r1+c2*x2/r2))/(rr*rr);
511 Double_t cr=c1*r2+c2*r1;
512 Double_t f12=-dx*fT*(2*cr + cc*(c2*c1/r1-r1 + c1*c2/r2-r2))/(cr*cr);
513 Double_t f13= dx*cc/cr;
514 Double_t f14=dx*fT*(cr*xx-cc*(r1*x2-c2*c1*x1/r1+r2*x1-c1*c2*x2/r2))/(cr*cr);
515
516 //b = C*ft
517 Double_t b00=f02*fCey + f04*fCcy, b01=f12*fCey + f14*fCcy + f13*fCty;
518 Double_t b10=f02*fCez + f04*fCcz, b11=f12*fCez + f14*fCcz + f13*fCtz;
519 Double_t b20=f02*fCee + f04*fCce, b21=f12*fCee + f14*fCce + f13*fCte;
520 Double_t b30=f02*fCte + f04*fCct, b31=f12*fCte + f14*fCct + f13*fCtt;
521 Double_t b40=f02*fCce + f04*fCcc, b41=f12*fCce + f14*fCcc + f13*fCct;
522
523 //a = f*b = f*C*ft
524 Double_t a00=f02*b20+f04*b40,a01=f02*b21+f04*b41,a11=f12*b21+f14*b41+f13*b31;
525
526 //F*C*Ft = C + (a + b + bt)
527 fCyy += a00 + 2*b00;
528 fCzy += a01 + b01 + b10;
529 fCey += b20;
530 fCty += b30;
531 fCcy += b40;
532 fCzz += a11 + 2*b11;
533 fCez += b21;
534 fCtz += b31;
535 fCcz += b41;
536
537 fX=x2;
538
539 //Change of the magnetic field *************
540 SaveLocalConvConst();
541 cc=fC;
542 fC*=lcc/GetLocalConvConst();
543 fE+=fX*(fC-cc);
544
545 //Multiple scattering ******************
546 Double_t d=sqrt((x1-fX)*(x1-fX)+(y1-fY)*(y1-fY)+(z1-fZ)*(z1-fZ));
547 Double_t p2=(1.+ GetTgl()*GetTgl())/(Get1Pt()*Get1Pt());
548 Double_t beta2=p2/(p2 + GetMass()*GetMass());
549 Double_t theta2=14.1*14.1/(beta2*p2*1e6)*d/x0*rho;
550
551 Double_t ey=fC*fX - fE, ez=fT;
552 Double_t xz=fC*ez, zz1=ez*ez+1, xy=fE+ey;
553
554 fCee += (2*ey*ez*ez*fE+1-ey*ey+ez*ez+fE*fE*ez*ez)*theta2;
555 fCte += ez*zz1*xy*theta2;
556 fCtt += zz1*zz1*theta2;
557 fCce += xz*ez*xy*theta2;
558 fCct += xz*zz1*theta2;
559 fCcc += xz*xz*theta2;
560 /*
561 Double_t dc22 = (1-ey*ey+xz*xz*fX*fX)*theta2;
562 Double_t dc32 = (xz*fX*zz1)*theta2;
563 Double_t dc33 = (zz1*zz1)*theta2;
564 Double_t dc42 = (xz*fX*xz)*theta2;
565 Double_t dc43 = (zz1*xz)*theta2;
566 Double_t dc44 = (xz*xz)*theta2;
567 fCee += dc22;
568 fCte += dc32;
569 fCtt += dc33;
570 fCce += dc42;
571 fCct += dc43;
572 fCcc += dc44;
573 */
574 //Energy losses************************
575 if((5940*beta2/(1-beta2+1e-10) - beta2) < 0) return 0;
576
577 Double_t dE=0.153e-3/beta2*(log(5940*beta2/(1-beta2+1e-10)) - beta2)*d*rho;
578 fDE+=dE;
579 if (x1 < x2) dE=-dE;
580 cc=fC;
581 fC*=(1.- sqrt(p2+GetMass()*GetMass())/p2*dE);
582 fE+=fX*(fC-cc);
583 // Double_t sigmade = 0.1*dE*TMath::Sqrt(TMath::Sqrt(1+fT*fT)*90./(d+0.0001)); // 20 percent fluctuation - normalized to some length
584 Double_t sigmade = 0.07*TMath::Sqrt(TMath::Abs(dE)); // energy loss fluctuation
585 Double_t sigmac2 = sigmade*sigmade*fC*fC*(p2+GetMass()*GetMass())/(p2*p2);
586 fCcc += sigmac2;
587 fCee += fX*fX*sigmac2;
588
589 // track time measurement [SR, GSI 17.02.2002]
590 if (x1 < x2)
591 if (IsStartedTimeIntegral()) {
592 Double_t l2 = TMath::Sqrt((fX-oldX)*(fX-oldX) + (fY-oldY)*(fY-oldY) + (fZ-oldZ)*(fZ-oldZ));
593 if (TMath::Abs(l2*fC)>0.0001){
594 // make correction for curvature if neccesary
595 l2 = 0.5*TMath::Sqrt((fX-oldX)*(fX-oldX) + (fY-oldY)*(fY-oldY));
596 l2 = 2*TMath::ASin(l2*fC)/fC;
597 l2 = TMath::Sqrt(l2*l2+(fZ-oldZ)*(fZ-oldZ));
598 }
599 AddTimeStep(l2);
600 }
601
602 return 1;
603}
604
605
606//_____________________________________________________________________________
607Int_t AliTRDtrack::Update(const AliTRDcluster *c, Double_t chisq, UInt_t index, Double_t h01)
608{
609 // Assignes found cluster to the track and updates track information
610
611 Bool_t fNoTilt = kTRUE;
612 if(TMath::Abs(h01) > 0.003) fNoTilt = kFALSE;
613 // add angular effect to the error contribution - MI
614 Float_t tangent2 = (fC*fX-fE)*(fC*fX-fE);
615 if (tangent2 < 0.90000){
616 tangent2 = tangent2/(1.-tangent2);
617 }
618 Float_t errang = tangent2*0.04; //
619 Float_t padlength = TMath::Sqrt(c->GetSigmaZ2()*12.);
620
621 Double_t r00=c->GetSigmaY2() +errang, r01=0., r11=c->GetSigmaZ2()*100.;
622 r00+=fCyy; r01+=fCzy; r11+=fCzz;
623 Double_t det=r00*r11 - r01*r01;
624 Double_t tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det;
625
626 Double_t k00=fCyy*r00+fCzy*r01, k01=fCyy*r01+fCzy*r11;
627 Double_t k10=fCzy*r00+fCzz*r01, k11=fCzy*r01+fCzz*r11;
628 Double_t k20=fCey*r00+fCez*r01, k21=fCey*r01+fCez*r11;
629 Double_t k30=fCty*r00+fCtz*r01, k31=fCty*r01+fCtz*r11;
630 Double_t k40=fCcy*r00+fCcz*r01, k41=fCcy*r01+fCcz*r11;
631
632 Double_t dy=c->GetY() - fY, dz=c->GetZ() - fZ;
633 Double_t cur=fC + k40*dy + k41*dz, eta=fE + k20*dy + k21*dz;
634
635
636 if(fNoTilt) {
637 if (TMath::Abs(cur*fX-eta) >= 0.90000) {
638 // Int_t n=GetNumberOfClusters();
639 //if (n>4) cerr<<n<<" AliTRDtrack warning: Filtering failed !\n";
640 return 0;
641 }
642 fY += k00*dy + k01*dz;
643 fZ += k10*dy + k11*dz;
644 fE = eta;
645 //fT += k30*dy + k31*dz;
646 fC = cur;
647 }
648 else {
649 Double_t xu_factor = 100.; // empirical factor set by C.Xu
650 // in the first tilt version
651 dy=c->GetY() - fY; dz=c->GetZ() - fZ;
652 dy=dy+h01*dz;
653 Float_t add=0;
654 if (TMath::Abs(dz)>padlength/2.){
655 Float_t dy2 = c->GetY() - fY;
656 Float_t sign = (dz>0) ? -1.: 1.;
657 dy2+=h01*sign*padlength/2.;
658 dy = dy2;
659 add = 0;
660 }
661
662
663
664 r00=c->GetSigmaY2()+errang+add, r01=0., r11=c->GetSigmaZ2()*xu_factor;
665 r00+=(fCyy+2.0*h01*fCzy+h01*h01*fCzz);
666
667 r01+=(fCzy+h01*fCzz);
668 det=r00*r11 - r01*r01;
669 tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det;
670
671 k00=fCyy*r00+fCzy*(r01+h01*r00),k01=fCyy*r01+fCzy*(r11+h01*r01);
672 k10=fCzy*r00+fCzz*(r01+h01*r00),k11=fCzy*r01+fCzz*(r11+h01*r01);
673 k20=fCey*r00+fCez*(r01+h01*r00),k21=fCey*r01+fCez*(r11+h01*r01);
674 k30=fCty*r00+fCtz*(r01+h01*r00),k31=fCty*r01+fCtz*(r11+h01*r01);
675 k40=fCcy*r00+fCcz*(r01+h01*r00),k41=fCcy*r01+fCcz*(r11+h01*r01);
676
677
678 cur=fC + k40*dy + k41*dz; eta=fE + k20*dy + k21*dz;
679 if (TMath::Abs(cur*fX-eta) >= 0.90000) {
680 // Int_t n=GetNumberOfClusters();
681 //if (n>4) cerr<<n<<" AliTRDtrack warning: Filtering failed !\n";
682 return 0;
683 }
684 fY += k00*dy + k01*dz;
685 fZ += k10*dy + k11*dz;
686 fE = eta;
687 fT += k30*dy + k31*dz;
688 fC = cur;
689
690 k01+=h01*k00;
691 k11+=h01*k10;
692 k21+=h01*k20;
693 k31+=h01*k30;
694 k41+=h01*k40;
695
696 }
697 Double_t c01=fCzy, c02=fCey, c03=fCty, c04=fCcy;
698 Double_t c12=fCez, c13=fCtz, c14=fCcz;
699
700
701 fCyy-=k00*fCyy+k01*fCzy; fCzy-=k00*c01+k01*fCzz;
702 fCey-=k00*c02+k01*c12; fCty-=k00*c03+k01*c13;
703 fCcy-=k00*c04+k01*c14;
704
705 fCzz-=k10*c01+k11*fCzz;
706 fCez-=k10*c02+k11*c12; fCtz-=k10*c03+k11*c13;
707 fCcz-=k10*c04+k11*c14;
708
709 fCee-=k20*c02+k21*c12; fCte-=k20*c03+k21*c13;
710 fCce-=k20*c04+k21*c14;
711
712 fCtt-=k30*c03+k31*c13;
713 fCct-=k40*c03+k41*c13;
714 //fCct-=k30*c04+k31*c14; // symmetric formula MI
715
716 fCcc-=k40*c04+k41*c14;
717
718 Int_t n=GetNumberOfClusters();
719 fIndex[n]=index;
720 SetNumberOfClusters(n+1);
721
722 SetChi2(GetChi2()+chisq);
723 // cerr<<"in update: fIndex["<<fN<<"] = "<<index<<endl;
724
725 return 1;
726}
727//_____________________________________________________________________________
728Int_t AliTRDtrack::UpdateMI(const AliTRDcluster *c, Double_t chisq, UInt_t index, Double_t h01,
729 Int_t /*plane*/)
730{
731 // Assignes found cluster to the track and updates track information
732
733 Bool_t fNoTilt = kTRUE;
734 if(TMath::Abs(h01) > 0.003) fNoTilt = kFALSE;
735 // add angular effect to the error contribution and make correction - MI
736 //AliTRDclusterCorrection *corrector = AliTRDclusterCorrection::GetCorrection();
737 //
738 Double_t tangent2 = (fC*fX-fE)*(fC*fX-fE);
739 if (tangent2 < 0.90000){
740 tangent2 = tangent2/(1.-tangent2);
741 }
742 Double_t tangent = TMath::Sqrt(tangent2);
743 if ((fC*fX-fE)<0) tangent*=-1;
744 // Double_t correction = 0*plane;
745 Double_t errang = tangent2*0.04; //
746 Double_t errsys =0.025*0.025*20; //systematic error part
747 Float_t extend =1;
748 if (c->GetNPads()==4) extend=2;
749 //if (c->GetNPads()==5) extend=3;
750 //if (c->GetNPads()==6) extend=3;
751 //if (c->GetQ()<15) return 1;
752
753 /*
754 if (corrector!=0){
755 //if (0){
756 correction = corrector->GetCorrection(plane,c->GetLocalTimeBin(),tangent);
757 if (TMath::Abs(correction)>0){
758 //if we have info
759 errang = corrector->GetSigma(plane,c->GetLocalTimeBin(),tangent);
760 errang *= errang;
761 errang += tangent2*0.04;
762 }
763 }
764 */
765 //
766 // Double_t padlength = TMath::Sqrt(c->GetSigmaZ2()*12.);
767
768 Double_t r00=(c->GetSigmaY2() +errang+errsys)*extend, r01=0., r11=c->GetSigmaZ2()*10000.;
769 r00+=fCyy; r01+=fCzy; r11+=fCzz;
770 Double_t det=r00*r11 - r01*r01;
771 Double_t tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det;
772
773 Double_t k00=fCyy*r00+fCzy*r01, k01=fCyy*r01+fCzy*r11;
774 Double_t k10=fCzy*r00+fCzz*r01, k11=fCzy*r01+fCzz*r11;
775 Double_t k20=fCey*r00+fCez*r01, k21=fCey*r01+fCez*r11;
776 Double_t k30=fCty*r00+fCtz*r01, k31=fCty*r01+fCtz*r11;
777 Double_t k40=fCcy*r00+fCcz*r01, k41=fCcy*r01+fCcz*r11;
778
779 Double_t dy=c->GetY() - fY, dz=c->GetZ() - fZ;
780 Double_t cur=fC + k40*dy + k41*dz, eta=fE + k20*dy + k21*dz;
781
782
783 if(fNoTilt) {
784 if (TMath::Abs(cur*fX-eta) >= 0.90000) {
785 // Int_t n=GetNumberOfClusters();
786 //if (n>4) cerr<<n<<" AliTRDtrack warning: Filtering failed !\n";
787 return 0;
788 }
789 fY += k00*dy + k01*dz;
790 fZ += k10*dy + k11*dz;
791 fE = eta;
792 //fT += k30*dy + k31*dz;
793 fC = cur;
794 }
795 else {
796 Double_t padlength = TMath::Sqrt(c->GetSigmaZ2()*12);
797
798 Double_t xu_factor = 1000.; // empirical factor set by C.Xu
799 // in the first tilt version
800 dy=c->GetY() - fY; dz=c->GetZ() - fZ;
801 //dy=dy+h01*dz+correction;
802
803 Double_t tiltdz = dz;
804 if (TMath::Abs(tiltdz)>padlength/2.) {
805 tiltdz = TMath::Sign(padlength/2,dz);
806 }
807 // dy=dy+h01*dz;
808 dy=dy+h01*tiltdz;
809
810 Double_t add=0;
811 if (TMath::Abs(dz)>padlength/2.){
812 //Double_t dy2 = c->GetY() - fY;
813 //Double_t sign = (dz>0) ? -1.: 1.;
814 //dy2-=h01*sign*padlength/2.;
815 //dy = dy2;
816 add =1;
817 }
818 Double_t s00 = (c->GetSigmaY2()+errang)*extend+errsys+add; // error pad
819 Double_t s11 = c->GetSigmaZ2()*xu_factor; // error pad-row
820 //
821 r00 = fCyy + 2*fCzy*h01 + fCzz*h01*h01+s00;
822 r01 = fCzy + fCzz*h01;
823 r11 = fCzz + s11;
824 det = r00*r11 - r01*r01;
825 // inverse matrix
826 tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det;
827
828 // K matrix
829 k00=fCyy*r00+fCzy*(r01+h01*r00),k01=fCyy*r01+fCzy*(r11+h01*r01);
830 k10=fCzy*r00+fCzz*(r01+h01*r00),k11=fCzy*r01+fCzz*(r11+h01*r01);
831 k20=fCey*r00+fCez*(r01+h01*r00),k21=fCey*r01+fCez*(r11+h01*r01);
832 k30=fCty*r00+fCtz*(r01+h01*r00),k31=fCty*r01+fCtz*(r11+h01*r01);
833 k40=fCcy*r00+fCcz*(r01+h01*r00),k41=fCcy*r01+fCcz*(r11+h01*r01);
834 //
835 //Update measurement
836 cur=fC + k40*dy + k41*dz; eta=fE + k20*dy + k21*dz;
837 if (TMath::Abs(cur*fX-eta) >= 0.90000) {
838 //Int_t n=GetNumberOfClusters();
839 // if (n>4) cerr<<n<<" AliTRDtrack warning: Filtering failed !\n";
840 return 0;
841 }
842 fY += k00*dy + k01*dz;
843 fZ += k10*dy + k11*dz;
844 fE = eta;
845 fT += k30*dy + k31*dz;
846 fC = cur;
847
848 k01+=h01*k00;
849 k11+=h01*k10;
850 k21+=h01*k20;
851 k31+=h01*k30;
852 k41+=h01*k40;
853
854 }
855 //Update covariance
856 //
857 //
858 Double_t oldyy = fCyy, oldzz = fCzz; //, oldee=fCee, oldcc =fCcc;
859 Double_t oldzy = fCzy, oldey = fCey, oldty=fCty, oldcy =fCcy;
860 Double_t oldez = fCez, oldtz = fCtz, oldcz=fCcz;
861 //Double_t oldte = fCte, oldce = fCce;
862 //Double_t oldct = fCct;
863
864 fCyy-=k00*oldyy+k01*oldzy;
865 fCzy-=k10*oldyy+k11*oldzy;
866 fCey-=k20*oldyy+k21*oldzy;
867 fCty-=k30*oldyy+k31*oldzy;
868 fCcy-=k40*oldyy+k41*oldzy;
869 //
870 fCzz-=k10*oldzy+k11*oldzz;
871 fCez-=k20*oldzy+k21*oldzz;
872 fCtz-=k30*oldzy+k31*oldzz;
873 fCcz-=k40*oldzy+k41*oldzz;
874 //
875 fCee-=k20*oldey+k21*oldez;
876 fCte-=k30*oldey+k31*oldez;
877 fCce-=k40*oldey+k41*oldez;
878 //
879 fCtt-=k30*oldty+k31*oldtz;
880 fCct-=k40*oldty+k41*oldtz;
881 //
882 fCcc-=k40*oldcy+k41*oldcz;
883 //
884
885 Int_t n=GetNumberOfClusters();
886 fIndex[n]=index;
887 SetNumberOfClusters(n+1);
888
889 SetChi2(GetChi2()+chisq);
890 // cerr<<"in update: fIndex["<<fN<<"] = "<<index<<endl;
891
892 return 1;
893}
894
895
896
897//_____________________________________________________________________________
898Int_t AliTRDtrack::UpdateMI(const AliTRDtracklet &tracklet)
899{
900 //
901 // Assignes found tracklet to the track and updates track information
902 //
903 //
904 Double_t r00=(tracklet.GetTrackletSigma2()), r01=0., r11= 10000.;
905 r00+=fCyy; r01+=fCzy; r11+=fCzz;
906 //
907 Double_t det=r00*r11 - r01*r01;
908 Double_t tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det;
909 //
910
911 Double_t dy=tracklet.GetY() - fY, dz=tracklet.GetZ() - fZ;
912
913
914 Double_t s00 = tracklet.GetTrackletSigma2(); // error pad
915 Double_t s11 = 100000; // error pad-row
916 Float_t h01 = tracklet.GetTilt();
917 //
918 // r00 = fCyy + 2*fCzy*h01 + fCzz*h01*h01+s00;
919 r00 = fCyy + fCzz*h01*h01+s00;
920 // r01 = fCzy + fCzz*h01;
921 r01 = fCzy ;
922 r11 = fCzz + s11;
923 det = r00*r11 - r01*r01;
924 // inverse matrix
925 tmp=r00; r00=r11/det; r11=tmp/det; r01=-r01/det;
926
927 Double_t k00=fCyy*r00+fCzy*r01, k01=fCyy*r01+fCzy*r11;
928 Double_t k10=fCzy*r00+fCzz*r01, k11=fCzy*r01+fCzz*r11;
929 Double_t k20=fCey*r00+fCez*r01, k21=fCey*r01+fCez*r11;
930 Double_t k30=fCty*r00+fCtz*r01, k31=fCty*r01+fCtz*r11;
931 Double_t k40=fCcy*r00+fCcz*r01, k41=fCcy*r01+fCcz*r11;
932
933 // K matrix
934// k00=fCyy*r00+fCzy*(r01+h01*r00),k01=fCyy*r01+fCzy*(r11+h01*r01);
935// k10=fCzy*r00+fCzz*(r01+h01*r00),k11=fCzy*r01+fCzz*(r11+h01*r01);
936// k20=fCey*r00+fCez*(r01+h01*r00),k21=fCey*r01+fCez*(r11+h01*r01);
937// k30=fCty*r00+fCtz*(r01+h01*r00),k31=fCty*r01+fCtz*(r11+h01*r01);
938// k40=fCcy*r00+fCcz*(r01+h01*r00),k41=fCcy*r01+fCcz*(r11+h01*r01);
939 //
940 //Update measurement
941 Double_t cur=fC + k40*dy + k41*dz, eta=fE + k20*dy + k21*dz;
942 // cur=fC + k40*dy + k41*dz; eta=fE + k20*dy + k21*dz;
943 if (TMath::Abs(cur*fX-eta) >= 0.90000) {
944 //Int_t n=GetNumberOfClusters();
945 // if (n>4) cerr<<n<<" AliTRDtrack warning: Filtering failed !\n";
946 return 0;
947 }
948// k01+=h01*k00;
949// k11+=h01*k10;
950// k21+=h01*k20;
951// k31+=h01*k30;
952// k41+=h01*k40;
953
954
955 fY += k00*dy + k01*dz;
956 fZ += k10*dy + k11*dz;
957 fE = eta;
958 fT += k30*dy + k31*dz;
959 fC = cur;
960
961
962 //Update covariance
963 //
964 //
965 Double_t oldyy = fCyy, oldzz = fCzz; //, oldee=fCee, oldcc =fCcc;
966 Double_t oldzy = fCzy, oldey = fCey, oldty=fCty, oldcy =fCcy;
967 Double_t oldez = fCez, oldtz = fCtz, oldcz=fCcz;
968 //Double_t oldte = fCte, oldce = fCce;
969 //Double_t oldct = fCct;
970
971 fCyy-=k00*oldyy+k01*oldzy;
972 fCzy-=k10*oldyy+k11*oldzy;
973 fCey-=k20*oldyy+k21*oldzy;
974 fCty-=k30*oldyy+k31*oldzy;
975 fCcy-=k40*oldyy+k41*oldzy;
976 //
977 fCzz-=k10*oldzy+k11*oldzz;
978 fCez-=k20*oldzy+k21*oldzz;
979 fCtz-=k30*oldzy+k31*oldzz;
980 fCcz-=k40*oldzy+k41*oldzz;
981 //
982 fCee-=k20*oldey+k21*oldez;
983 fCte-=k30*oldey+k31*oldez;
984 fCce-=k40*oldey+k41*oldez;
985 //
986 fCtt-=k30*oldty+k31*oldtz;
987 fCct-=k40*oldty+k41*oldtz;
988 //
989 fCcc-=k40*oldcy+k41*oldcz;
990 //
991 /*
992 Int_t n=GetNumberOfClusters();
993 fIndex[n]=index;
994 SetNumberOfClusters(n+1);
995
996 SetChi2(GetChi2()+chisq);
997 // cerr<<"in update: fIndex["<<fN<<"] = "<<index<<endl;
998 */
999 return 1;
1000}
1001
1002
1003
1004//_____________________________________________________________________________
1005Int_t AliTRDtrack::Rotate(Double_t alpha, Bool_t absolute)
1006{
1007 // Rotates track parameters in R*phi plane
1008 // if absolute rotation alpha is in global system
1009 // otherwise alpha rotation is relative to the current rotation angle
1010
1011 if (absolute) {
1012 alpha -= fAlpha;
1013 }
1014 else{
1015 fNRotate++;
1016 }
1017
1018 fAlpha += alpha;
1019 if (fAlpha<-TMath::Pi()) fAlpha += 2*TMath::Pi();
1020 if (fAlpha>=TMath::Pi()) fAlpha -= 2*TMath::Pi();
1021
1022 Double_t x1=fX, y1=fY;
1023 Double_t ca=cos(alpha), sa=sin(alpha);
1024 Double_t r1=fC*fX - fE;
1025
1026 fX = x1*ca + y1*sa;
1027 fY =-x1*sa + y1*ca;
1028 if((r1*r1) > 1) return 0;
1029 fE=fE*ca + (fC*y1 + sqrt(1.- r1*r1))*sa;
1030
1031 Double_t r2=fC*fX - fE;
1032 if (TMath::Abs(r2) >= 0.90000) {
1033 Int_t n=GetNumberOfClusters();
1034 if (n>4) cerr<<n<<" AliTRDtrack warning: Rotation failed !\n";
1035 return 0;
1036 }
1037
1038 if((r2*r2) > 1) return 0;
1039 Double_t y0=fY + sqrt(1.- r2*r2)/fC;
1040 if ((fY-y0)*fC >= 0.) {
1041 Int_t n=GetNumberOfClusters();
1042 if (n>4) cerr<<n<<" AliTRDtrack warning: Rotation failed !!!\n";
1043 return 0;
1044 }
1045
1046 //f = F - 1
1047 Double_t f00=ca-1, f24=(y1 - r1*x1/sqrt(1.- r1*r1))*sa,
1048 f20=fC*sa, f22=(ca + sa*r1/sqrt(1.- r1*r1))-1;
1049
1050 //b = C*ft
1051 Double_t b00=fCyy*f00, b02=fCyy*f20+fCcy*f24+fCey*f22;
1052 Double_t b10=fCzy*f00, b12=fCzy*f20+fCcz*f24+fCez*f22;
1053 Double_t b20=fCey*f00, b22=fCey*f20+fCce*f24+fCee*f22;
1054 Double_t b30=fCty*f00, b32=fCty*f20+fCct*f24+fCte*f22;
1055 Double_t b40=fCcy*f00, b42=fCcy*f20+fCcc*f24+fCce*f22;
1056
1057 //a = f*b = f*C*ft
1058 Double_t a00=f00*b00, a02=f00*b02, a22=f20*b02+f24*b42+f22*b22;
1059
1060 //F*C*Ft = C + (a + b + bt)
1061 fCyy += a00 + 2*b00;
1062 fCzy += b10;
1063 fCey += a02+b20+b02;
1064 fCty += b30;
1065 fCcy += b40;
1066 fCez += b12;
1067 fCte += b32;
1068 fCee += a22 + 2*b22;
1069 fCce += b42;
1070
1071 return 1;
1072}
1073
1074
1075//_____________________________________________________________________________
1076Double_t AliTRDtrack::GetPredictedChi2(const AliTRDcluster *c, Double_t h01) const
1077{
1078
1079 Bool_t fNoTilt = kTRUE;
1080 if(TMath::Abs(h01) > 0.003) fNoTilt = kFALSE;
1081 Double_t chi2, dy, r00, r01, r11;
1082
1083 if(fNoTilt) {
1084 dy=c->GetY() - fY;
1085 r00=c->GetSigmaY2();
1086 chi2 = (dy*dy)/r00;
1087 }
1088 else {
1089 Double_t padlength = TMath::Sqrt(c->GetSigmaZ2()*12);
1090 //
1091 r00=c->GetSigmaY2(); r01=0.; r11=c->GetSigmaZ2();
1092 r00+=fCyy; r01+=fCzy; r11+=fCzz;
1093
1094 Double_t det=r00*r11 - r01*r01;
1095 if (TMath::Abs(det) < 1.e-10) {
1096 Int_t n=GetNumberOfClusters();
1097 if (n>4) cerr<<n<<" AliTRDtrack warning: Singular matrix !\n";
1098 return 1e10;
1099 }
1100 Double_t tmp=r00; r00=r11; r11=tmp; r01=-r01;
1101 Double_t dy=c->GetY() - fY, dz=c->GetZ() - fZ;
1102 Double_t tiltdz = dz;
1103 if (TMath::Abs(tiltdz)>padlength/2.) {
1104 tiltdz = TMath::Sign(padlength/2,dz);
1105 }
1106 // dy=dy+h01*dz;
1107 dy=dy+h01*tiltdz;
1108
1109 chi2 = (dy*r00*dy + 2*r01*dy*dz + dz*r11*dz)/det;
1110 }
1111 return chi2;
1112}
1113
1114
1115//_________________________________________________________________________
1116void AliTRDtrack::GetPxPyPz(Double_t& px, Double_t& py, Double_t& pz) const
1117{
1118 // Returns reconstructed track momentum in the global system.
1119
1120 Double_t pt=TMath::Abs(GetPt()); // GeV/c
1121 Double_t r=fC*fX-fE;
1122
1123 Double_t y0;
1124 if(r > 1) { py = pt; px = 0; }
1125 else if(r < -1) { py = -pt; px = 0; }
1126 else {
1127 y0=fY + sqrt(1.- r*r)/fC;
1128 px=-pt*(fY-y0)*fC; //cos(phi);
1129 py=-pt*(fE-fX*fC); //sin(phi);
1130 }
1131 pz=pt*fT;
1132 Double_t tmp=px*TMath::Cos(fAlpha) - py*TMath::Sin(fAlpha);
1133 py=px*TMath::Sin(fAlpha) + py*TMath::Cos(fAlpha);
1134 px=tmp;
1135
1136}
1137
1138//_________________________________________________________________________
1139void AliTRDtrack::GetGlobalXYZ(Double_t& x, Double_t& y, Double_t& z) const
1140{
1141 // Returns reconstructed track coordinates in the global system.
1142
1143 x = fX; y = fY; z = fZ;
1144 Double_t tmp=x*TMath::Cos(fAlpha) - y*TMath::Sin(fAlpha);
1145 y=x*TMath::Sin(fAlpha) + y*TMath::Cos(fAlpha);
1146 x=tmp;
1147
1148}
1149
1150//_________________________________________________________________________
1151void AliTRDtrack::ResetCovariance() {
1152 //
1153 // Resets covariance matrix
1154 //
1155
1156 fCyy*=10.;
1157 fCzy=0.; fCzz*=10.;
1158 fCey=0.; fCez=0.; fCee*=10.;
1159 fCty=0.; fCtz=0.; fCte=0.; fCtt*=10.;
1160 fCcy=0.; fCcz=0.; fCce=0.; fCct=0.; fCcc*=10.;
1161}
1162
1163void AliTRDtrack::ResetCovariance(Float_t mult) {
1164 //
1165 // Resets covariance matrix
1166 //
1167
1168 fCyy*=mult;
1169 fCzy*=0.; fCzz*=1.;
1170 fCey*=0.; fCez*=0.; fCee*=mult;
1171 fCty*=0.; fCtz*=0.; fCte*=0.; fCtt*=1.;
1172 fCcy*=0.; fCcz*=0.; fCce*=0.; fCct*=0.; fCcc*=mult;
1173}
1174
1175
1176
1177
1178
1179void AliTRDtrack::MakeBackupTrack()
1180{
1181 //
1182 //
1183 if (fBackupTrack) delete fBackupTrack;
1184 fBackupTrack = new AliTRDtrack(*this);
1185
1186}
1187
1188Int_t AliTRDtrack::GetProlongation(Double_t xk, Double_t &y, Double_t &z){
1189 //
1190 // Find prolongation at given x
1191 // return 0 if not exist
1192
1193 Double_t c1=fC*fX - fE;
1194 if (TMath::Abs(c1)>1.) return 0;
1195 Double_t r1=TMath::Sqrt(1.- c1*c1);
1196 Double_t c2=fC*xk - fE;
1197 if (TMath::Abs(c2)>1.) return 0;
1198 Double_t r2=TMath::Sqrt(1.- c2*c2);
1199 y =fY + (xk-fX)*(c1+c2)/(r1+r2);
1200 z =fZ + (xk-fX)*(c1+c2)/(c1*r2 + c2*r1)*fT;
1201
1202 return 1;
1203
1204}
1205
1206
1207Int_t AliTRDtrack::PropagateToX(Double_t xr, Double_t step)
1208{
1209 //
1210 // Propagate track to given x position
1211 // works inside of the 20 degree segmentation (local cooordinate frame for TRD , TPC, TOF)
1212 //
1213 // material budget from geo manager
1214 //
1215 Double_t xyz0[3], xyz1[3],y,z;
1216 const Double_t alphac = TMath::Pi()/9.;
1217 const Double_t talphac = TMath::Tan(alphac*0.5);
1218 // critical alpha - cross sector indication
1219 //
1220 Double_t dir = (fX>xr) ? -1.:1.;
1221 // direction +-
1222 for (Double_t x=fX+dir*step;dir*x<dir*xr;x+=dir*step){
1223 //
1224 GetGlobalXYZ(xyz0[0],xyz0[1],xyz0[2]);
1225 GetProlongation(x,y,z);
1226 xyz1[0] = x*TMath::Cos(fAlpha)+y*TMath::Sin(fAlpha);
1227 xyz1[1] = x*TMath::Sin(fAlpha)-y*TMath::Cos(fAlpha);
1228 xyz1[2] = z;
1229 Double_t param[7];
1230 AliKalmanTrack::MeanMaterialBudget(xyz0,xyz1,param);
1231 //
1232 if (param[0]>0&&param[1]>0) PropagateTo(x,param[1],param[0]);
1233 if (fY>fX*talphac){
1234 Rotate(-alphac);
1235 }
1236 if (fY<-fX*talphac){
1237 Rotate(alphac);
1238 }
1239 }
1240 //
1241 PropagateTo(xr);
1242 return 0;
1243}
1244
1245
1246Int_t AliTRDtrack::PropagateToR(Double_t r,Double_t step)
1247{
1248 //
1249 // propagate track to the radial position
1250 // rotation always connected to the last track position
1251 //
1252 Double_t xyz0[3], xyz1[3],y,z;
1253 Double_t radius = TMath::Sqrt(fX*fX+fY*fY);
1254 Double_t dir = (radius>r) ? -1.:1.; // direction +-
1255 //
1256 for (Double_t x=radius+dir*step;dir*x<dir*r;x+=dir*step){
1257 GetGlobalXYZ(xyz0[0],xyz0[1],xyz0[2]);
1258 Double_t alpha = TMath::ATan2(xyz0[1],xyz0[0]);
1259 Rotate(alpha,kTRUE);
1260 GetGlobalXYZ(xyz0[0],xyz0[1],xyz0[2]);
1261 GetProlongation(x,y,z);
1262 xyz1[0] = x*TMath::Cos(alpha)+y*TMath::Sin(alpha);
1263 xyz1[1] = x*TMath::Sin(alpha)-y*TMath::Cos(alpha);
1264 xyz1[2] = z;
1265 Double_t param[7];
1266 AliKalmanTrack::MeanMaterialBudget(xyz0,xyz1,param);
1267 if (param[1]<=0) param[1] =100000000;
1268 PropagateTo(x,param[1],param[0]);
1269 }
1270 GetGlobalXYZ(xyz0[0],xyz0[1],xyz0[2]);
1271 Double_t alpha = TMath::ATan2(xyz0[1],xyz0[0]);
1272 Rotate(alpha,kTRUE);
1273 GetGlobalXYZ(xyz0[0],xyz0[1],xyz0[2]);
1274 GetProlongation(r,y,z);
1275 xyz1[0] = r*TMath::Cos(alpha)+y*TMath::Sin(alpha);
1276 xyz1[1] = r*TMath::Sin(alpha)-y*TMath::Cos(alpha);
1277 xyz1[2] = z;
1278 Double_t param[7];
1279 AliKalmanTrack::MeanMaterialBudget(xyz0,xyz1,param);
1280 //
1281 if (param[1]<=0) param[1] =100000000;
1282 PropagateTo(r,param[1],param[0]);
1283 return 0;
1284}
1285
1286