]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - TRD/AliTRDv1.cxx
Macro to copy gAlice, TreeE, TreeK to a file
[u/mrichter/AliRoot.git] / TRD / AliTRDv1.cxx
... / ...
CommitLineData
1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
18Revision 1.32 2002/02/13 16:58:37 cblume
19Bug fix reported by Jiri. Make atoi input zero terminated in StepManager()
20
21Revision 1.31 2002/02/11 14:25:27 cblume
22Geometry update, compressed hit structure
23
24Revision 1.30 2001/05/21 16:45:47 hristov
25Last minute changes (C.Blume)
26
27Revision 1.29 2001/05/16 14:57:28 alibrary
28New files for folders and Stack
29
30Revision 1.28 2001/05/07 08:03:22 cblume
31Generate also hits in the amplification region
32
33Revision 1.27 2001/03/30 14:40:15 cblume
34Update of the digitization parameter
35
36Revision 1.26 2000/11/30 17:38:08 cblume
37Changes to get in line with new STEER and EVGEN
38
39Revision 1.25 2000/11/15 14:30:16 cblume
40Fixed bug in calculating detector no. of extra hit
41
42Revision 1.24 2000/11/10 14:58:36 cblume
43Introduce additional hit with amplitude 0 at the chamber borders
44
45Revision 1.23 2000/11/01 14:53:21 cblume
46Merge with TRD-develop
47
48Revision 1.17.2.5 2000/10/15 23:40:01 cblume
49Remove AliTRDconst
50
51Revision 1.17.2.4 2000/10/06 16:49:46 cblume
52Made Getters const
53
54Revision 1.17.2.3 2000/10/04 16:34:58 cblume
55Replace include files by forward declarations
56
57Revision 1.17.2.2 2000/09/18 13:50:17 cblume
58Include TR photon generation and adapt to new AliTRDhit
59
60Revision 1.22 2000/06/27 13:08:50 cblume
61Changed to Copy(TObject &A) to appease the HP-compiler
62
63Revision 1.21 2000/06/09 11:10:07 cblume
64Compiler warnings and coding conventions, next round
65
66Revision 1.20 2000/06/08 18:32:58 cblume
67Make code compliant to coding conventions
68
69Revision 1.19 2000/06/07 16:27:32 cblume
70Try to remove compiler warnings on Sun and HP
71
72Revision 1.18 2000/05/08 16:17:27 cblume
73Merge TRD-develop
74
75Revision 1.17.2.1 2000/05/08 14:59:16 cblume
76Made inline function non-virtual. Bug fix in setting sensitive chamber
77
78Revision 1.17 2000/02/28 19:10:26 cblume
79Include the new TRD classes
80
81Revision 1.16.4.1 2000/02/28 18:04:35 cblume
82Change to new hit version, introduce geometry class, and move digitization and clustering to AliTRDdigitizer/AliTRDclusterizerV1
83
84Revision 1.16 1999/11/05 22:50:28 fca
85Do not use Atan, removed from ROOT too
86
87Revision 1.15 1999/11/02 17:20:19 fca
88initialise nbytes before using it
89
90Revision 1.14 1999/11/02 17:15:54 fca
91Correct ansi scoping not accepted by HP compilers
92
93Revision 1.13 1999/11/02 17:14:51 fca
94Correct ansi scoping not accepted by HP compilers
95
96Revision 1.12 1999/11/02 16:35:56 fca
97New version of TRD introduced
98
99Revision 1.11 1999/11/01 20:41:51 fca
100Added protections against using the wrong version of FRAME
101
102Revision 1.10 1999/09/29 09:24:35 fca
103Introduction of the Copyright and cvs Log
104
105*/
106
107///////////////////////////////////////////////////////////////////////////////
108// //
109// Transition Radiation Detector version 1 -- slow simulator //
110// //
111//Begin_Html
112/*
113<img src="picts/AliTRDfullClass.gif">
114*/
115//End_Html
116// //
117// //
118///////////////////////////////////////////////////////////////////////////////
119
120#include <stdlib.h>
121
122#include <TMath.h>
123#include <TVector.h>
124#include <TRandom.h>
125#include <TF1.h>
126#include <TLorentzVector.h>
127
128#include "AliRun.h"
129#include "AliMC.h"
130#include "AliConst.h"
131
132#include "AliTRDv1.h"
133#include "AliTRDhit.h"
134#include "AliTRDmatrix.h"
135#include "AliTRDgeometry.h"
136#include "AliTRDsim.h"
137
138ClassImp(AliTRDv1)
139
140//_____________________________________________________________________________
141AliTRDv1::AliTRDv1():AliTRD()
142{
143 //
144 // Default constructor
145 //
146
147 fSensSelect = 0;
148 fSensPlane = -1;
149 fSensChamber = -1;
150 fSensSector = -1;
151 fSensSectorRange = 0;
152
153 fDeltaE = NULL;
154 fTR = NULL;
155
156}
157
158//_____________________________________________________________________________
159AliTRDv1::AliTRDv1(const char *name, const char *title)
160 :AliTRD(name, title)
161{
162 //
163 // Standard constructor for Transition Radiation Detector version 1
164 //
165
166 fSensSelect = 0;
167 fSensPlane = -1;
168 fSensChamber = -1;
169 fSensSector = -1;
170 fSensSectorRange = 0;
171
172 fDeltaE = NULL;
173 fTR = NULL;
174
175 SetBufferSize(128000);
176
177}
178
179//_____________________________________________________________________________
180AliTRDv1::AliTRDv1(const AliTRDv1 &trd)
181{
182 //
183 // Copy constructor
184 //
185
186 ((AliTRDv1 &) trd).Copy(*this);
187
188}
189
190//_____________________________________________________________________________
191AliTRDv1::~AliTRDv1()
192{
193 //
194 // AliTRDv1 destructor
195 //
196
197 if (fDeltaE) delete fDeltaE;
198 if (fTR) delete fTR;
199
200}
201
202//_____________________________________________________________________________
203AliTRDv1 &AliTRDv1::operator=(const AliTRDv1 &trd)
204{
205 //
206 // Assignment operator
207 //
208
209 if (this != &trd) ((AliTRDv1 &) trd).Copy(*this);
210 return *this;
211
212}
213
214//_____________________________________________________________________________
215void AliTRDv1::Copy(TObject &trd)
216{
217 //
218 // Copy function
219 //
220
221 ((AliTRDv1 &) trd).fSensSelect = fSensSelect;
222 ((AliTRDv1 &) trd).fSensPlane = fSensPlane;
223 ((AliTRDv1 &) trd).fSensChamber = fSensChamber;
224 ((AliTRDv1 &) trd).fSensSector = fSensSector;
225 ((AliTRDv1 &) trd).fSensSectorRange = fSensSectorRange;
226
227 fDeltaE->Copy(*((AliTRDv1 &) trd).fDeltaE);
228 fTR->Copy(*((AliTRDv1 &) trd).fTR);
229
230}
231
232//_____________________________________________________________________________
233void AliTRDv1::CreateGeometry()
234{
235 //
236 // Create the GEANT geometry for the Transition Radiation Detector - Version 1
237 // This version covers the full azimuth.
238 //
239
240 // Check that FRAME is there otherwise we have no place where to put the TRD
241 AliModule* frame = gAlice->GetModule("FRAME");
242 if (!frame) return;
243
244 // Define the chambers
245 AliTRD::CreateGeometry();
246
247}
248
249//_____________________________________________________________________________
250void AliTRDv1::CreateMaterials()
251{
252 //
253 // Create materials for the Transition Radiation Detector version 1
254 //
255
256 AliTRD::CreateMaterials();
257
258}
259
260//_____________________________________________________________________________
261void AliTRDv1::CreateTRhit(Int_t det)
262{
263 //
264 // Creates an electron cluster from a TR photon.
265 // The photon is assumed to be created a the end of the radiator. The
266 // distance after which it deposits its energy takes into account the
267 // absorbtion of the entrance window and of the gas mixture in drift
268 // volume.
269 //
270
271 // PDG code electron
272 const Int_t kPdgElectron = 11;
273
274 // Ionization energy
275 const Float_t kWion = 22.04;
276
277 // Maximum number of TR photons per track
278 const Int_t kNTR = 50;
279
280 TLorentzVector mom, pos;
281
282 // Create TR at the entrance of the chamber
283 if (gMC->IsTrackEntering()) {
284
285 // Create TR only for electrons
286 Int_t iPdg = gMC->TrackPid();
287 if (TMath::Abs(iPdg) != kPdgElectron) return;
288
289 Float_t eTR[kNTR];
290 Int_t nTR;
291
292 // Create TR photons
293 gMC->TrackMomentum(mom);
294 Float_t pTot = mom.Rho();
295 fTR->CreatePhotons(iPdg,pTot,nTR,eTR);
296 if (nTR > kNTR) {
297 printf("AliTRDv1::CreateTRhit -- ");
298 printf("Boundary error: nTR = %d, kNTR = %d\n",nTR,kNTR);
299 exit(1);
300 }
301
302 // Loop through the TR photons
303 for (Int_t iTR = 0; iTR < nTR; iTR++) {
304
305 Float_t energyMeV = eTR[iTR] * 0.001;
306 Float_t energyeV = eTR[iTR] * 1000.0;
307 Float_t absLength = 0;
308 Float_t sigma = 0;
309
310 // Take the absorbtion in the entrance window into account
311 Double_t muMy = fTR->GetMuMy(energyMeV);
312 sigma = muMy * fFoilDensity;
313 absLength = gRandom->Exp(sigma);
314 if (absLength < AliTRDgeometry::MyThick()) continue;
315
316 // The absorbtion cross sections in the drift gas
317 if (fGasMix == 1) {
318 // Gas-mixture (Xe/CO2)
319 Double_t muXe = fTR->GetMuXe(energyMeV);
320 Double_t muCO = fTR->GetMuCO(energyMeV);
321 sigma = (0.85 * muXe + 0.15 * muCO) * fGasDensity;
322 }
323 else {
324 // Gas-mixture (Xe/Isobutane)
325 Double_t muXe = fTR->GetMuXe(energyMeV);
326 Double_t muBu = fTR->GetMuBu(energyMeV);
327 sigma = (0.97 * muXe + 0.03 * muBu) * fGasDensity;
328 }
329
330 // The distance after which the energy of the TR photon
331 // is deposited.
332 absLength = gRandom->Exp(sigma);
333 if (absLength > AliTRDgeometry::DrThick()) continue;
334
335 // The position of the absorbtion
336 Float_t posHit[3];
337 gMC->TrackPosition(pos);
338 posHit[0] = pos[0] + mom[0] / pTot * absLength;
339 posHit[1] = pos[1] + mom[1] / pTot * absLength;
340 posHit[2] = pos[2] + mom[2] / pTot * absLength;
341
342 // Create the charge
343 Int_t q = ((Int_t) (energyeV / kWion));
344
345 // Add the hit to the array. TR photon hits are marked
346 // by negative charge
347 AddHit(gAlice->CurrentTrack(),det,posHit,-q,kTRUE);
348
349 }
350
351 }
352
353}
354
355//_____________________________________________________________________________
356void AliTRDv1::Init()
357{
358 //
359 // Initialise Transition Radiation Detector after geometry has been built.
360 //
361
362 AliTRD::Init();
363
364 if(fDebug) printf("%s: Slow simulator\n",ClassName());
365 if (fSensSelect) {
366 if (fSensPlane >= 0)
367 printf(" Only plane %d is sensitive\n",fSensPlane);
368 if (fSensChamber >= 0)
369 printf(" Only chamber %d is sensitive\n",fSensChamber);
370 if (fSensSector >= 0) {
371 Int_t sens1 = fSensSector;
372 Int_t sens2 = fSensSector + fSensSectorRange;
373 sens2 -= ((Int_t) (sens2 / AliTRDgeometry::Nsect()))
374 * AliTRDgeometry::Nsect();
375 printf(" Only sectors %d - %d are sensitive\n",sens1,sens2-1);
376 }
377 }
378 if (fTR)
379 printf("%s: TR simulation on\n",ClassName());
380 else
381 printf("%s: TR simulation off\n",ClassName());
382 printf("\n");
383
384 // First ionization potential (eV) for the gas mixture (90% Xe + 10% CO2)
385 const Float_t kPoti = 12.1;
386 // Maximum energy (50 keV);
387 const Float_t kEend = 50000.0;
388 // Ermilova distribution for the delta-ray spectrum
389 Float_t poti = TMath::Log(kPoti);
390 Float_t eEnd = TMath::Log(kEend);
391 fDeltaE = new TF1("deltae",Ermilova,poti,eEnd,0);
392
393 if(fDebug) {
394 printf("%s: ",ClassName());
395 for (Int_t i = 0; i < 80; i++) printf("*");
396 printf("\n");
397 }
398
399}
400
401//_____________________________________________________________________________
402AliTRDsim *AliTRDv1::CreateTR()
403{
404 //
405 // Enables the simulation of TR
406 //
407
408 fTR = new AliTRDsim();
409 return fTR;
410
411}
412
413//_____________________________________________________________________________
414void AliTRDv1::SetSensPlane(Int_t iplane)
415{
416 //
417 // Defines the hit-sensitive plane (0-5)
418 //
419
420 if ((iplane < 0) || (iplane > 5)) {
421 printf("Wrong input value: %d\n",iplane);
422 printf("Use standard setting\n");
423 fSensPlane = -1;
424 fSensSelect = 0;
425 return;
426 }
427
428 fSensSelect = 1;
429 fSensPlane = iplane;
430
431}
432
433//_____________________________________________________________________________
434void AliTRDv1::SetSensChamber(Int_t ichamber)
435{
436 //
437 // Defines the hit-sensitive chamber (0-4)
438 //
439
440 if ((ichamber < 0) || (ichamber > 4)) {
441 printf("Wrong input value: %d\n",ichamber);
442 printf("Use standard setting\n");
443 fSensChamber = -1;
444 fSensSelect = 0;
445 return;
446 }
447
448 fSensSelect = 1;
449 fSensChamber = ichamber;
450
451}
452
453//_____________________________________________________________________________
454void AliTRDv1::SetSensSector(Int_t isector)
455{
456 //
457 // Defines the hit-sensitive sector (0-17)
458 //
459
460 SetSensSector(isector,1);
461
462}
463
464//_____________________________________________________________________________
465void AliTRDv1::SetSensSector(Int_t isector, Int_t nsector)
466{
467 //
468 // Defines a range of hit-sensitive sectors. The range is defined by
469 // <isector> (0-17) as the starting point and <nsector> as the number
470 // of sectors to be included.
471 //
472
473 if ((isector < 0) || (isector > 17)) {
474 printf("Wrong input value <isector>: %d\n",isector);
475 printf("Use standard setting\n");
476 fSensSector = -1;
477 fSensSectorRange = 0;
478 fSensSelect = 0;
479 return;
480 }
481
482 if ((nsector < 1) || (nsector > 18)) {
483 printf("Wrong input value <nsector>: %d\n",nsector);
484 printf("Use standard setting\n");
485 fSensSector = -1;
486 fSensSectorRange = 0;
487 fSensSelect = 0;
488 return;
489 }
490
491 fSensSelect = 1;
492 fSensSector = isector;
493 fSensSectorRange = nsector;
494
495}
496
497//_____________________________________________________________________________
498void AliTRDv1::StepManager()
499{
500 //
501 // Slow simulator. Every charged track produces electron cluster as hits
502 // along its path across the drift volume. The step size is set acording
503 // to Bethe-Bloch. The energy distribution of the delta electrons follows
504 // a spectrum taken from Ermilova et al.
505 //
506
507 Int_t pla = 0;
508 Int_t cha = 0;
509 Int_t sec = 0;
510 Int_t det = 0;
511 Int_t iPdg;
512 Int_t qTot;
513
514 Float_t hits[3];
515 Float_t moms[3];
516 Float_t random[1];
517 Float_t charge;
518 Float_t aMass;
519
520 Double_t pTot = 0;
521 Double_t eDelta;
522 Double_t betaGamma, pp;
523 Double_t stepSize;
524
525 Bool_t drRegion = kFALSE;
526 Bool_t amRegion = kFALSE;
527
528 TString cIdCurrent;
529 TString cIdSensDr = "J";
530 TString cIdSensAm = "K";
531 Char_t cIdChamber[3];
532 cIdChamber[2] = 0;
533
534 TLorentzVector pos, mom;
535
536 const Int_t kNplan = AliTRDgeometry::Nplan();
537 const Double_t kBig = 1.0E+12;
538
539 // Ionization energy
540 const Float_t kWion = 22.04;
541 // Maximum momentum for e+ e- g
542 const Float_t kPTotMaxEl = 0.002;
543 // Minimum energy for the step size adjustment
544 const Float_t kEkinMinStep = 1.0e-5;
545 // Plateau value of the energy-loss for electron in xenon
546 // taken from: Allison + Comb, Ann. Rev. Nucl. Sci. (1980), 30, 253
547 //const Double_t kPlateau = 1.70;
548 // the averaged value (26/3/99)
549 const Float_t kPlateau = 1.55;
550 // dN1/dx|min for the gas mixture (90% Xe + 10% CO2)
551 const Float_t kPrim = 48.0;
552 // First ionization potential (eV) for the gas mixture (90% Xe + 10% CO2)
553 const Float_t kPoti = 12.1;
554
555 // PDG code electron
556 const Int_t kPdgElectron = 11;
557
558 // Set the maximum step size to a very large number for all
559 // neutral particles and those outside the driftvolume
560 gMC->SetMaxStep(kBig);
561
562 // Use only charged tracks
563 if (( gMC->TrackCharge() ) &&
564 (!gMC->IsTrackStop() ) &&
565 (!gMC->IsTrackDisappeared())) {
566
567 // Inside a sensitive volume?
568 drRegion = kFALSE;
569 amRegion = kFALSE;
570 cIdCurrent = gMC->CurrentVolName();
571 if (cIdSensDr == cIdCurrent[1]) {
572 drRegion = kTRUE;
573 }
574 if (cIdSensAm == cIdCurrent[1]) {
575 amRegion = kTRUE;
576 }
577 if (drRegion || amRegion) {
578
579 // The hit coordinates and charge
580 gMC->TrackPosition(pos);
581 hits[0] = pos[0];
582 hits[1] = pos[1];
583 hits[2] = pos[2];
584
585 // The sector number (0 - 17)
586 // The numbering goes clockwise and starts at y = 0
587 Float_t phi = kRaddeg*TMath::ATan2(pos[0],pos[1]);
588 if (phi < 90.)
589 phi = phi + 270.;
590 else
591 phi = phi - 90.;
592 sec = ((Int_t) (phi / 20));
593
594 // The plane and chamber number
595 cIdChamber[0] = cIdCurrent[2];
596 cIdChamber[1] = cIdCurrent[3];
597 Int_t idChamber = atoi(cIdChamber);
598 cha = ((Int_t) idChamber / kNplan);
599 pla = ((Int_t) idChamber % kNplan);
600
601 // Check on selected volumes
602 Int_t addthishit = 1;
603 if (fSensSelect) {
604 if ((fSensPlane >= 0) && (pla != fSensPlane )) addthishit = 0;
605 if ((fSensChamber >= 0) && (cha != fSensChamber)) addthishit = 0;
606 if (fSensSector >= 0) {
607 Int_t sens1 = fSensSector;
608 Int_t sens2 = fSensSector + fSensSectorRange;
609 sens2 -= ((Int_t) (sens2 / AliTRDgeometry::Nsect()))
610 * AliTRDgeometry::Nsect();
611 if (sens1 < sens2) {
612 if ((sec < sens1) || (sec >= sens2)) addthishit = 0;
613 }
614 else {
615 if ((sec < sens1) && (sec >= sens2)) addthishit = 0;
616 }
617 }
618 }
619
620 // Add this hit
621 if (addthishit) {
622
623 // The detector number
624 det = fGeometry->GetDetector(pla,cha,sec);
625
626 // Special hits and TR photons only in the drift region
627 if (drRegion) {
628
629 // Create some special hits with amplitude 0 at the entrance and
630 // exit of each chamber that contain the momentum components of the particle
631 if (gMC->IsTrackEntering() || gMC->IsTrackExiting()) {
632 gMC->TrackMomentum(mom);
633 moms[0] = mom[0];
634 moms[1] = mom[1];
635 moms[2] = mom[2];
636 AddHit(gAlice->CurrentTrack(),det,moms,0,kTRUE);
637 AddHit(gAlice->CurrentTrack(),det,hits,0,kTRUE);
638 }
639
640 // Create the hits from TR photons
641 if (fTR) CreateTRhit(det);
642
643 }
644
645 // Calculate the energy of the delta-electrons
646 eDelta = TMath::Exp(fDeltaE->GetRandom()) - kPoti;
647 eDelta = TMath::Max(eDelta,0.0);
648
649 // The number of secondary electrons created
650 qTot = ((Int_t) (eDelta / kWion) + 1);
651
652 // Create a new dEdx hit
653 if (drRegion) {
654 AddHit(gAlice->CurrentTrack(),det,hits,qTot,kTRUE);
655 }
656 else {
657 AddHit(gAlice->CurrentTrack(),det,hits,qTot,kFALSE);
658 }
659
660 // Calculate the maximum step size for the next tracking step
661 // Produce only one hit if Ekin is below cutoff
662 aMass = gMC->TrackMass();
663 if ((gMC->Etot() - aMass) > kEkinMinStep) {
664
665 // The energy loss according to Bethe Bloch
666 iPdg = TMath::Abs(gMC->TrackPid());
667 if ( (iPdg != kPdgElectron) ||
668 ((iPdg == kPdgElectron) && (pTot < kPTotMaxEl))) {
669 gMC->TrackMomentum(mom);
670 pTot = mom.Rho();
671 betaGamma = pTot / aMass;
672 pp = kPrim * BetheBloch(betaGamma);
673 // Take charge > 1 into account
674 charge = gMC->TrackCharge();
675 if (TMath::Abs(charge) > 1) pp = pp * charge*charge;
676 }
677 // Electrons above 20 Mev/c are at the plateau
678 else {
679 pp = kPrim * kPlateau;
680 }
681
682 if (pp > 0) {
683 do
684 gMC->Rndm(random,1);
685 while ((random[0] == 1.) || (random[0] == 0.));
686 stepSize = - TMath::Log(random[0]) / pp;
687 gMC->SetMaxStep(stepSize);
688 }
689
690 }
691
692 }
693
694 }
695
696 }
697
698}
699
700//_____________________________________________________________________________
701Double_t AliTRDv1::BetheBloch(Double_t bg)
702{
703 //
704 // Parametrization of the Bethe-Bloch-curve
705 // The parametrization is the same as for the TPC and is taken from Lehrhaus.
706 //
707
708 // This parameters have been adjusted to averaged values from GEANT
709 const Double_t kP1 = 7.17960e-02;
710 const Double_t kP2 = 8.54196;
711 const Double_t kP3 = 1.38065e-06;
712 const Double_t kP4 = 5.30972;
713 const Double_t kP5 = 2.83798;
714
715 // This parameters have been adjusted to Xe-data found in:
716 // Allison & Cobb, Ann. Rev. Nucl. Sci. (1980), 30, 253
717 //const Double_t kP1 = 0.76176E-1;
718 //const Double_t kP2 = 10.632;
719 //const Double_t kP3 = 3.17983E-6;
720 //const Double_t kP4 = 1.8631;
721 //const Double_t kP5 = 1.9479;
722
723 // Lower cutoff of the Bethe-Bloch-curve to limit step sizes
724 const Double_t kBgMin = 0.8;
725 const Double_t kBBMax = 6.83298;
726 //const Double_t kBgMin = 0.6;
727 //const Double_t kBBMax = 17.2809;
728 //const Double_t kBgMin = 0.4;
729 //const Double_t kBBMax = 82.0;
730
731 if (bg > kBgMin) {
732 Double_t yy = bg / TMath::Sqrt(1. + bg*bg);
733 Double_t aa = TMath::Power(yy,kP4);
734 Double_t bb = TMath::Power((1./bg),kP5);
735 bb = TMath::Log(kP3 + bb);
736 return ((kP2 - aa - bb)*kP1 / aa);
737 }
738 else {
739 return kBBMax;
740 }
741
742}
743
744//_____________________________________________________________________________
745Double_t Ermilova(Double_t *x, Double_t *)
746{
747 //
748 // Calculates the delta-ray energy distribution according to Ermilova.
749 // Logarithmic scale !
750 //
751
752 Double_t energy;
753 Double_t dpos;
754 Double_t dnde;
755
756 Int_t pos1, pos2;
757
758 const Int_t kNv = 31;
759
760 Float_t vxe[kNv] = { 2.3026, 2.9957, 3.4012, 3.6889, 3.9120
761 , 4.0943, 4.2485, 4.3820, 4.4998, 4.6052
762 , 4.7005, 5.0752, 5.2983, 5.7038, 5.9915
763 , 6.2146, 6.5221, 6.9078, 7.3132, 7.6009
764 , 8.0064, 8.5172, 8.6995, 8.9872, 9.2103
765 , 9.4727, 9.9035,10.3735,10.5966,10.8198
766 ,11.5129 };
767
768 Float_t vye[kNv] = { 80.0 , 31.0 , 23.3 , 21.1 , 21.0
769 , 20.9 , 20.8 , 20.0 , 16.0 , 11.0
770 , 8.0 , 6.0 , 5.2 , 4.6 , 4.0
771 , 3.5 , 3.0 , 1.4 , 0.67 , 0.44
772 , 0.3 , 0.18 , 0.12 , 0.08 , 0.056
773 , 0.04 , 0.023, 0.015, 0.011, 0.01
774 , 0.004 };
775
776 energy = x[0];
777
778 // Find the position
779 pos1 = pos2 = 0;
780 dpos = 0;
781 do {
782 dpos = energy - vxe[pos2++];
783 }
784 while (dpos > 0);
785 pos2--;
786 if (pos2 > kNv) pos2 = kNv - 1;
787 pos1 = pos2 - 1;
788
789 // Differentiate between the sampling points
790 dnde = (vye[pos1] - vye[pos2]) / (vxe[pos2] - vxe[pos1]);
791
792 return dnde;
793
794}