]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - ZDC/AliZDCv2.cxx
Declaration of AliGenPythia added.
[u/mrichter/AliRoot.git] / ZDC / AliZDCv2.cxx
... / ...
CommitLineData
1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16
17///////////////////////////////////////////////////////////////////////
18// //
19// AliZDCv2 --- new ZDC geometry //
20// with the EM ZDC at about 10 m from IP //
21// Just one set of ZDC is inserted //
22// (on the same side of the dimuon arm realtive to IP) //
23// Compensator in ZDC geometry (Nov. 2004) //
24// //
25///////////////////////////////////////////////////////////////////////
26
27// --- Standard libraries
28#include "stdio.h"
29
30// --- ROOT system
31#include <TBRIK.h>
32#include <TMath.h>
33#include <TNode.h>
34#include <TRandom.h>
35#include <TSystem.h>
36#include <TTree.h>
37#include <TVirtualMC.h>
38#include <TGeoManager.h>
39
40// --- AliRoot classes
41#include "AliConst.h"
42#include "AliMagF.h"
43#include "AliRun.h"
44#include "AliZDCv2.h"
45#include "AliMC.h"
46
47class AliZDCHit;
48class AliPDG;
49class AliDetector;
50
51ClassImp(AliZDCv2)
52
53//_____________________________________________________________________________
54AliZDCv2::AliZDCv2() :
55 AliZDC(),
56 fMedSensF1(0),
57 fMedSensF2(0),
58 fMedSensZP(0),
59 fMedSensZN(0),
60 fMedSensZEM(0),
61 fMedSensGR(0),
62 fMedSensPI(0),
63 fMedSensTDI(0),
64 fNalfan(0),
65 fNalfap(0),
66 fNben(0),
67 fNbep(0),
68 fZEMLength(0),
69 fpLostIT(0),
70 fpLostD1(0),
71 fpLostTDI(0),
72 fpDetected(0),
73 fnDetected(0)
74{
75 //
76 // Default constructor for Zero Degree Calorimeter
77 //
78
79}
80
81//_____________________________________________________________________________
82AliZDCv2::AliZDCv2(const char *name, const char *title)
83 : AliZDC(name,title),
84 fMedSensF1(0),
85 fMedSensF2(0),
86 fMedSensZP(0),
87 fMedSensZN(0),
88 fMedSensZEM(0),
89 fMedSensGR(0),
90 fMedSensPI(0),
91 fMedSensTDI(0),
92 fNalfan(90),
93 fNalfap(90),
94 fNben(18),
95 fNbep(28),
96 fZEMLength(0),
97 fpLostIT(0),
98 fpLostD1(0),
99 fpLostTDI(0),
100 fpDetected(0),
101 fnDetected(0)
102
103
104{
105 //
106 // Standard constructor for Zero Degree Calorimeter
107 //
108 //
109 // Check that DIPO, ABSO, DIPO and SHIL is there (otherwise tracking is wrong!!!)
110
111 AliModule* pipe=gAlice->GetModule("PIPE");
112 AliModule* abso=gAlice->GetModule("ABSO");
113 AliModule* dipo=gAlice->GetModule("DIPO");
114 AliModule* shil=gAlice->GetModule("SHIL");
115 if((!pipe) || (!abso) || (!dipo) || (!shil)) {
116 Error("Constructor","ZDC needs PIPE, ABSO, DIPO and SHIL!!!\n");
117 exit(1);
118 }
119
120 fMedSensF1 = 0;
121 fMedSensF2 = 0;
122 fMedSensZN = 0;
123 fMedSensZP = 0;
124 fMedSensZEM = 0;
125 fMedSensGR = 0;
126 fMedSensPI = 0;
127 fMedSensTDI = 0;
128
129
130 // Parameters for light tables
131 fNalfan = 90; // Number of Alfa (neutrons)
132 fNalfap = 90; // Number of Alfa (protons)
133 fNben = 18; // Number of beta (neutrons)
134 fNbep = 28; // Number of beta (protons)
135 Int_t ip,jp,kp;
136 for(ip=0; ip<4; ip++){
137 for(kp=0; kp<fNalfap; kp++){
138 for(jp=0; jp<fNbep; jp++){
139 fTablep[ip][kp][jp] = 0;
140 }
141 }
142 }
143 Int_t in,jn,kn;
144 for(in=0; in<4; in++){
145 for(kn=0; kn<fNalfan; kn++){
146 for(jn=0; jn<fNben; jn++){
147 fTablen[in][kn][jn] = 0;
148 }
149 }
150 }
151
152 // Parameters for hadronic calorimeters geometry
153 fDimZN[0] = 3.52;
154 fDimZN[1] = 3.52;
155 fDimZN[2] = 50.;
156 fDimZP[0] = 11.2;
157 fDimZP[1] = 6.;
158 fDimZP[2] = 75.;
159 fPosZN[0] = 0.;
160 fPosZN[1] = 1.2;
161 fPosZN[2] = -11650.;
162 fPosZP[0] = 23.9;
163 fPosZP[1] = 0.;
164 fPosZP[2] = -11600.;
165 fFibZN[0] = 0.;
166 fFibZN[1] = 0.01825;
167 fFibZN[2] = 50.;
168 fFibZP[0] = 0.;
169 fFibZP[1] = 0.0275;
170 fFibZP[2] = 75.;
171
172 // Parameters for EM calorimeter geometry
173 fPosZEM[0] = 8.5;
174 fPosZEM[1] = 0.;
175 fPosZEM[2] = 735.;
176
177 Float_t kDimZEMPb = 0.15*(TMath::Sqrt(2.)); // z-dimension of the Pb slice
178 Float_t kDimZEMAir = 0.001; // scotch
179 Float_t kFibRadZEM = 0.0315; // External fiber radius (including cladding)
180 Int_t kDivZEM[3] = {92, 0, 20}; // Divisions for EM detector
181 Float_t kDimZEM0 = 2*kDivZEM[2]*(kDimZEMPb+kDimZEMAir+kFibRadZEM*(TMath::Sqrt(2.)));
182 fZEMLength = kDimZEM0;
183
184}
185
186//_____________________________________________________________________________
187void AliZDCv2::CreateGeometry()
188{
189 //
190 // Create the geometry for the Zero Degree Calorimeter version 2
191 //* Initialize COMMON block ZDC_CGEOM
192 //*
193
194 CreateBeamLine();
195 CreateZDC();
196}
197
198//_____________________________________________________________________________
199void AliZDCv2::CreateBeamLine()
200{
201 //
202 // Create the beam line elements
203 //
204
205 Float_t zc, zq, zd1, zd2;
206 Float_t conpar[9], tubpar[3], tubspar[5], boxpar[3];
207 Int_t im1, im2;
208
209 Int_t *idtmed = fIdtmed->GetArray();
210
211 // -- Mother of the ZDCs (Vacuum PCON)
212 // zd1 = 2092.; // (Without compensator in ZDC geometry)
213 zd1 = 1921.6;
214
215 conpar[0] = 0.;
216 conpar[1] = 360.;
217 conpar[2] = 2.;
218 conpar[3] = -13500.;
219 conpar[4] = 0.;
220 conpar[5] = 55.;
221 conpar[6] = -zd1;
222 conpar[7] = 0.;
223 conpar[8] = 55.;
224 gMC->Gsvolu("ZDC ", "PCON", idtmed[11], conpar, 9);
225 gMC->Gspos("ZDC ", 1, "ALIC", 0., 0., 0., 0, "ONLY");
226
227 // -- FIRST SECTION OF THE BEAM PIPE (from compensator dipole to
228 // the beginning of D1)
229 tubpar[0] = 6.3/2.;
230 tubpar[1] = 6.7/2.;
231 // From beginning of ZDC volumes to beginning of D1
232 tubpar[2] = (5838.3-zd1)/2.;
233 gMC->Gsvolu("QT01", "TUBE", idtmed[7], tubpar, 3);
234 gMC->Gspos("QT01", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
235 // Ch.debug
236 //printf("\n QT01 TUBE pipe from z = %f to z= %f (D1 beg.)\n",-zd1,-2*tubpar[2]-zd1);
237
238 //-- SECOND SECTION OF THE BEAM PIPE (from the end of D1 to the
239 // beginning of D2)
240
241 //-- FROM MAGNETIC BEGINNING OF D1 TO MAGNETIC END OF D1 + 13.5 cm
242 //-- Cylindrical pipe (r = 3.47) + conical flare
243
244 // -> Beginning of D1
245 zd1 += 2.*tubpar[2];
246
247 tubpar[0] = 3.47;
248 tubpar[1] = 3.47+0.2;
249 tubpar[2] = 958.5/2.;
250 gMC->Gsvolu("QT02", "TUBE", idtmed[7], tubpar, 3);
251 gMC->Gspos("QT02", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
252 // Ch.debug
253 //printf("\n QT02 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
254
255 zd1 += 2.*tubpar[2];
256
257 conpar[0] = 25./2.;
258 conpar[1] = 10./2.;
259 conpar[2] = 10.4/2.;
260 conpar[3] = 6.44/2.;
261 conpar[4] = 6.84/2.;
262 gMC->Gsvolu("QC01", "CONE", idtmed[7], conpar, 5);
263 gMC->Gspos("QC01", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY");
264 // Ch.debug
265 //printf("\n QC01 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1);
266
267 zd1 += 2.*conpar[0];
268
269 tubpar[0] = 10./2.;
270 tubpar[1] = 10.4/2.;
271 tubpar[2] = 50./2.;
272 gMC->Gsvolu("QT03", "TUBE", idtmed[7], tubpar, 3);
273 gMC->Gspos("QT03", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
274 // Ch.debug
275 //printf("\n QT03 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
276
277 zd1 += tubpar[2]*2.;
278
279 tubpar[0] = 10./2.;
280 tubpar[1] = 10.4/2.;
281 tubpar[2] = 10./2.;
282 gMC->Gsvolu("QT04", "TUBE", idtmed[7], tubpar, 3);
283 gMC->Gspos("QT04", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
284 // Ch.debug
285 //printf("\n QT04 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
286
287 zd1 += tubpar[2] * 2.;
288
289 tubpar[0] = 10./2.;
290 tubpar[1] = 10.4/2.;
291 tubpar[2] = 3.16/2.;
292 gMC->Gsvolu("QT05", "TUBE", idtmed[7], tubpar, 3);
293 gMC->Gspos("QT05", 1, "ZDC ", 0., 0., -tubpar[0]-zd1, 0, "ONLY");
294 // Ch.debug
295 //printf("\n QT05 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
296
297 zd1 += tubpar[2] * 2.;
298
299 tubpar[0] = 10.0/2.;
300 tubpar[1] = 10.4/2;
301 tubpar[2] = 190./2.;
302 gMC->Gsvolu("QT06", "TUBE", idtmed[7], tubpar, 3);
303 gMC->Gspos("QT06", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
304 // Ch.debug
305 //printf("\n QT06 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
306
307 zd1 += tubpar[2] * 2.;
308
309 conpar[0] = 30./2.;
310 conpar[1] = 20.6/2.;
311 conpar[2] = 21./2.;
312 conpar[3] = 10./2.;
313 conpar[4] = 10.4/2.;
314 gMC->Gsvolu("QC02", "CONE", idtmed[7], conpar, 5);
315 gMC->Gspos("QC02", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY");
316 // Ch.debug
317 //printf("\n QC02 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1);
318
319 zd1 += conpar[0] * 2.;
320
321 tubpar[0] = 20.6/2.;
322 tubpar[1] = 21./2.;
323 tubpar[2] = 450./2.;
324 gMC->Gsvolu("QT07", "TUBE", idtmed[7], tubpar, 3);
325 gMC->Gspos("QT07", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
326 // Ch.debug
327 //printf("\n QT07 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
328
329 zd1 += tubpar[2] * 2.;
330
331 conpar[0] = 13.6/2.;
332 conpar[1] = 25.4/2.;
333 conpar[2] = 25.8/2.;
334 conpar[3] = 20.6/2.;
335 conpar[4] = 21./2.;
336 gMC->Gsvolu("QC03", "CONE", idtmed[7], conpar, 5);
337 gMC->Gspos("QC03", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY");
338 // Ch.debug
339 //printf("\n QC03 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1);
340
341 zd1 += conpar[0] * 2.;
342
343 tubpar[0] = 25.4/2.;
344 tubpar[1] = 25.8/2.;
345 tubpar[2] = 205.8/2.;
346 gMC->Gsvolu("QT08", "TUBE", idtmed[7], tubpar, 3);
347 gMC->Gspos("QT08", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
348 // Ch.debug
349 //printf("\n QT08 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
350
351 zd1 += tubpar[2] * 2.;
352
353 tubpar[0] = 50./2.;
354 tubpar[1] = 50.4/2.;
355 // QT09 is 10 cm longer to accomodate TDI
356 tubpar[2] = 515.4/2.;
357 gMC->Gsvolu("QT09", "TUBE", idtmed[7], tubpar, 3);
358 gMC->Gspos("QT09", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
359 // Ch.debug
360 //printf("\n QT09 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
361
362 // --- Insert TDI (inside ZDC volume)
363 boxpar[0] = 5.6;
364 boxpar[1] = 5.6;
365 boxpar[2] = 400./2.;
366 gMC->Gsvolu("QTD1", "BOX ", idtmed[7], boxpar, 3);
367 gMC->Gspos("QTD1", 1, "ZDC ", -3., 10.6, -tubpar[2]-zd1-56.3, 0, "ONLY");
368 gMC->Gspos("QTD1", 2, "ZDC ", -3., -10.6, -tubpar[2]-zd1-56.3, 0, "ONLY");
369
370 boxpar[0] = 0.2/2.;
371 boxpar[1] = 5.6;
372 boxpar[2] = 400./2.;
373 gMC->Gsvolu("QTD2", "BOX ", idtmed[6], boxpar, 3);
374 gMC->Gspos("QTD2", 1, "ZDC ", -8.6-boxpar[0], 0., -tubpar[2]-zd1-56.3, 0, "ONLY");
375
376 tubspar[0] = 10.5; // R = 10.5 cm------------------------------------------
377 tubspar[1] = 10.7;
378 tubspar[2] = 400./2.;
379 tubspar[3] = 360.-75.5;
380 tubspar[4] = 75.5;
381 gMC->Gsvolu("QTD3", "TUBS", idtmed[6], tubspar, 5);
382 gMC->Gspos("QTD3", 1, "ZDC ", 0., 0., -tubpar[2]-zd1-56.3, 0, "ONLY");
383 // Ch.debug
384 //printf("\n TDI volume from z = %f to z= %f\n",-tubpar[2]-zd1-56.3,-tubpar[2]-zd1-56.3-400.);
385
386 zd1 += tubpar[2] * 2.;
387
388 tubpar[0] = 50./2.;
389 tubpar[1] = 50.4/2.;
390 // QT10 is 10 cm shorter
391 tubpar[2] = 690./2.;
392 gMC->Gsvolu("QT10", "TUBE", idtmed[7], tubpar, 3);
393 gMC->Gspos("QT10", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
394 // Ch.debug
395 //printf("\n QT10 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
396
397 zd1 += tubpar[2] * 2.;
398
399 tubpar[0] = 50./2.;
400 tubpar[1] = 50.4/2.;
401 tubpar[2] = 778.5/2.;
402 gMC->Gsvolu("QT11", "TUBE", idtmed[7], tubpar, 3);
403 gMC->Gspos("QT11", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
404 // Ch.debug
405 //printf("\n QT11 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
406
407 zd1 += tubpar[2] * 2.;
408
409 conpar[0] = 14.18/2.;
410 conpar[1] = 55./2.;
411 conpar[2] = 55.4/2.;
412 conpar[3] = 50./2.;
413 conpar[4] = 50.4/2.;
414 gMC->Gsvolu("QC04", "CONE", idtmed[7], conpar, 5);
415 gMC->Gspos("QC04", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY");
416 // Ch.debug
417 //printf("\n QC04 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1);
418
419 zd1 += conpar[0] * 2.;
420
421 tubpar[0] = 55./2.;
422 tubpar[1] = 55.4/2.;
423 tubpar[2] = 730./2.;
424 gMC->Gsvolu("QT12", "TUBE", idtmed[7], tubpar, 3);
425 gMC->Gspos("QT12", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
426 // Ch.debug
427 //printf("\n QT12 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
428
429 zd1 += tubpar[2] * 2.;
430
431 conpar[0] = 36.86/2.;
432 conpar[1] = 68./2.;
433 conpar[2] = 68.4/2.;
434 conpar[3] = 55./2.;
435 conpar[4] = 55.4/2.;
436 gMC->Gsvolu("QC05", "CONE", idtmed[7], conpar, 5);
437 gMC->Gspos("QC05", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY");
438 // Ch.debug
439 //printf("\n QC05 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1);
440
441 zd1 += conpar[0] * 2.;
442
443 tubpar[0] = 68./2.;
444 tubpar[1] = 68.4/2.;
445 tubpar[2] = 927.3/2.;
446 gMC->Gsvolu("QT13", "TUBE", idtmed[7], tubpar, 3);
447 gMC->Gspos("QT13", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
448 // Ch.debug
449 //printf("\n QT13 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
450
451 zd1 += tubpar[2] * 2.;
452
453 tubpar[0] = 0./2.;
454 tubpar[1] = 68.4/2.;
455 tubpar[2] = 0.2/2.;
456 gMC->Gsvolu("QT14", "TUBE", idtmed[8], tubpar, 3);
457 gMC->Gspos("QT14", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
458 // Ch.debug
459 //printf("\n QT14 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
460
461 zd1 += tubpar[2] * 2.;
462
463 tubpar[0] = 0./2.;
464 tubpar[1] = 6.4/2.;
465 tubpar[2] = 0.2/2.;
466 gMC->Gsvolu("QT15", "TUBE", idtmed[11], tubpar, 3);
467 //-- Position QT15 inside QT14
468 gMC->Gspos("QT15", 1, "QT14", -7.7, 0., 0., 0, "ONLY");
469
470 gMC->Gsvolu("QT16", "TUBE", idtmed[11], tubpar, 3);
471 //-- Position QT16 inside QT14
472 gMC->Gspos("QT16", 1, "QT14", 7.7, 0., 0., 0, "ONLY");
473
474
475 //-- BEAM PIPE BETWEEN END OF CONICAL PIPE AND BEGINNING OF D2
476
477 tubpar[0] = 6.4/2.;
478 tubpar[1] = 6.8/2.;
479 tubpar[2] = 680.8/2.;
480 gMC->Gsvolu("QT17", "TUBE", idtmed[7], tubpar, 3);
481
482 tubpar[0] = 6.4/2.;
483 tubpar[1] = 6.8/2.;
484 tubpar[2] = 680.8/2.;
485 gMC->Gsvolu("QT18", "TUBE", idtmed[7], tubpar, 3);
486
487 // -- ROTATE PIPES
488 Float_t angle = 0.143*kDegrad; // Rotation angle
489
490 //AliMatrix(im1, 90.+0.143, 0., 90., 90., 0.143, 0.); // x<0
491 gMC->Matrix(im1, 90.+0.143, 0., 90., 90., 0.143, 0.); // x<0
492 gMC->Gspos("QT17", 1, "ZDC ", TMath::Sin(angle) * 680.8/ 2. - 9.4,
493 0., -tubpar[2]-zd1, im1, "ONLY");
494
495 //AliMatrix(im2, 90.-0.143, 0., 90., 90., 0.143, 180.); // x>0 (ZP)
496 gMC->Matrix(im2, 90.-0.143, 0., 90., 90., 0.143, 180.); // x>0 (ZP)
497 gMC->Gspos("QT18", 1, "ZDC ", 9.7 - TMath::Sin(angle) * 680.8 / 2.,
498 0., -tubpar[2]-zd1, im2, "ONLY");
499
500 // -- END OF BEAM PIPE VOLUME DEFINITION.
501 // ----------------------------------------------------------------
502
503 // ----------------------------------------------------------------
504 // -- MAGNET DEFINITION -> LHC OPTICS 6.5
505 // ----------------------------------------------------------------
506 // -- COMPENSATOR DIPOLE (MBXW)
507 zc = 1921.6;
508
509 // -- GAP (VACUUM WITH MAGNETIC FIELD)
510 tubpar[0] = 0.;
511 tubpar[1] = 4.5;
512 tubpar[2] = 170./2.;
513 gMC->Gsvolu("MBXW", "TUBE", idtmed[11], tubpar, 3);
514
515 // -- YOKE
516 tubpar[0] = 4.5;
517 tubpar[1] = 55.;
518 tubpar[2] = 170./2.;
519 gMC->Gsvolu("YMBX", "TUBE", idtmed[13], tubpar, 3);
520
521 gMC->Gspos("MBXW", 1, "ZDC ", 0., 0., -tubpar[2]-zc, 0, "ONLY");
522 gMC->Gspos("YMBX", 1, "ZDC ", 0., 0., -tubpar[2]-zc, 0, "ONLY");
523
524
525 // -- INNER TRIPLET
526 zq = 2296.5;
527
528 // -- DEFINE MQXL AND MQX QUADRUPOLE ELEMENT
529 // -- MQXL
530 // -- GAP (VACUUM WITH MAGNETIC FIELD)
531 tubpar[0] = 0.;
532 tubpar[1] = 3.5;
533 tubpar[2] = 637./2.;
534 gMC->Gsvolu("MQXL", "TUBE", idtmed[11], tubpar, 3);
535
536
537 // -- YOKE
538 tubpar[0] = 3.5;
539 tubpar[1] = 22.;
540 tubpar[2] = 637./2.;
541 gMC->Gsvolu("YMQL", "TUBE", idtmed[7], tubpar, 3);
542
543 gMC->Gspos("MQXL", 1, "ZDC ", 0., 0., -tubpar[2]-zq, 0, "ONLY");
544 gMC->Gspos("YMQL", 1, "ZDC ", 0., 0., -tubpar[2]-zq, 0, "ONLY");
545
546 gMC->Gspos("MQXL", 2, "ZDC ", 0., 0., -tubpar[2]-zq-2430., 0, "ONLY");
547 gMC->Gspos("YMQL", 2, "ZDC ", 0., 0., -tubpar[2]-zq-2430., 0, "ONLY");
548
549 // -- MQX
550 // -- GAP (VACUUM WITH MAGNETIC FIELD)
551 tubpar[0] = 0.;
552 tubpar[1] = 3.5;
553 tubpar[2] = 550./2.;
554 gMC->Gsvolu("MQX ", "TUBE", idtmed[11], tubpar, 3);
555
556 // -- YOKE
557 tubpar[0] = 3.5;
558 tubpar[1] = 22.;
559 tubpar[2] = 550./2.;
560 gMC->Gsvolu("YMQ ", "TUBE", idtmed[7], tubpar, 3);
561
562 gMC->Gspos("MQX ", 1, "ZDC ", 0., 0., -tubpar[2]-zq-908.5, 0, "ONLY");
563 gMC->Gspos("YMQ ", 1, "ZDC ", 0., 0., -tubpar[2]-zq-908.5, 0, "ONLY");
564
565 gMC->Gspos("MQX ", 2, "ZDC ", 0., 0., -tubpar[2]-zq-1558.5, 0, "ONLY");
566 gMC->Gspos("YMQ ", 2, "ZDC ", 0., 0., -tubpar[2]-zq-1558.5, 0, "ONLY");
567
568 // -- SEPARATOR DIPOLE D1
569 zd1 = 5838.3;
570
571 // -- GAP (VACUUM WITH MAGNETIC FIELD)
572 tubpar[0] = 0.;
573 tubpar[1] = 6.94/2.;
574 tubpar[2] = 945./2.;
575 gMC->Gsvolu("MD1 ", "TUBE", idtmed[11], tubpar, 3);
576
577 // -- Insert horizontal Cu plates inside D1
578 // -- (to simulate the vacuum chamber)
579 boxpar[0] = TMath::Sqrt(tubpar[1]*tubpar[1]-(2.98+0.2)*(2.98+0.2)) - 0.05;
580 boxpar[1] = 0.2/2.;
581 boxpar[2] =945./2.;
582 gMC->Gsvolu("MD1V", "BOX ", idtmed[6], boxpar, 3);
583 gMC->Gspos("MD1V", 1, "MD1 ", 0., 2.98+boxpar[1], 0., 0, "ONLY");
584 gMC->Gspos("MD1V", 2, "MD1 ", 0., -2.98-boxpar[1], 0., 0, "ONLY");
585
586 // -- YOKE
587 tubpar[0] = 0.;
588 tubpar[1] = 110./2;
589 tubpar[2] = 945./2.;
590 gMC->Gsvolu("YD1 ", "TUBE", idtmed[7], tubpar, 3);
591
592 gMC->Gspos("YD1 ", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
593 gMC->Gspos("MD1 ", 1, "YD1 ", 0., 0., 0., 0, "ONLY");
594
595 // -- DIPOLE D2
596 // --- LHC optics v6.4
597 zd2 = 12147.6;
598
599 // -- GAP (VACUUM WITH MAGNETIC FIELD)
600 tubpar[0] = 0.;
601 tubpar[1] = 7.5/2.;
602 tubpar[2] = 945./2.;
603 gMC->Gsvolu("MD2 ", "TUBE", idtmed[11], tubpar, 3);
604
605 // -- YOKE
606 tubpar[0] = 0.;
607 tubpar[1] = 55.;
608 tubpar[2] = 945./2.;
609 gMC->Gsvolu("YD2 ", "TUBE", idtmed[7], tubpar, 3);
610
611 gMC->Gspos("YD2 ", 1, "ZDC ", 0., 0., -tubpar[2]-zd2, 0, "ONLY");
612
613 gMC->Gspos("MD2 ", 1, "YD2 ", -9.4, 0., 0., 0, "ONLY");
614 gMC->Gspos("MD2 ", 2, "YD2 ", 9.4, 0., 0., 0, "ONLY");
615
616 // -- END OF MAGNET DEFINITION
617}
618
619//_____________________________________________________________________________
620void AliZDCv2::CreateZDC()
621{
622 //
623 // Create the various ZDCs (ZN + ZP)
624 //
625
626 Float_t dimPb[6], dimVoid[6];
627
628 Int_t *idtmed = fIdtmed->GetArray();
629
630 // Parameters for hadronic calorimeters geometry
631 // NB -> parameters used ONLY in CreateZDC()
632 Float_t fGrvZN[3] = {0.03, 0.03, 50.}; // Grooves for neutron detector
633 Float_t fGrvZP[3] = {0.04, 0.04, 75.}; // Grooves for proton detector
634 Int_t fDivZN[3] = {11, 11, 0}; // Division for neutron detector
635 Int_t fDivZP[3] = {7, 15, 0}; // Division for proton detector
636 Int_t fTowZN[2] = {2, 2}; // Tower for neutron detector
637 Int_t fTowZP[2] = {4, 1}; // Tower for proton detector
638
639 // Parameters for EM calorimeter geometry
640 // NB -> parameters used ONLY in CreateZDC()
641 Float_t kDimZEMPb = 0.15*(TMath::Sqrt(2.)); // z-dimension of the Pb slice
642 Float_t kFibRadZEM = 0.0315; // External fiber radius (including cladding)
643 Int_t fDivZEM[3] = {92, 0, 20}; // Divisions for EM detector
644 Float_t fDimZEM[6] = {fZEMLength, 3.5, 3.5, 45., 0., 0.}; // Dimensions of EM detector
645 Float_t fFibZEM2 = fDimZEM[2]/TMath::Sin(fDimZEM[3]*kDegrad)-kFibRadZEM;
646 Float_t fFibZEM[3] = {0., 0.0275, fFibZEM2}; // Fibers for EM calorimeter
647
648
649 //-- Create calorimeters geometry
650
651 // -------------------------------------------------------------------------------
652 //--> Neutron calorimeter (ZN)
653
654 gMC->Gsvolu("ZNEU", "BOX ", idtmed[1], fDimZN, 3); // Passive material
655 gMC->Gsvolu("ZNF1", "TUBE", idtmed[3], fFibZN, 3); // Active material
656 gMC->Gsvolu("ZNF2", "TUBE", idtmed[4], fFibZN, 3);
657 gMC->Gsvolu("ZNF3", "TUBE", idtmed[4], fFibZN, 3);
658 gMC->Gsvolu("ZNF4", "TUBE", idtmed[3], fFibZN, 3);
659 gMC->Gsvolu("ZNG1", "BOX ", idtmed[12], fGrvZN, 3); // Empty grooves
660 gMC->Gsvolu("ZNG2", "BOX ", idtmed[12], fGrvZN, 3);
661 gMC->Gsvolu("ZNG3", "BOX ", idtmed[12], fGrvZN, 3);
662 gMC->Gsvolu("ZNG4", "BOX ", idtmed[12], fGrvZN, 3);
663
664 // Divide ZNEU in towers (for hits purposes)
665
666 gMC->Gsdvn("ZNTX", "ZNEU", fTowZN[0], 1); // x-tower
667 gMC->Gsdvn("ZN1 ", "ZNTX", fTowZN[1], 2); // y-tower
668
669 //-- Divide ZN1 in minitowers
670 // fDivZN[0]= NUMBER OF FIBERS PER TOWER ALONG X-AXIS,
671 // fDivZN[1]= NUMBER OF FIBERS PER TOWER ALONG Y-AXIS
672 // (4 fibres per minitower)
673
674 gMC->Gsdvn("ZNSL", "ZN1 ", fDivZN[1], 2); // Slices
675 gMC->Gsdvn("ZNST", "ZNSL", fDivZN[0], 1); // Sticks
676
677 // --- Position the empty grooves in the sticks (4 grooves per stick)
678 Float_t dx = fDimZN[0] / fDivZN[0] / 4.;
679 Float_t dy = fDimZN[1] / fDivZN[1] / 4.;
680
681 gMC->Gspos("ZNG1", 1, "ZNST", 0.-dx, 0.+dy, 0., 0, "ONLY");
682 gMC->Gspos("ZNG2", 1, "ZNST", 0.+dx, 0.+dy, 0., 0, "ONLY");
683 gMC->Gspos("ZNG3", 1, "ZNST", 0.-dx, 0.-dy, 0., 0, "ONLY");
684 gMC->Gspos("ZNG4", 1, "ZNST", 0.+dx, 0.-dy, 0., 0, "ONLY");
685
686 // --- Position the fibers in the grooves
687 gMC->Gspos("ZNF1", 1, "ZNG1", 0., 0., 0., 0, "ONLY");
688 gMC->Gspos("ZNF2", 1, "ZNG2", 0., 0., 0., 0, "ONLY");
689 gMC->Gspos("ZNF3", 1, "ZNG3", 0., 0., 0., 0, "ONLY");
690 gMC->Gspos("ZNF4", 1, "ZNG4", 0., 0., 0., 0, "ONLY");
691
692 // --- Position the neutron calorimeter in ZDC
693 // -- Rotation of ZDCs
694 Int_t irotzdc;
695 gMC->Matrix(irotzdc, 90., 180., 90., 90., 180., 0.);
696 //
697 gMC->Gspos("ZNEU", 1, "ZDC ", fPosZN[0], fPosZN[1], fPosZN[2]-fDimZN[2], irotzdc, "ONLY");
698 //Ch debug
699 //printf("\n ZN -> %f < z < %f cm\n",fPosZN[2],fPosZN[2]-2*fDimZN[2]);
700
701 // -------------------------------------------------------------------------------
702 //--> Proton calorimeter (ZP)
703
704 gMC->Gsvolu("ZPRO", "BOX ", idtmed[2], fDimZP, 3); // Passive material
705 gMC->Gsvolu("ZPF1", "TUBE", idtmed[3], fFibZP, 3); // Active material
706 gMC->Gsvolu("ZPF2", "TUBE", idtmed[4], fFibZP, 3);
707 gMC->Gsvolu("ZPF3", "TUBE", idtmed[4], fFibZP, 3);
708 gMC->Gsvolu("ZPF4", "TUBE", idtmed[3], fFibZP, 3);
709 gMC->Gsvolu("ZPG1", "BOX ", idtmed[12], fGrvZP, 3); // Empty grooves
710 gMC->Gsvolu("ZPG2", "BOX ", idtmed[12], fGrvZP, 3);
711 gMC->Gsvolu("ZPG3", "BOX ", idtmed[12], fGrvZP, 3);
712 gMC->Gsvolu("ZPG4", "BOX ", idtmed[12], fGrvZP, 3);
713
714 //-- Divide ZPRO in towers(for hits purposes)
715
716 gMC->Gsdvn("ZPTX", "ZPRO", fTowZP[0], 1); // x-tower
717 gMC->Gsdvn("ZP1 ", "ZPTX", fTowZP[1], 2); // y-tower
718
719
720 //-- Divide ZP1 in minitowers
721 // fDivZP[0]= NUMBER OF FIBERS ALONG X-AXIS PER MINITOWER,
722 // fDivZP[1]= NUMBER OF FIBERS ALONG Y-AXIS PER MINITOWER
723 // (4 fiber per minitower)
724
725 gMC->Gsdvn("ZPSL", "ZP1 ", fDivZP[1], 2); // Slices
726 gMC->Gsdvn("ZPST", "ZPSL", fDivZP[0], 1); // Sticks
727
728 // --- Position the empty grooves in the sticks (4 grooves per stick)
729 dx = fDimZP[0] / fTowZP[0] / fDivZP[0] / 2.;
730 dy = fDimZP[1] / fTowZP[1] / fDivZP[1] / 2.;
731
732 gMC->Gspos("ZPG1", 1, "ZPST", 0.-dx, 0.+dy, 0., 0, "ONLY");
733 gMC->Gspos("ZPG2", 1, "ZPST", 0.+dx, 0.+dy, 0., 0, "ONLY");
734 gMC->Gspos("ZPG3", 1, "ZPST", 0.-dx, 0.-dy, 0., 0, "ONLY");
735 gMC->Gspos("ZPG4", 1, "ZPST", 0.+dx, 0.-dy, 0., 0, "ONLY");
736
737 // --- Position the fibers in the grooves
738 gMC->Gspos("ZPF1", 1, "ZPG1", 0., 0., 0., 0, "ONLY");
739 gMC->Gspos("ZPF2", 1, "ZPG2", 0., 0., 0., 0, "ONLY");
740 gMC->Gspos("ZPF3", 1, "ZPG3", 0., 0., 0., 0, "ONLY");
741 gMC->Gspos("ZPF4", 1, "ZPG4", 0., 0., 0., 0, "ONLY");
742
743
744 // --- Position the proton calorimeter in ZDC
745 gMC->Gspos("ZPRO", 1, "ZDC ", fPosZP[0], fPosZP[1], fPosZP[2]-fDimZP[2], irotzdc, "ONLY");
746 //Ch debug
747 //printf("\n ZP -> %f < z < %f cm\n",fPosZP[2],fPosZP[2]-2*fDimZP[2]);
748
749
750 // -------------------------------------------------------------------------------
751 // -> EM calorimeter (ZEM)
752
753 gMC->Gsvolu("ZEM ", "PARA", idtmed[10], fDimZEM, 6);
754
755 Int_t irot1, irot2;
756 gMC->Matrix(irot1,0.,0.,90.,90.,-90.,0.); // Rotation matrix 1
757 gMC->Matrix(irot2,180.,0.,90.,fDimZEM[3]+90.,90.,fDimZEM[3]);// Rotation matrix 2
758 //printf("irot1 = %d, irot2 = %d \n", irot1, irot2);
759
760 gMC->Gsvolu("ZEMF", "TUBE", idtmed[3], fFibZEM, 3); // Active material
761
762 gMC->Gsdvn("ZETR", "ZEM ", fDivZEM[2], 1); // Tranches
763
764 dimPb[0] = kDimZEMPb; // Lead slices
765 dimPb[1] = fDimZEM[2];
766 dimPb[2] = fDimZEM[1];
767 //dimPb[3] = fDimZEM[3]; //controllare
768 dimPb[3] = 90.-fDimZEM[3]; //originale
769 dimPb[4] = 0.;
770 dimPb[5] = 0.;
771 gMC->Gsvolu("ZEL0", "PARA", idtmed[5], dimPb, 6);
772 gMC->Gsvolu("ZEL1", "PARA", idtmed[5], dimPb, 6);
773 gMC->Gsvolu("ZEL2", "PARA", idtmed[5], dimPb, 6);
774
775 // --- Position the lead slices in the tranche
776 Float_t zTran = fDimZEM[0]/fDivZEM[2];
777 Float_t zTrPb = -zTran+kDimZEMPb;
778 gMC->Gspos("ZEL0", 1, "ZETR", zTrPb, 0., 0., 0, "ONLY");
779 gMC->Gspos("ZEL1", 1, "ZETR", kDimZEMPb, 0., 0., 0, "ONLY");
780
781 // --- Vacuum zone (to be filled with fibres)
782 dimVoid[0] = (zTran-2*kDimZEMPb)/2.;
783 dimVoid[1] = fDimZEM[2];
784 dimVoid[2] = fDimZEM[1];
785 dimVoid[3] = 90.-fDimZEM[3];
786 dimVoid[4] = 0.;
787 dimVoid[5] = 0.;
788 gMC->Gsvolu("ZEV0", "PARA", idtmed[10], dimVoid,6);
789 gMC->Gsvolu("ZEV1", "PARA", idtmed[10], dimVoid,6);
790
791 // --- Divide the vacuum slice into sticks along x axis
792 gMC->Gsdvn("ZES0", "ZEV0", fDivZEM[0], 3);
793 gMC->Gsdvn("ZES1", "ZEV1", fDivZEM[0], 3);
794
795 // --- Positioning the fibers into the sticks
796 gMC->Gspos("ZEMF", 1,"ZES0", 0., 0., 0., irot2, "ONLY");
797 gMC->Gspos("ZEMF", 1,"ZES1", 0., 0., 0., irot2, "ONLY");
798
799 // --- Positioning the vacuum slice into the tranche
800 Float_t displFib = fDimZEM[1]/fDivZEM[0];
801 gMC->Gspos("ZEV0", 1,"ZETR", -dimVoid[0], 0., 0., 0, "ONLY");
802 gMC->Gspos("ZEV1", 1,"ZETR", -dimVoid[0]+zTran, 0., displFib, 0, "ONLY");
803
804 // --- Positioning the ZEM into the ZDC - rotation for 90 degrees
805 // NB -> In AliZDCv2 ZEM is positioned in ALIC (instead of in ZDC) volume
806 // beacause it's impossible to make a ZDC pcon volume to contain
807 // both hadronics and EM calorimeters.
808 gMC->Gspos("ZEM ", 1,"ALIC", -fPosZEM[0], fPosZEM[1], fPosZEM[2]+fDimZEM[0], irot1, "ONLY");
809
810 // Second EM ZDC (same side w.r.t. IP, just on the other side w.r.t. beam pipe)
811 gMC->Gspos("ZEM ", 2,"ALIC", fPosZEM[0], fPosZEM[1], fPosZEM[2]+fDimZEM[0], irot1, "ONLY");
812
813 // --- Adding last slice at the end of the EM calorimeter
814 Float_t zLastSlice = fPosZEM[2]+kDimZEMPb+2*fDimZEM[0];
815 gMC->Gspos("ZEL2", 1,"ALIC", fPosZEM[0], fPosZEM[1], zLastSlice, irot1, "ONLY");
816 //Ch debug
817 //printf("\n ZEM lenght = %f cm\n",2*fZEMLength);
818 //printf("\n ZEM -> %f < z < %f cm\n",fPosZEM[2],fPosZEM[2]+2*fZEMLength+zLastSlice+kDimZEMPb);
819
820}
821
822//_____________________________________________________________________________
823void AliZDCv2::DrawModule() const
824{
825 //
826 // Draw a shaded view of the Zero Degree Calorimeter version 1
827 //
828
829 // Set everything unseen
830 gMC->Gsatt("*", "seen", -1);
831 //
832 // Set ALIC mother transparent
833 gMC->Gsatt("ALIC","SEEN",0);
834 //
835 // Set the volumes visible
836 gMC->Gsatt("ZDC ","SEEN",0);
837 gMC->Gsatt("QT01","SEEN",1);
838 gMC->Gsatt("QT02","SEEN",1);
839 gMC->Gsatt("QT03","SEEN",1);
840 gMC->Gsatt("QT04","SEEN",1);
841 gMC->Gsatt("QT05","SEEN",1);
842 gMC->Gsatt("QT06","SEEN",1);
843 gMC->Gsatt("QT07","SEEN",1);
844 gMC->Gsatt("QT08","SEEN",1);
845 gMC->Gsatt("QT09","SEEN",1);
846 gMC->Gsatt("QT10","SEEN",1);
847 gMC->Gsatt("QT11","SEEN",1);
848 gMC->Gsatt("QT12","SEEN",1);
849 gMC->Gsatt("QT13","SEEN",1);
850 gMC->Gsatt("QT14","SEEN",1);
851 gMC->Gsatt("QT15","SEEN",1);
852 gMC->Gsatt("QT16","SEEN",1);
853 gMC->Gsatt("QT17","SEEN",1);
854 gMC->Gsatt("QT18","SEEN",1);
855 gMC->Gsatt("QC01","SEEN",1);
856 gMC->Gsatt("QC02","SEEN",1);
857 gMC->Gsatt("QC03","SEEN",1);
858 gMC->Gsatt("QC04","SEEN",1);
859 gMC->Gsatt("QC05","SEEN",1);
860 gMC->Gsatt("QTD1","SEEN",1);
861 gMC->Gsatt("QTD2","SEEN",1);
862 gMC->Gsatt("QTD3","SEEN",1);
863 gMC->Gsatt("MQXL","SEEN",1);
864 gMC->Gsatt("YMQL","SEEN",1);
865 gMC->Gsatt("MQX ","SEEN",1);
866 gMC->Gsatt("YMQ ","SEEN",1);
867 gMC->Gsatt("ZQYX","SEEN",1);
868 gMC->Gsatt("MD1 ","SEEN",1);
869 gMC->Gsatt("MD1V","SEEN",1);
870 gMC->Gsatt("YD1 ","SEEN",1);
871 gMC->Gsatt("MD2 ","SEEN",1);
872 gMC->Gsatt("YD2 ","SEEN",1);
873 gMC->Gsatt("ZNEU","SEEN",0);
874 gMC->Gsatt("ZNF1","SEEN",0);
875 gMC->Gsatt("ZNF2","SEEN",0);
876 gMC->Gsatt("ZNF3","SEEN",0);
877 gMC->Gsatt("ZNF4","SEEN",0);
878 gMC->Gsatt("ZNG1","SEEN",0);
879 gMC->Gsatt("ZNG2","SEEN",0);
880 gMC->Gsatt("ZNG3","SEEN",0);
881 gMC->Gsatt("ZNG4","SEEN",0);
882 gMC->Gsatt("ZNTX","SEEN",0);
883 gMC->Gsatt("ZN1 ","COLO",4);
884 gMC->Gsatt("ZN1 ","SEEN",1);
885 gMC->Gsatt("ZNSL","SEEN",0);
886 gMC->Gsatt("ZNST","SEEN",0);
887 gMC->Gsatt("ZPRO","SEEN",0);
888 gMC->Gsatt("ZPF1","SEEN",0);
889 gMC->Gsatt("ZPF2","SEEN",0);
890 gMC->Gsatt("ZPF3","SEEN",0);
891 gMC->Gsatt("ZPF4","SEEN",0);
892 gMC->Gsatt("ZPG1","SEEN",0);
893 gMC->Gsatt("ZPG2","SEEN",0);
894 gMC->Gsatt("ZPG3","SEEN",0);
895 gMC->Gsatt("ZPG4","SEEN",0);
896 gMC->Gsatt("ZPTX","SEEN",0);
897 gMC->Gsatt("ZP1 ","COLO",6);
898 gMC->Gsatt("ZP1 ","SEEN",1);
899 gMC->Gsatt("ZPSL","SEEN",0);
900 gMC->Gsatt("ZPST","SEEN",0);
901 gMC->Gsatt("ZEM ","COLO",7);
902 gMC->Gsatt("ZEM ","SEEN",1);
903 gMC->Gsatt("ZEMF","SEEN",0);
904 gMC->Gsatt("ZETR","SEEN",0);
905 gMC->Gsatt("ZEL0","SEEN",0);
906 gMC->Gsatt("ZEL1","SEEN",0);
907 gMC->Gsatt("ZEL2","SEEN",0);
908 gMC->Gsatt("ZEV0","SEEN",0);
909 gMC->Gsatt("ZEV1","SEEN",0);
910 gMC->Gsatt("ZES0","SEEN",0);
911 gMC->Gsatt("ZES1","SEEN",0);
912
913 //
914 gMC->Gdopt("hide", "on");
915 gMC->Gdopt("shad", "on");
916 gMC->Gsatt("*", "fill", 7);
917 gMC->SetClipBox(".");
918 gMC->SetClipBox("*", 0, 100, -100, 100, 12000, 16000);
919 gMC->DefaultRange();
920 gMC->Gdraw("alic", 40, 30, 0, 488, 220, .07, .07);
921 gMC->Gdhead(1111, "Zero Degree Calorimeter Version 1");
922 gMC->Gdman(18, 4, "MAN");
923}
924
925//_____________________________________________________________________________
926void AliZDCv2::CreateMaterials()
927{
928 //
929 // Create Materials for the Zero Degree Calorimeter
930 //
931
932 Float_t dens, ubuf[1], wmat[2], a[2], z[2];
933
934 // --- Store in UBUF r0 for nuclear radius calculation R=r0*A**1/3
935
936 // --- Tantalum -> ZN passive material
937 ubuf[0] = 1.1;
938 AliMaterial(1, "TANT", 180.95, 73., 16.65, .4, 11.9, ubuf, 1);
939
940 // --- Tungsten
941// ubuf[0] = 1.11;
942// AliMaterial(1, "TUNG", 183.85, 74., 19.3, .35, 10.3, ubuf, 1);
943
944 // --- Brass (CuZn) -> ZP passive material
945 dens = 8.48;
946 a[0] = 63.546;
947 a[1] = 65.39;
948 z[0] = 29.;
949 z[1] = 30.;
950 wmat[0] = .63;
951 wmat[1] = .37;
952 AliMixture(2, "BRASS ", a, z, dens, 2, wmat);
953
954 // --- SiO2
955 dens = 2.64;
956 a[0] = 28.086;
957 a[1] = 15.9994;
958 z[0] = 14.;
959 z[1] = 8.;
960 wmat[0] = 1.;
961 wmat[1] = 2.;
962 AliMixture(3, "SIO2 ", a, z, dens, -2, wmat);
963
964 // --- Lead
965 ubuf[0] = 1.12;
966 AliMaterial(5, "LEAD", 207.19, 82., 11.35, .56, 18.5, ubuf, 1);
967
968 // --- Copper
969 ubuf[0] = 1.10;
970 AliMaterial(6, "COPP", 63.54, 29., 8.96, 1.4, 0., ubuf, 1);
971
972 // --- Iron (energy loss taken into account)
973 ubuf[0] = 1.1;
974 AliMaterial(7, "IRON0", 55.85, 26., 7.87, 1.76, 0., ubuf, 1);
975
976 // --- Iron (no energy loss)
977 ubuf[0] = 1.1;
978 AliMaterial(8, "IRON1", 55.85, 26., 7.87, 1.76, 0., ubuf, 1);
979 AliMaterial(13, "IRON2", 55.85, 26., 7.87, 1.76, 0., ubuf, 1);
980
981 // ---------------------------------------------------------
982 Float_t aResGas[3]={1.008,12.0107,15.9994};
983 Float_t zResGas[3]={1.,6.,8.};
984 Float_t wResGas[3]={0.28,0.28,0.44};
985 Float_t dResGas = 3.2E-14;
986
987 // --- Vacuum (no magnetic field)
988 AliMixture(10, "VOID", aResGas, zResGas, dResGas, 3, wResGas);
989 //AliMaterial(10, "VOID", 1e-16, 1e-16, 1e-16, 1e16, 1e16, ubuf,0);
990
991 // --- Vacuum (with magnetic field)
992 AliMixture(11, "VOIM", aResGas, zResGas, dResGas, 3, wResGas);
993 //AliMaterial(11, "VOIM", 1e-16, 1e-16, 1e-16, 1e16, 1e16, ubuf,0);
994
995 // --- Air (no magnetic field)
996 Float_t aAir[4]={12.0107,14.0067,15.9994,39.948};
997 Float_t zAir[4]={6.,7.,8.,18.};
998 Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827};
999 Float_t dAir = 1.20479E-3;
1000 //
1001 AliMixture(12, "Air $", aAir, zAir, dAir, 4, wAir);
1002 //AliMaterial(12, "Air $", 14.61, 7.3, .001205, 30420., 67500., ubuf, 0);
1003
1004 // --- Definition of tracking media:
1005
1006 // --- Tantalum = 1 ;
1007 // --- Brass = 2 ;
1008 // --- Fibers (SiO2) = 3 ;
1009 // --- Fibers (SiO2) = 4 ;
1010 // --- Lead = 5 ;
1011 // --- Copper = 6 ;
1012 // --- Iron (with energy loss) = 7 ;
1013 // --- Iron (without energy loss) = 8 ;
1014 // --- Vacuum (no field) = 10
1015 // --- Vacuum (with field) = 11
1016 // --- Air (no field) = 12
1017
1018 // ****************************************************
1019 // Tracking media parameters
1020 //
1021 Float_t epsil = 0.01; // Tracking precision,
1022 Float_t stmin = 0.01; // Min. value 4 max. step (cm)
1023 Float_t stemax = 1.; // Max. step permitted (cm)
1024 Float_t tmaxfd = 0.; // Maximum angle due to field (degrees)
1025 Float_t deemax = -1.; // Maximum fractional energy loss
1026 Float_t nofieldm = 0.; // Max. field value (no field)
1027 Float_t fieldm = 45.; // Max. field value (with field)
1028 Int_t isvol = 0; // ISVOL =0 -> not sensitive volume
1029 Int_t isvolActive = 1; // ISVOL =1 -> sensitive volume
1030 Int_t inofld = 0; // IFIELD=0 -> no magnetic field
1031 Int_t ifield =2; // IFIELD=2 -> magnetic field defined in AliMagFC.h
1032 // *****************************************************
1033
1034 AliMedium(1, "ZTANT", 1, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1035 AliMedium(2, "ZBRASS",2, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1036 AliMedium(3, "ZSIO2", 3, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1037 AliMedium(4, "ZQUAR", 3, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1038 AliMedium(5, "ZLEAD", 5, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1039 AliMedium(6, "ZCOPP", 6, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1040 AliMedium(7, "ZIRON", 7, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1041 AliMedium(8, "ZIRONN",8, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1042 AliMedium(10,"ZVOID",10, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1043 AliMedium(12,"ZAIR", 12, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1044 //
1045 AliMedium(11,"ZVOIM", 11, isvol, ifield, fieldm, tmaxfd, stemax, deemax, epsil, stmin);
1046 AliMedium(13,"ZIRONE",13, isvol, ifield, fieldm, tmaxfd, stemax, deemax, epsil, stmin);
1047}
1048
1049//_____________________________________________________________________________
1050void AliZDCv2::AddAlignableVolumes() const
1051{
1052 //
1053 // Create entries for alignable volumes associating the symbolic volume
1054 // name with the corresponding volume path. Needs to be syncronized with
1055 // eventual changes in the geometry.
1056 //
1057 TString volpath1 = "ALIC_1/ZDC_1/ZNEU_1";
1058 TString volpath2 = "ALIC_1/ZDC_1/ZPRO_1";
1059
1060 TString symname1="ZDC/NeutronZDC";
1061 TString symname2="ZDC/ProtonZDC";
1062
1063 if(!gGeoManager->SetAlignableEntry(symname1.Data(),volpath1.Data()))
1064 AliFatal(Form("Alignable entry %s not created. Volume path %s not valid", symname1.Data(),volpath1.Data()));
1065
1066 if(!gGeoManager->SetAlignableEntry(symname2.Data(),volpath2.Data()))
1067 AliFatal(Form("Alignable entry %s not created. Volume path %s not valid", symname2.Data(),volpath2.Data()));
1068}
1069
1070//_____________________________________________________________________________
1071void AliZDCv2::Init()
1072{
1073 InitTables();
1074 Int_t *idtmed = fIdtmed->GetArray();
1075 Int_t i;
1076 // Thresholds for showering in the ZDCs
1077 i = 1; //tantalum
1078 gMC->Gstpar(idtmed[i], "CUTGAM", .001);
1079 gMC->Gstpar(idtmed[i], "CUTELE", .001);
1080 gMC->Gstpar(idtmed[i], "CUTNEU", .01);
1081 gMC->Gstpar(idtmed[i], "CUTHAD", .01);
1082 i = 2; //brass
1083 gMC->Gstpar(idtmed[i], "CUTGAM", .001);
1084 gMC->Gstpar(idtmed[i], "CUTELE", .001);
1085 gMC->Gstpar(idtmed[i], "CUTNEU", .01);
1086 gMC->Gstpar(idtmed[i], "CUTHAD", .01);
1087 i = 5; //lead
1088 gMC->Gstpar(idtmed[i], "CUTGAM", .001);
1089 gMC->Gstpar(idtmed[i], "CUTELE", .001);
1090 gMC->Gstpar(idtmed[i], "CUTNEU", .01);
1091 gMC->Gstpar(idtmed[i], "CUTHAD", .01);
1092
1093 // Avoid too detailed showering in TDI
1094 i = 6; //copper
1095 gMC->Gstpar(idtmed[i], "CUTGAM", .1);
1096 gMC->Gstpar(idtmed[i], "CUTELE", .1);
1097 gMC->Gstpar(idtmed[i], "CUTNEU", 1.);
1098 gMC->Gstpar(idtmed[i], "CUTHAD", 1.);
1099
1100 // Avoid too detailed showering along the beam line
1101 i = 7; //iron with energy loss (ZIRON)
1102 gMC->Gstpar(idtmed[i], "CUTGAM", .1);
1103 gMC->Gstpar(idtmed[i], "CUTELE", .1);
1104 gMC->Gstpar(idtmed[i], "CUTNEU", 1.);
1105 gMC->Gstpar(idtmed[i], "CUTHAD", 1.);
1106
1107 // Avoid too detailed showering along the beam line
1108 i = 8; //iron with energy loss (ZIRONN)
1109 gMC->Gstpar(idtmed[i], "CUTGAM", .1);
1110 gMC->Gstpar(idtmed[i], "CUTELE", .1);
1111 gMC->Gstpar(idtmed[i], "CUTNEU", 1.);
1112 gMC->Gstpar(idtmed[i], "CUTHAD", 1.);
1113 // Avoid too detailed showering along the beam line
1114 i = 13; //iron with energy loss (ZIRONN)
1115 gMC->Gstpar(idtmed[i], "CUTGAM", 1.);
1116 gMC->Gstpar(idtmed[i], "CUTELE", 1.);
1117 gMC->Gstpar(idtmed[i], "CUTNEU", 1.);
1118 gMC->Gstpar(idtmed[i], "CUTHAD", 1.);
1119
1120 // Avoid interaction in fibers (only energy loss allowed)
1121 i = 3; //fibers (ZSI02)
1122 gMC->Gstpar(idtmed[i], "DCAY", 0.);
1123 gMC->Gstpar(idtmed[i], "MULS", 0.);
1124 gMC->Gstpar(idtmed[i], "PFIS", 0.);
1125 gMC->Gstpar(idtmed[i], "MUNU", 0.);
1126 gMC->Gstpar(idtmed[i], "LOSS", 1.);
1127 gMC->Gstpar(idtmed[i], "PHOT", 0.);
1128 gMC->Gstpar(idtmed[i], "COMP", 0.);
1129 gMC->Gstpar(idtmed[i], "PAIR", 0.);
1130 gMC->Gstpar(idtmed[i], "BREM", 0.);
1131 gMC->Gstpar(idtmed[i], "DRAY", 0.);
1132 gMC->Gstpar(idtmed[i], "ANNI", 0.);
1133 gMC->Gstpar(idtmed[i], "HADR", 0.);
1134 i = 4; //fibers (ZQUAR)
1135 gMC->Gstpar(idtmed[i], "DCAY", 0.);
1136 gMC->Gstpar(idtmed[i], "MULS", 0.);
1137 gMC->Gstpar(idtmed[i], "PFIS", 0.);
1138 gMC->Gstpar(idtmed[i], "MUNU", 0.);
1139 gMC->Gstpar(idtmed[i], "LOSS", 1.);
1140 gMC->Gstpar(idtmed[i], "PHOT", 0.);
1141 gMC->Gstpar(idtmed[i], "COMP", 0.);
1142 gMC->Gstpar(idtmed[i], "PAIR", 0.);
1143 gMC->Gstpar(idtmed[i], "BREM", 0.);
1144 gMC->Gstpar(idtmed[i], "DRAY", 0.);
1145 gMC->Gstpar(idtmed[i], "ANNI", 0.);
1146 gMC->Gstpar(idtmed[i], "HADR", 0.);
1147
1148 // Avoid interaction in void
1149 i = 11; //void with field
1150 gMC->Gstpar(idtmed[i], "DCAY", 0.);
1151 gMC->Gstpar(idtmed[i], "MULS", 0.);
1152 gMC->Gstpar(idtmed[i], "PFIS", 0.);
1153 gMC->Gstpar(idtmed[i], "MUNU", 0.);
1154 gMC->Gstpar(idtmed[i], "LOSS", 0.);
1155 gMC->Gstpar(idtmed[i], "PHOT", 0.);
1156 gMC->Gstpar(idtmed[i], "COMP", 0.);
1157 gMC->Gstpar(idtmed[i], "PAIR", 0.);
1158 gMC->Gstpar(idtmed[i], "BREM", 0.);
1159 gMC->Gstpar(idtmed[i], "DRAY", 0.);
1160 gMC->Gstpar(idtmed[i], "ANNI", 0.);
1161 gMC->Gstpar(idtmed[i], "HADR", 0.);
1162
1163 //
1164 fMedSensZN = idtmed[1]; // Sensitive volume: ZN passive material
1165 fMedSensZP = idtmed[2]; // Sensitive volume: ZP passive material
1166 fMedSensF1 = idtmed[3]; // Sensitive volume: fibres type 1
1167 fMedSensF2 = idtmed[4]; // Sensitive volume: fibres type 2
1168 fMedSensZEM = idtmed[5]; // Sensitive volume: ZEM passive material
1169 fMedSensTDI = idtmed[6]; // Sensitive volume: TDI Cu shield
1170 fMedSensPI = idtmed[7]; // Sensitive volume: beam pipes
1171 fMedSensGR = idtmed[12]; // Sensitive volume: air into the grooves
1172}
1173
1174//_____________________________________________________________________________
1175void AliZDCv2::InitTables()
1176{
1177 //
1178 // Read light tables for Cerenkov light production parameterization
1179 //
1180
1181 Int_t k, j;
1182
1183 char *lightfName1,*lightfName2,*lightfName3,*lightfName4,
1184 *lightfName5,*lightfName6,*lightfName7,*lightfName8;
1185 FILE *fp1, *fp2, *fp3, *fp4, *fp5, *fp6, *fp7, *fp8;
1186
1187 // --- Reading light tables for ZN
1188 lightfName1 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620362207s");
1189 if((fp1 = fopen(lightfName1,"r")) == NULL){
1190 printf("Cannot open file fp1 \n");
1191 return;
1192 }
1193 lightfName2 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620362208s");
1194 if((fp2 = fopen(lightfName2,"r")) == NULL){
1195 printf("Cannot open file fp2 \n");
1196 return;
1197 }
1198 lightfName3 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620362209s");
1199 if((fp3 = fopen(lightfName3,"r")) == NULL){
1200 printf("Cannot open file fp3 \n");
1201 return;
1202 }
1203 lightfName4 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620362210s");
1204 if((fp4 = fopen(lightfName4,"r")) == NULL){
1205 printf("Cannot open file fp4 \n");
1206 return;
1207 }
1208
1209 for(k=0; k<fNalfan; k++){
1210 for(j=0; j<fNben; j++){
1211 fscanf(fp1,"%f",&fTablen[0][k][j]);
1212 fscanf(fp2,"%f",&fTablen[1][k][j]);
1213 fscanf(fp3,"%f",&fTablen[2][k][j]);
1214 fscanf(fp4,"%f",&fTablen[3][k][j]);
1215 }
1216 }
1217 fclose(fp1);
1218 fclose(fp2);
1219 fclose(fp3);
1220 fclose(fp4);
1221
1222 // --- Reading light tables for ZP and ZEM
1223 lightfName5 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620552207s");
1224 if((fp5 = fopen(lightfName5,"r")) == NULL){
1225 printf("Cannot open file fp5 \n");
1226 return;
1227 }
1228 lightfName6 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620552208s");
1229 if((fp6 = fopen(lightfName6,"r")) == NULL){
1230 printf("Cannot open file fp6 \n");
1231 return;
1232 }
1233 lightfName7 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620552209s");
1234 if((fp7 = fopen(lightfName7,"r")) == NULL){
1235 printf("Cannot open file fp7 \n");
1236 return;
1237 }
1238 lightfName8 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620552210s");
1239 if((fp8 = fopen(lightfName8,"r")) == NULL){
1240 printf("Cannot open file fp8 \n");
1241 return;
1242 }
1243
1244 for(k=0; k<fNalfap; k++){
1245 for(j=0; j<fNbep; j++){
1246 fscanf(fp5,"%f",&fTablep[0][k][j]);
1247 fscanf(fp6,"%f",&fTablep[1][k][j]);
1248 fscanf(fp7,"%f",&fTablep[2][k][j]);
1249 fscanf(fp8,"%f",&fTablep[3][k][j]);
1250 }
1251 }
1252 fclose(fp5);
1253 fclose(fp6);
1254 fclose(fp7);
1255 fclose(fp8);
1256}
1257//_____________________________________________________________________________
1258void AliZDCv2::StepManager()
1259{
1260 //
1261 // Routine called at every step in the Zero Degree Calorimeters
1262 //
1263
1264 Int_t j, vol[2], ibeta=0, ialfa, ibe, nphe;
1265 Float_t x[3], xdet[3], destep, hits[10], m, ekin, um[3], ud[3], be, out;
1266 //Float_t radius;
1267 Float_t xalic[3], z, guiEff, guiPar[4]={0.31,-0.0004,0.0197,0.7958};
1268 Double_t s[3], p[4];
1269 const char *knamed;
1270
1271 for (j=0;j<10;j++) hits[j]=-999.;
1272
1273 // --- This part is for no shower developement in beam pipe and TDI
1274 // If particle interacts with beam pipe or TDI -> return
1275 if((gMC->CurrentMedium() == fMedSensPI) || (gMC->CurrentMedium() == fMedSensTDI)){
1276 // If option NoShower is set -> StopTrack
1277 if(fNoShower==1) {
1278 if(gMC->CurrentMedium() == fMedSensPI) {
1279 knamed = gMC->CurrentVolName();
1280 if(!strncmp(knamed,"YMQ",3)) fpLostIT += 1;
1281 if(!strncmp(knamed,"YD1",3)) fpLostD1 += 1;
1282 }
1283 else if(gMC->CurrentMedium() == fMedSensTDI){ // NB->Cu = TDI or D1 vacuum chamber
1284 knamed = gMC->CurrentVolName();
1285 if(!strncmp(knamed,"MD1",3)) fpLostD1 += 1;
1286 if(!strncmp(knamed,"QTD",3)) fpLostTDI += 1;
1287 }
1288 printf("\n # of spectators lost in IT = %d\n",fpLostIT);
1289 printf("\n # of spectators lost in D1 = %d\n",fpLostD1);
1290 printf("\n # of spectators lost in TDI = %d\n\n",fpLostTDI);
1291 gMC->StopTrack();
1292 }
1293 return;
1294 }
1295
1296 if((gMC->CurrentMedium() == fMedSensZN) || (gMC->CurrentMedium() == fMedSensZP) ||
1297 (gMC->CurrentMedium() == fMedSensGR) || (gMC->CurrentMedium() == fMedSensF1) ||
1298 (gMC->CurrentMedium() == fMedSensF2) || (gMC->CurrentMedium() == fMedSensZEM)){
1299
1300
1301 //Particle coordinates
1302 gMC->TrackPosition(s[0],s[1],s[2]);
1303 for(j=0; j<=2; j++) x[j] = s[j];
1304 hits[0] = x[0];
1305 hits[1] = x[1];
1306 hits[2] = x[2];
1307
1308 // Determine in which ZDC the particle is
1309 knamed = gMC->CurrentVolName();
1310 if(!strncmp(knamed,"ZN",2)) vol[0]=1;
1311 else if(!strncmp(knamed,"ZP",2)) vol[0]=2;
1312 else if(!strncmp(knamed,"ZE",2)) vol[0]=3;
1313
1314 // Determine in which quadrant the particle is
1315 if(vol[0]==1){ //Quadrant in ZN
1316 // Calculating particle coordinates inside ZN
1317 xdet[0] = x[0]-fPosZN[0];
1318 xdet[1] = x[1]-fPosZN[1];
1319 // Calculating quadrant in ZN
1320 if(xdet[0]<=0.){
1321 if(xdet[1]>=0.) vol[1]=1;
1322 else if(xdet[1]<0.) vol[1]=3;
1323 }
1324 else if(xdet[0]>0.){
1325 if(xdet[1]>=0.) vol[1]=2;
1326 else if(xdet[1]<0.) vol[1]=4;
1327 }
1328 if((vol[1]!=1) && (vol[1]!=2) && (vol[1]!=3) && (vol[1]!=4))
1329 printf("\n ZDC StepManager->ERROR in ZN!!! vol[1] = %d, xdet[0] = %f,"
1330 "xdet[1] = %f\n",vol[1], xdet[0], xdet[1]);
1331 }
1332
1333 else if(vol[0]==2){ //Quadrant in ZP
1334 // Calculating particle coordinates inside ZP
1335 xdet[0] = x[0]-fPosZP[0];
1336 xdet[1] = x[1]-fPosZP[1];
1337 if(xdet[0]>=fDimZP[0]) xdet[0]=fDimZP[0]-0.01;
1338 if(xdet[0]<=-fDimZP[0]) xdet[0]=-fDimZP[0]+0.01;
1339 // Calculating tower in ZP
1340 Float_t xqZP = xdet[0]/(fDimZP[0]/2.);
1341 for(int i=1; i<=4; i++){
1342 if(xqZP>=(i-3) && xqZP<(i-2)){
1343 vol[1] = i;
1344 break;
1345 }
1346 }
1347 if((vol[1]!=1) && (vol[1]!=2) && (vol[1]!=3) && (vol[1]!=4))
1348 printf(" ZDC StepManager->ERROR in ZP!!! vol[1] = %d, xdet[0] = %f,"
1349 "xdet[1] = %f\n",vol[1], xdet[0], xdet[1]);
1350 }
1351
1352 // Quadrant in ZEM: vol[1] = 1 -> particle in 1st ZEM (placed at x = 8.5 cm)
1353 // vol[1] = 2 -> particle in 2nd ZEM (placed at x = -8.5 cm)
1354 else if(vol[0] == 3){
1355 if(x[0]>0.){
1356 vol[1] = 1;
1357 // Particle x-coordinate inside ZEM1
1358 xdet[0] = x[0]-fPosZEM[0];
1359 }
1360 else{
1361 vol[1] = 2;
1362 // Particle x-coordinate inside ZEM2
1363 xdet[0] = x[0]+fPosZEM[0];
1364 }
1365 xdet[1] = x[1]-fPosZEM[1];
1366 }
1367
1368 // Store impact point and kinetic energy of the ENTERING particle
1369
1370 if(gMC->IsTrackEntering()){
1371 //Particle energy
1372 gMC->TrackMomentum(p[0],p[1],p[2],p[3]);
1373 hits[3] = p[3];
1374 // Impact point on ZDC
1375 hits[4] = xdet[0];
1376 hits[5] = xdet[1];
1377 hits[6] = 0;
1378 hits[7] = 0;
1379 hits[8] = 0;
1380 hits[9] = 0;
1381
1382 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
1383
1384 if(fNoShower==1){
1385 if(vol[0]==1) fnDetected += 1;
1386 else if(vol[0]==2) fpDetected += 1;
1387 printf("\n # of nucleons in ZN = %d",fnDetected);
1388 printf("\n # of nucleons in ZP = %d\n\n",fpDetected);
1389 gMC->StopTrack();
1390 return;
1391 }
1392 }
1393
1394 // Charged particles -> Energy loss
1395 if((destep=gMC->Edep())){
1396 if(gMC->IsTrackStop()){
1397 gMC->TrackMomentum(p[0],p[1],p[2],p[3]);
1398 m = gMC->TrackMass();
1399 ekin = p[3]-m;
1400 hits[9] = ekin;
1401 hits[7] = 0.;
1402 hits[8] = 0.;
1403 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
1404 }
1405 else{
1406 hits[9] = destep;
1407 hits[7] = 0.;
1408 hits[8] = 0.;
1409 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
1410 }
1411 }
1412 }
1413
1414
1415 // *** Light production in fibres
1416 if((gMC->CurrentMedium() == fMedSensF1) || (gMC->CurrentMedium() == fMedSensF2)){
1417
1418 //Select charged particles
1419 if((destep=gMC->Edep())){
1420
1421 // Particle velocity
1422 Float_t beta = 0.;
1423 gMC->TrackMomentum(p[0],p[1],p[2],p[3]);
1424 Float_t ptot=TMath::Sqrt(p[0]*p[0]+p[1]*p[1]+p[2]*p[2]);
1425 if(p[3] > 0.00001) beta = ptot/p[3];
1426 else return;
1427 if(beta<0.67)return;
1428 else if((beta>=0.67) && (beta<=0.75)) ibeta = 0;
1429 else if((beta>0.75) && (beta<=0.85)) ibeta = 1;
1430 else if((beta>0.85) && (beta<=0.95)) ibeta = 2;
1431 else if(beta>0.95) ibeta = 3;
1432
1433 // Angle between particle trajectory and fibre axis
1434 // 1 -> Momentum directions
1435 um[0] = p[0]/ptot;
1436 um[1] = p[1]/ptot;
1437 um[2] = p[2]/ptot;
1438 gMC->Gmtod(um,ud,2);
1439 // 2 -> Angle < limit angle
1440 Double_t alfar = TMath::ACos(ud[2]);
1441 Double_t alfa = alfar*kRaddeg;
1442 if(alfa>=110.) return;
1443 //
1444 ialfa = Int_t(1.+alfa/2.);
1445
1446 // Distance between particle trajectory and fibre axis
1447 gMC->TrackPosition(s[0],s[1],s[2]);
1448 for(j=0; j<=2; j++){
1449 x[j] = s[j];
1450 }
1451 gMC->Gmtod(x,xdet,1);
1452 if(TMath::Abs(ud[0])>0.00001){
1453 Float_t dcoeff = ud[1]/ud[0];
1454 be = TMath::Abs((xdet[1]-dcoeff*xdet[0])/TMath::Sqrt(dcoeff*dcoeff+1.));
1455 }
1456 else{
1457 be = TMath::Abs(ud[0]);
1458 }
1459
1460 ibe = Int_t(be*1000.+1);
1461 //if((vol[0]==1)) radius = fFibZN[1];
1462 //else if((vol[0]==2)) radius = fFibZP[1];
1463
1464 //Looking into the light tables
1465 Float_t charge = gMC->TrackCharge();
1466
1467 if((vol[0]==1)) { // (1) ZN fibres
1468 if(ibe>fNben) ibe=fNben;
1469 out = charge*charge*fTablen[ibeta][ialfa][ibe];
1470 nphe = gRandom->Poisson(out);
1471 // Ch. debug
1472 //if(ibeta==3) printf("\t %f \t %f \t %f\n",alfa, be, out);
1473 //printf("\t ibeta = %d, ialfa = %d, ibe = %d -> nphe = %d\n\n",ibeta,ialfa,ibe,nphe);
1474 if(gMC->CurrentMedium() == fMedSensF1){
1475 hits[7] = nphe; //fLightPMQ
1476 hits[8] = 0;
1477 hits[9] = 0;
1478 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
1479 }
1480 else{
1481 hits[7] = 0;
1482 hits[8] = nphe; //fLightPMC
1483 hits[9] = 0;
1484 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
1485 }
1486 }
1487 else if((vol[0]==2)) { // (2) ZP fibres
1488 if(ibe>fNbep) ibe=fNbep;
1489 out = charge*charge*fTablep[ibeta][ialfa][ibe];
1490 nphe = gRandom->Poisson(out);
1491 if(gMC->CurrentMedium() == fMedSensF1){
1492 hits[7] = nphe; //fLightPMQ
1493 hits[8] = 0;
1494 hits[9] = 0;
1495 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
1496 }
1497 else{
1498 hits[7] = 0;
1499 hits[8] = nphe; //fLightPMC
1500 hits[9] = 0;
1501 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
1502 }
1503 }
1504 else if((vol[0]==3)) { // (3) ZEM fibres
1505 if(ibe>fNbep) ibe=fNbep;
1506 out = charge*charge*fTablep[ibeta][ialfa][ibe];
1507 gMC->TrackPosition(s[0],s[1],s[2]);
1508 for(j=0; j<=2; j++){
1509 xalic[j] = s[j];
1510 }
1511 // z-coordinate from ZEM front face
1512 // NB-> fPosZEM[2]+fZEMLength = -1000.+2*10.3 = 979.69 cm
1513 z = -xalic[2]+fPosZEM[2]+2*fZEMLength-xalic[1];
1514// z = xalic[2]-fPosZEM[2]-fZEMLength-xalic[1]*(TMath::Tan(45.*kDegrad));
1515// printf("\n fPosZEM[2]+2*fZEMLength = %f", fPosZEM[2]+2*fZEMLength);
1516 guiEff = guiPar[0]*(guiPar[1]*z*z+guiPar[2]*z+guiPar[3]);
1517 out = out*guiEff;
1518 nphe = gRandom->Poisson(out);
1519// printf(" out*guiEff = %f nphe = %d", out, nphe);
1520 if(vol[1] == 1){
1521 hits[7] = 0;
1522 hits[8] = nphe; //fLightPMC (ZEM1)
1523 hits[9] = 0;
1524 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
1525 }
1526 else{
1527 hits[7] = nphe; //fLightPMQ (ZEM2)
1528 hits[8] = 0;
1529 hits[9] = 0;
1530 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
1531 }
1532 }
1533 }
1534 }
1535}