]> git.uio.no Git - u/mrichter/AliRoot.git/blob - GEANT321/fluka/ekeka.F
This commit was generated by cvs2svn to compensate for changes in r2,
[u/mrichter/AliRoot.git] / GEANT321 / fluka / ekeka.F
1 *
2 * $Id$
3 *
4 * $Log$
5 * Revision 1.1.1.1  1995/10/24 10:20:03  cernlib
6 * Geant
7 *
8 *
9 #include "geant321/pilot.h"
10 *CMZ :  3.21/02 29/03/94  15.41.44  by  S.Giani
11 *-- Author :
12 *$ CREATE EKEKA.FOR
13 *COPY EKEKA
14 *                                                                      *
15 *=== ekeka ============================================================*
16 *                                                                      *
17       FUNCTION EKEKA(IX,TO,AMSS,SQAMSS)
18  
19 #include "geant321/dblprc.inc"
20 #include "geant321/dimpar.inc"
21 #include "geant321/iounit.inc"
22 C********************************************************************
23 C     VERSION BY                     J. RANFT
24 C                                    LEIPZIG
25 C     LAST CHANGE 05. DECEMBER BY    PERTTI AARNIO
26 C                                    HELSINKI UNIVERSITY OF
27 C                                    TECHNOLOGY, FINLAND
28 C
29 C     TO BE CALLED FROM THE HIGH ENERGY PRODUCTION
30 C
31 C     THIS IS A SUBROUTINE OF FLUKA TO CALCULATE THE ENERGY AVAILABLE
32 C     FOR THE REACTION "IX".
33 C
34 C     NOTE!!!!!!! REACTION NUMBERING IS NOT
35 C     COMPATIBLE WITH PARTICLE NUMBERING
36 C
37 C     INPUT VARIABLES:
38 C        IX     = TYPE OF THE REACTION
39 C                 1=NUCLEAR EXCITATION
40 C                 2=INTRANUCLEAR PROTON
41 C                 3=INTRANUCLEAR NEUTRON
42 C                 4=1+2
43 C                 5=1+2+3
44 C        TO     = KINETIC ENERGY OF THE COLLIDING PARTICLE IN GEV
45 C        AMSS   = ATOMIC WEIGHT OF THE MEDIUM
46 C        SQAMSS = SQRT(AMSS)
47 C
48 C     SEE RANFT/ROUTTI PARTICLE ACC VOL 4 P 106
49 C
50 C     NOTE THAT IN INTRANUCLEAR PART AVERAGE TOTAL ENERGY IS
51 C     OBTAINED BY MULTPLYING THE AVERAGE ENERGY OF THE HIGH ENERGY
52 C     PARTICLES BY THE MULTIPLICITY OF THE HIGH ENERGY PARTICLES
53 C     I.1. E-TOT,AV=2.5*N2*E-AV(ALFA-2).  THE FACTOR 2.5 IS
54 C     NEEDED TO TAKE INTO ACCOUNT THE LOW ENERGY PART ALSO.
55 C     2.5 IS BASED ON THE ASSUMPTION THAT N1/N2=9 AND THAT
56 C     (E-AV(ALFA-2))/(E-AV(ALFA-1))=6.
57 C********************************************************************
58 C
59       GO TO (1,2,3,1,1),IX
60 C
61 C
62     1 CONTINUE
63       IF (TO.GT.01D0)GO TO 12
64       AA=0.001D0*SQAMSS
65       GO TO 19
66    12 CONTINUE
67       APAR=0.035D0
68       BPAR=3.D0
69       CPAR=0.1D0
70       AA=CPAR*SQAMSS*(0.01D0+APAR*(BPAR+LOG10(TO))**2)
71 C
72    19 CONTINUE
73       IF (IX.GT.3) GO TO 2
74       EKEKA=AA
75       RETURN
76 C
77 C
78     2 CONTINUE
79       AN=ANKEKA(1,TO,AMSS,SQAMSS)
80       A=AKEKA(1,TO,AMSS)
81       EXTOA=0.D0
82       IF(TO.LT.5.D0*A) EXTOA=EXP(-TO/A)
83       TPKAV=A*(1.D0-(TO/A+1.)*EXTOA)/(1.D0-EXTOA)
84       BB=2.5D0*TPKAV*AN
85 C
86       IF (IX.EQ.4) GO TO 4
87       IF (IX.EQ.5) GO TO 3
88       EKEKA=BB
89       RETURN
90 C
91 C
92     3 CONTINUE
93       AN=ANKEKA(2,TO,AMSS,SQAMSS)
94       A=AKEKA(2,TO,AMSS)
95       EXTOA=0.D0
96       IF (TO.LT.5.D0*A) EXTOA=EXP(-TO/A)
97       TNKAV=A*(1.D0-(TO/A+1.D0)*EXTOA)/(1.D0-EXTOA)
98       CC=2.5D0*TNKAV*AN
99 C
100       IF (IX.EQ.5) GO TO 5
101       EKEKA=CC
102       RETURN
103 C
104 C
105     4 CONTINUE
106       EKEKA=AA+BB
107       RETURN
108 C
109 C
110     5 CONTINUE
111       EKEKA=AA+BB+CC
112       RETURN
113       END