]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - ZDC/AliZDCv3.cxx
Fix coding violations
[u/mrichter/AliRoot.git] / ZDC / AliZDCv3.cxx
... / ...
CommitLineData
1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16
17///////////////////////////////////////////////////////////////////////
18// //
19// AliZDCv3 --- new ZDC geometry //
20// with both ZDC arms geometry implemented //
21// //
22///////////////////////////////////////////////////////////////////////
23
24// --- Standard libraries
25#include "stdio.h"
26
27// --- ROOT system
28#include <TMath.h>
29#include <TRandom.h>
30#include <TSystem.h>
31#include <TTree.h>
32#include <TVirtualMC.h>
33#include <TGeoManager.h>
34#include <TGeoMatrix.h>
35#include <TGeoCone.h>
36#include <TGeoShape.h>
37#include <TGeoCompositeShape.h>
38#include <TParticle.h>
39
40// --- AliRoot classes
41#include "AliLog.h"
42#include "AliConst.h"
43#include "AliMagF.h"
44#include "AliRun.h"
45#include "AliZDCv3.h"
46#include "AliMC.h"
47
48class AliZDCHit;
49class AliPDG;
50class AliDetector;
51
52
53ClassImp(AliZDCv3)
54
55//_____________________________________________________________________________
56AliZDCv3::AliZDCv3() :
57 AliZDC(),
58 fMedSensF1(0),
59 fMedSensF2(0),
60 fMedSensZP(0),
61 fMedSensZN(0),
62 fMedSensZEM(0),
63 fMedSensGR(0),
64 fMedSensPI(0),
65 fMedSensTDI(0),
66 fNalfan(0),
67 fNalfap(0),
68 fNben(0),
69 fNbep(0),
70 fZEMLength(0),
71 fpLostITC(0),
72 fpLostD1C(0),
73 fpDetectedC(0),
74 fnDetectedC(0),
75 fpLostITA(0),
76 fpLostD1A(0),
77 fpLostTDI(0),
78 fpDetectedA(0),
79 fnDetectedA(0)
80{
81 //
82 // Default constructor for Zero Degree Calorimeter
83 //
84
85}
86
87//_____________________________________________________________________________
88AliZDCv3::AliZDCv3(const char *name, const char *title) :
89 AliZDC(name,title),
90 fMedSensF1(0),
91 fMedSensF2(0),
92 fMedSensZP(0),
93 fMedSensZN(0),
94 fMedSensZEM(0),
95 fMedSensGR(0),
96 fMedSensPI(0),
97 fMedSensTDI(0),
98 fNalfan(90),
99 fNalfap(90),
100 fNben(18),
101 fNbep(28),
102 fZEMLength(0),
103 fpLostITC(0),
104 fpLostD1C(0),
105 fpDetectedC(0),
106 fnDetectedC(0),
107 fpLostITA(0),
108 fpLostD1A(0),
109 fpLostTDI(0),
110 fpDetectedA(0),
111 fnDetectedA(0)
112{
113 //
114 // Standard constructor for Zero Degree Calorimeter
115 //
116 //
117 // Check that DIPO, ABSO, DIPO and SHIL is there (otherwise tracking is wrong!!!)
118
119 AliModule* pipe=gAlice->GetModule("PIPE");
120 AliModule* abso=gAlice->GetModule("ABSO");
121 AliModule* dipo=gAlice->GetModule("DIPO");
122 AliModule* shil=gAlice->GetModule("SHIL");
123 if((!pipe) || (!abso) || (!dipo) || (!shil)) {
124 Error("Constructor","ZDC needs PIPE, ABSO, DIPO and SHIL!!!\n");
125 exit(1);
126 }
127 //
128 Int_t ip,jp,kp;
129 for(ip=0; ip<4; ip++){
130 for(kp=0; kp<fNalfap; kp++){
131 for(jp=0; jp<fNbep; jp++){
132 fTablep[ip][kp][jp] = 0;
133 }
134 }
135 }
136 Int_t in,jn,kn;
137 for(in=0; in<4; in++){
138 for(kn=0; kn<fNalfan; kn++){
139 for(jn=0; jn<fNben; jn++){
140 fTablen[in][kn][jn] = 0;
141 }
142 }
143 }
144 //
145 // Parameters for hadronic calorimeters geometry
146 // Positions updated after post-installation measurements
147 fDimZN[0] = 3.52;
148 fDimZN[1] = 3.52;
149 fDimZN[2] = 50.;
150 fDimZP[0] = 11.2;
151 fDimZP[1] = 6.;
152 fDimZP[2] = 75.;
153 fPosZNC[0] = 0.;
154 fPosZNC[1] = 1.2;
155 fPosZNC[2] = -11397.3;
156 fPosZPC[0] = 24.35;
157 fPosZPC[1] = 0.;
158 fPosZPC[2] = -11389.3;
159 fPosZNA[0] = 0.;
160 fPosZNA[1] = 1.2;
161 fPosZNA[2] = 11395.8;
162 fPosZPA[0] = 24.35;
163 fPosZPA[1] = 0.;
164 fPosZPA[2] = 11387.8;
165 fFibZN[0] = 0.;
166 fFibZN[1] = 0.01825;
167 fFibZN[2] = 50.;
168 fFibZP[0] = 0.;
169 fFibZP[1] = 0.0275;
170 fFibZP[2] = 75.;
171 // Parameters for EM calorimeter geometry
172 fPosZEM[0] = 8.5;
173 fPosZEM[1] = 0.;
174 fPosZEM[2] = 735.;
175 Float_t kDimZEMPb = 0.15*(TMath::Sqrt(2.)); // z-dimension of the Pb slice
176 Float_t kDimZEMAir = 0.001; // scotch
177 Float_t kFibRadZEM = 0.0315; // External fiber radius (including cladding)
178 Int_t kDivZEM[3] = {92, 0, 20}; // Divisions for EM detector
179 Float_t kDimZEM0 = 2*kDivZEM[2]*(kDimZEMPb+kDimZEMAir+kFibRadZEM*(TMath::Sqrt(2.)));
180 fZEMLength = kDimZEM0;
181
182}
183
184//_____________________________________________________________________________
185void AliZDCv3::CreateGeometry()
186{
187 //
188 // Create the geometry for the Zero Degree Calorimeter version 2
189 //* Initialize COMMON block ZDC_CGEOM
190 //*
191
192 CreateBeamLine();
193 CreateZDC();
194}
195
196//_____________________________________________________________________________
197void AliZDCv3::CreateBeamLine()
198{
199 //
200 // Create the beam line elements
201 //
202
203 Double_t zd1, zd2, zCorrDip, zInnTrip, zD1, zD2;
204 Double_t conpar[9], tubpar[3], tubspar[5], boxpar[3];
205
206 //-- rotation matrices for the legs
207 Int_t irotpipe1, irotpipe2;
208 gMC->Matrix(irotpipe1,90.-1.0027,0.,90.,90.,1.0027,180.);
209 gMC->Matrix(irotpipe2,90.+1.0027,0.,90.,90.,1.0027,0.);
210
211 //
212 Int_t *idtmed = fIdtmed->GetArray();
213
214 ////////////////////////////////////////////////////////////////
215 // //
216 // SIDE C - RB26 (dimuon side) //
217 // //
218 ///////////////////////////////////////////////////////////////
219
220
221 // -- Mother of the ZDCs (Vacuum PCON)
222 zd1 = 1921.6;
223
224 conpar[0] = 0.;
225 conpar[1] = 360.;
226 conpar[2] = 2.;
227 conpar[3] = -13500.;
228 conpar[4] = 0.;
229 conpar[5] = 55.;
230 conpar[6] = -zd1;
231 conpar[7] = 0.;
232 conpar[8] = 55.;
233 gMC->Gsvolu("ZDCC", "PCON", idtmed[10], conpar, 9);
234 gMC->Gspos("ZDCC", 1, "ALIC", 0., 0., 0., 0, "ONLY");
235
236
237 // -- BEAM PIPE from compensator dipole to the beginning of D1)
238 tubpar[0] = 6.3/2.;
239 tubpar[1] = 6.7/2.;
240 // From beginning of ZDC volumes to beginning of D1
241 tubpar[2] = (5838.3-zd1)/2.;
242 gMC->Gsvolu("QT01", "TUBE", idtmed[7], tubpar, 3);
243 gMC->Gspos("QT01", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
244 // Ch.debug
245 //printf(" QT01 TUBE pipe from z = %1.2f to z= %1.2f (D1 beg.)\n",-zd1,-2*tubpar[2]-zd1);
246
247 //-- BEAM PIPE from the end of D1 to the beginning of D2)
248
249 //-- FROM MAGNETIC BEGINNING OF D1 TO MAGNETIC END OF D1
250 //-- Cylindrical pipe (r = 3.47) + conical flare
251 // -> Beginning of D1
252 zd1 += 2.*tubpar[2];
253
254 tubpar[0] = 6.94/2.;
255 tubpar[1] = 7.34/2.;
256 tubpar[2] = (6909.8-zd1)/2.;
257 gMC->Gsvolu("QT02", "TUBE", idtmed[7], tubpar, 3);
258 gMC->Gspos("QT02", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
259 // Ch.debug
260 //printf(" QT02 TUBE pipe from z = %1.2f to z= %1.2f\n",-zd1,-2*tubpar[2]-zd1);
261
262 zd1 += 2.*tubpar[2];
263
264 tubpar[0] = 9./2.;
265 tubpar[1] = 9.6/2.;
266 tubpar[2] = (7022.8-zd1)/2.;
267 gMC->Gsvolu("QT03", "TUBE", idtmed[7], tubpar, 3);
268 gMC->Gspos("QT03", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
269 // Ch.debug
270 //printf(" QT03 TUBE pipe from z = %1.2f to z= %1.2f\n",-zd1,-2*tubpar[2]-zd1);
271
272 zd1 += 2.*tubpar[2];
273
274 conpar[0] = 39.2/2.;
275 conpar[1] = 18./2.;
276 conpar[2] = 18.6/2.;
277 conpar[3] = 9./2.;
278 conpar[4] = 9.6/2.;
279 gMC->Gsvolu("QC01", "CONE", idtmed[7], conpar, 5);
280 gMC->Gspos("QC01", 1, "ZDCC", 0., 0., -conpar[0]-zd1, 0, "ONLY");
281 // Ch.debug
282 //printf(" QC01 CONE pipe from z = %1.2f to z= %1.2f\n",-zd1,-2*conpar[0]-zd1);
283
284 zd1 += conpar[0] * 2.;
285
286 // ******************************************************
287 // N.B.-> according to last vacuum layout
288 // private communication by D. Macina, mail 27/1/2009
289 // ******************************************************
290 // 2nd section of VCTCQ+VAMTF+TCTVB+VAMTF+TCLIA+VAMTF+1st part of VCTCP
291 Float_t totLength1 = 160.8 + 78. + 148. + 78. + 148. + 78. + 9.3;
292 //
293 tubpar[0] = 18.6/2.;
294 tubpar[1] = 7.6/2.;
295 tubpar[2] = totLength1/2.;
296 gMC->Gsvolu("QE01", "ELTU", idtmed[7], tubpar, 3);
297
298 tubpar[0] = 18.0/2.;
299 tubpar[1] = 7.0/2.;
300 tubpar[2] = totLength1/2.;
301 gMC->Gsvolu("QE02", "ELTU", idtmed[10], tubpar, 3);
302 gMC->Gspos("QE02", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
303 gMC->Gspos("QE02", 1, "QE01", 0., 0., 0., 0, "ONLY");
304 // Ch.debug
305 //printf(" QE02 ELTU from z = %1.2f to z= %1.2f\n",-zd1,-2*tubpar[2]-zd1);
306
307 zd1 += tubpar[2] * 2.;
308
309 // 2nd part of VCTCP
310 conpar[0] = 31.5/2.;
311 conpar[1] = 21.27/2.;
312 conpar[2] = 21.87/2.;
313 conpar[3] = 18.0/2.;
314 conpar[4] = 18.6/2.;
315 gMC->Gsvolu("QC02", "CONE", idtmed[7], conpar, 5);
316 gMC->Gspos("QC02", 1, "ZDCC", 0., 0., -conpar[0]-zd1, 0, "ONLY");
317 // Ch.debug
318 //printf(" QC02 CONE pipe from z = %1.2f to z= %1.2f\n",-zd1,-2*conpar[0]-zd1);
319
320 zd1 += conpar[0] * 2.;
321
322 // 3rd section of VCTCP+VCDWC+VMLGB
323 Float_t totLenght2 = 9.2 + 530.5+40.;
324 tubpar[0] = 21.2/2.;
325 tubpar[1] = 21.9/2.;
326 tubpar[2] = totLenght2/2.;
327 gMC->Gsvolu("QT04", "TUBE", idtmed[7], tubpar, 3);
328 gMC->Gspos("QT04", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
329 // Ch.debug
330 //printf(" QT04 TUBE pipe from z = %1.2f to z= %1.2f\n",-zd1,-2*tubpar[2]-zd1);
331
332 zd1 += tubpar[2] * 2.;
333
334 // First part of VCTCD
335 // skewed transition cone from ID=212.7 mm to ID=797 mm
336 conpar[0] = 121./2.;
337 conpar[1] = 79.7/2.;
338 conpar[2] = 81.3/2.;
339 conpar[3] = 21.27/2.;
340 conpar[4] = 21.87/2.;
341 gMC->Gsvolu("QC03", "CONE", idtmed[7], conpar, 5);
342 gMC->Gspos("QC03", 1, "ZDCC", 0., 0., -conpar[0]-zd1, 0, "ONLY");
343 // Ch.debug
344 //printf(" QC03 CONE pipe from z = %1.2f to z= %1.2f\n",-zd1,-2*conpar[0]-zd1);
345
346 zd1 += 2.*conpar[0];
347
348 // VCDGB + 1st part of VCTCH
349 tubpar[0] = 79.7/2.;
350 tubpar[1] = 81.3/2.;
351 tubpar[2] = (5*475.2+97.)/2.;
352 gMC->Gsvolu("QT05", "TUBE", idtmed[7], tubpar, 3);
353 gMC->Gspos("QT05", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
354 // Ch.debug
355 //printf(" QT05 TUBE pipe from z = %1.2f to z= %1.2f\n",-zd1,-2*tubpar[2]-zd1);
356
357 zd1 += 2.*tubpar[2];
358
359 // 2nd part of VCTCH
360 // Transition from ID=797 mm to ID=196 mm:
361 // in order to simulate the thin window opened in the transition cone
362 // we divide the transition cone in three cones:
363 // (1) 8 mm thick (2) 3 mm thick (3) the third 8 mm thick
364
365 // (1) 8 mm thick
366 conpar[0] = 9.09/2.; // 15 degree
367 conpar[1] = 74.82868/2.;
368 conpar[2] = 76.42868/2.; // thickness 8 mm
369 conpar[3] = 79.7/2.;
370 conpar[4] = 81.3/2.; // thickness 8 mm
371 gMC->Gsvolu("QC04", "CONE", idtmed[7], conpar, 5);
372 gMC->Gspos("QC04", 1, "ZDCC", 0., 0., -conpar[0]-zd1, 0, "ONLY");
373 // Ch.debug
374 //printf(" QC04 CONE pipe from z = %1.2f to z= %1.2f\n",-zd1,-2*conpar[0]-zd1);
375
376 zd1 += 2.*conpar[0];
377
378 // (2) 3 mm thick
379 conpar[0] = 96.2/2.; // 15 degree
380 conpar[1] = 23.19588/2.;
381 conpar[2] = 23.79588/2.; // thickness 3 mm
382 conpar[3] = 74.82868/2.;
383 conpar[4] = 75.42868/2.; // thickness 3 mm
384 gMC->Gsvolu("QC05", "CONE", idtmed[7], conpar, 5);
385 gMC->Gspos("QC05", 1, "ZDCC", 0., 0., -conpar[0]-zd1, 0, "ONLY");
386 // Ch.debug
387 //printf(" QC05 CONE pipe from z = %1.2f to z= %1.2f\n",-zd1,-2*conpar[0]-zd1);
388
389 zd1 += 2.*conpar[0];
390
391 // (3) 8 mm thick
392 conpar[0] = 6.71/2.; // 15 degree
393 conpar[1] = 19.6/2.;
394 conpar[2] = 21.2/2.;// thickness 8 mm
395 conpar[3] = 23.19588/2.;
396 conpar[4] = 24.79588/2.;// thickness 8 mm
397 gMC->Gsvolu("QC06", "CONE", idtmed[7], conpar, 5);
398 gMC->Gspos("QC06", 1, "ZDCC", 0., 0., -conpar[0]-zd1, 0, "ONLY");
399 // Ch.debug
400 //printf(" QC06 CONE pipe from z = %1.2f to z= %1.2f\n",-zd1,-2*conpar[0]-zd1);
401
402 zd1 += 2.*conpar[0];
403
404 // VMZAR (5 volumes)
405 tubpar[0] = 20.2/2.;
406 tubpar[1] = 20.6/2.;
407 tubpar[2] = 2.15/2.;
408 gMC->Gsvolu("QT06", "TUBE", idtmed[7], tubpar, 3);
409 gMC->Gspos("QT06", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
410 // Ch.debug
411 //printf(" QT06 TUBE pipe from z = %1.2f to z= %1.2f\n",-zd1,-2*tubpar[2]-zd1);
412
413 zd1 += 2.*tubpar[2];
414
415 conpar[0] = 6.9/2.;
416 conpar[1] = 23.9/2.;
417 conpar[2] = 24.3/2.;
418 conpar[3] = 20.2/2.;
419 conpar[4] = 20.6/2.;
420 gMC->Gsvolu("QC07", "CONE", idtmed[7], conpar, 5);
421 gMC->Gspos("QC07", 1, "ZDCC", 0., 0., -conpar[0]-zd1, 0, "ONLY");
422 // Ch.debug
423 //printf(" QC07 CONE pipe from z = %1.2f to z= %1.2f\n",-zd1,-2*conpar[0]-zd1);
424
425 zd1 += 2.*conpar[0];
426
427 tubpar[0] = 23.9/2.;
428 tubpar[1] = 25.5/2.;
429 tubpar[2] = 17.0/2.;
430 gMC->Gsvolu("QT07", "TUBE", idtmed[7], tubpar, 3);
431 gMC->Gspos("QT07", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
432 // Ch.debug
433 //printf(" QT07 TUBE pipe from z = %1.2f to z= %1.2f\n",-zd1,-2*tubpar[2]-zd1);
434
435 zd1 += 2.*tubpar[2];
436
437 conpar[0] = 6.9/2.;
438 conpar[1] = 20.2/2.;
439 conpar[2] = 20.6/2.;
440 conpar[3] = 23.9/2.;
441 conpar[4] = 24.3/2.;
442 gMC->Gsvolu("QC08", "CONE", idtmed[7], conpar, 5);
443 gMC->Gspos("QC08", 1, "ZDCC", 0., 0., -conpar[0]-zd1, 0, "ONLY");
444 // Ch.debug
445 //printf(" QC08 CONE pipe from z = %1.2f to z= %1.2f\n",-zd1,-2*conpar[0]-zd1);
446
447 zd1 += 2.*conpar[0];
448
449 tubpar[0] = 20.2/2.;
450 tubpar[1] = 20.6/2.;
451 tubpar[2] = 2.15/2.;
452 gMC->Gsvolu("QT08", "TUBE", idtmed[7], tubpar, 3);
453 gMC->Gspos("QT08", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
454 // Ch.debug
455 //printf(" QT08 TUBE pipe from z = %1.2f to z= %1.2f\n",-zd1,-2*tubpar[2]-zd1);
456
457 zd1 += 2.*tubpar[2];
458
459 // Flange (ID=196 mm)(last part of VMZAR and first part of VCTYB)
460 tubpar[0] = 19.6/2.;
461 tubpar[1] = 25.3/2.;
462 tubpar[2] = 4.9/2.;
463 gMC->Gsvolu("QT09", "TUBE", idtmed[7], tubpar, 3);
464 gMC->Gspos("QT09", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
465 // Ch.debug
466 //printf(" QT09 TUBE pipe from z = %1.2f to z= %1.2f\n",-zd1,-2*tubpar[2]-zd1);
467
468 zd1 += 2.*tubpar[2];
469 // Ch.debug
470 //printf(" Beginning of VCTYB volume @ z = %1.2f \n",-zd1);
471
472 // simulation of the trousers (VCTYB)
473 tubpar[0] = 19.6/2.;
474 tubpar[1] = 20.0/2.;
475 tubpar[2] = 3.9/2.;
476 gMC->Gsvolu("QT10", "TUBE", idtmed[7], tubpar, 3);
477 gMC->Gspos("QT10", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
478 // Ch.debug
479 //printf(" QT10 TUBE pipe from z = %1.2f to z= %1.2f\n",-zd1,-2*tubpar[2]-zd1);
480
481 zd1 += 2.*tubpar[2];
482
483 // transition cone from ID=196. to ID=216.6
484 conpar[0] = 32.55/2.;
485 conpar[1] = 21.66/2.;
486 conpar[2] = 22.06/2.;
487 conpar[3] = 19.6/2.;
488 conpar[4] = 20.0/2.;
489 gMC->Gsvolu("QC09", "CONE", idtmed[7], conpar, 5);
490 gMC->Gspos("QC09", 1, "ZDCC", 0., 0., -conpar[0]-zd1, 0, "ONLY");
491 // Ch.debug
492 //printf(" QC09 CONE pipe from z = %1.2f to z= %1.2f\n",-zd1,-2*conpar[0]-zd1);
493
494 zd1 += 2.*conpar[0];
495
496 // tube
497 tubpar[0] = 21.66/2.;
498 tubpar[1] = 22.06/2.;
499 tubpar[2] = 28.6/2.;
500 gMC->Gsvolu("QT11", "TUBE", idtmed[7], tubpar, 3);
501 gMC->Gspos("QT11", 1, "ZDCC", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
502 // Ch.debug
503 //printf(" QT11 TUBE pipe from z = %1.2f to z= %1.2f\n",-zd1,-2*tubpar[2]-zd1);
504
505 zd1 += 2.*tubpar[2];
506 // Ch.debug
507 //printf(" Beginning of recombination chamber @ z = %f \n",-zd1);
508
509 // --------------------------------------------------------
510 // RECOMBINATION CHAMBER IMPLEMENTED USING TGeo CLASSES!!!!
511 // author: Chiara (August 2008)
512 // --------------------------------------------------------
513 // TRANSFORMATION MATRICES
514 // Combi transformation:
515 Double_t dx = -3.970000;
516 Double_t dy = 0.000000;
517 Double_t dz = 0.0;
518 // Rotation:
519 Double_t thx = 84.989100; Double_t phx = 180.000000;
520 Double_t thy = 90.000000; Double_t phy = 90.000000;
521 Double_t thz = 185.010900; Double_t phz = 0.000000;
522 TGeoRotation *rotMatrix1c = new TGeoRotation("c",thx,phx,thy,phy,thz,phz);
523 // Combi transformation:
524 dx = -3.970000;
525 dy = 0.000000;
526 dz = 0.0;
527 TGeoCombiTrans *rotMatrix2c = new TGeoCombiTrans("ZDCC_c1", dx,dy,dz,rotMatrix1c);
528 rotMatrix2c->RegisterYourself();
529 // Combi transformation:
530 dx = 3.970000;
531 dy = 0.000000;
532 dz = 0.0;
533 // Rotation:
534 thx = 95.010900; phx = 180.000000;
535 thy = 90.000000; phy = 90.000000;
536 thz = 180.-5.010900; phz = 0.000000;
537 TGeoRotation *rotMatrix3c = new TGeoRotation("",thx,phx,thy,phy,thz,phz);
538 TGeoCombiTrans *rotMatrix4c = new TGeoCombiTrans("ZDCC_c2", dx,dy,dz,rotMatrix3c);
539 rotMatrix4c->RegisterYourself();
540
541 // VOLUMES DEFINITION
542 // Volume: ZDCC
543 TGeoVolume *pZDCC = gGeoManager->GetVolume("ZDCC");
544
545 conpar[0] = (90.1-0.95-0.26-0.0085)/2.;
546 conpar[1] = 0.0/2.;
547 conpar[2] = 21.6/2.;
548 conpar[3] = 0.0/2.;
549 conpar[4] = 5.8/2.;
550 new TGeoCone("QCLext", conpar[0],conpar[1],conpar[2],conpar[3],conpar[4]);
551
552 conpar[0] = (90.1-0.95-0.26-0.0085)/2.;
553 conpar[1] = 0.0/2.;
554 conpar[2] = 21.2/2.;
555 conpar[3] = 0.0/2.;
556 conpar[4] = 5.4/2.;
557 new TGeoCone("QCLint", conpar[0],conpar[1],conpar[2],conpar[3],conpar[4]);
558
559 // Outer trousers
560 TGeoCompositeShape *pOutTrousersC = new TGeoCompositeShape("outTrousersC", "QCLext:ZDCC_c1+QCLext:ZDCC_c2");
561
562 // Volume: QCLext
563 TGeoMedium *medZDCFe = gGeoManager->GetMedium("ZDC_ZIRON");
564 TGeoVolume *pQCLext = new TGeoVolume("QCLext",pOutTrousersC, medZDCFe);
565 pQCLext->SetLineColor(kGreen);
566 pQCLext->SetVisLeaves(kTRUE);
567 //
568 TGeoTranslation *tr1c = new TGeoTranslation(0., 0., (Double_t) -conpar[0]-0.95-zd1);
569 //printf(" Recombination chamber from z = %1.2f to z= %1.2f\n",-zd1,-2*conpar[0]-0.95-zd1);
570 //
571 pZDCC->AddNode(pQCLext, 1, tr1c);
572 // Inner trousers
573 TGeoCompositeShape *pIntTrousersC = new TGeoCompositeShape("intTrousersC", "QCLint:ZDCC_c1+QCLint:ZDCC_c2");
574 // Volume: QCLint
575 TGeoMedium *medZDCvoid = gGeoManager->GetMedium("ZDC_ZVOID");
576 TGeoVolume *pQCLint = new TGeoVolume("QCLint",pIntTrousersC, medZDCvoid);
577 pQCLint->SetLineColor(kTeal);
578 pQCLint->SetVisLeaves(kTRUE);
579 pQCLext->AddNode(pQCLint, 1);
580
581 zd1 += 90.1;
582 Double_t offset = 0.5;
583 zd1 = zd1+offset;
584
585 // second section : 2 tubes (ID = 54. OD = 58.)
586 tubpar[0] = 5.4/2.;
587 tubpar[1] = 5.8/2.;
588 tubpar[2] = 40.0/2.;
589 gMC->Gsvolu("QT12", "TUBE", idtmed[7], tubpar, 3);
590 gMC->Gspos("QT12", 1, "ZDCC", -15.8/2., 0., -tubpar[2]-zd1, 0, "ONLY");
591 gMC->Gspos("QT12", 2, "ZDCC", 15.8/2., 0., -tubpar[2]-zd1, 0, "ONLY");
592 // Ch.debug
593 //printf(" QT12 TUBE from z = %1.2f to z= %1.2f\n",-zd1,-2*tubpar[2]-zd1);
594
595 zd1 += 2.*tubpar[2];
596
597 // transition x2zdc to recombination chamber : skewed cone
598 conpar[0] = (10.-0.2-offset)/2.;
599 conpar[1] = 5.4/2.;
600 conpar[2] = 5.8/2.;
601 conpar[3] = 6.3/2.;
602 conpar[4] = 7.0/2.;
603 gMC->Gsvolu("QC10", "CONE", idtmed[7], conpar, 5);
604 gMC->Gspos("QC10", 1, "ZDCC", -7.9-0.175, 0., -conpar[0]-0.1-zd1, irotpipe1, "ONLY");
605 gMC->Gspos("QC10", 2, "ZDCC", 7.9+0.175, 0., -conpar[0]-0.1-zd1, irotpipe2, "ONLY");
606 //printf(" QC10 CONE from z = %1.2f to z= %1.2f\n",-zd1,-2*conpar[0]-0.2-zd1);
607
608 zd1 += 2.*conpar[0]+0.2;
609
610 // 2 tubes (ID = 63 mm OD=70 mm)
611 tubpar[0] = 6.3/2.;
612 tubpar[1] = 7.0/2.;
613 tubpar[2] = 639.8/2.;
614 gMC->Gsvolu("QT13", "TUBE", idtmed[7], tubpar, 3);
615 gMC->Gspos("QT13", 1, "ZDCC", -16.5/2., 0., -tubpar[2]-zd1, 0, "ONLY");
616 gMC->Gspos("QT13", 2, "ZDCC", 16.5/2., 0., -tubpar[2]-zd1, 0, "ONLY");
617 //printf(" QT13 TUBE from z = %1.2f to z= %1.2f\n",-zd1,-2*tubpar[2]-zd1);
618
619 zd1 += 2.*tubpar[2];
620 //printf(" END OF SIDE C BEAM PIPE DEFINITION @ z = %f\n",-zd1);
621
622
623 // -- Luminometer (Cu box) in front of ZN - side C
624 boxpar[0] = 8.0/2.;
625 boxpar[1] = 8.0/2.;
626 boxpar[2] = 15./2.;
627 gMC->Gsvolu("QLUC", "BOX ", idtmed[9], boxpar, 3);
628 gMC->Gspos("QLUC", 1, "ZDCC", 0., 0., fPosZNC[2]+66.+boxpar[2], 0, "ONLY");
629 //printf(" QLUC LUMINOMETER from z = %1.2f to z= %1.2f\n", fPosZNC[2]+66., fPosZNC[2]+66.+2*boxpar[2]);
630
631 // -- END OF BEAM PIPE VOLUME DEFINITION FOR SIDE C (RB26 SIDE)
632 // ----------------------------------------------------------------
633
634 ////////////////////////////////////////////////////////////////
635 // //
636 // SIDE A - RB24 //
637 // //
638 ///////////////////////////////////////////////////////////////
639
640 // Rotation Matrices definition
641 Int_t irotpipe3, irotpipe4, irotpipe5;
642 //-- rotation matrices for the tilted cone after the TDI to recenter vacuum chamber
643 gMC->Matrix(irotpipe3,90.-1.8934,0.,90.,90.,1.8934,180.);
644 //-- rotation matrices for the tilted tube before and after the TDI
645 gMC->Matrix(irotpipe4,90.-3.8,0.,90.,90.,3.8,180.);
646 //-- rotation matrix for the tilted cone after the TDI
647 gMC->Matrix(irotpipe5,90.+9.8,0.,90.,90.,9.8,0.);
648
649 // -- Mother of the ZDCs (Vacuum PCON)
650 zd2 = 1910.22;// zd2 initial value
651
652 conpar[0] = 0.;
653 conpar[1] = 360.;
654 conpar[2] = 2.;
655 conpar[3] = zd2;
656 conpar[4] = 0.;
657 conpar[5] = 55.;
658 conpar[6] = 13500.;
659 conpar[7] = 0.;
660 conpar[8] = 55.;
661 gMC->Gsvolu("ZDCA", "PCON", idtmed[10], conpar, 9);
662 gMC->Gspos("ZDCA", 1, "ALIC", 0., 0., 0., 0, "ONLY");
663
664 // To avoid overlaps 1 micron are left between certain volumes!
665 Double_t dxNoOverlap = 0.0;
666 //zd2 += dxNoOverlap;
667
668 // BEAM PIPE from 19.10 m to inner triplet beginning (22.965 m)
669 tubpar[0] = 6.0/2.;
670 tubpar[1] = 6.4/2.;
671 tubpar[2] = 386.28/2. - dxNoOverlap;
672 gMC->Gsvolu("QA01", "TUBE", idtmed[7], tubpar, 3);
673 gMC->Gspos("QA01", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY");
674 // Ch.debug
675 //printf(" QA01 TUBE centred in %f from z = %1.2f to z= %1.2f (IT begin)\n",tubpar[2]+zd2,zd2,2*tubpar[2]+zd2);
676
677 zd2 += 2.*tubpar[2];
678
679 // -- FIRST SECTION OF THE BEAM PIPE (from beginning of inner triplet to
680 // beginning of D1)
681 tubpar[0] = 6.3/2.;
682 tubpar[1] = 6.7/2.;
683 tubpar[2] = 3541.8/2. - dxNoOverlap;
684 gMC->Gsvolu("QA02", "TUBE", idtmed[7], tubpar, 3);
685 gMC->Gspos("QA02", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY");
686 // Ch.debug
687 //printf(" QA02 TUBE from z = %1.2f to z= %1.2f (D1 begin)\n",zd2,2*tubpar[2]+zd2);
688
689 zd2 += 2.*tubpar[2];
690
691
692 // -- SECOND SECTION OF THE BEAM PIPE (from the beginning of D1 to the beginning of D2)
693 //
694 // FROM (MAGNETIC) BEGINNING OF D1 TO THE (MAGNETIC) END OF D1 + 126.5 cm
695 // CYLINDRICAL PIPE of diameter increasing from 6.75 cm up to 8.0 cm
696 // from magnetic end :
697 // 1) 80.1 cm still with ID = 6.75 radial beam screen
698 // 2) 2.5 cm conical section from ID = 6.75 to ID = 8.0 cm
699 // 3) 43.9 cm straight section (tube) with ID = 8.0 cm
700
701 tubpar[0] = 6.75/2.;
702 tubpar[1] = 7.15/2.;
703 tubpar[2] = (945.0+80.1)/2.;
704 gMC->Gsvolu("QA03", "TUBE", idtmed[7], tubpar, 3);
705 gMC->Gspos("QA03", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY");
706 // Ch.debug
707 //printf(" QA03 TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
708
709 zd2 += 2.*tubpar[2];
710
711 // Transition Cone from ID=67.5 mm to ID=80 mm
712 conpar[0] = 2.5/2.;
713 conpar[1] = 6.75/2.;
714 conpar[2] = 7.15/2.;
715 conpar[3] = 8.0/2.;
716 conpar[4] = 8.4/2.;
717 gMC->Gsvolu("QA04", "CONE", idtmed[7], conpar, 5);
718 gMC->Gspos("QA04", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY");
719 //printf(" QA04 CONE from z = %1.2f to z= %1.2f\n",zd2,2*conpar[0]+zd2);
720
721 zd2 += 2.*conpar[0];
722
723 tubpar[0] = 8.0/2.;
724 tubpar[1] = 8.4/2.;
725 tubpar[2] = (43.9+20.+28.5+28.5)/2.;
726 gMC->Gsvolu("QA05", "TUBE", idtmed[7], tubpar, 3);
727 gMC->Gspos("QA05", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY");
728 // Ch.debug
729 //printf(" QA05 TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
730
731 zd2 += 2.*tubpar[2];
732
733 // Second section of VAEHI (transition cone from ID=80mm to ID=98mm)
734 conpar[0] = 4.0/2.;
735 conpar[1] = 8.0/2.;
736 conpar[2] = 8.4/2.;
737 conpar[3] = 9.8/2.;
738 conpar[4] = 10.2/2.;
739 gMC->Gsvolu("QAV1", "CONE", idtmed[7], conpar, 5);
740 gMC->Gspos("QAV1", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY");
741 //printf(" QAV1 CONE from z = %1.2f to z= %1.2f\n",zd2,2*conpar[0]+zd2);
742
743 zd2 += 2.*conpar[0];
744
745 //Third section of VAEHI (transition cone from ID=98mm to ID=90mm)
746 conpar[0] = 1.0/2.;
747 conpar[1] = 9.8/2.;
748 conpar[2] = 10.2/2.;
749 conpar[3] = 9.0/2.;
750 conpar[4] = 9.4/2.;
751 gMC->Gsvolu("QAV2", "CONE", idtmed[7], conpar, 5);
752 gMC->Gspos("QAV2", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY");
753 //printf(" QAV2 CONE from z = %1.2f to z= %1.2f\n",zd2,2*conpar[0]+zd2);
754
755 zd2 += 2.*conpar[0];
756
757 // Fourth section of VAEHI (tube ID=90mm)
758 tubpar[0] = 9.0/2.;
759 tubpar[1] = 9.4/2.;
760 tubpar[2] = 31.0/2.;
761 gMC->Gsvolu("QAV3", "TUBE", idtmed[7], tubpar, 3);
762 gMC->Gspos("QAV3", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY");
763 // Ch.debug
764 //printf(" QAV3 TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
765
766 zd2 += 2.*tubpar[2];
767
768 //---------------------------- TCDD beginning ----------------------------------
769 // space for the insertion of the collimator TCDD (2 m)
770 // TCDD ZONE - 1st volume
771 conpar[0] = 1.3/2.;
772 conpar[1] = 9.0/2.;
773 conpar[2] = 13.0/2.;
774 conpar[3] = 9.6/2.;
775 conpar[4] = 13.0/2.;
776 gMC->Gsvolu("Q01T", "CONE", idtmed[7], conpar, 5);
777 gMC->Gspos("Q01T", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY");
778 //printf(" Q01T CONE from z = %1.2f to z= %1.2f\n",zd2,2*conpar[0]+zd2);
779
780 zd2 += 2.*conpar[0];
781
782 // TCDD ZONE - 2nd volume
783 tubpar[0] = 9.6/2.;
784 tubpar[1] = 10.0/2.;
785 tubpar[2] = 1.0/2.;
786 gMC->Gsvolu("Q02T", "TUBE", idtmed[7], tubpar, 3);
787 gMC->Gspos("Q02T", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY");
788 // Ch.debug
789 //printf(" Q02T TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
790
791 zd2 += 2.*tubpar[2];
792
793 // TCDD ZONE - third volume
794 conpar[0] = 9.04/2.;
795 conpar[1] = 9.6/2.;
796 conpar[2] = 10.0/2.;
797 conpar[3] = 13.8/2.;
798 conpar[4] = 14.2/2.;
799 gMC->Gsvolu("Q03T", "CONE", idtmed[7], conpar, 5);
800 gMC->Gspos("Q03T", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY");
801 //printf(" Q03T CONE from z = %1.2f to z= %1.2f\n",zd2,2*conpar[0]+zd2);
802
803 zd2 += 2.*conpar[0];
804
805 // TCDD ZONE - 4th volume
806 tubpar[0] = 13.8/2.;
807 tubpar[1] = 14.2/2.;
808 tubpar[2] = 38.6/2.;
809 gMC->Gsvolu("Q04T", "TUBE", idtmed[7], tubpar, 3);
810 gMC->Gspos("Q04T", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY");
811 // Ch.debug
812 //printf(" Q04T TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
813
814 zd2 += 2.*tubpar[2];
815
816 // TCDD ZONE - 5th volume
817 tubpar[0] = 21.0/2.;
818 tubpar[1] = 21.4/2.;
819 tubpar[2] = 100.12/2.;
820 gMC->Gsvolu("Q05T", "TUBE", idtmed[7], tubpar, 3);
821 gMC->Gspos("Q05T", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY");
822 // Ch.debug
823 //printf(" Q05T TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
824
825 zd2 += 2.*tubpar[2];
826
827 // TCDD ZONE - 6th volume
828 tubpar[0] = 13.8/2.;
829 tubpar[1] = 14.2/2.;
830 tubpar[2] = 38.6/2.;
831 gMC->Gsvolu("Q06T", "TUBE", idtmed[7], tubpar, 3);
832 gMC->Gspos("Q06T", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY");
833 // Ch.debug
834 //printf(" Q06T TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
835
836 zd2 += 2.*tubpar[2];
837
838 // TCDD ZONE - 7th volume
839 conpar[0] = 11.34/2.;
840 conpar[1] = 13.8/2.;
841 conpar[2] = 14.2/2.;
842 conpar[3] = 18.0/2.;
843 conpar[4] = 18.4/2.;
844 gMC->Gsvolu("Q07T", "CONE", idtmed[7], conpar, 5);
845 gMC->Gspos("Q07T", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY");
846 //printf(" Q07T CONE from z = %1.2f to z= %1.2f\n",zd2,2*conpar[0]+zd2);
847
848 zd2 += 2.*conpar[0];
849
850 // Upper section : one single phi segment of a tube
851 // 5 parameters for tubs: inner radius = 0.,
852 // outer radius = 7. cm, half length = 50 cm
853 // phi1 = 0., phi2 = 180.
854 tubspar[0] = 0.0/2.;
855 tubspar[1] = 14.0/2.;
856 tubspar[2] = 100.0/2.;
857 tubspar[3] = 0.;
858 tubspar[4] = 180.;
859 gMC->Gsvolu("Q08T", "TUBS", idtmed[7], tubspar, 5);
860 // Ch.debug
861 //printf(" upper part : one single phi segment of a tube (Q08T)\n");
862
863 // rectangular beam pipe inside TCDD upper section (Vacuum)
864 boxpar[0] = 7.0/2.;
865 boxpar[1] = 2.2/2.;
866 boxpar[2] = 100./2.;
867 gMC->Gsvolu("Q09T", "BOX ", idtmed[10], boxpar, 3);
868 // positioning vacuum box in the upper section of TCDD
869 gMC->Gspos("Q09T", 1, "Q08T", 0., 1.1, 0., 0, "ONLY");
870
871 // lower section : one single phi segment of a tube
872 tubspar[0] = 0.0/2.;
873 tubspar[1] = 14.0/2.;
874 tubspar[2] = 100.0/2.;
875 tubspar[3] = 180.;
876 tubspar[4] = 360.;
877 gMC->Gsvolu("Q10T", "TUBS", idtmed[7], tubspar, 5);
878 // rectangular beam pipe inside TCDD lower section (Vacuum)
879 boxpar[0] = 7.0/2.;
880 boxpar[1] = 2.2/2.;
881 boxpar[2] = 100./2.;
882 gMC->Gsvolu("Q11T", "BOX ", idtmed[10], boxpar, 3);
883 // positioning vacuum box in the lower section of TCDD
884 gMC->Gspos("Q11T", 1, "Q10T", 0., -1.1, 0., 0, "ONLY");
885
886 // positioning TCDD elements in ZDCA, (inside TCDD volume)
887 gMC->Gspos("Q08T", 1, "ZDCA", 0., 2., -100.+zd2, 0, "ONLY");
888 gMC->Gspos("Q10T", 1, "ZDCA", 0., -2., -100.+zd2, 0, "ONLY");
889
890 // RF screen
891 boxpar[0] = 0.2/2.;
892 boxpar[1] = 4.0/2.;
893 boxpar[2] = 100./2.;
894 gMC->Gsvolu("Q12T", "BOX ", idtmed[7], boxpar, 3);
895 // positioning RF screen at both sides of TCDD
896 gMC->Gspos("Q12T", 1, "ZDCA", tubspar[1]+boxpar[0], 0., -100.+zd2, 0, "ONLY");
897 gMC->Gspos("Q12T", 2, "ZDCA", -tubspar[1]-boxpar[0], 0., -100.+zd2, 0, "ONLY");
898 //---------------------------- TCDD end ---------------------------------------
899
900 // The following elliptical tube 180 mm x 70 mm
901 // (obtained positioning the void QA09 in QA08)
902 // represents VMTSA (780 mm) + space reserved to the TCTVB (1480 mm)+
903 // VMTSA (780 mm) + first part of VCTCP (93 mm)
904
905 tubpar[0] = 18.4/2.;
906 tubpar[1] = 7.4/2.;
907 tubpar[2] = 313.3/2.;
908 gMC->Gsvolu("QA06", "ELTU", idtmed[7], tubpar, 3);
909 //printf(" QA06 TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
910
911 tubpar[0] = 18.0/2.;
912 tubpar[1] = 7.0/2.;
913 tubpar[2] = 313.3/2.;
914 gMC->Gsvolu("QA07", "ELTU", idtmed[10], tubpar, 3);
915 //printf(" QA07 TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
916 gMC->Gspos("QA06", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY");
917 gMC->Gspos("QA07", 1, "QA06", 0., 0., 0., 0, "ONLY");
918
919 zd2 += 2.*tubpar[2];
920
921 // VCTCP second part: transition cone from ID=180 to ID=212.7
922 conpar[0] = 31.5/2.;
923 conpar[1] = 18.0/2.;
924 conpar[2] = 18.6/2.;
925 conpar[3] = 21.27/2.;
926 conpar[4] = 21.87/2.;
927 gMC->Gsvolu("QA08", "CONE", idtmed[7], conpar, 5);
928 gMC->Gspos("QA08", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY");
929 // Ch.debug
930 //printf(" QA08 CONE from z = %Third part of VCTCR: tube (ID=196 mm) f to z = %f\n",zd2,2*conpar[0]+zd2);
931
932 zd2 += 2.*conpar[0];
933
934 // Tube ID 212.7 mm
935 // Represents VCTCP third part (92 mm) + VCDWB (765 mm) + VMBGA (400 mm) +
936 // VCDWE (300 mm) + VMBGA (400 mm)
937 tubpar[0] = 21.27/2.;
938 tubpar[1] = 21.87/2.;
939 tubpar[2] = 195.7/2.;
940 gMC->Gsvolu("QA09", "TUBE", idtmed[7], tubpar, 3);
941 gMC->Gspos("QA09", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY");
942 //printf(" QA09 TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
943
944 zd2 += 2.*tubpar[2];
945
946 // skewed transition piece (ID=212.7 mm to 332 mm) (before TDI)
947 conpar[0] = (50.0-0.73-1.13)/2.;
948 conpar[1] = 21.27/2.;
949 conpar[2] = 21.87/2.;
950 conpar[3] = 33.2/2.;
951 conpar[4] = 33.8/2.;
952 gMC->Gsvolu("QA10", "CONE", idtmed[7], conpar, 5);
953 gMC->Gspos("QA10", 1, "ZDCA", -1.66, 0., conpar[0]+0.73+zd2, irotpipe4, "ONLY");
954 // Ch.debug
955 //printf(" QA10 skewed CONE from z = %1.2f to z= %1.2f\n",zd2,2*conpar[0]+0.73+1.13+zd2);
956
957 zd2 += 2.*conpar[0]+0.73+1.13;
958
959 // Vacuum chamber containing TDI
960 tubpar[0] = 0.;
961 tubpar[1] = 54.6/2.;
962 tubpar[2] = 540.0/2.;
963 gMC->Gsvolu("Q13TM", "TUBE", idtmed[10], tubpar, 3);
964 gMC->Gspos("Q13TM", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY");
965 tubpar[0] = 54.0/2.;
966 tubpar[1] = 54.6/2.;
967 tubpar[2] = 540.0/2.;
968 gMC->Gsvolu("Q13T", "TUBE", idtmed[7], tubpar, 3);
969 gMC->Gspos("Q13T", 1, "Q13TM", 0., 0., 0., 0, "ONLY");
970 // Ch.debug
971 //printf(" Q13T TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
972
973 zd2 += 2.*tubpar[2];
974
975 //---------------- INSERT TDI INSIDE Q13T -----------------------------------
976 boxpar[0] = 11.0/2.;
977 boxpar[1] = 9.0/2.;
978 boxpar[2] = 540.0/2.;
979 gMC->Gsvolu("QTD1", "BOX ", idtmed[7], boxpar, 3);
980 gMC->Gspos("QTD1", 1, "Q13TM", -3.8, 10.5, 0., 0, "ONLY");
981 boxpar[0] = 11.0/2.;
982 boxpar[1] = 9.0/2.;
983 boxpar[2] = 540.0/2.;
984 gMC->Gsvolu("QTD2", "BOX ", idtmed[7], boxpar, 3);
985 gMC->Gspos("QTD2", 1, "Q13TM", -3.8, -10.5, 0., 0, "ONLY");
986 boxpar[0] = 5.1/2.;
987 boxpar[1] = 0.2/2.;
988 boxpar[2] = 540.0/2.;
989 gMC->Gsvolu("QTD3", "BOX ", idtmed[7], boxpar, 3);
990 gMC->Gspos("QTD3", 1, "Q13TM", -3.8+5.5+boxpar[0], 6.1, 0., 0, "ONLY");
991 gMC->Gspos("QTD3", 2, "Q13TM", -3.8+5.5+boxpar[0], -6.1, 0., 0, "ONLY");
992 gMC->Gspos("QTD3", 3, "Q13TM", -3.8-5.5-boxpar[0], 6.1, 0., 0, "ONLY");
993 gMC->Gspos("QTD3", 4, "Q13TM", -3.8-5.5-boxpar[0], -6.1, 0., 0, "ONLY");
994 //
995 tubspar[0] = 12.0/2.;
996 tubspar[1] = 12.4/2.;
997 tubspar[2] = 540.0/2.;
998 tubspar[3] = 90.;
999 tubspar[4] = 270.;
1000 gMC->Gsvolu("QTD4", "TUBS", idtmed[7], tubspar, 5);
1001 gMC->Gspos("QTD4", 1, "Q13TM", -3.8-10.6, 0., 0., 0, "ONLY");
1002 tubspar[0] = 12.0/2.;
1003 tubspar[1] = 12.4/2.;
1004 tubspar[2] = 540.0/2.;
1005 tubspar[3] = -90.;
1006 tubspar[4] = 90.;
1007 gMC->Gsvolu("QTD5", "TUBS", idtmed[7], tubspar, 5);
1008 gMC->Gspos("QTD5", 1, "Q13TM", -3.8+10.6, 0., 0., 0, "ONLY");
1009 //---------------- END DEFINING TDI INSIDE Q13T -------------------------------
1010
1011 // VCTCG skewed transition piece (ID=332 mm to 212.7 mm) (after TDI)
1012 conpar[0] = (50.0-2.92-1.89)/2.;
1013 conpar[1] = 33.2/2.;
1014 conpar[2] = 33.8/2.;
1015 conpar[3] = 21.27/2.;
1016 conpar[4] = 21.87/2.;
1017 gMC->Gsvolu("QA11", "CONE", idtmed[7], conpar, 5);
1018 gMC->Gspos("QA11", 1, "ZDCA", 4.32-3.8, 0., conpar[0]+2.92+zd2, irotpipe5, "ONLY");
1019 // Ch.debug
1020 //printf(" QA11 skewed CONE from z = %f to z =%f\n",zd2,2*conpar[0]+2.92+1.89+zd2);
1021
1022 zd2 += 2.*conpar[0]+2.92+1.89;
1023
1024 // The following tube ID 212.7 mm
1025 // represents VMBGA (400 mm) + VCDWE (300 mm) + VMBGA (400 mm) +
1026 // BTVTS (600 mm) + VMLGB (400 mm)
1027 tubpar[0] = 21.27/2.;
1028 tubpar[1] = 21.87/2.;
1029 tubpar[2] = 210.0/2.;
1030 gMC->Gsvolu("QA12", "TUBE", idtmed[7], tubpar, 3);
1031 gMC->Gspos("QA12", 1, "ZDCA", 4., 0., tubpar[2]+zd2, 0, "ONLY");
1032 // Ch.debug
1033 //printf(" QA12 TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
1034
1035 zd2 += 2.*tubpar[2];
1036
1037 // First part of VCTCC
1038 // skewed transition cone from ID=212.7 mm to ID=797 mm
1039 conpar[0] = (121.0-0.37-1.35)/2.;
1040 conpar[1] = 21.27/2.;
1041 conpar[2] = 21.87/2.;
1042 conpar[3] = 79.7/2.;
1043 conpar[4] = 81.3/2.;
1044 gMC->Gsvolu("QA13", "CONE", idtmed[7], conpar, 5);
1045 gMC->Gspos("QA13", 1, "ZDCA", 4.-2., 0., conpar[0]+0.37+zd2, irotpipe3, "ONLY");
1046 // Ch.debug
1047 //printf(" QA13 CONE from z = %1.2f to z= %1.2f\n",zd2,2*conpar[0]+0.37+1.35+zd2);
1048
1049 zd2 += 2.*conpar[0]+0.37+1.35;
1050
1051 // The following tube ID 797 mm --- (volume QA16)
1052 // represents the second part of VCTCC (4272 mm) +
1053 // 4 x VCDGA (4 x 4272 mm) +
1054 // the first part of VCTCR (850 mm)
1055 tubpar[0] = 79.7/2.;
1056 tubpar[1] = 81.3/2.;
1057 tubpar[2] = 2221./2.;
1058 gMC->Gsvolu("QA14", "TUBE", idtmed[7], tubpar, 3);
1059 gMC->Gspos("QA14", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY");
1060 // Ch.debug
1061 //printf(" QA14 TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
1062
1063 zd2 += 2.*tubpar[2];
1064
1065 // Second part of VCTCR
1066 // Transition from ID=797 mm to ID=196 mm:
1067 // in order to simulate the thin window opened in the transition cone
1068 // we divide the transition cone in three cones:
1069 // (1) 8 mm thick (2) 3 mm thick (3) the third 8 mm thick
1070
1071 // (1) 8 mm thick
1072 conpar[0] = 9.09/2.; // 15 degree
1073 conpar[1] = 79.7/2.;
1074 conpar[2] = 81.3/2.; // thickness 8 mm
1075 conpar[3] = 74.82868/2.;
1076 conpar[4] = 76.42868/2.; // thickness 8 mm
1077 gMC->Gsvolu("QA15", "CONE", idtmed[7], conpar, 5);
1078 gMC->Gspos("QA15", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY");
1079 //printf(" QA15 CONE from z = %1.2f to z= %1.2f\n",zd2,2*conpar[0]+zd2);
1080
1081 zd2 += 2.*conpar[0];
1082
1083 // (2) 3 mm thick
1084 conpar[0] = 96.2/2.; // 15 degree
1085 conpar[1] = 74.82868/2.;
1086 conpar[2] = 75.42868/2.; // thickness 3 mm
1087 conpar[3] = 23.19588/2.;
1088 conpar[4] = 23.79588/2.; // thickness 3 mm
1089 gMC->Gsvolu("QA16", "CONE", idtmed[7], conpar, 5);
1090 gMC->Gspos("QA16", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY");
1091 //printf(" QA16 CONE from z = %1.2f to z= %1.2f\n",zd2,2*conpar[0]+zd2);
1092
1093 zd2 += 2.*conpar[0];
1094
1095 // (3) 8 mm thick
1096 conpar[0] = 6.71/2.; // 15 degree
1097 conpar[1] = 23.19588/2.;
1098 conpar[2] = 24.79588/2.;// thickness 8 mm
1099 conpar[3] = 19.6/2.;
1100 conpar[4] = 21.2/2.;// thickness 8 mm
1101 gMC->Gsvolu("QA17", "CONE", idtmed[7], conpar, 5);
1102 gMC->Gspos("QA17", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY");
1103 //printf(" QA19 CONE from z = %1.2f to z= %1.2f\n",zd2,2*conpar[0]+zd2);
1104
1105 zd2 += 2.*conpar[0];
1106
1107 // Third part of VCTCR: tube (ID=196 mm)
1108 tubpar[0] = 19.6/2.;
1109 tubpar[1] = 21.2/2.;
1110 tubpar[2] = 9.55/2.;
1111 gMC->Gsvolu("QA18", "TUBE", idtmed[7], tubpar, 3);
1112 gMC->Gspos("QA18", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY");
1113 // Ch.debug
1114 //printf(" QA18 TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
1115
1116 zd2 += 2.*tubpar[2];
1117
1118 // Flange (ID=196 mm) (last part of VCTCR and first part of VMZAR)
1119 tubpar[0] = 19.6/2.;
1120 tubpar[1] = 25.3/2.;
1121 tubpar[2] = 4.9/2.;
1122 gMC->Gsvolu("QF01", "TUBE", idtmed[7], tubpar, 3);
1123 gMC->Gspos("QF01", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY");
1124 // Ch.debug
1125 //printf(" QF01 TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
1126
1127 zd2 += 2.*tubpar[2];
1128
1129 // VMZAR (5 volumes)
1130 tubpar[0] = 20.2/2.;
1131 tubpar[1] = 20.6/2.;
1132 tubpar[2] = 2.15/2.;
1133 gMC->Gsvolu("QA19", "TUBE", idtmed[7], tubpar, 3);
1134 gMC->Gspos("QA19", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY");
1135 // Ch.debug
1136 //printf(" QA19 TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
1137
1138 zd2 += 2.*tubpar[2];
1139
1140 conpar[0] = 6.9/2.;
1141 conpar[1] = 20.2/2.;
1142 conpar[2] = 20.6/2.;
1143 conpar[3] = 23.9/2.;
1144 conpar[4] = 24.3/2.;
1145 gMC->Gsvolu("QA20", "CONE", idtmed[7], conpar, 5);
1146 gMC->Gspos("QA20", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY");
1147 // Ch.debug
1148 //printf(" QA20 CONE from z = %1.2f to z= %1.2f\n",zd2,2*conpar[0]+zd2);
1149
1150 zd2 += 2.*conpar[0];
1151
1152 tubpar[0] = 23.9/2.;
1153 tubpar[1] = 25.5/2.;
1154 tubpar[2] = 17.0/2.;
1155 gMC->Gsvolu("QA21", "TUBE", idtmed[7], tubpar, 3);
1156 gMC->Gspos("QA21", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY");
1157 // Ch.debug
1158 //printf(" QA21 TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
1159
1160 zd2 += 2.*tubpar[2];
1161
1162 conpar[0] = 6.9/2.;
1163 conpar[1] = 23.9/2.;
1164 conpar[2] = 24.3/2.;
1165 conpar[3] = 20.2/2.;
1166 conpar[4] = 20.6/2.;
1167 gMC->Gsvolu("QA22", "CONE", idtmed[7], conpar, 5);
1168 gMC->Gspos("QA22", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY");
1169 // Ch.debug
1170 //printf(" QA22 CONE from z = %1.2f to z= %1.2f\n",zd2,2*conpar[0]+zd2);
1171
1172 zd2 += 2.*conpar[0];
1173
1174 tubpar[0] = 20.2/2.;
1175 tubpar[1] = 20.6/2.;
1176 tubpar[2] = 2.15/2.;
1177 gMC->Gsvolu("QA23", "TUBE", idtmed[7], tubpar, 3);
1178 gMC->Gspos("QA23", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY");
1179 // Ch.debug
1180 //printf(" QA23 TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
1181
1182 zd2 += 2.*tubpar[2];
1183
1184 // Flange (ID=196 mm)(last part of VMZAR and first part of VCTYD)
1185 tubpar[0] = 19.6/2.;
1186 tubpar[1] = 25.3/2.;
1187 tubpar[2] = 4.9/2.;
1188 gMC->Gsvolu("QF02", "TUBE", idtmed[7], tubpar, 3);
1189 gMC->Gspos("QF02", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY");
1190 // Ch.debug
1191 //printf(" QF02 TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
1192
1193 zd2 += 2.*tubpar[2];
1194
1195 // simulation of the trousers (VCTYB)
1196 tubpar[0] = 19.6/2.;
1197 tubpar[1] = 20.0/2.;
1198 tubpar[2] = 3.9/2.;
1199 gMC->Gsvolu("QA24", "TUBE", idtmed[7], tubpar, 3);
1200 gMC->Gspos("QA24", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY");
1201 // Ch.debug
1202 //printf(" QA24 TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
1203
1204 zd2 += 2.*tubpar[2];
1205
1206 // transition cone from ID=196. to ID=216.6
1207 conpar[0] = 32.55/2.;
1208 conpar[1] = 19.6/2.;
1209 conpar[2] = 20.0/2.;
1210 conpar[3] = 21.66/2.;
1211 conpar[4] = 22.06/2.;
1212 gMC->Gsvolu("QA25", "CONE", idtmed[7], conpar, 5);
1213 gMC->Gspos("QA25", 1, "ZDCA", 0., 0., conpar[0]+zd2, 0, "ONLY");
1214 // Ch.debug
1215 //printf(" QA25 CONE from z = %1.2f to z= %1.2f\n",zd2,2*conpar[0]+zd2);
1216
1217 zd2 += 2.*conpar[0];
1218
1219 // tube
1220 tubpar[0] = 21.66/2.;
1221 tubpar[1] = 22.06/2.;
1222 tubpar[2] = 28.6/2.;
1223 gMC->Gsvolu("QA26", "TUBE", idtmed[7], tubpar, 3);
1224 gMC->Gspos("QA26", 1, "ZDCA", 0., 0., tubpar[2]+zd2, 0, "ONLY");
1225 // Ch.debug
1226 //printf(" QA26 TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
1227
1228 zd2 += 2.*tubpar[2];
1229
1230 // --------------------------------------------------------
1231 // RECOMBINATION CHAMBER IMPLEMENTED USING TGeo CLASSES!!!!
1232 // author: Chiara (June 2008)
1233 // --------------------------------------------------------
1234 // TRANSFORMATION MATRICES
1235 // Combi transformation:
1236 dx = -3.970000;
1237 dy = 0.000000;
1238 dz = 0.0;
1239 // Rotation:
1240 thx = 84.989100; phx = 0.000000;
1241 thy = 90.000000; phy = 90.000000;
1242 thz = 5.010900; phz = 180.000000;
1243 TGeoRotation *rotMatrix1 = new TGeoRotation("",thx,phx,thy,phy,thz,phz);
1244 // Combi transformation:
1245 dx = -3.970000;
1246 dy = 0.000000;
1247 dz = 0.0;
1248 TGeoCombiTrans *rotMatrix2 = new TGeoCombiTrans("ZDC_c1", dx,dy,dz,rotMatrix1);
1249 rotMatrix2->RegisterYourself();
1250 // Combi transformation:
1251 dx = 3.970000;
1252 dy = 0.000000;
1253 dz = 0.0;
1254 // Rotation:
1255 thx = 95.010900; phx = 0.000000;
1256 thy = 90.000000; phy = 90.000000;
1257 thz = 5.010900; phz = 0.000000;
1258 TGeoRotation *rotMatrix3 = new TGeoRotation("",thx,phx,thy,phy,thz,phz);
1259 TGeoCombiTrans *rotMatrix4 = new TGeoCombiTrans("ZDC_c2", dx,dy,dz,rotMatrix3);
1260 rotMatrix4->RegisterYourself();
1261
1262
1263 // VOLUMES DEFINITION
1264 // Volume: ZDCA
1265 TGeoVolume *pZDCA = gGeoManager->GetVolume("ZDCA");
1266
1267 conpar[0] = (90.1-0.95-0.26)/2.;
1268 conpar[1] = 0.0/2.;
1269 conpar[2] = 21.6/2.;
1270 conpar[3] = 0.0/2.;
1271 conpar[4] = 5.8/2.;
1272 new TGeoCone("QALext", conpar[0],conpar[1],conpar[2],conpar[3],conpar[4]);
1273
1274 conpar[0] = (90.1-0.95-0.26)/2.;
1275 conpar[1] = 0.0/2.;
1276 conpar[2] = 21.2/2.;
1277 conpar[3] = 0.0/2.;
1278 conpar[4] = 5.4/2.;
1279 new TGeoCone("QALint", conpar[0],conpar[1],conpar[2],conpar[3],conpar[4]);
1280
1281 // Outer trousers
1282 TGeoCompositeShape *pOutTrousers = new TGeoCompositeShape("outTrousers", "QALext:ZDC_c1+QALext:ZDC_c2");
1283
1284 // Volume: QALext
1285 //TGeoMedium *medZDCFe = gGeoManager->GetMedium("ZDC_ZIRON");
1286 TGeoVolume *pQALext = new TGeoVolume("QALext",pOutTrousers, medZDCFe);
1287 pQALext->SetLineColor(kBlue);
1288 pQALext->SetVisLeaves(kTRUE);
1289 //
1290 TGeoTranslation *tr1 = new TGeoTranslation(0., 0., (Double_t) conpar[0]+0.95+zd2);
1291 pZDCA->AddNode(pQALext, 1, tr1);
1292 // Inner trousers
1293 TGeoCompositeShape *pIntTrousers = new TGeoCompositeShape("intTrousers", "QALint:ZDC_c1+QALint:ZDC_c2");
1294 // Volume: QALint
1295 //TGeoMedium *medZDCvoid = gGeoManager->GetMedium("ZDC_ZVOID");
1296 TGeoVolume *pQALint = new TGeoVolume("QALint",pIntTrousers, medZDCvoid);
1297 pQALint->SetLineColor(kAzure);
1298 pQALint->SetVisLeaves(kTRUE);
1299 pQALext->AddNode(pQALint, 1);
1300
1301 zd2 += 90.1;
1302
1303 // second section : 2 tubes (ID = 54. OD = 58.)
1304 tubpar[0] = 5.4/2.;
1305 tubpar[1] = 5.8/2.;
1306 tubpar[2] = 40.0/2.;
1307 gMC->Gsvolu("QA27", "TUBE", idtmed[7], tubpar, 3);
1308 gMC->Gspos("QA27", 1, "ZDCA", -15.8/2., 0., tubpar[2]+zd2, 0, "ONLY");
1309 gMC->Gspos("QA27", 2, "ZDCA", 15.8/2., 0., tubpar[2]+zd2, 0, "ONLY");
1310 // Ch.debug
1311 //printf(" QA27 TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
1312
1313 zd2 += 2.*tubpar[2];
1314
1315 // transition x2zdc to recombination chamber : skewed cone
1316 conpar[0] = (10.-1.)/2.;
1317 conpar[1] = 5.4/2.;
1318 conpar[2] = 5.8/2.;
1319 conpar[3] = 6.3/2.;
1320 conpar[4] = 7.0/2.;
1321 gMC->Gsvolu("QA28", "CONE", idtmed[7], conpar, 5);
1322 gMC->Gspos("QA28", 1, "ZDCA", -7.9-0.175, 0., conpar[0]+0.5+zd2, irotpipe1, "ONLY");
1323 gMC->Gspos("QA28", 2, "ZDCA", 7.9+0.175, 0., conpar[0]+0.5+zd2, irotpipe2, "ONLY");
1324 //printf(" QA28 CONE from z = %1.2f to z= %1.2f\n",zd2,2*conpar[0]+0.2+zd2);
1325
1326 zd2 += 2.*conpar[0]+1.;
1327
1328 // 2 tubes (ID = 63 mm OD=70 mm)
1329 tubpar[0] = 6.3/2.;
1330 tubpar[1] = 7.0/2.;
1331 tubpar[2] = (342.5+498.3)/2.;
1332 gMC->Gsvolu("QA29", "TUBE", idtmed[7], tubpar, 3);
1333 gMC->Gspos("QA29", 1, "ZDCA", -16.5/2., 0., tubpar[2]+zd2, 0, "ONLY");
1334 gMC->Gspos("QA29", 2, "ZDCA", 16.5/2., 0., tubpar[2]+zd2, 0, "ONLY");
1335 //printf(" QA29 TUBE from z = %1.2f to z= %1.2f\n",zd2,2*tubpar[2]+zd2);
1336
1337 zd2 += 2.*tubpar[2];
1338
1339 // -- Luminometer (Cu box) in front of ZN - side A
1340 boxpar[0] = 8.0/2.;
1341 boxpar[1] = 8.0/2.;
1342 boxpar[2] = 15./2.;
1343 gMC->Gsvolu("QLUA", "BOX ", idtmed[9], boxpar, 3);
1344 gMC->Gspos("QLUA", 1, "ZDCA", 0., 0., fPosZNA[2]-66.-boxpar[2], 0, "ONLY");
1345 //printf(" QLUA LUMINOMETER from z = %1.2f to z= %1.2f\n\n", fPosZNA[2]-66., fPosZNA[2]-66.-2*boxpar[2]);
1346
1347 //printf(" END OF BEAM PIPE VOLUME DEFINITION AT z = %f\n",zd2);
1348
1349
1350 // ----------------------------------------------------------------
1351 // -- MAGNET DEFINITION -> LHC OPTICS 6.5
1352 // ----------------------------------------------------------------
1353 // ***************************************************************
1354 // SIDE C - RB26 (dimuon side)
1355 // ***************************************************************
1356 // -- COMPENSATOR DIPOLE (MBXW)
1357 zCorrDip = 1972.5;
1358
1359 // -- GAP (VACUUM WITH MAGNETIC FIELD)
1360 tubpar[0] = 0.;
1361 tubpar[1] = 3.14;
1362 tubpar[2] = 153./2.;
1363 gMC->Gsvolu("MBXW", "TUBE", idtmed[11], tubpar, 3);
1364
1365 // -- YOKE
1366 tubpar[0] = 4.5;
1367 tubpar[1] = 55.;
1368 tubpar[2] = 153./2.;
1369 gMC->Gsvolu("YMBX", "TUBE", idtmed[7], tubpar, 3);
1370
1371 gMC->Gspos("MBXW", 1, "ZDCC", 0., 0., -tubpar[2]-zCorrDip, 0, "ONLY");
1372 gMC->Gspos("YMBX", 1, "ZDCC", 0., 0., -tubpar[2]-zCorrDip, 0, "ONLY");
1373
1374
1375 // -- INNER TRIPLET
1376 zInnTrip = 2296.5;
1377
1378 // -- DEFINE MQXL AND MQX QUADRUPOLE ELEMENT
1379 // -- MQXL
1380 // -- GAP (VACUUM WITH MAGNETIC FIELD)
1381 tubpar[0] = 0.;
1382 tubpar[1] = 3.14;
1383 tubpar[2] = 637./2.;
1384 gMC->Gsvolu("MQXL", "TUBE", idtmed[11], tubpar, 3);
1385
1386 // -- YOKE
1387 tubpar[0] = 3.5;
1388 tubpar[1] = 22.;
1389 tubpar[2] = 637./2.;
1390 gMC->Gsvolu("YMQL", "TUBE", idtmed[7], tubpar, 3);
1391
1392 gMC->Gspos("MQXL", 1, "ZDCC", 0., 0., -tubpar[2]-zInnTrip, 0, "ONLY");
1393 gMC->Gspos("YMQL", 1, "ZDCC", 0., 0., -tubpar[2]-zInnTrip, 0, "ONLY");
1394
1395 gMC->Gspos("MQXL", 2, "ZDCC", 0., 0., -tubpar[2]-zInnTrip-2400., 0, "ONLY");
1396 gMC->Gspos("YMQL", 2, "ZDCC", 0., 0., -tubpar[2]-zInnTrip-2400., 0, "ONLY");
1397
1398 // -- MQX
1399 // -- GAP (VACUUM WITH MAGNETIC FIELD)
1400 tubpar[0] = 0.;
1401 tubpar[1] = 3.14;
1402 tubpar[2] = 550./2.;
1403 gMC->Gsvolu("MQX ", "TUBE", idtmed[11], tubpar, 3);
1404
1405 // -- YOKE
1406 tubpar[0] = 3.5;
1407 tubpar[1] = 22.;
1408 tubpar[2] = 550./2.;
1409 gMC->Gsvolu("YMQ ", "TUBE", idtmed[7], tubpar, 3);
1410
1411 gMC->Gspos("MQX ", 1, "ZDCC", 0., 0., -tubpar[2]-zInnTrip-908.5, 0, "ONLY");
1412 gMC->Gspos("YMQ ", 1, "ZDCC", 0., 0., -tubpar[2]-zInnTrip-908.5, 0, "ONLY");
1413
1414 gMC->Gspos("MQX ", 2, "ZDCC", 0., 0., -tubpar[2]-zInnTrip-1558.5, 0, "ONLY");
1415 gMC->Gspos("YMQ ", 2, "ZDCC", 0., 0., -tubpar[2]-zInnTrip-1558.5, 0, "ONLY");
1416
1417 // -- SEPARATOR DIPOLE D1
1418 zD1 = 5838.3001;
1419
1420 // -- GAP (VACUUM WITH MAGNETIC FIELD)
1421 tubpar[0] = 0.;
1422 tubpar[1] = 3.46;
1423 tubpar[2] = 945./2.;
1424 gMC->Gsvolu("MD1 ", "TUBE", idtmed[11], tubpar, 3);
1425
1426 // -- Insert horizontal Cu plates inside D1
1427 // -- (to simulate the vacuum chamber)
1428 boxpar[0] = TMath::Sqrt(tubpar[1]*tubpar[1]-(2.98+0.2)*(2.98+0.2)) - 0.05;
1429 boxpar[1] = 0.2/2.;
1430 boxpar[2] = 945./2.;
1431 gMC->Gsvolu("MD1V", "BOX ", idtmed[6], boxpar, 3);
1432 gMC->Gspos("MD1V", 1, "MD1 ", 0., 2.98+boxpar[1], 0., 0, "ONLY");
1433 gMC->Gspos("MD1V", 2, "MD1 ", 0., -2.98-boxpar[1], 0., 0, "ONLY");
1434
1435 // -- YOKE
1436 tubpar[0] = 3.68;
1437 tubpar[1] = 110./2.;
1438 tubpar[2] = 945./2.;
1439 gMC->Gsvolu("YD1 ", "TUBE", idtmed[7], tubpar, 3);
1440
1441 gMC->Gspos("YD1 ", 1, "ZDCC", 0., 0., -tubpar[2]-zD1, 0, "ONLY");
1442 gMC->Gspos("MD1 ", 1, "ZDCC", 0., 0., -tubpar[2]-zD1, 0, "ONLY");
1443 // Ch debug
1444 //printf(" MD1 from z = %1.2f to z= %1.2f cm\n",-zD1, -zD1-2*tubpar[2]);
1445
1446 // -- DIPOLE D2
1447 zD2 = 12167.8;
1448 // -- GAP (VACUUM WITH MAGNETIC FIELD)
1449 tubpar[0] = 0.;
1450 tubpar[1] = 7.5/2.;
1451 tubpar[2] = 945./2.;
1452 gMC->Gsvolu("MD2 ", "TUBE", idtmed[11], tubpar, 3);
1453
1454 // -- YOKE
1455 tubpar[0] = 0.;
1456 tubpar[1] = 55.;
1457 tubpar[2] = 945./2.;
1458 gMC->Gsvolu("YD2 ", "TUBE", idtmed[7], tubpar, 3);
1459
1460 gMC->Gspos("YD2 ", 1, "ZDCC", 0., 0., -tubpar[2]-zD2, 0, "ONLY");
1461 // Ch debug
1462 //printf(" YD2 from z = %1.2f to z= %1.2f cm\n",-zD2, -zD2-2*tubpar[2]);
1463
1464 gMC->Gspos("MD2 ", 1, "YD2 ", -9.4, 0., 0., 0, "ONLY");
1465 gMC->Gspos("MD2 ", 2, "YD2 ", 9.4, 0., 0., 0, "ONLY");
1466
1467 // ***************************************************************
1468 // SIDE A - RB24
1469 // ***************************************************************
1470
1471 // COMPENSATOR DIPOLE (MCBWA) (2nd compensator)
1472 // -- GAP (VACUUM WITH MAGNETIC FIELD)
1473 tubpar[0] = 0.;
1474 tubpar[1] = 3.;
1475 tubpar[2] = 153./2.;
1476 gMC->Gsvolu("MCBW", "TUBE", idtmed[11], tubpar, 3);
1477 gMC->Gspos("MCBW", 1, "ZDCA", 0., 0., tubpar[2]+zCorrDip, 0, "ONLY");
1478
1479 // -- YOKE
1480 tubpar[0] = 4.5;
1481 tubpar[1] = 55.;
1482 tubpar[2] = 153./2.;
1483 gMC->Gsvolu("YMCB", "TUBE", idtmed[7], tubpar, 3);
1484 gMC->Gspos("YMCB", 1, "ZDCA", 0., 0., tubpar[2]+zCorrDip, 0, "ONLY");
1485
1486 // -- INNER TRIPLET
1487 // -- DEFINE MQX1 AND MQX2 QUADRUPOLE ELEMENT
1488 // -- MQX1
1489 // -- GAP (VACUUM WITH MAGNETIC FIELD)
1490 tubpar[0] = 0.;
1491 tubpar[1] = 3.14;
1492 tubpar[2] = 637./2.;
1493 gMC->Gsvolu("MQX1", "TUBE", idtmed[11], tubpar, 3);
1494 gMC->Gsvolu("MQX4", "TUBE", idtmed[11], tubpar, 3);
1495
1496 // -- YOKE
1497 tubpar[0] = 3.5;
1498 tubpar[1] = 22.;
1499 tubpar[2] = 637./2.;
1500 gMC->Gsvolu("YMQ1", "TUBE", idtmed[7], tubpar, 3);
1501
1502 // -- Q1
1503 gMC->Gspos("MQX1", 1, "ZDCA", 0., 0., tubpar[2]+zInnTrip, 0, "ONLY");
1504 gMC->Gspos("YMQ1", 1, "ZDCA", 0., 0., tubpar[2]+zInnTrip, 0, "ONLY");
1505
1506 // -- BEAM SCREEN FOR Q1
1507 tubpar[0] = 4.78/2.;
1508 tubpar[1] = 5.18/2.;
1509 tubpar[2] = 637./2.;
1510 gMC->Gsvolu("QBS1", "TUBE", idtmed[6], tubpar, 3);
1511 gMC->Gspos("QBS1", 1, "MQX1", 0., 0., 0., 0, "ONLY");
1512 // INSERT VERTICAL PLATE INSIDE Q1
1513 boxpar[0] = 0.2/2.0;
1514 boxpar[1] = TMath::Sqrt(tubpar[0]*tubpar[0]-(1.9+0.2)*(1.9+0.2));
1515 boxpar[2] =637./2.;
1516 gMC->Gsvolu("QBS2", "BOX ", idtmed[6], boxpar, 3);
1517 gMC->Gspos("QBS2", 1, "MQX1", 1.9+boxpar[0], 0., 0., 0, "ONLY");
1518 gMC->Gspos("QBS2", 2, "MQX1", -1.9-boxpar[0], 0., 0., 0, "ONLY");
1519
1520 // -- Q3
1521 gMC->Gspos("MQX4", 1, "ZDCA", 0., 0., tubpar[2]+zInnTrip+2400., 0, "ONLY");
1522 gMC->Gspos("YMQ1", 2, "ZDCA", 0., 0., tubpar[2]+zInnTrip+2400., 0, "ONLY");
1523
1524 // -- BEAM SCREEN FOR Q3
1525 tubpar[0] = 5.79/2.;
1526 tubpar[1] = 6.14/2.;
1527 tubpar[2] = 637./2.;
1528 gMC->Gsvolu("QBS3", "TUBE", idtmed[6], tubpar, 3);
1529 gMC->Gspos("QBS3", 1, "MQX4", 0., 0., 0., 0, "ONLY");
1530 // INSERT VERTICAL PLATE INSIDE Q3
1531 boxpar[0] = 0.2/2.0;
1532 boxpar[1] = TMath::Sqrt(tubpar[0]*tubpar[0]-(2.405+0.2)*(2.405+0.2));
1533 boxpar[2] =637./2.;
1534 gMC->Gsvolu("QBS4", "BOX ", idtmed[6], boxpar, 3);
1535 gMC->Gspos("QBS4", 1, "MQX4", 2.405+boxpar[0], 0., 0., 0, "ONLY");
1536 gMC->Gspos("QBS4", 2, "MQX4", -2.405-boxpar[0], 0., 0., 0, "ONLY");
1537
1538
1539
1540 // -- MQX2
1541 // -- GAP (VACUUM WITH MAGNETIC FIELD)
1542 tubpar[0] = 0.;
1543 tubpar[1] = 3.14;
1544 tubpar[2] = 550./2.;
1545 gMC->Gsvolu("MQX2", "TUBE", idtmed[11], tubpar, 3);
1546 gMC->Gsvolu("MQX3", "TUBE", idtmed[11], tubpar, 3);
1547
1548 // -- YOKE
1549 tubpar[0] = 3.5;
1550 tubpar[1] = 22.;
1551 tubpar[2] = 550./2.;
1552 gMC->Gsvolu("YMQ2", "TUBE", idtmed[7], tubpar, 3);
1553
1554 // -- BEAM SCREEN FOR Q2
1555 tubpar[0] = 5.79/2.;
1556 tubpar[1] = 6.14/2.;
1557 tubpar[2] = 550./2.;
1558 gMC->Gsvolu("QBS5", "TUBE", idtmed[6], tubpar, 3);
1559 // VERTICAL PLATE INSIDE Q2
1560 boxpar[0] = 0.2/2.0;
1561 boxpar[1] = TMath::Sqrt(tubpar[0]*tubpar[0]-(2.405+0.2)*(2.405+0.2));
1562 boxpar[2] =550./2.;
1563 gMC->Gsvolu("QBS6", "BOX ", idtmed[6], boxpar, 3);
1564
1565 // -- Q2A
1566 gMC->Gspos("MQX2", 1, "ZDCA", 0., 0., tubpar[2]+zInnTrip+908.5, 0, "ONLY");
1567 gMC->Gspos("QBS5", 1, "MQX2", 0., 0., 0., 0, "ONLY");
1568 gMC->Gspos("QBS6", 1, "MQX2", 2.405+boxpar[0], 0., 0., 0, "ONLY");
1569 gMC->Gspos("QBS6", 2, "MQX2", -2.405-boxpar[0], 0., 0., 0, "ONLY");
1570 gMC->Gspos("YMQ2", 1, "ZDCA", 0., 0., tubpar[2]+zInnTrip+908.5, 0, "ONLY");
1571
1572
1573 // -- Q2B
1574 gMC->Gspos("MQX3", 1, "ZDCA", 0., 0., tubpar[2]+zInnTrip+1558.5, 0, "ONLY");
1575 gMC->Gspos("QBS5", 2, "MQX3", 0., 0., 0., 0, "ONLY");
1576 gMC->Gspos("QBS6", 3, "MQX3", 2.405+boxpar[0], 0., 0., 0, "ONLY");
1577 gMC->Gspos("QBS6", 4, "MQX3", -2.405-boxpar[0], 0., 0., 0, "ONLY");
1578 gMC->Gspos("YMQ2", 2, "ZDCA", 0., 0., tubpar[2]+zInnTrip+1558.5, 0, "ONLY");
1579
1580 // -- SEPARATOR DIPOLE D1
1581 // -- GAP (VACUUM WITH MAGNETIC FIELD)
1582 tubpar[0] = 0.;
1583 tubpar[1] = 6.75/2.;//3.375
1584 tubpar[2] = 945./2.;
1585 gMC->Gsvolu("MD1L", "TUBE", idtmed[11], tubpar, 3);
1586
1587 // -- The beam screen tube is provided by the beam pipe in D1 (QA03 volume)
1588 // -- Insert the beam screen horizontal Cu plates inside D1
1589 // -- (to simulate the vacuum chamber)
1590 boxpar[0] = TMath::Sqrt(tubpar[1]*tubpar[1]-(2.885+0.2)*(2.885+0.2));
1591 boxpar[1] = 0.2/2.;
1592 boxpar[2] =945./2.;
1593 gMC->Gsvolu("QBS7", "BOX ", idtmed[6], boxpar, 3);
1594 gMC->Gspos("QBS7", 1, "MD1L", 0., 2.885+boxpar[1],0., 0, "ONLY");
1595 gMC->Gspos("QBS7", 2, "MD1L", 0., -2.885-boxpar[1],0., 0, "ONLY");
1596
1597 // -- YOKE
1598 tubpar[0] = 3.68;
1599 tubpar[1] = 110./2;
1600 tubpar[2] = 945./2.;
1601 gMC->Gsvolu("YD1L", "TUBE", idtmed[7], tubpar, 3);
1602
1603 gMC->Gspos("YD1L", 1, "ZDCA", 0., 0., tubpar[2]+zD1, 0, "ONLY");
1604 gMC->Gspos("MD1L", 1, "ZDCA", 0., 0., tubpar[2]+zD1, 0, "ONLY");
1605
1606 // -- DIPOLE D2
1607 // -- GAP (VACUUM WITH MAGNETIC FIELD)
1608 tubpar[0] = 0.;
1609 tubpar[1] = 7.5/2.; // this has to be checked
1610 tubpar[2] = 945./2.;
1611 gMC->Gsvolu("MD2L", "TUBE", idtmed[11], tubpar, 3);
1612
1613 // -- YOKE
1614 tubpar[0] = 0.;
1615 tubpar[1] = 55.;
1616 tubpar[2] = 945./2.;
1617 gMC->Gsvolu("YD2L", "TUBE", idtmed[7], tubpar, 3);
1618
1619 gMC->Gspos("YD2L", 1, "ZDCA", 0., 0., tubpar[2]+zD2, 0, "ONLY");
1620
1621 gMC->Gspos("MD2L", 1, "YD2L", -9.4, 0., 0., 0, "ONLY");
1622 gMC->Gspos("MD2L", 2, "YD2L", 9.4, 0., 0., 0, "ONLY");
1623
1624 // -- END OF MAGNET DEFINITION
1625}
1626
1627//_____________________________________________________________________________
1628void AliZDCv3::CreateZDC()
1629{
1630 //
1631 // Create the various ZDCs (ZN + ZP)
1632 //
1633
1634 Float_t dimPb[6], dimVoid[6];
1635
1636 Int_t *idtmed = fIdtmed->GetArray();
1637
1638 // Parameters for hadronic calorimeters geometry
1639 // NB -> parameters used ONLY in CreateZDC()
1640 Float_t fGrvZN[3] = {0.03, 0.03, 50.}; // Grooves for neutron detector
1641 Float_t fGrvZP[3] = {0.04, 0.04, 75.}; // Grooves for proton detector
1642 Int_t fDivZN[3] = {11, 11, 0}; // Division for neutron detector
1643 Int_t fDivZP[3] = {7, 15, 0}; // Division for proton detector
1644 Int_t fTowZN[2] = {2, 2}; // Tower for neutron detector
1645 Int_t fTowZP[2] = {4, 1}; // Tower for proton detector
1646
1647 // Parameters for EM calorimeter geometry
1648 // NB -> parameters used ONLY in CreateZDC()
1649 Float_t kDimZEMPb = 0.15*(TMath::Sqrt(2.)); // z-dimension of the Pb slice
1650 Float_t kFibRadZEM = 0.0315; // External fiber radius (including cladding)
1651 Int_t fDivZEM[3] = {92, 0, 20}; // Divisions for EM detector
1652 Float_t fDimZEM[6] = {fZEMLength, 3.5, 3.5, 45., 0., 0.}; // Dimensions of EM detector
1653 Float_t fFibZEM2 = fDimZEM[2]/TMath::Sin(fDimZEM[3]*kDegrad)-kFibRadZEM;
1654 Float_t fFibZEM[3] = {0., 0.0275, fFibZEM2}; // Fibers for EM calorimeter
1655
1656
1657 //-- Create calorimeters geometry
1658
1659 // -------------------------------------------------------------------------------
1660 //--> Neutron calorimeter (ZN)
1661
1662 gMC->Gsvolu("ZNEU", "BOX ", idtmed[1], fDimZN, 3); // Passive material
1663 gMC->Gsvolu("ZNF1", "TUBE", idtmed[3], fFibZN, 3); // Active material
1664 gMC->Gsvolu("ZNF2", "TUBE", idtmed[4], fFibZN, 3);
1665 gMC->Gsvolu("ZNF3", "TUBE", idtmed[4], fFibZN, 3);
1666 gMC->Gsvolu("ZNF4", "TUBE", idtmed[3], fFibZN, 3);
1667 gMC->Gsvolu("ZNG1", "BOX ", idtmed[12], fGrvZN, 3); // Empty grooves
1668 gMC->Gsvolu("ZNG2", "BOX ", idtmed[12], fGrvZN, 3);
1669 gMC->Gsvolu("ZNG3", "BOX ", idtmed[12], fGrvZN, 3);
1670 gMC->Gsvolu("ZNG4", "BOX ", idtmed[12], fGrvZN, 3);
1671
1672 // Divide ZNEU in towers (for hits purposes)
1673
1674 gMC->Gsdvn("ZNTX", "ZNEU", fTowZN[0], 1); // x-tower
1675 gMC->Gsdvn("ZN1 ", "ZNTX", fTowZN[1], 2); // y-tower
1676
1677 //-- Divide ZN1 in minitowers
1678 // fDivZN[0]= NUMBER OF FIBERS PER TOWER ALONG X-AXIS,
1679 // fDivZN[1]= NUMBER OF FIBERS PER TOWER ALONG Y-AXIS
1680 // (4 fibres per minitower)
1681
1682 gMC->Gsdvn("ZNSL", "ZN1 ", fDivZN[1], 2); // Slices
1683 gMC->Gsdvn("ZNST", "ZNSL", fDivZN[0], 1); // Sticks
1684
1685 // --- Position the empty grooves in the sticks (4 grooves per stick)
1686 Float_t dx = fDimZN[0] / fDivZN[0] / 4.;
1687 Float_t dy = fDimZN[1] / fDivZN[1] / 4.;
1688
1689 gMC->Gspos("ZNG1", 1, "ZNST", 0.-dx, 0.+dy, 0., 0, "ONLY");
1690 gMC->Gspos("ZNG2", 1, "ZNST", 0.+dx, 0.+dy, 0., 0, "ONLY");
1691 gMC->Gspos("ZNG3", 1, "ZNST", 0.-dx, 0.-dy, 0., 0, "ONLY");
1692 gMC->Gspos("ZNG4", 1, "ZNST", 0.+dx, 0.-dy, 0., 0, "ONLY");
1693
1694 // --- Position the fibers in the grooves
1695 gMC->Gspos("ZNF1", 1, "ZNG1", 0., 0., 0., 0, "ONLY");
1696 gMC->Gspos("ZNF2", 1, "ZNG2", 0., 0., 0., 0, "ONLY");
1697 gMC->Gspos("ZNF3", 1, "ZNG3", 0., 0., 0., 0, "ONLY");
1698 gMC->Gspos("ZNF4", 1, "ZNG4", 0., 0., 0., 0, "ONLY");
1699
1700 // --- Position the neutron calorimeter in ZDC
1701 // -- Rotation of ZDCs
1702 Int_t irotzdc;
1703 gMC->Matrix(irotzdc, 90., 180., 90., 90., 180., 0.);
1704 //
1705 gMC->Gspos("ZNEU", 1, "ZDCC", fPosZNC[0], fPosZNC[1], fPosZNC[2]-fDimZN[2], irotzdc, "ONLY");
1706 //Ch debug
1707 //printf("\n ZN -> %f < z < %f cm\n",fPosZN[2],fPosZN[2]-2*fDimZN[2]);
1708
1709 // --- Position the neutron calorimeter in ZDC2 (left line)
1710 // -- No Rotation of ZDCs
1711 gMC->Gspos("ZNEU", 2, "ZDCA", fPosZNA[0], fPosZNA[1], fPosZNA[2]+fDimZN[2], 0, "ONLY");
1712 //Ch debug
1713 //printf("\n ZN left -> %f < z < %f cm\n",fPosZNl[2],fPosZNl[2]+2*fDimZN[2]);
1714
1715
1716 // -------------------------------------------------------------------------------
1717 //--> Proton calorimeter (ZP)
1718
1719 gMC->Gsvolu("ZPRO", "BOX ", idtmed[2], fDimZP, 3); // Passive material
1720 gMC->Gsvolu("ZPF1", "TUBE", idtmed[3], fFibZP, 3); // Active material
1721 gMC->Gsvolu("ZPF2", "TUBE", idtmed[4], fFibZP, 3);
1722 gMC->Gsvolu("ZPF3", "TUBE", idtmed[4], fFibZP, 3);
1723 gMC->Gsvolu("ZPF4", "TUBE", idtmed[3], fFibZP, 3);
1724 gMC->Gsvolu("ZPG1", "BOX ", idtmed[12], fGrvZP, 3); // Empty grooves
1725 gMC->Gsvolu("ZPG2", "BOX ", idtmed[12], fGrvZP, 3);
1726 gMC->Gsvolu("ZPG3", "BOX ", idtmed[12], fGrvZP, 3);
1727 gMC->Gsvolu("ZPG4", "BOX ", idtmed[12], fGrvZP, 3);
1728
1729 //-- Divide ZPRO in towers(for hits purposes)
1730
1731 gMC->Gsdvn("ZPTX", "ZPRO", fTowZP[0], 1); // x-tower
1732 gMC->Gsdvn("ZP1 ", "ZPTX", fTowZP[1], 2); // y-tower
1733
1734
1735 //-- Divide ZP1 in minitowers
1736 // fDivZP[0]= NUMBER OF FIBERS ALONG X-AXIS PER MINITOWER,
1737 // fDivZP[1]= NUMBER OF FIBERS ALONG Y-AXIS PER MINITOWER
1738 // (4 fiber per minitower)
1739
1740 gMC->Gsdvn("ZPSL", "ZP1 ", fDivZP[1], 2); // Slices
1741 gMC->Gsdvn("ZPST", "ZPSL", fDivZP[0], 1); // Sticks
1742
1743 // --- Position the empty grooves in the sticks (4 grooves per stick)
1744 dx = fDimZP[0] / fTowZP[0] / fDivZP[0] / 2.;
1745 dy = fDimZP[1] / fTowZP[1] / fDivZP[1] / 2.;
1746
1747 gMC->Gspos("ZPG1", 1, "ZPST", 0.-dx, 0.+dy, 0., 0, "ONLY");
1748 gMC->Gspos("ZPG2", 1, "ZPST", 0.+dx, 0.+dy, 0., 0, "ONLY");
1749 gMC->Gspos("ZPG3", 1, "ZPST", 0.-dx, 0.-dy, 0., 0, "ONLY");
1750 gMC->Gspos("ZPG4", 1, "ZPST", 0.+dx, 0.-dy, 0., 0, "ONLY");
1751
1752 // --- Position the fibers in the grooves
1753 gMC->Gspos("ZPF1", 1, "ZPG1", 0., 0., 0., 0, "ONLY");
1754 gMC->Gspos("ZPF2", 1, "ZPG2", 0., 0., 0., 0, "ONLY");
1755 gMC->Gspos("ZPF3", 1, "ZPG3", 0., 0., 0., 0, "ONLY");
1756 gMC->Gspos("ZPF4", 1, "ZPG4", 0., 0., 0., 0, "ONLY");
1757
1758
1759 // --- Position the proton calorimeter in ZDCC
1760 gMC->Gspos("ZPRO", 1, "ZDCC", fPosZPC[0], fPosZPC[1], fPosZPC[2]-fDimZP[2], irotzdc, "ONLY");
1761 //Ch debug
1762 //printf("\n ZP -> %f < z < %f cm\n",fPosZP[2],fPosZP[2]-2*fDimZP[2]);
1763
1764 // --- Position the proton calorimeter in ZDCA
1765 // --- No rotation
1766 gMC->Gspos("ZPRO", 2, "ZDCA", fPosZPA[0], fPosZPA[1], fPosZPA[2]+fDimZP[2], 0, "ONLY");
1767 //Ch debug
1768 //printf("\n ZP left -> %f < z < %f cm\n",fPosZPl[2],fPosZPl[2]+2*fDimZP[2]);
1769
1770
1771 // -------------------------------------------------------------------------------
1772 // -> EM calorimeter (ZEM)
1773
1774 gMC->Gsvolu("ZEM ", "PARA", idtmed[10], fDimZEM, 6);
1775
1776 Int_t irot1, irot2;
1777 gMC->Matrix(irot1,0.,0.,90.,90.,-90.,0.); // Rotation matrix 1
1778 gMC->Matrix(irot2,180.,0.,90.,fDimZEM[3]+90.,90.,fDimZEM[3]);// Rotation matrix 2
1779 //printf("irot1 = %d, irot2 = %d \n", irot1, irot2);
1780
1781 gMC->Gsvolu("ZEMF", "TUBE", idtmed[3], fFibZEM, 3); // Active material
1782
1783 gMC->Gsdvn("ZETR", "ZEM ", fDivZEM[2], 1); // Tranches
1784
1785 dimPb[0] = kDimZEMPb; // Lead slices
1786 dimPb[1] = fDimZEM[2];
1787 dimPb[2] = fDimZEM[1];
1788 //dimPb[3] = fDimZEM[3]; //controllare
1789 dimPb[3] = 90.-fDimZEM[3]; //originale
1790 dimPb[4] = 0.;
1791 dimPb[5] = 0.;
1792 gMC->Gsvolu("ZEL0", "PARA", idtmed[5], dimPb, 6);
1793 gMC->Gsvolu("ZEL1", "PARA", idtmed[5], dimPb, 6);
1794 gMC->Gsvolu("ZEL2", "PARA", idtmed[5], dimPb, 6);
1795
1796 // --- Position the lead slices in the tranche
1797 Float_t zTran = fDimZEM[0]/fDivZEM[2];
1798 Float_t zTrPb = -zTran+kDimZEMPb;
1799 gMC->Gspos("ZEL0", 1, "ZETR", zTrPb, 0., 0., 0, "ONLY");
1800 gMC->Gspos("ZEL1", 1, "ZETR", kDimZEMPb, 0., 0., 0, "ONLY");
1801
1802 // --- Vacuum zone (to be filled with fibres)
1803 dimVoid[0] = (zTran-2*kDimZEMPb)/2.;
1804 dimVoid[1] = fDimZEM[2];
1805 dimVoid[2] = fDimZEM[1];
1806 dimVoid[3] = 90.-fDimZEM[3];
1807 dimVoid[4] = 0.;
1808 dimVoid[5] = 0.;
1809 gMC->Gsvolu("ZEV0", "PARA", idtmed[10], dimVoid,6);
1810 gMC->Gsvolu("ZEV1", "PARA", idtmed[10], dimVoid,6);
1811
1812 // --- Divide the vacuum slice into sticks along x axis
1813 gMC->Gsdvn("ZES0", "ZEV0", fDivZEM[0], 3);
1814 gMC->Gsdvn("ZES1", "ZEV1", fDivZEM[0], 3);
1815
1816 // --- Positioning the fibers into the sticks
1817 gMC->Gspos("ZEMF", 1,"ZES0", 0., 0., 0., irot2, "ONLY");
1818 gMC->Gspos("ZEMF", 1,"ZES1", 0., 0., 0., irot2, "ONLY");
1819
1820 // --- Positioning the vacuum slice into the tranche
1821 //Float_t displFib = fDimZEM[1]/fDivZEM[0];
1822 gMC->Gspos("ZEV0", 1,"ZETR", -dimVoid[0], 0., 0., 0, "ONLY");
1823 gMC->Gspos("ZEV1", 1,"ZETR", -dimVoid[0]+zTran, 0., 0., 0, "ONLY");
1824
1825 // --- Positioning the ZEM into the ZDC - rotation for 90 degrees
1826 // NB -> ZEM is positioned in ALIC (instead of in ZDC) volume
1827 gMC->Gspos("ZEM ", 1,"ALIC", -fPosZEM[0], fPosZEM[1], fPosZEM[2]+fDimZEM[0], irot1, "ONLY");
1828
1829 // Second EM ZDC (same side w.r.t. IP, just on the other side w.r.t. beam pipe)
1830 gMC->Gspos("ZEM ", 2,"ALIC", fPosZEM[0], fPosZEM[1], fPosZEM[2]+fDimZEM[0], irot1, "ONLY");
1831
1832 // --- Adding last slice at the end of the EM calorimeter
1833 Float_t zLastSlice = fPosZEM[2]+kDimZEMPb+2*fDimZEM[0];
1834 gMC->Gspos("ZEL2", 1,"ALIC", fPosZEM[0], fPosZEM[1], zLastSlice, irot1, "ONLY");
1835 //Ch debug
1836 //printf("\n ZEM lenght = %f cm\n",2*fZEMLength);
1837 //printf("\n ZEM -> %f < z < %f cm\n",fPosZEM[2],fPosZEM[2]+2*fZEMLength+zLastSlice+kDimZEMPb);
1838
1839}
1840
1841//_____________________________________________________________________________
1842void AliZDCv3::DrawModule() const
1843{
1844 //
1845 // Draw a shaded view of the Zero Degree Calorimeter version 1
1846 //
1847
1848 // Set everything unseen
1849 gMC->Gsatt("*", "seen", -1);
1850 //
1851 // Set ALIC mother transparent
1852 gMC->Gsatt("ALIC","SEEN",0);
1853 //
1854 // Set the volumes visible
1855 gMC->Gsatt("ZDCC","SEEN",0);
1856 gMC->Gsatt("QT01","SEEN",1);
1857 gMC->Gsatt("QT02","SEEN",1);
1858 gMC->Gsatt("QT03","SEEN",1);
1859 gMC->Gsatt("QT04","SEEN",1);
1860 gMC->Gsatt("QT05","SEEN",1);
1861 gMC->Gsatt("QT06","SEEN",1);
1862 gMC->Gsatt("QT07","SEEN",1);
1863 gMC->Gsatt("QT08","SEEN",1);
1864 gMC->Gsatt("QT09","SEEN",1);
1865 gMC->Gsatt("QT10","SEEN",1);
1866 gMC->Gsatt("QT11","SEEN",1);
1867 gMC->Gsatt("QT12","SEEN",1);
1868 gMC->Gsatt("QT13","SEEN",1);
1869 gMC->Gsatt("QC01","SEEN",1);
1870 gMC->Gsatt("QC02","SEEN",1);
1871 gMC->Gsatt("QC03","SEEN",1);
1872 gMC->Gsatt("QC04","SEEN",1);
1873 gMC->Gsatt("QC05","SEEN",1);
1874 gMC->Gsatt("QC06","SEEN",1);
1875 gMC->Gsatt("QC07","SEEN",1);
1876 gMC->Gsatt("QC08","SEEN",1);
1877 gMC->Gsatt("QC09","SEEN",1);
1878 gMC->Gsatt("QC10","SEEN",1);
1879 gMC->Gsatt("MQXL","SEEN",1);
1880 gMC->Gsatt("YMQL","SEEN",1);
1881 gMC->Gsatt("MQX ","SEEN",1);
1882 gMC->Gsatt("YMQ ","SEEN",1);
1883 gMC->Gsatt("ZQYX","SEEN",1);
1884 gMC->Gsatt("MD1 ","SEEN",1);
1885 gMC->Gsatt("MD1V","SEEN",1);
1886 gMC->Gsatt("YD1 ","SEEN",1);
1887 gMC->Gsatt("MD2 ","SEEN",1);
1888 gMC->Gsatt("YD2 ","SEEN",1);
1889 gMC->Gsatt("ZNEU","SEEN",0);
1890 gMC->Gsatt("ZNF1","SEEN",0);
1891 gMC->Gsatt("ZNF2","SEEN",0);
1892 gMC->Gsatt("ZNF3","SEEN",0);
1893 gMC->Gsatt("ZNF4","SEEN",0);
1894 gMC->Gsatt("ZNG1","SEEN",0);
1895 gMC->Gsatt("ZNG2","SEEN",0);
1896 gMC->Gsatt("ZNG3","SEEN",0);
1897 gMC->Gsatt("ZNG4","SEEN",0);
1898 gMC->Gsatt("ZNTX","SEEN",0);
1899 gMC->Gsatt("ZN1 ","COLO",4);
1900 gMC->Gsatt("ZN1 ","SEEN",1);
1901 gMC->Gsatt("ZNSL","SEEN",0);
1902 gMC->Gsatt("ZNST","SEEN",0);
1903 gMC->Gsatt("ZPRO","SEEN",0);
1904 gMC->Gsatt("ZPF1","SEEN",0);
1905 gMC->Gsatt("ZPF2","SEEN",0);
1906 gMC->Gsatt("ZPF3","SEEN",0);
1907 gMC->Gsatt("ZPF4","SEEN",0);
1908 gMC->Gsatt("ZPG1","SEEN",0);
1909 gMC->Gsatt("ZPG2","SEEN",0);
1910 gMC->Gsatt("ZPG3","SEEN",0);
1911 gMC->Gsatt("ZPG4","SEEN",0);
1912 gMC->Gsatt("ZPTX","SEEN",0);
1913 gMC->Gsatt("ZP1 ","COLO",6);
1914 gMC->Gsatt("ZP1 ","SEEN",1);
1915 gMC->Gsatt("ZPSL","SEEN",0);
1916 gMC->Gsatt("ZPST","SEEN",0);
1917 gMC->Gsatt("ZEM ","COLO",7);
1918 gMC->Gsatt("ZEM ","SEEN",1);
1919 gMC->Gsatt("ZEMF","SEEN",0);
1920 gMC->Gsatt("ZETR","SEEN",0);
1921 gMC->Gsatt("ZEL0","SEEN",0);
1922 gMC->Gsatt("ZEL1","SEEN",0);
1923 gMC->Gsatt("ZEL2","SEEN",0);
1924 gMC->Gsatt("ZEV0","SEEN",0);
1925 gMC->Gsatt("ZEV1","SEEN",0);
1926 gMC->Gsatt("ZES0","SEEN",0);
1927 gMC->Gsatt("ZES1","SEEN",0);
1928 //
1929 gMC->Gdopt("hide", "on");
1930 gMC->Gdopt("shad", "on");
1931 gMC->Gsatt("*", "fill", 7);
1932 gMC->SetClipBox(".");
1933 gMC->SetClipBox("*", 0, 100, -100, 100, 12000, 16000);
1934 gMC->DefaultRange();
1935 gMC->Gdraw("alic", 40, 30, 0, 488, 220, .07, .07);
1936 gMC->Gdhead(1111, "Zero Degree Calorimeter Version 3");
1937 gMC->Gdman(18, 4, "MAN");
1938}
1939
1940//_____________________________________________________________________________
1941void AliZDCv3::CreateMaterials()
1942{
1943 //
1944 // Create Materials for the Zero Degree Calorimeter
1945 //
1946 Float_t dens, ubuf[1], wmat[3], a[3], z[3];
1947
1948 // --- W alloy -> ZN passive material
1949 dens = 17.6;
1950 a[0] = 183.85;
1951 a[1] = 55.85;
1952 a[2] = 58.71;
1953 z[0] = 74.;
1954 z[1] = 26.;
1955 z[2] = 28.;
1956 wmat[0] = .93;
1957 wmat[1] = .03;
1958 wmat[2] = .04;
1959 AliMixture(1, "WALL", a, z, dens, 3, wmat);
1960
1961 // --- Brass (CuZn) -> ZP passive material
1962 dens = 8.48;
1963 a[0] = 63.546;
1964 a[1] = 65.39;
1965 z[0] = 29.;
1966 z[1] = 30.;
1967 wmat[0] = .63;
1968 wmat[1] = .37;
1969 AliMixture(2, "BRASS", a, z, dens, 2, wmat);
1970
1971 // --- SiO2
1972 dens = 2.64;
1973 a[0] = 28.086;
1974 a[1] = 15.9994;
1975 z[0] = 14.;
1976 z[1] = 8.;
1977 wmat[0] = 1.;
1978 wmat[1] = 2.;
1979 AliMixture(3, "SIO2", a, z, dens, -2, wmat);
1980
1981 // --- Lead
1982 ubuf[0] = 1.12;
1983 AliMaterial(5, "LEAD", 207.19, 82., 11.35, .56, 18.5, ubuf, 1);
1984
1985 // --- Copper (energy loss taken into account)
1986 ubuf[0] = 1.10;
1987 AliMaterial(6, "COPP0", 63.54, 29., 8.96, 1.4, 0., ubuf, 1);
1988
1989 // --- Copper
1990 ubuf[0] = 1.10;
1991 AliMaterial(9, "COPP1", 63.54, 29., 8.96, 1.4, 0., ubuf, 1);
1992
1993 // --- Iron (energy loss taken into account)
1994 ubuf[0] = 1.1;
1995 AliMaterial(7, "IRON0", 55.85, 26., 7.87, 1.76, 0., ubuf, 1);
1996
1997 // --- Iron (no energy loss)
1998 ubuf[0] = 1.1;
1999 AliMaterial(8, "IRON1", 55.85, 26., 7.87, 1.76, 0., ubuf, 1);
2000
2001 // ---------------------------------------------------------
2002 Float_t aResGas[3]={1.008,12.0107,15.9994};
2003 Float_t zResGas[3]={1.,6.,8.};
2004 Float_t wResGas[3]={0.28,0.28,0.44};
2005 Float_t dResGas = 3.2E-14;
2006
2007 // --- Vacuum (no magnetic field)
2008 AliMixture(10, "VOID", aResGas, zResGas, dResGas, 3, wResGas);
2009
2010 // --- Vacuum (with magnetic field)
2011 AliMixture(11, "VOIM", aResGas, zResGas, dResGas, 3, wResGas);
2012
2013 // --- Air (no magnetic field)
2014 Float_t aAir[4]={12.0107,14.0067,15.9994,39.948};
2015 Float_t zAir[4]={6.,7.,8.,18.};
2016 Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827};
2017 Float_t dAir = 1.20479E-3;
2018 //
2019 AliMixture(12, "Air $", aAir, zAir, dAir, 4, wAir);
2020
2021 // --- Definition of tracking media:
2022
2023 // --- Tantalum = 1 ;
2024 // --- Brass = 2 ;
2025 // --- Fibers (SiO2) = 3 ;
2026 // --- Fibers (SiO2) = 4 ;
2027 // --- Lead = 5 ;
2028 // --- Copper (with high thr.)= 6 ;
2029 // --- Copper (with low thr.)= 9;
2030 // --- Iron (with energy loss) = 7 ;
2031 // --- Iron (without energy loss) = 8 ;
2032 // --- Vacuum (no field) = 10
2033 // --- Vacuum (with field) = 11
2034 // --- Air (no field) = 12
2035
2036 // ****************************************************
2037 // Tracking media parameters
2038 //
2039 Float_t epsil = 0.01; // Tracking precision,
2040 Float_t stmin = 0.01; // Min. value 4 max. step (cm)
2041 Float_t stemax = 1.; // Max. step permitted (cm)
2042 Float_t tmaxfd = 0.; // Maximum angle due to field (degrees)
2043 Float_t deemax = -1.; // Maximum fractional energy loss
2044 Float_t nofieldm = 0.; // Max. field value (no field)
2045 Float_t fieldm = 45.; // Max. field value (with field)
2046 Int_t isvol = 0; // ISVOL =0 -> not sensitive volume
2047 Int_t isvolActive = 1; // ISVOL =1 -> sensitive volume
2048 Int_t inofld = 0; // IFIELD=0 -> no magnetic field
2049 Int_t ifield =2; // IFIELD=2 -> magnetic field defined in AliMagFC.h
2050 // *****************************************************
2051
2052 AliMedium(1, "ZTANT", 1, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
2053 AliMedium(2, "ZBRASS",2, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
2054 AliMedium(3, "ZSIO2", 3, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
2055 AliMedium(4, "ZQUAR", 3, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
2056 AliMedium(5, "ZLEAD", 5, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
2057 AliMedium(6, "ZCOPP", 6, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
2058 AliMedium(7, "ZIRON", 7, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
2059 AliMedium(8, "ZIRONN",8, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
2060 AliMedium(9, "ZCOPL", 6, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
2061 AliMedium(10,"ZVOID",10, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
2062 AliMedium(11,"ZVOIM",11, isvol, ifield, fieldm, tmaxfd, stemax, deemax, epsil, stmin);
2063 AliMedium(12,"ZAIR", 12, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
2064
2065
2066}
2067
2068//_____________________________________________________________________________
2069void AliZDCv3::AddAlignableVolumes() const
2070{
2071 //
2072 // Create entries for alignable volumes associating the symbolic volume
2073 // name with the corresponding volume path. Needs to be syncronized with
2074 // eventual changes in the geometry.
2075 //
2076 TString volpath1 = "ALIC_1/ZDCC_1/ZNEU_1";
2077 TString volpath2 = "ALIC_1/ZDCC_1/ZPRO_1";
2078 TString volpath3 = "ALIC_1/ZDCA_1/ZNEU_2";
2079 TString volpath4 = "ALIC_1/ZDCA_1/ZPRO_2";
2080
2081 TString symname1="ZDC/NeutronZDC_C";
2082 TString symname2="ZDC/ProtonZDC_C";
2083 TString symname3="ZDC/NeutronZDC_A";
2084 TString symname4="ZDC/ProtonZDC_A";
2085
2086 if(!gGeoManager->SetAlignableEntry(symname1.Data(),volpath1.Data()))
2087 AliFatal(Form("Alignable entry %s not created. Volume path %s not valid", symname1.Data(),volpath1.Data()));
2088
2089 if(!gGeoManager->SetAlignableEntry(symname2.Data(),volpath2.Data()))
2090 AliFatal(Form("Alignable entry %s not created. Volume path %s not valid", symname2.Data(),volpath2.Data()));
2091
2092 if(!gGeoManager->SetAlignableEntry(symname3.Data(),volpath3.Data()))
2093 AliFatal(Form("Alignable entry %s not created. Volume path %s not valid", symname1.Data(),volpath1.Data()));
2094
2095 if(!gGeoManager->SetAlignableEntry(symname4.Data(),volpath4.Data()))
2096 AliFatal(Form("Alignable entry %s not created. Volume path %s not valid", symname2.Data(),volpath2.Data()));
2097
2098}
2099
2100
2101//_____________________________________________________________________________
2102void AliZDCv3::Init()
2103{
2104 InitTables();
2105 Int_t *idtmed = fIdtmed->GetArray();
2106 Int_t i;
2107 // Thresholds for showering in the ZDCs
2108 i = 1; //Wa lloy
2109 gMC->Gstpar(idtmed[i], "CUTGAM", .001);
2110 gMC->Gstpar(idtmed[i], "CUTELE", .001);
2111 gMC->Gstpar(idtmed[i], "CUTNEU", .01);
2112 gMC->Gstpar(idtmed[i], "CUTHAD", .01);
2113 i = 2; //brass
2114 gMC->Gstpar(idtmed[i], "CUTGAM", .001);
2115 gMC->Gstpar(idtmed[i], "CUTELE", .001);
2116 gMC->Gstpar(idtmed[i], "CUTNEU", .01);
2117 gMC->Gstpar(idtmed[i], "CUTHAD", .01);
2118 i = 5; //lead
2119 gMC->Gstpar(idtmed[i], "CUTGAM", .001);
2120 gMC->Gstpar(idtmed[i], "CUTELE", .001);
2121 gMC->Gstpar(idtmed[i], "CUTNEU", .01);
2122 gMC->Gstpar(idtmed[i], "CUTHAD", .01);
2123
2124 // Avoid too detailed showering in TDI
2125 i = 6; //copper
2126 gMC->Gstpar(idtmed[i], "CUTGAM", .1);
2127 gMC->Gstpar(idtmed[i], "CUTELE", .1);
2128 gMC->Gstpar(idtmed[i], "CUTNEU", 1.);
2129 gMC->Gstpar(idtmed[i], "CUTHAD", 1.);
2130
2131 // Thresholds for showering in the luminometer
2132 i = 9; //copper
2133 gMC->Gstpar(idtmed[i], "CUTGAM", .001);
2134 gMC->Gstpar(idtmed[i], "CUTELE", .001);
2135 gMC->Gstpar(idtmed[i], "CUTNEU", .01);
2136 gMC->Gstpar(idtmed[i], "CUTHAD", .01);
2137
2138 // Avoid too detailed showering along the beam line
2139 i = 7; //iron with energy loss (ZIRON)
2140 gMC->Gstpar(idtmed[i], "CUTGAM", .1);
2141 gMC->Gstpar(idtmed[i], "CUTELE", .1);
2142 gMC->Gstpar(idtmed[i], "CUTNEU", 1.);
2143 gMC->Gstpar(idtmed[i], "CUTHAD", 1.);
2144
2145 // Avoid too detailed showering along the beam line
2146 i = 8; //iron without energy loss (ZIRONN)
2147 gMC->Gstpar(idtmed[i], "CUTGAM", .1);
2148 gMC->Gstpar(idtmed[i], "CUTELE", .1);
2149 gMC->Gstpar(idtmed[i], "CUTNEU", 1.);
2150 gMC->Gstpar(idtmed[i], "CUTHAD", 1.);
2151
2152 // Avoid interaction in fibers (only energy loss allowed)
2153 i = 3; //fibers (ZSI02)
2154 gMC->Gstpar(idtmed[i], "DCAY", 0.);
2155 gMC->Gstpar(idtmed[i], "MULS", 0.);
2156 gMC->Gstpar(idtmed[i], "PFIS", 0.);
2157 gMC->Gstpar(idtmed[i], "MUNU", 0.);
2158 gMC->Gstpar(idtmed[i], "LOSS", 1.);
2159 gMC->Gstpar(idtmed[i], "PHOT", 0.);
2160 gMC->Gstpar(idtmed[i], "COMP", 0.);
2161 gMC->Gstpar(idtmed[i], "PAIR", 0.);
2162 gMC->Gstpar(idtmed[i], "BREM", 0.);
2163 gMC->Gstpar(idtmed[i], "DRAY", 0.);
2164 gMC->Gstpar(idtmed[i], "ANNI", 0.);
2165 gMC->Gstpar(idtmed[i], "HADR", 0.);
2166 i = 4; //fibers (ZQUAR)
2167 gMC->Gstpar(idtmed[i], "DCAY", 0.);
2168 gMC->Gstpar(idtmed[i], "MULS", 0.);
2169 gMC->Gstpar(idtmed[i], "PFIS", 0.);
2170 gMC->Gstpar(idtmed[i], "MUNU", 0.);
2171 gMC->Gstpar(idtmed[i], "LOSS", 1.);
2172 gMC->Gstpar(idtmed[i], "PHOT", 0.);
2173 gMC->Gstpar(idtmed[i], "COMP", 0.);
2174 gMC->Gstpar(idtmed[i], "PAIR", 0.);
2175 gMC->Gstpar(idtmed[i], "BREM", 0.);
2176 gMC->Gstpar(idtmed[i], "DRAY", 0.);
2177 gMC->Gstpar(idtmed[i], "ANNI", 0.);
2178 gMC->Gstpar(idtmed[i], "HADR", 0.);
2179
2180 // Avoid interaction in void
2181 i = 11; //void with field
2182 gMC->Gstpar(idtmed[i], "DCAY", 0.);
2183 gMC->Gstpar(idtmed[i], "MULS", 0.);
2184 gMC->Gstpar(idtmed[i], "PFIS", 0.);
2185 gMC->Gstpar(idtmed[i], "MUNU", 0.);
2186 gMC->Gstpar(idtmed[i], "LOSS", 0.);
2187 gMC->Gstpar(idtmed[i], "PHOT", 0.);
2188 gMC->Gstpar(idtmed[i], "COMP", 0.);
2189 gMC->Gstpar(idtmed[i], "PAIR", 0.);
2190 gMC->Gstpar(idtmed[i], "BREM", 0.);
2191 gMC->Gstpar(idtmed[i], "DRAY", 0.);
2192 gMC->Gstpar(idtmed[i], "ANNI", 0.);
2193 gMC->Gstpar(idtmed[i], "HADR", 0.);
2194
2195 //
2196 fMedSensZN = idtmed[1]; // Sensitive volume: ZN passive material
2197 fMedSensZP = idtmed[2]; // Sensitive volume: ZP passive material
2198 fMedSensF1 = idtmed[3]; // Sensitive volume: fibres type 1
2199 fMedSensF2 = idtmed[4]; // Sensitive volume: fibres type 2
2200 fMedSensZEM = idtmed[5]; // Sensitive volume: ZEM passive material
2201 fMedSensTDI = idtmed[6]; // Sensitive volume: TDI Cu shield
2202 fMedSensPI = idtmed[7]; // Sensitive volume: beam pipes
2203 fMedSensGR = idtmed[12]; // Sensitive volume: air into the grooves
2204}
2205
2206//_____________________________________________________________________________
2207void AliZDCv3::InitTables()
2208{
2209 //
2210 // Read light tables for Cerenkov light production parameterization
2211 //
2212
2213 Int_t k, j;
2214
2215 char *lightfName1,*lightfName2,*lightfName3,*lightfName4,
2216 *lightfName5,*lightfName6,*lightfName7,*lightfName8;
2217 FILE *fp1, *fp2, *fp3, *fp4, *fp5, *fp6, *fp7, *fp8;
2218
2219 // --- Reading light tables for ZN
2220 lightfName1 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620362207s");
2221 if((fp1 = fopen(lightfName1,"r")) == NULL){
2222 printf("Cannot open file fp1 \n");
2223 return;
2224 }
2225 lightfName2 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620362208s");
2226 if((fp2 = fopen(lightfName2,"r")) == NULL){
2227 printf("Cannot open file fp2 \n");
2228 return;
2229 }
2230 lightfName3 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620362209s");
2231 if((fp3 = fopen(lightfName3,"r")) == NULL){
2232 printf("Cannot open file fp3 \n");
2233 return;
2234 }
2235 lightfName4 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620362210s");
2236 if((fp4 = fopen(lightfName4,"r")) == NULL){
2237 printf("Cannot open file fp4 \n");
2238 return;
2239 }
2240
2241 int read=1;
2242 for(k=0; k<fNalfan; k++){
2243 for(j=0; j<fNben; j++){
2244 read = fscanf(fp1,"%f",&fTablen[0][k][j]);
2245 if(read==0) AliDebug(3, " Error in reading light table 1");
2246 read = fscanf(fp2,"%f",&fTablen[1][k][j]);
2247 if(read==0) AliDebug(3, " Error in reading light table 2");
2248 read = fscanf(fp3,"%f",&fTablen[2][k][j]);
2249 if(read==0) AliDebug(3, " Error in reading light table 3");
2250 read = fscanf(fp4,"%f",&fTablen[3][k][j]);
2251 if(read==0) AliDebug(3, " Error in reading light table 4");
2252 }
2253 }
2254 fclose(fp1);
2255 fclose(fp2);
2256 fclose(fp3);
2257 fclose(fp4);
2258
2259 // --- Reading light tables for ZP and ZEM
2260 lightfName5 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620552207s");
2261 if((fp5 = fopen(lightfName5,"r")) == NULL){
2262 printf("Cannot open file fp5 \n");
2263 return;
2264 }
2265 lightfName6 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620552208s");
2266 if((fp6 = fopen(lightfName6,"r")) == NULL){
2267 printf("Cannot open file fp6 \n");
2268 return;
2269 }
2270 lightfName7 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620552209s");
2271 if((fp7 = fopen(lightfName7,"r")) == NULL){
2272 printf("Cannot open file fp7 \n");
2273 return;
2274 }
2275 lightfName8 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620552210s");
2276 if((fp8 = fopen(lightfName8,"r")) == NULL){
2277 printf("Cannot open file fp8 \n");
2278 return;
2279 }
2280
2281 for(k=0; k<fNalfap; k++){
2282 for(j=0; j<fNbep; j++){
2283 read = fscanf(fp5,"%f",&fTablep[0][k][j]);
2284 if(read==0) AliDebug(3, " Error in reading light table 5");
2285 read = fscanf(fp6,"%f",&fTablep[1][k][j]);
2286 if(read==0) AliDebug(3, " Error in reading light table 6");
2287 read = fscanf(fp7,"%f",&fTablep[2][k][j]);
2288 if(read==0) AliDebug(3, " Error in reading light table 7");
2289 read = fscanf(fp8,"%f",&fTablep[3][k][j]);
2290 if(read==0) AliDebug(3, " Error in reading light table 8");
2291 }
2292 }
2293 fclose(fp5);
2294 fclose(fp6);
2295 fclose(fp7);
2296 fclose(fp8);
2297}
2298//_____________________________________________________________________________
2299void AliZDCv3::StepManager()
2300{
2301 //
2302 // Routine called at every step in the Zero Degree Calorimeters
2303 //
2304 Int_t j, vol[2]={0,0}, ibeta=0, ialfa=0, ibe=0, nphe=0;
2305 Float_t hits[13], x[3], xdet[3], um[3], ud[3];
2306 Float_t destep=0., be=0., out=0.;
2307 Double_t s[3], p[3];
2308 const char *knamed;
2309 //
2310 for(j=0;j<13;j++) hits[j]=-999.;
2311 //
2312 // --- This part is for no shower developement in beam pipe and TDI
2313 // If particle interacts with beam pipe or TDI -> return
2314 if((gMC->CurrentMedium() == fMedSensPI) || (gMC->CurrentMedium() == fMedSensTDI)){
2315 // If option NoShower is set -> StopTrack
2316 Int_t ipr = 0;
2317 if(fNoShower==1){
2318 gMC->TrackPosition(s[0],s[1],s[2]);
2319 if(gMC->CurrentMedium() == fMedSensPI){
2320 knamed = gMC->CurrentVolName();
2321 if(!strncmp(knamed,"YMQ",3)){
2322 if(s[2]<0) fpLostITC += 1;
2323 else fpLostITA += 1;
2324 ipr=1;
2325 }
2326 else if(!strncmp(knamed,"YD1",3)){
2327 if(s[2]<0) fpLostD1C += 1;
2328 else fpLostD1A += 1;
2329 ipr=1;
2330 }
2331 }
2332 else if(gMC->CurrentMedium() == fMedSensTDI){
2333 knamed = gMC->CurrentVolName();
2334 if(!strncmp(knamed,"MD1",3)){
2335 if(s[2]<0) fpLostD1C += 1;
2336 else fpLostD1A += 1;
2337 ipr=1;
2338 }
2339 else if(!strncmp(knamed,"QTD",3)) fpLostTDI += 1;
2340 }
2341 //
2342 //gMC->TrackMomentum(p[0], p[1], p[2], p[3]);
2343 //printf("\t Particle: mass = %1.3f, E = %1.3f GeV, pz = %1.2f GeV -> stopped in volume %s\n",
2344 // gMC->TrackMass(), p[3], p[2], gMC->CurrentVolName());
2345 //
2346 /*if(ipr!=0){
2347 printf("\n\t **********************************\n");
2348 printf("\t ********** Side C **********\n");
2349 printf("\t # of spectators in IT = %d\n",fpLostITC);
2350 printf("\t # of spectators in D1 = %d\n",fpLostD1C);
2351 printf("\t ********** Side A **********\n");
2352 printf("\t # of spectators in IT = %d\n",fpLostITA);
2353 printf("\t # of spectators in D1 = %d\n",fpLostD1A);
2354 printf("\t # of spectators in TDI = %d\n",fpLostTDI);
2355 printf("\t **********************************\n");
2356 }*/
2357 gMC->StopTrack();
2358 }
2359 return;
2360 }
2361
2362
2363 if((gMC->CurrentMedium() == fMedSensZN) || (gMC->CurrentMedium() == fMedSensZP) ||
2364 (gMC->CurrentMedium() == fMedSensGR) || (gMC->CurrentMedium() == fMedSensF1) ||
2365 (gMC->CurrentMedium() == fMedSensF2) || (gMC->CurrentMedium() == fMedSensZEM)){
2366
2367
2368 //Particle coordinates
2369 gMC->TrackPosition(s[0],s[1],s[2]);
2370 for(j=0; j<=2; j++) x[j] = s[j];
2371 hits[0] = x[0];
2372 hits[1] = x[1];
2373 hits[2] = x[2];
2374
2375 // Determine in which ZDC the particle is
2376 knamed = gMC->CurrentVolName();
2377 if(!strncmp(knamed,"ZN",2)){
2378 if(x[2]<0.) vol[0]=1; // ZNC (dimuon side)
2379 else if(x[2]>0.) vol[0]=4; //ZNA
2380 }
2381 else if(!strncmp(knamed,"ZP",2)){
2382 if(x[2]<0.) vol[0]=2; //ZPC (dimuon side)
2383 else if(x[2]>0.) vol[0]=5; //ZPA
2384 }
2385 else if(!strncmp(knamed,"ZE",2)) vol[0]=3; //ZEM
2386
2387 // Determine in which quadrant the particle is
2388 if(vol[0]==1){ //Quadrant in ZNC
2389 // Calculating particle coordinates inside ZNC
2390 xdet[0] = x[0]-fPosZNC[0];
2391 xdet[1] = x[1]-fPosZNC[1];
2392 // Calculating quadrant in ZN
2393 if(xdet[0]<=0.){
2394 if(xdet[1]<=0.) vol[1]=1;
2395 else vol[1]=3;
2396 }
2397 else if(xdet[0]>0.){
2398 if(xdet[1]<=0.) vol[1]=2;
2399 else vol[1]=4;
2400 }
2401 }
2402
2403 else if(vol[0]==2){ //Quadrant in ZPC
2404 // Calculating particle coordinates inside ZPC
2405 xdet[0] = x[0]-fPosZPC[0];
2406 xdet[1] = x[1]-fPosZPC[1];
2407 if(xdet[0]>=fDimZP[0]) xdet[0]=fDimZP[0]-0.01;
2408 if(xdet[0]<=-fDimZP[0]) xdet[0]=-fDimZP[0]+0.01;
2409 // Calculating tower in ZP
2410 Float_t xqZP = xdet[0]/(fDimZP[0]/2.);
2411 for(int i=1; i<=4; i++){
2412 if(xqZP>=(i-3) && xqZP<(i-2)){
2413 vol[1] = i;
2414 break;
2415 }
2416 }
2417 }
2418 //
2419 // Quadrant in ZEM: vol[1] = 1 -> particle in 1st ZEM (placed at x = 8.5 cm)
2420 // vol[1] = 2 -> particle in 2nd ZEM (placed at x = -8.5 cm)
2421 else if(vol[0] == 3){
2422 if(x[0]>0.){
2423 vol[1] = 1;
2424 // Particle x-coordinate inside ZEM1
2425 xdet[0] = x[0]-fPosZEM[0];
2426 }
2427 else{
2428 vol[1] = 2;
2429 // Particle x-coordinate inside ZEM2
2430 xdet[0] = x[0]+fPosZEM[0];
2431 }
2432 xdet[1] = x[1]-fPosZEM[1];
2433 }
2434 //
2435 else if(vol[0]==4){ //Quadrant in ZNA
2436 // Calculating particle coordinates inside ZNA
2437 xdet[0] = x[0]-fPosZNA[0];
2438 xdet[1] = x[1]-fPosZNA[1];
2439 // Calculating quadrant in ZNA
2440 if(xdet[0]>=0.){
2441 if(xdet[1]<=0.) vol[1]=1;
2442 else vol[1]=3;
2443 }
2444 else if(xdet[0]<0.){
2445 if(xdet[1]<=0.) vol[1]=2;
2446 else vol[1]=4;
2447 }
2448 }
2449 //
2450 else if(vol[0]==5){ //Quadrant in ZPA
2451 // Calculating particle coordinates inside ZPA
2452 xdet[0] = x[0]-fPosZPA[0];
2453 xdet[1] = x[1]-fPosZPA[1];
2454 if(xdet[0]>=fDimZP[0]) xdet[0]=fDimZP[0]-0.01;
2455 if(xdet[0]<=-fDimZP[0]) xdet[0]=-fDimZP[0]+0.01;
2456 // Calculating tower in ZP
2457 Float_t xqZP = -xdet[0]/(fDimZP[0]/2.);
2458 for(int i=1; i<=4; i++){
2459 if(xqZP>=(i-3) && xqZP<(i-2)){
2460 vol[1] = i;
2461 break;
2462 }
2463 }
2464 }
2465 if((vol[1]!=1) && (vol[1]!=2) && (vol[1]!=3) && (vol[1]!=4))
2466 AliError(Form(" WRONG tower for det %d: tow %d with xdet=(%f, %f)\n",
2467 vol[0], vol[1], xdet[0], xdet[1]));
2468 // Ch. debug
2469 //printf("\t *** det %d vol %d xdet(%f, %f)\n",vol[0], vol[1], xdet[0], xdet[1]);
2470
2471
2472 // Store impact point and kinetic energy of the ENTERING particle
2473
2474 if(gMC->IsTrackEntering()){
2475 //Particle energy
2476 gMC->TrackMomentum(p[0],p[1],p[2],p[3]);
2477 hits[3] = p[3];
2478 // Impact point on ZDC
2479 // X takes into account the LHC x-axis sign
2480 // which is opposite to positive x on detcetor front face
2481 // for side A detectors (ZNA and ZPA)
2482 if(vol[0]==4 || vol[0]==5){
2483 hits[4] = -xdet[0];
2484 }
2485 else{
2486 hits[4] = xdet[0];
2487 }
2488 hits[5] = xdet[1];
2489 hits[6] = 0;
2490 hits[7] = 0;
2491 hits[8] = 0;
2492 hits[9] = 0;
2493 //
2494 Int_t curTrackN = gAlice->GetMCApp()->GetCurrentTrackNumber();
2495 TParticle *part = gAlice->GetMCApp()->Particle(curTrackN);
2496 hits[10] = part->GetPdgCode();
2497 //printf("\t PDGCode = %d\n", part->GetPdgCode());
2498 //
2499 Int_t imo = part->GetFirstMother();
2500 if(imo>0){
2501 TParticle * pmot = gAlice->GetMCApp()->Particle(imo);
2502 hits[11] = pmot->GetPdgCode();
2503 }
2504 else hits[11]=0;
2505 //
2506 hits[12] = 1.0e09*gMC->TrackTime(); // in ns!
2507 //printf("\t TrackTime = %f\n", hits[12]);
2508
2509 AddHit(curTrackN, vol, hits);
2510
2511 if(fNoShower==1){
2512 //printf("\t VolName %s -> det %d quad %d - x = %f, y = %f, z = %f\n",
2513 //knamed, vol[0], vol[1], x[0], x[1], x[2]);
2514 if(vol[0]==1){
2515 fnDetectedC += 1;
2516 printf(" # of particles in ZNC = %d\n\n",fnDetectedC);
2517 }
2518 else if(vol[0]==2){
2519 fpDetectedC += 1;
2520 printf(" # of particles in ZPC = %d\n\n",fpDetectedC);
2521 }
2522 else if(vol[0]==4){
2523 fnDetectedA += 1;
2524 printf(" # of particles in ZNA = %d\n\n",fnDetectedA);
2525 }
2526 else if(vol[0]==5){
2527 fpDetectedA += 1;
2528 printf(" # of particles in ZPA = %d\n\n",fpDetectedA);
2529 }
2530 //
2531 //printf("\t Particle: mass = %1.3f, E = %1.3f GeV, pz = %1.2f GeV -> stopped in volume %s\n",
2532 // gMC->TrackMass(), p[3], p[2], gMC->CurrentVolName());
2533 //
2534 gMC->StopTrack();
2535 return;
2536 }
2537 }
2538
2539 // Particle energy loss
2540 if(gMC->Edep() != 0){
2541 hits[9] = gMC->Edep();
2542 hits[7] = 0.;
2543 hits[8] = 0.;
2544 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
2545 }
2546 }
2547
2548
2549 // *** Light production in fibres
2550 if((gMC->CurrentMedium() == fMedSensF1) || (gMC->CurrentMedium() == fMedSensF2)){
2551
2552 //Select charged particles
2553 if((destep=gMC->Edep())){
2554
2555 // Particle velocity
2556 Float_t beta = 0.;
2557 gMC->TrackMomentum(p[0],p[1],p[2],p[3]);
2558 Float_t ptot=TMath::Sqrt(p[0]*p[0]+p[1]*p[1]+p[2]*p[2]);
2559 if(p[3] > 0.00001) beta = ptot/p[3];
2560 else return;
2561 if(beta<0.67)return;
2562 else if((beta>=0.67) && (beta<=0.75)) ibeta = 0;
2563 else if((beta>0.75) && (beta<=0.85)) ibeta = 1;
2564 else if((beta>0.85) && (beta<=0.95)) ibeta = 2;
2565 else if(beta>0.95) ibeta = 3;
2566
2567 // Angle between particle trajectory and fibre axis
2568 // 1 -> Momentum directions
2569 um[0] = p[0]/ptot;
2570 um[1] = p[1]/ptot;
2571 um[2] = p[2]/ptot;
2572 gMC->Gmtod(um,ud,2);
2573 // 2 -> Angle < limit angle
2574 Double_t alfar = TMath::ACos(ud[2]);
2575 Double_t alfa = alfar*kRaddeg;
2576 if(alfa>=110.) return;
2577 //
2578 ialfa = Int_t(1.+alfa/2.);
2579
2580 // Distance between particle trajectory and fibre axis
2581 gMC->TrackPosition(s[0],s[1],s[2]);
2582 for(j=0; j<=2; j++){
2583 x[j] = s[j];
2584 }
2585 gMC->Gmtod(x,xdet,1);
2586 if(TMath::Abs(ud[0])>0.00001){
2587 Float_t dcoeff = ud[1]/ud[0];
2588 be = TMath::Abs((xdet[1]-dcoeff*xdet[0])/TMath::Sqrt(dcoeff*dcoeff+1.));
2589 }
2590 else{
2591 be = TMath::Abs(ud[0]);
2592 }
2593
2594 ibe = Int_t(be*1000.+1);
2595 //if((vol[0]==1)) radius = fFibZN[1];
2596 //else if((vol[0]==2)) radius = fFibZP[1];
2597
2598 //Looking into the light tables
2599 Float_t charge = gMC->TrackCharge();
2600
2601 if(vol[0]==1 || vol[0]==4) { // (1) ZN fibres
2602 if(ibe>fNben) ibe=fNben;
2603 out = charge*charge*fTablen[ibeta][ialfa][ibe];
2604 nphe = gRandom->Poisson(out);
2605 // Ch. debug
2606 //if(ibeta==3) printf("\t %f \t %f \t %f\n",alfa, be, out);
2607 //printf("\t ibeta = %d, ialfa = %d, ibe = %d -> nphe = %d\n\n",ibeta,ialfa,ibe,nphe);
2608 if(gMC->CurrentMedium() == fMedSensF1){
2609 hits[7] = nphe; //fLightPMQ
2610 hits[8] = 0;
2611 hits[9] = 0;
2612 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
2613 }
2614 else{
2615 hits[7] = 0;
2616 hits[8] = nphe; //fLightPMC
2617 hits[9] = 0;
2618 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
2619 }
2620 }
2621 else if(vol[0]==2 || vol[0]==5) {// (2) ZP fibres
2622 if(ibe>fNbep) ibe=fNbep;
2623 out = charge*charge*fTablep[ibeta][ialfa][ibe];
2624 nphe = gRandom->Poisson(out);
2625 if(gMC->CurrentMedium() == fMedSensF1){
2626 hits[7] = nphe; //fLightPMQ
2627 hits[8] = 0;
2628 hits[9] = 0;
2629 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
2630 }
2631 else{
2632 hits[7] = 0;
2633 hits[8] = nphe; //fLightPMC
2634 hits[9] = 0;
2635 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
2636 }
2637 }
2638 else if((vol[0]==3)) { // (3) ZEM fibres
2639 if(ibe>fNbep) ibe=fNbep;
2640 out = charge*charge*fTablep[ibeta][ialfa][ibe];
2641 gMC->TrackPosition(s[0],s[1],s[2]);
2642 Float_t xalic[3];
2643 for(j=0; j<3; j++){
2644 xalic[j] = s[j];
2645 }
2646 // z-coordinate from ZEM front face
2647 // NB-> fPosZEM[2]+fZEMLength = -1000.+2*10.3 = 979.69 cm
2648 Float_t z = -xalic[2]+fPosZEM[2]+2*fZEMLength-xalic[1];
2649 //z = xalic[2]-fPosZEM[2]-fZEMLength-xalic[1]*(TMath::Tan(45.*kDegrad));
2650 //printf(" fPosZEM[2]+2*fZEMLength = %f", fPosZEM[2]+2*fZEMLength);
2651 //
2652 // Parametrization for light guide uniformity
2653 // NEW!!! Light guide tilted @ 51 degrees
2654 Float_t guiPar[4]={0.31,-0.0006305,0.01337,0.8895};
2655 Float_t guiEff = guiPar[0]*(guiPar[1]*z*z+guiPar[2]*z+guiPar[3]);
2656 out = out*guiEff;
2657 nphe = gRandom->Poisson(out);
2658 //printf(" out*guiEff = %f nphe = %d", out, nphe);
2659 if(vol[1] == 1){
2660 hits[7] = 0;
2661 hits[8] = nphe; //fLightPMC (ZEM1)
2662 hits[9] = 0;
2663 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
2664 }
2665 else{
2666 hits[7] = nphe; //fLightPMQ (ZEM2)
2667 hits[8] = 0;
2668 hits[9] = 0;
2669 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
2670 }
2671 }
2672 }
2673 }
2674}