]> git.uio.no Git - u/mrichter/AliRoot.git/blob - ITS/AliITSClusterFinderSDD.cxx
Add in missing set of {}'s.
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15 /*
16   $Id$
17   $Log$
18   Revision 1.28  2002/10/22 14:45:29  alibrary
19   Introducing Riostream.h
20
21   Revision 1.27  2002/10/14 14:57:00  hristov
22   Merging the VirtualMC branch to the main development branch (HEAD)
23
24   Revision 1.23.4.2  2002/10/14 13:14:07  hristov
25   Updating VirtualMC to v3-09-02
26
27   Revision 1.26  2002/09/09 17:23:28  nilsen
28   Minor changes in support of changes to AliITSdigitS?D class'.
29
30   Revision 1.25  2002/05/10 22:29:40  nilsen
31   Change my Massimo Masera in the default constructor to bring things into
32   compliance.
33
34   Revision 1.24  2002/04/24 22:02:31  nilsen
35   New SDigits and Digits routines, and related changes,  (including new
36   noise values).
37
38  */
39
40 #include <Riostream.h>
41 #include <TFile.h>
42 #include <TMath.h>
43 #include <math.h>
44
45 #include "AliITSClusterFinderSDD.h"
46 #include "AliITSMapA1.h"
47 #include "AliITS.h"
48 #include "AliITSdigit.h"
49 #include "AliITSRawCluster.h"
50 #include "AliITSRecPoint.h"
51 #include "AliITSsegmentation.h"
52 #include "AliITSresponseSDD.h"
53 #include "AliRun.h"
54
55 ClassImp(AliITSClusterFinderSDD)
56
57 //______________________________________________________________________
58 AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSsegmentation *seg,
59                                                AliITSresponse *response,
60                                                TClonesArray *digits,
61                                                TClonesArray *recp){
62     // standard constructor
63
64     fSegmentation = seg;
65     fResponse     = response;
66     fDigits       = digits;
67     fClusters     = recp;
68     fNclusters    = fClusters->GetEntriesFast();
69     SetCutAmplitude();
70     SetDAnode();
71     SetDTime();
72     SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
73     //    SetMinPeak();
74     SetMinNCells();
75     SetMaxNCells();
76     SetTimeCorr();
77     SetMinCharge();
78     fMap = new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
79 }
80 //______________________________________________________________________
81 AliITSClusterFinderSDD::AliITSClusterFinderSDD(){
82     // default constructor
83
84     fSegmentation = 0;
85     fResponse     = 0;
86     fDigits       = 0;
87     fClusters     = 0;
88     fNclusters    = 0;
89     fMap          = 0;
90     fCutAmplitude = 0;
91     fDAnode = 0;
92     fDTime = 0;
93     fMinPeak = 0;
94     fMinNCells = 0;
95     fMaxNCells = 0;
96     fTimeCorr = 0;
97     fMinCharge = 0;
98     /*
99     SetDAnode();
100     SetDTime();
101     SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
102     SetMinNCells();
103     SetMaxNCells();
104     SetTimeCorr();
105     SetMinCharge();
106     */
107 }
108 //____________________________________________________________________________
109 AliITSClusterFinderSDD::~AliITSClusterFinderSDD(){
110     // destructor
111
112     if(fMap) delete fMap;
113 }
114 //______________________________________________________________________
115 void AliITSClusterFinderSDD::SetCutAmplitude(Float_t nsigma){
116     // set the signal threshold for cluster finder
117     Float_t baseline,noise,noise_after_el;
118
119     fResponse->GetNoiseParam(noise,baseline);
120     noise_after_el = ((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics();
121     fCutAmplitude = (Int_t)((baseline + nsigma*noise_after_el));
122 }
123 //______________________________________________________________________
124 void AliITSClusterFinderSDD::Find1DClusters(){
125     // find 1D clusters
126     static AliITS *iTS = (AliITS*)gAlice->GetModule("ITS");
127   
128     // retrieve the parameters 
129     Int_t fNofMaps       = fSegmentation->Npz();
130     Int_t fMaxNofSamples = fSegmentation->Npx();
131     Int_t fNofAnodes     = fNofMaps/2;
132     Int_t dummy          = 0;
133     Float_t fTimeStep    = fSegmentation->Dpx(dummy);
134     Float_t fSddLength   = fSegmentation->Dx();
135     Float_t fDriftSpeed  = fResponse->DriftSpeed();  
136     Float_t anodePitch   = fSegmentation->Dpz(dummy);
137
138     // map the signal
139     fMap->ClearMap();
140     fMap->SetThreshold(fCutAmplitude);
141     fMap->FillMap();
142   
143     Float_t noise;
144     Float_t baseline;
145     fResponse->GetNoiseParam(noise,baseline);
146   
147     Int_t nofFoundClusters = 0;
148     Int_t i;
149     Float_t **dfadc = new Float_t*[fNofAnodes];
150     for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
151     Float_t fadc  = 0.;
152     Float_t fadc1 = 0.;
153     Float_t fadc2 = 0.;
154     Int_t j,k,idx,l,m;
155     for(j=0;j<2;j++) {
156         for(k=0;k<fNofAnodes;k++) {
157             idx = j*fNofAnodes+k;
158             // signal (fadc) & derivative (dfadc)
159             dfadc[k][255]=0.;
160             for(l=0; l<fMaxNofSamples; l++) {
161                 fadc2=(Float_t)fMap->GetSignal(idx,l);
162                 if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
163                 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
164             } // samples
165         } // anodes
166
167         for(k=0;k<fNofAnodes;k++) {
168         //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
169             idx = j*fNofAnodes+k;
170             Int_t imax  = 0;
171             Int_t imaxd = 0;
172             Int_t it    = 0;
173             while(it <= fMaxNofSamples-3) {
174                 imax  = it;
175                 imaxd = it;
176                 // maximum of signal          
177                 Float_t fadcmax  = 0.;
178                 Float_t dfadcmax = 0.;
179                 Int_t lthrmina   = 1;
180                 Int_t lthrmint   = 3;
181                 Int_t lthra      = 1;
182                 Int_t lthrt      = 0;
183                 for(m=0;m<20;m++) {
184                     Int_t id = it+m;
185                     if(id>=fMaxNofSamples) break;
186                     fadc=(float)fMap->GetSignal(idx,id);
187                     if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
188                     if(fadc > (float)fCutAmplitude) { 
189                         lthrt++; 
190                     } // end if
191                     if(dfadc[k][id] > dfadcmax) {
192                         dfadcmax = dfadc[k][id];
193                         imaxd    = id;
194                     } // end if
195                 } // end for m
196                 it = imaxd;
197                 if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
198                 // cluster charge
199                 Int_t tstart = it-2;
200                 if(tstart < 0) tstart = 0;
201                 Bool_t ilcl = 0;
202                 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
203                 if(ilcl) {
204                     nofFoundClusters++;
205                     Int_t tstop      = tstart;
206                     Float_t dfadcmin = 10000.;
207                     Int_t ij;
208                     for(ij=0; ij<20; ij++) {
209                         if(tstart+ij > 255) { tstop = 255; break; }
210                         fadc=(float)fMap->GetSignal(idx,tstart+ij);
211                         if((dfadc[k][tstart+ij] < dfadcmin) && 
212                            (fadc > fCutAmplitude)) {
213                             tstop = tstart+ij+5;
214                             if(tstop > 255) tstop = 255;
215                             dfadcmin = dfadc[k][it+ij];
216                         } // end if
217                     } // end for ij
218
219                     Float_t clusterCharge = 0.;
220                     Float_t clusterAnode  = k+0.5;
221                     Float_t clusterTime   = 0.;
222                     Int_t   clusterMult   = 0;
223                     Float_t clusterPeakAmplitude = 0.;
224                     Int_t its,peakpos     = -1;
225                     Float_t n, baseline;
226                     fResponse->GetNoiseParam(n,baseline);
227                     for(its=tstart; its<=tstop; its++) {
228                         fadc=(float)fMap->GetSignal(idx,its);
229                         if(fadc>baseline) fadc -= baseline;
230                         else fadc = 0.;
231                         clusterCharge += fadc;
232                         // as a matter of fact we should take the peak
233                         // pos before FFT
234                         // to get the list of tracks !!!
235                         if(fadc > clusterPeakAmplitude) {
236                             clusterPeakAmplitude = fadc;
237                             //peakpos=fMap->GetHitIndex(idx,its);
238                             Int_t shift = (int)(fTimeCorr/fTimeStep);
239                             if(its>shift && its<(fMaxNofSamples-shift))
240                                 peakpos  = fMap->GetHitIndex(idx,its+shift);
241                             else peakpos = fMap->GetHitIndex(idx,its);
242                             if(peakpos<0) peakpos =fMap->GetHitIndex(idx,its);
243                         } // end if
244                         clusterTime += fadc*its;
245                         if(fadc > 0) clusterMult++;
246                         if(its == tstop) {
247                             clusterTime /= (clusterCharge/fTimeStep);   // ns
248                             if(clusterTime>fTimeCorr) clusterTime -=fTimeCorr;
249                             //ns
250                         } // end if
251                     } // end for its
252
253                     Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
254                                                anodePitch;
255                     Float_t clusterDriftPath = clusterTime*fDriftSpeed;
256                     clusterDriftPath = fSddLength-clusterDriftPath;
257                     if(clusterCharge <= 0.) break;
258                     AliITSRawClusterSDD clust(j+1,//i
259                                               clusterAnode,clusterTime,//ff
260                                               clusterCharge, //f
261                                               clusterPeakAmplitude, //f
262                                               peakpos, //i
263                                               0.,0.,clusterDriftPath,//fff
264                                               clusteranodePath, //f
265                                               clusterMult, //i
266                                               0,0,0,0,0,0,0);//7*i
267                     iTS->AddCluster(1,&clust);
268                     it = tstop;
269                 } // ilcl
270                 it++;
271             } // while (samples)
272         } // anodes
273     } // detectors (2)
274
275     for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
276     delete [] dfadc;
277
278     return;
279 }
280
281
282
283 //______________________________________________________________________
284 void AliITSClusterFinderSDD::Find1DClustersE(){
285     // find 1D clusters
286     static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
287     // retrieve the parameters 
288     Int_t fNofMaps = fSegmentation->Npz();
289     Int_t fMaxNofSamples = fSegmentation->Npx();
290     Int_t fNofAnodes = fNofMaps/2;
291     Int_t dummy=0;
292     Float_t fTimeStep = fSegmentation->Dpx( dummy );
293     Float_t fSddLength = fSegmentation->Dx();
294     Float_t fDriftSpeed = fResponse->DriftSpeed();
295     Float_t anodePitch = fSegmentation->Dpz( dummy );
296     Float_t n, baseline;
297     fResponse->GetNoiseParam( n, baseline );
298     // map the signal
299     fMap->ClearMap();
300     fMap->SetThreshold( fCutAmplitude );
301     fMap->FillMap();
302     
303     Int_t nClu = 0;
304     //        cout << "Search  cluster... "<< endl;
305     for( Int_t j=0; j<2; j++ ){
306         for( Int_t k=0; k<fNofAnodes; k++ ){
307             Int_t idx = j*fNofAnodes+k;
308             Bool_t on = kFALSE;
309             Int_t start = 0;
310             Int_t nTsteps = 0;
311             Float_t fmax = 0.;
312             Int_t lmax = 0;
313             Float_t charge = 0.;
314             Float_t time = 0.;
315             Float_t anode = k+0.5;
316             Int_t peakpos = -1;
317             for( Int_t l=0; l<fMaxNofSamples; l++ ){
318                 Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
319                 if( fadc > 0.0 ){
320                     if( on == kFALSE && l<fMaxNofSamples-4){
321                         // star RawCluster (reset var.)
322                         Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
323                         if( fadc1 < fadc ) continue;
324                         start = l;
325                         fmax = 0.;
326                         lmax = 0;
327                         time = 0.;
328                         charge = 0.; 
329                         on = kTRUE; 
330                         nTsteps = 0;
331                     } // end if on...
332                     nTsteps++ ;
333                     if( fadc > baseline ) fadc -= baseline;
334                     else fadc=0.;
335                     charge += fadc;
336                     time += fadc*l;
337                     if( fadc > fmax ){ 
338                         fmax = fadc; 
339                         lmax = l; 
340                         Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
341                         if( l > shift && l < (fMaxNofSamples-shift) )  
342                             peakpos = fMap->GetHitIndex( idx, l+shift );
343                         else
344                             peakpos = fMap->GetHitIndex( idx, l );
345                         if( peakpos < 0) peakpos = fMap->GetHitIndex( idx, l );
346                     } // end if fadc
347                 }else{ // end fadc>0
348                     if( on == kTRUE ){        
349                         if( nTsteps > 2 ){
350                             //  min # of timesteps for a RawCluster
351                             // Found a RawCluster...
352                             Int_t stop = l-1;
353                             time /= (charge/fTimeStep);   // ns
354                                 // time = lmax*fTimeStep;   // ns
355                             if( time > fTimeCorr ) time -= fTimeCorr;   // ns
356                             Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
357                             Float_t driftPath = time*fDriftSpeed;
358                             driftPath = fSddLength-driftPath;
359                             AliITSRawClusterSDD clust(j+1,anode,time,charge,
360                                                       fmax, peakpos,0.,0.,
361                                                       driftPath,anodePath,
362                                                       nTsteps,start,stop,
363                                                       start, stop, 1, k, k );
364                             iTS->AddCluster( 1, &clust );
365                             //        clust.PrintInfo();
366                             nClu++;
367                         } // end if nTsteps
368                         on = kFALSE;
369                     } // end if on==kTRUE
370                 } // end if fadc>0
371             } // samples
372         } // anodes
373     } // wings
374     //        cout << "# Rawclusters " << nClu << endl;         
375     return; 
376 }
377 //_______________________________________________________________________
378 Int_t AliITSClusterFinderSDD::SearchPeak(Float_t *spect,Int_t xdim,Int_t zdim,
379                                          Int_t *peakX, Int_t *peakZ, 
380                                          Float_t *peakAmp, Float_t minpeak ){
381     // search peaks on a 2D cluster
382     Int_t npeak = 0;    // # peaks
383     Int_t i,j;
384     // search peaks
385     for( Int_t z=1; z<zdim-1; z++ ){
386         for( Int_t x=1; x<xdim-2; x++ ){
387             Float_t sxz = spect[x*zdim+z];
388             Float_t sxz1 = spect[(x+1)*zdim+z];
389             Float_t sxz2 = spect[(x-1)*zdim+z];
390             // search a local max. in s[x,z]
391             if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
392             if( sxz >= spect[(x+1)*zdim+z  ] && sxz >= spect[(x-1)*zdim+z  ] &&
393                 sxz >= spect[x*zdim    +z+1] && sxz >= spect[x*zdim    +z-1] &&
394                 sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
395                 sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
396                 // peak found
397                 peakX[npeak] = x;
398                 peakZ[npeak] = z;
399                 peakAmp[npeak] = sxz;
400                 npeak++;
401             } // end if ....
402         } // end for x
403     } // end for z
404     // search groups of peaks with same amplitude.
405     Int_t *flag = new Int_t[npeak];
406     for( i=0; i<npeak; i++ ) flag[i] = 0;
407     for( i=0; i<npeak; i++ ){
408         for( j=0; j<npeak; j++ ){
409             if( i==j) continue;
410             if( flag[j] > 0 ) continue;
411             if( peakAmp[i] == peakAmp[j] && 
412                 TMath::Abs(peakX[i]-peakX[j])<=1 && 
413                 TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
414                 if( flag[i] == 0) flag[i] = i+1;
415                 flag[j] = flag[i];
416             } // end if ...
417         } // end for j
418     } // end for i
419     // make average of peak groups        
420     for( i=0; i<npeak; i++ ){
421         Int_t nFlag = 1;
422         if( flag[i] <= 0 ) continue;
423         for( j=0; j<npeak; j++ ){
424             if( i==j ) continue;
425             if( flag[j] != flag[i] ) continue;
426             peakX[i] += peakX[j];
427             peakZ[i] += peakZ[j];
428             nFlag++;
429             npeak--;
430             for( Int_t k=j; k<npeak; k++ ){
431                 peakX[k] = peakX[k+1];
432                 peakZ[k] = peakZ[k+1];
433                 peakAmp[k] = peakAmp[k+1];
434                 flag[k] = flag[k+1];
435             } // end for k        
436             j--;
437         } // end for j
438         if( nFlag > 1 ){
439             peakX[i] /= nFlag;
440             peakZ[i] /= nFlag;
441         } // end fi nFlag
442     } // end for i
443     delete [] flag;
444     return( npeak );
445 }
446 //______________________________________________________________________
447 void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
448                                        Float_t *spe, Float_t *integral){
449     // function used to fit the clusters
450     // par -> parameters..
451     // par[0]  number of peaks.
452     // for each peak i=1, ..., par[0]
453     //                 par[i] = Ampl.
454     //                 par[i+1] = xpos
455     //                 par[i+2] = zpos
456     //                 par[i+3] = tau
457     //                 par[i+4] = sigma.
458     Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
459     const Int_t knParam = 5;
460     Int_t npeak = (Int_t)par[0];
461
462     memset( spe, 0, sizeof( Float_t )*zdim*xdim );
463
464     Int_t k = 1;
465     for( Int_t i=0; i<npeak; i++ ){
466         if( integral != 0 ) integral[i] = 0.;
467         Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
468         Float_t T2 = par[k+3];   // PASCAL
469         if( electronics == 2 ) { T2 *= T2; T2 *= 2; } // OLA
470         for( Int_t z=0; z<zdim; z++ ){
471             for( Int_t x=0; x<xdim; x++ ){
472                 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
473                 Float_t x2 = 0.;
474                 Float_t signal = 0.;
475                 if( electronics == 1 ){ // PASCAL
476                     x2 = (x-par[k+1]+T2)/T2;
477                     signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
478                 //  signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
479                 }else if( electronics == 2 ) { // OLA
480                     x2 = (x-par[k+1])*(x-par[k+1])/T2;
481                     signal = par[k]  * exp( -x2 - z2 );
482                 } else {
483                     cout << "Wrong SDD Electronics =" << electronics << endl;
484                     // exit( 1 );
485                 } // end if electronicx
486                 spe[x*zdim+z] += signal;
487                 if( integral != 0 ) integral[i] += signal;
488             } // end for x
489         } // end for z
490         k += knParam;
491     } // end for i
492     return;
493 }
494 //__________________________________________________________________________
495 Float_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Float_t *spe,
496                                         Float_t *speFit ){
497     // EVALUATES UNNORMALIZED CHI-SQUARED
498     Float_t chi2 = 0.;
499     for( Int_t z=0; z<zdim; z++ ){
500         for( Int_t x=1; x<xdim-1; x++ ){
501             Int_t index = x*zdim+z;
502             Float_t tmp = spe[index] - speFit[index];
503             chi2 += tmp*tmp;
504         } // end for x
505     } // end for z
506     return( chi2 );
507 }
508 //_______________________________________________________________________
509 void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
510                                     Float_t *prm0,Float_t *steprm,
511                                     Float_t *chisqr,Float_t *spe,
512                                     Float_t *speFit ){
513     // 
514     Int_t   k, nnn, mmm, i;
515     Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
516     const Int_t knParam = 5;
517     Int_t npeak = (Int_t)param[0];
518     for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
519     for( k=1; k<(npeak*knParam+1); k++ ){
520         p1 = param[k];
521         delta = steprm[k];
522         d1 = delta;
523         // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
524         if( fabs( p1 ) > 1.0E-6 ) 
525             if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
526             else  delta = (Float_t)1.0E-4;
527         //  EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
528         PeakFunc( xdim, zdim, param, speFit );
529         chisq1 = ChiSqr( xdim, zdim, spe, speFit );
530         p2 = p1+delta;
531         param[k] = p2;
532         PeakFunc( xdim, zdim, param, speFit );
533         chisq2 = ChiSqr( xdim, zdim, spe, speFit );
534         if( chisq1 < chisq2 ){
535             // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
536             delta = -delta;
537             t = p1;
538             p1 = p2;
539             p2 = t;
540             t = chisq1;
541             chisq1 = chisq2;
542             chisq2 = t;
543         } // end if
544         i = 1; nnn = 0;
545         do {   // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
546             nnn++;
547             p3 = p2 + delta;
548             mmm = nnn - (nnn/5)*5;  // multiplo de 5
549             if( mmm == 0 ){
550                 d1 = delta;
551                 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW 
552                 delta *= 5;
553             } // end if
554             param[k] = p3;
555             // Constrain paramiters
556             Int_t kpos = (k-1) % knParam;
557             switch( kpos ){
558             case 0 :
559                 if( param[k] <= 20 ) param[k] = fMinPeak;
560                 break;
561             case 1 :
562                 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
563                 break;
564             case 2 :
565                 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
566                 break;
567             case 3 :
568                 if( param[k] < .5 ) param[k] = .5;        
569                 break;
570             case 4 :
571                 if( param[k] < .288 ) param[k] = .288;        // 1/sqrt(12) = 0.288
572                 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
573                 break;
574             }; // end switch
575             PeakFunc( xdim, zdim, param, speFit );
576             chisq3 = ChiSqr( xdim, zdim, spe, speFit );
577             if( chisq3 < chisq2 && nnn < 50 ){
578                 p1 = p2;
579                 p2 = p3;
580                 chisq1 = chisq2;
581                 chisq2 = chisq3;
582             }else i=0;
583         } while( i );
584         // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
585         a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
586         b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
587         if( a!=0 ) p0 = (Float_t)(0.5*b/a);
588         else p0 = 10000;
589         //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
590         //   ERRONEOUS EVALUATION OF PARABOLA MINIMUM
591         //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
592         //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
593         //if( fabs( p2-p0 ) > dp ) p0 = p2;
594         param[k] = p0;
595         // Constrain paramiters
596         Int_t kpos = (k-1) % knParam;
597         switch( kpos ){
598         case 0 :
599             if( param[k] <= 20 ) param[k] = fMinPeak;   
600             break;
601         case 1 :
602             if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
603             break;
604         case 2 :
605             if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
606             break;
607         case 3 :
608             if( param[k] < .5 ) param[k] = .5;        
609             break;
610         case 4 :
611             if( param[k] < .288 ) param[k] = .288;  // 1/sqrt(12) = 0.288
612             if( param[k] > zdim*.5 ) param[k] = zdim*.5;
613             break;
614         }; // end switch
615         PeakFunc( xdim, zdim, param, speFit );
616         chisqt = ChiSqr( xdim, zdim, spe, speFit );
617         // DO NOT ALLOW ERRONEOUS INTERPOLATION
618         if( chisqt <= *chisqr ) *chisqr = chisqt;
619         else param[k] = prm0[k];
620         // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
621         steprm[k] = (param[k]-prm0[k])/5;
622         if( steprm[k] >= d1 ) steprm[k] = d1/5;
623     } // end for k
624     // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
625     PeakFunc( xdim, zdim, param, speFit );
626     *chisqr = ChiSqr( xdim, zdim, spe, speFit );
627     return;
628 }
629 //_________________________________________________________________________
630 Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim, 
631                                            Float_t *param, Float_t *spe, 
632                                            Int_t *niter, Float_t *chir ){
633     // fit method from Comput. Phys. Commun 46(1987) 149
634     const Float_t kchilmt = 0.01;  //        relative accuracy           
635     const Int_t   knel = 3;        //        for parabolic minimization  
636     const Int_t   knstop = 50;     //        Max. iteration number          
637     const Int_t   knParam = 5;
638     Int_t npeak = (Int_t)param[0];
639     // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE 
640     if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
641     Float_t degFree = (xdim*zdim - npeak*knParam)-1;
642     Int_t   n, k, iterNum = 0;
643     Float_t *prm0 = new Float_t[npeak*knParam+1];
644     Float_t *step = new Float_t[npeak*knParam+1];
645     Float_t *schi = new Float_t[npeak*knParam+1]; 
646     Float_t *sprm[3];
647     sprm[0] = new Float_t[npeak*knParam+1];
648     sprm[1] = new Float_t[npeak*knParam+1];
649     sprm[2] = new Float_t[npeak*knParam+1];
650     Float_t  chi0, chi1, reldif, a, b, prmin, dp;
651     Float_t *speFit = new Float_t[ xdim*zdim ];
652     PeakFunc( xdim, zdim, param, speFit );
653     chi0 = ChiSqr( xdim, zdim, spe, speFit );
654     chi1 = chi0;
655     for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
656         for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
657             step[k] = param[k] / 20.0 ;
658             step[k+1] = param[k+1] / 50.0;
659             step[k+2] = param[k+2] / 50.0;                 
660             step[k+3] = param[k+3] / 20.0;                 
661             step[k+4] = param[k+4] / 20.0;                 
662         } // end for k
663     Int_t out = 0;
664     do{
665         iterNum++;
666             chi0 = chi1;
667             Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
668             reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
669         // EXIT conditions
670         if( reldif < (float) kchilmt ){
671             *chir  = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
672             *niter = iterNum;
673             out = 0;
674             break;
675         } // end if
676         if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
677             *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
678             *niter = iterNum;
679             out = 0;
680             break;
681         } // end if
682         if( iterNum > 5*knstop ){
683             *chir  = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
684             *niter = iterNum;
685             out = 1;
686             break;
687         } // end if
688         if( iterNum <= knel ) continue;
689         n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
690         if( n > 3 || n == 0 ) continue;
691         schi[n-1] = chi1;
692         for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
693         if( n != 3 ) continue;
694         // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
695         //    PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
696         for( k=1; k<(npeak*knParam+1); k++ ){
697             Float_t tmp0 = sprm[0][k];
698             Float_t tmp1 = sprm[1][k];
699             Float_t tmp2 = sprm[2][k];
700             a  = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
701             a += (schi[2]*(tmp0-tmp1));
702             b  = schi[0]*(tmp1*tmp1-tmp2*tmp2);
703             b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
704                                              (tmp0*tmp0-tmp1*tmp1)));
705             if ((double)a < 1.0E-6) prmin = 0;
706             else prmin = (float) (0.5*b/a);
707             dp = 5*(tmp2-tmp0);
708             if( fabs(prmin-tmp2) > fabs(dp) ) prmin = tmp2+dp;
709             param[k] = prmin;
710             step[k]  = dp/10; // OPTIMIZE SEARCH STEP
711         } // end for k
712     } while( kTRUE );
713     delete [] prm0;
714     delete [] step;
715     delete [] schi; 
716     delete [] sprm[0];
717     delete [] sprm[1];
718     delete [] sprm[2];
719     delete [] speFit;
720     return( out );
721 }
722
723 //______________________________________________________________________
724 void AliITSClusterFinderSDD::ResolveClustersE(){
725     // The function to resolve clusters if the clusters overlapping exists
726     Int_t i;
727     static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
728     // get number of clusters for this module
729     Int_t nofClusters = fClusters->GetEntriesFast();
730     nofClusters -= fNclusters;
731     Int_t fNofMaps = fSegmentation->Npz();
732     Int_t fNofAnodes = fNofMaps/2;
733     Int_t fMaxNofSamples = fSegmentation->Npx();
734     Int_t dummy=0;
735     Double_t fTimeStep = fSegmentation->Dpx( dummy );
736     Double_t fSddLength = fSegmentation->Dx();
737     Double_t fDriftSpeed = fResponse->DriftSpeed();
738     Double_t anodePitch = fSegmentation->Dpz( dummy );
739     Float_t n, baseline;
740     fResponse->GetNoiseParam( n, baseline );
741     Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
742
743     for( Int_t j=0; j<nofClusters; j++ ){ 
744         // get cluster information
745         AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
746         Int_t astart = clusterJ->Astart();
747         Int_t astop = clusterJ->Astop();
748         Int_t tstart = clusterJ->Tstartf();
749         Int_t tstop = clusterJ->Tstopf();
750         Int_t wing = (Int_t)clusterJ->W();
751         if( wing == 2 ){
752             astart += fNofAnodes; 
753             astop  += fNofAnodes;
754         } // end if 
755         Int_t xdim = tstop-tstart+3;
756         Int_t zdim = astop-astart+3;
757         if(xdim > 50 || zdim > 30) { cout << "Warning: xdim: " << xdim << ", zdim: " << zdim << endl; continue; }
758         Float_t *sp = new Float_t[ xdim*zdim+1 ];
759         memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
760         
761         // make a local map from cluster region
762         for( Int_t ianode=astart; ianode<=astop; ianode++ ){
763             for( Int_t itime=tstart; itime<=tstop; itime++ ){
764                 Float_t fadc = fMap->GetSignal( ianode, itime );
765                 if( fadc > baseline ) fadc -= (Double_t)baseline;
766                 else fadc = 0.;
767                 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
768                 sp[index] = fadc;
769             } // time loop
770         } // anode loop
771         
772         // search peaks on cluster
773         const Int_t kNp = 150;
774         Int_t peakX1[kNp];
775         Int_t peakZ1[kNp];
776         Float_t peakAmp1[kNp];
777         Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
778
779         // if multiple peaks, split cluster
780         if( npeak >= 1 )
781         {
782             //        cout << "npeak " << npeak << endl;
783             //        clusterJ->PrintInfo();
784             Float_t *par = new Float_t[npeak*5+1];
785             par[0] = (Float_t)npeak;                
786             // Initial parameters in cell dimentions
787             Int_t k1 = 1;
788             for( i=0; i<npeak; i++ ){
789                 par[k1] = peakAmp1[i];
790                 par[k1+1] = peakX1[i]; // local time pos. [timebin]
791                 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
792                 if( electronics == 1 ) 
793                     par[k1+3] = 2.; // PASCAL
794                 else if( electronics == 2 ) 
795                     par[k1+3] = 0.7; // tau [timebin]  OLA 
796                 par[k1+4] = .4;    // sigma        [anodepich]
797                 k1+=5;
798             } // end for i                        
799             Int_t niter;
800             Float_t chir;                        
801             NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
802             Float_t peakX[kNp];
803             Float_t peakZ[kNp];
804             Float_t sigma[kNp];
805             Float_t tau[kNp];
806             Float_t peakAmp[kNp];
807             Float_t integral[kNp];
808             //get integrals => charge for each peak
809             PeakFunc( xdim, zdim, par, sp, integral );
810             k1 = 1;
811             for( i=0; i<npeak; i++ ){
812                 peakAmp[i] = par[k1];
813                 peakX[i] = par[k1+1];
814                 peakZ[i] = par[k1+2];
815                 tau[i] = par[k1+3];
816                 sigma[i] = par[k1+4];
817                 k1+=5;
818             } // end for i
819             // calculate parameter for new clusters
820             for( i=0; i<npeak; i++ ){
821                 AliITSRawClusterSDD clusterI( *clusterJ );
822                 Int_t newAnode = peakZ1[i]-1 + astart;
823                 Int_t newiTime = peakX1[i]-1 + tstart;
824                 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
825                 if( newiTime > shift && newiTime < (fMaxNofSamples-shift) ) 
826                     shift = 0;
827                 Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
828                 clusterI.SetPeakPos( peakpos );
829                 clusterI.SetPeakAmpl( peakAmp1[i] );
830                 Float_t newAnodef = peakZ[i] - 0.5 + astart;
831                 Float_t newiTimef = peakX[i] - 1 + tstart;
832                 if( wing == 2 ) newAnodef -= fNofAnodes; 
833                 Float_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
834                 newiTimef *= fTimeStep;
835                 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
836                 if( electronics == 1 ){
837                 //    newiTimef *= 0.999438;    // PASCAL
838                 //    newiTimef += (6./fDriftSpeed - newiTimef/3000.);
839                 }else if( electronics == 2 )
840                     newiTimef *= 0.99714;    // OLA
841                 Float_t driftPath = fSddLength - newiTimef * fDriftSpeed;
842                 Float_t sign = ( wing == 1 ) ? -1. : 1.;
843                 clusterI.SetX( driftPath*sign * 0.0001 );        
844                 clusterI.SetZ( anodePath * 0.0001 );
845                 clusterI.SetAnode( newAnodef );
846                 clusterI.SetTime( newiTimef );
847                 clusterI.SetAsigma( sigma[i]*anodePitch );
848                 clusterI.SetTsigma( tau[i]*fTimeStep );
849                 clusterI.SetQ( integral[i] );
850                 //    clusterI.PrintInfo();
851                 iTS->AddCluster( 1, &clusterI );
852             } // end for i
853             fClusters->RemoveAt( j );
854             delete [] par;
855         } else {  // something odd
856             cout << " --- Peak not found!!!!  minpeak=" << fMinPeak<< 
857                     " cluster peak=" << clusterJ->PeakAmpl() << 
858                     " module=" << fModule << endl; 
859             clusterJ->PrintInfo(); 
860             cout << " xdim=" << xdim-2 << " zdim=" << zdim-2 << endl << endl;
861         }
862         delete [] sp;
863     } // cluster loop
864     fClusters->Compress();
865 //    fMap->ClearMap(); 
866 }
867
868
869 //________________________________________________________________________
870 void  AliITSClusterFinderSDD::GroupClusters(){
871     // group clusters
872     Int_t dummy=0;
873     Float_t fTimeStep = fSegmentation->Dpx(dummy);
874     // get number of clusters for this module
875     Int_t nofClusters = fClusters->GetEntriesFast();
876     nofClusters -= fNclusters;
877     AliITSRawClusterSDD *clusterI;
878     AliITSRawClusterSDD *clusterJ;
879     Int_t *label = new Int_t [nofClusters];
880     Int_t i,j;
881     for(i=0; i<nofClusters; i++) label[i] = 0;
882     for(i=0; i<nofClusters; i++) { 
883         if(label[i] != 0) continue;
884         for(j=i+1; j<nofClusters; j++) { 
885             if(label[j] != 0) continue;
886             clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
887             clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
888             // 1.3 good
889             if(clusterI->T() < fTimeStep*60) fDAnode = 4.2;  // TB 3.2  
890             if(clusterI->T() < fTimeStep*10) fDAnode = 1.5;  // TB 1.
891             Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
892             if(!pair) continue;
893             //      clusterI->PrintInfo();
894             //      clusterJ->PrintInfo();
895             clusterI->Add(clusterJ);
896             label[j] = 1;
897             fClusters->RemoveAt(j);
898             j=i; // <- Ernesto
899         } // J clusters  
900         label[i] = 1;
901     } // I clusters
902     fClusters->Compress();
903
904     delete [] label;
905     return;
906 }
907 //________________________________________________________________________
908 void AliITSClusterFinderSDD::SelectClusters(){
909     // get number of clusters for this module
910     Int_t nofClusters = fClusters->GetEntriesFast();
911
912     nofClusters -= fNclusters;
913     Int_t i;
914     for(i=0; i<nofClusters; i++) { 
915         AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) fClusters->At(i);
916         Int_t rmflg = 0;
917         Float_t wy = 0.;
918         if(clusterI->Anodes() != 0.) {
919             wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
920         } // end if
921         Int_t amp = (Int_t) clusterI->PeakAmpl();
922         Int_t cha = (Int_t) clusterI->Q();
923         if(amp < fMinPeak) rmflg = 1;  
924         if(cha < fMinCharge) rmflg = 1;
925         if(wy < fMinNCells) rmflg = 1;
926         //if(wy > fMaxNCells) rmflg = 1;
927         if(rmflg) fClusters->RemoveAt(i);
928     } // I clusters
929     fClusters->Compress();
930     return;
931 }
932 //__________________________________________________________________________
933 void AliITSClusterFinderSDD::ResolveClusters(){
934     // The function to resolve clusters if the clusters overlapping exists
935 /*    AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
936     // get number of clusters for this module
937     Int_t nofClusters = fClusters->GetEntriesFast();
938     nofClusters -= fNclusters;
939     //cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","
940     // <<fNclusters<<endl;
941     Int_t fNofMaps = fSegmentation->Npz();
942     Int_t fNofAnodes = fNofMaps/2;
943     Int_t dummy=0;
944     Double_t fTimeStep = fSegmentation->Dpx(dummy);
945     Double_t fSddLength = fSegmentation->Dx();
946     Double_t fDriftSpeed = fResponse->DriftSpeed();
947     Double_t anodePitch = fSegmentation->Dpz(dummy);
948     Float_t n, baseline;
949     fResponse->GetNoiseParam(n,baseline);
950     Float_t dzz_1A = anodePitch * anodePitch / 12;
951     // fill Map of signals
952     fMap->FillMap(); 
953     Int_t j,i,ii,ianode,anode,itime;
954     Int_t wing,astart,astop,tstart,tstop,nanode;
955     Double_t fadc,ClusterTime;
956     Double_t q[400],x[400],z[400]; // digit charges and coordinates
957     for(j=0; j<nofClusters; j++) { 
958         AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
959         Int_t ndigits = 0;
960         astart=clusterJ->Astart();
961         astop=clusterJ->Astop();
962         tstart=clusterJ->Tstartf();
963         tstop=clusterJ->Tstopf();
964         nanode=clusterJ->Anodes();  // <- Ernesto
965         wing=(Int_t)clusterJ->W();
966         if(wing == 2) {
967             astart += fNofAnodes; 
968             astop  += fNofAnodes;
969         }  // end if
970         // cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","
971         //      <<tstart<<","<<tstop<<endl;
972         // clear the digit arrays
973         for(ii=0; ii<400; ii++) { 
974             q[ii] = 0.; 
975             x[ii] = 0.;
976             z[ii] = 0.;
977         } // end for ii
978
979         for(ianode=astart; ianode<=astop; ianode++) { 
980             for(itime=tstart; itime<=tstop; itime++) { 
981                 fadc=fMap->GetSignal(ianode,itime);
982                 if(fadc>baseline) {
983                     fadc-=(Double_t)baseline;
984                     q[ndigits] = fadc*(fTimeStep/160);  // KeV
985                     anode = ianode;
986                     if(wing == 2) anode -= fNofAnodes;
987                     z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
988                     ClusterTime = itime*fTimeStep;
989                     if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;// ns
990                     x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
991                     if(wing == 1) x[ndigits] *= (-1);
992                     // cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","
993                     //     <<fadc<<endl;
994                     // cout<<"wing,anode,ndigits,charge ="<<wing<<","
995                     //      <<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
996                     ndigits++;
997                     continue;
998                 } //  end if
999                 fadc=0;
1000                 //              cout<<"fadc=0, ndigits ="<<ndigits<<endl;
1001             } // time loop
1002         } // anode loop
1003         //     cout<<"for new cluster ndigits ="<<ndigits<<endl;
1004         // Fit cluster to resolve for two separate ones --------------------
1005         Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
1006         Double_t dxx=0., dzz=0., dxz=0.;
1007         Double_t scl = 0., tmp, tga, elps = -1.;
1008         Double_t xfit[2], zfit[2], qfit[2];
1009         Double_t pitchz = anodePitch*1.e-4;             // cm
1010         Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4;  // cm
1011         Double_t sigma2;
1012         Int_t nfhits;
1013         Int_t nbins = ndigits;
1014         Int_t separate = 0;
1015         // now, all lengths are in microns
1016         for (ii=0; ii<nbins; ii++) {
1017             qq += q[ii];
1018             xm += x[ii]*q[ii];
1019             zm += z[ii]*q[ii];
1020             xx += x[ii]*x[ii]*q[ii];
1021             zz += z[ii]*z[ii]*q[ii];
1022             xz += x[ii]*z[ii]*q[ii];
1023         } // end for ii
1024         xm /= qq;
1025         zm /= qq;
1026         xx /= qq;
1027         zz /= qq;
1028         xz /= qq;
1029         dxx = xx - xm*xm;
1030         dzz = zz - zm*zm;
1031         dxz = xz - xm*zm;
1032
1033         // shrink the cluster in the time direction proportionaly to the 
1034         // dxx/dzz, which lineary depends from the drift path
1035         // new  Ernesto........         
1036         if( nanode == 1 ){
1037             dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
1038             scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
1039         } // end if
1040         if( nanode == 2 ){
1041             scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
1042         } // end if
1043         if( nanode == 3 ){
1044             scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
1045         } // end if
1046         if( nanode > 3 ){
1047             scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
1048         } // end if
1049         //   cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","
1050         //  <<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
1051         //  old Boris.........
1052         //  tmp=29730. - 585.*fabs(xm/1000.); 
1053         //  scl=TMath::Sqrt(tmp/130000.);
1054    
1055         xm *= scl;
1056         xx *= scl*scl;
1057         xz *= scl;
1058
1059         dxx = xx - xm*xm;
1060         //   dzz = zz - zm*zm;
1061         dxz = xz - xm*zm;
1062         //   cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1063         // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1064         // if(dzz < 7200.) dzz=7200.;//for one anode cluster dzz = anode**2/12
1065   
1066         if (dxx < 0.) dxx=0.;
1067         // the data if no cluster overlapping (the coordunates are in cm) 
1068         nfhits = 1;
1069         xfit[0] = xm*1.e-4;
1070         zfit[0] = zm*1.e-4;
1071         qfit[0] = qq;
1072         //   if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
1073   
1074         if (nbins >= 7) {
1075             if (dxz==0.) tga=0.;
1076             else {
1077                 tmp=0.5*(dzz-dxx)/dxz;
1078                 tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) : 
1079                                                    tmp+TMath::Sqrt(tmp*tmp+1);
1080             } // end if dxz
1081             elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
1082             // change from microns to cm
1083             xm *= 1.e-4; 
1084             zm *= 1.e-4; 
1085             zz *= 1.e-8;
1086             xx *= 1.e-8;
1087             xz *= 1.e-8;
1088             dxz *= 1.e-8;
1089             dxx *= 1.e-8;
1090             dzz *= 1.e-8;
1091             //   cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1092             //  <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1093             for (i=0; i<nbins; i++) {     
1094                 x[i] = x[i] *= scl;
1095                 x[i] = x[i] *= 1.e-4;
1096                 z[i] = z[i] *= 1.e-4;
1097             } // end for i
1098             //     cout<<"!!! elps ="<<elps<<endl;
1099             if (elps < 0.3) { // try to separate hits 
1100                 separate = 1;
1101                 tmp=atan(tga);
1102                 Double_t cosa=cos(tmp),sina=sin(tmp);
1103                 Double_t a1=0., x1=0., xxx=0.;
1104                 for (i=0; i<nbins; i++) {
1105                     tmp=x[i]*cosa + z[i]*sina;
1106                     if (q[i] > a1) {
1107                         a1=q[i];
1108                         x1=tmp;
1109                     } // end if
1110                     xxx += tmp*tmp*tmp*q[i];
1111                 } // end for i
1112                 xxx /= qq;
1113                 Double_t z12=-sina*xm + cosa*zm;
1114                 sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
1115                 xm=cosa*xm + sina*zm;
1116                 xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
1117                 Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
1118                 Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
1119                 for (i=0; i<33; i++) { // solve a system of equations
1120                     Double_t x1_old=x1, x2_old=x2, r_old=r;
1121                     Double_t c11=x1-x2;
1122                     Double_t c12=r;
1123                     Double_t c13=1-r;
1124                     Double_t c21=x1*x1 - x2*x2;
1125                     Double_t c22=2*r*x1;
1126                     Double_t c23=2*(1-r)*x2;
1127                     Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
1128                     Double_t c32=3*r*(sigma2 + x1*x1);
1129                     Double_t c33=3*(1-r)*(sigma2 + x2*x2);
1130                     Double_t f1=-(r*x1 + (1-r)*x2 - xm);
1131                     Double_t f2=-(r*(sigma2+x1*x1)+(1-r)*(sigma2+x2*x2)- xx);
1132                     Double_t f3=-(r*x1*(3*sigma2+x1*x1)+(1-r)*x2*
1133                                                          (3*sigma2+x2*x2)-xxx);
1134                     Double_t d=c11*c22*c33+c21*c32*c13+c12*c23*c31-
1135                                        c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
1136                     if (d==0.) {
1137                         cout<<"*********** d=0 ***********\n";
1138                         break;
1139                     } // end if
1140                     Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
1141                         f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
1142                     Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
1143                         c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
1144                     Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
1145                         c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
1146                     r  += dr/d;
1147                     x1 += d1/d;
1148                     x2 += d2/d;
1149                     if (fabs(x1-x1_old) > 0.0001) continue;
1150                     if (fabs(x2-x2_old) > 0.0001) continue;
1151                     if (fabs(r-r_old)/5 > 0.001) continue;
1152                     a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
1153                     Double_t a2=a1*(1-r)/r;
1154                     qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina + 
1155                                                                 z12*cosa;
1156                     qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina + 
1157                                                                 z12*cosa;
1158                     nfhits=2;
1159                     break; // Ok !
1160                 } // end for i
1161                 if (i==33) cerr<<"No more iterations ! "<<endl;
1162             } // end of attempt to separate overlapped clusters
1163         } // end of nbins cut 
1164         if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
1165         if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="
1166                                                      <<elps<<","<<nfhits<<endl;
1167         if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
1168         for (i=0; i<nfhits; i++) {
1169             xfit[i] *= (1.e+4/scl);
1170             if(wing == 1) xfit[i] *= (-1);
1171             zfit[i] *= 1.e+4;
1172             //       cout<<" ---------  i,xfiti,zfiti,qfiti ="<<i<<","
1173             // <<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
1174         } // end for i
1175         Int_t ncl = nfhits;
1176         if(nfhits == 1 && separate == 1) {
1177             cout<<"!!!!! no separate"<<endl;
1178             ncl = -2;
1179         }  // end if
1180         if(nfhits == 2) {
1181             cout << "Split cluster: " << endl;
1182             clusterJ->PrintInfo();
1183             cout << " in: " << endl;
1184             for (i=0; i<nfhits; i++) {
1185                 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,
1186                                                -1,-1,(Float_t)qfit[i],ncl,0,0,
1187                                                (Float_t)xfit[i],
1188                                                (Float_t)zfit[i],0,0,0,0,
1189                                                 tstart,tstop,astart,astop);
1190             //        AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,
1191             //                                 -1,(Float_t)qfit[i],0,0,0,
1192             //                                  (Float_t)xfit[i],
1193             //                                  (Float_t)zfit[i],0,0,0,0,
1194             //                                  tstart,tstop,astart,astop,ncl);
1195             // ???????????
1196             // if(wing == 1) xfit[i] *= (-1);
1197             Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
1198             Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
1199             Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
1200             Float_t peakpos = clusterJ->PeakPos();
1201             Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
1202             Float_t clusterDriftPath = Time*fDriftSpeed;
1203             clusterDriftPath = fSddLength-clusterDriftPath;
1204             AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,
1205                                                                  Time,qfit[i],
1206                                                clusterPeakAmplitude,peakpos,
1207                                                0.,0.,clusterDriftPath,
1208                                          clusteranodePath,clusterJ->Samples()/2
1209                                     ,tstart,tstop,0,0,0,astart,astop);
1210             clust->PrintInfo();
1211             iTS->AddCluster(1,clust);
1212             //        cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="
1213             // <<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]
1214             // <<","<<ncl<<endl;
1215             delete clust;
1216         }// nfhits loop
1217         fClusters->RemoveAt(j);
1218     } // if nfhits = 2
1219 } // cluster loop
1220 fClusters->Compress();
1221 fMap->ClearMap(); 
1222 */
1223     return;
1224 }
1225 //______________________________________________________________________
1226 void AliITSClusterFinderSDD::GetRecPoints(){
1227     // get rec points
1228     static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1229     // get number of clusters for this module
1230     Int_t nofClusters = fClusters->GetEntriesFast();
1231     nofClusters -= fNclusters;
1232     const Float_t kconvGeV = 1.e-6; // GeV -> KeV
1233     const Float_t kconv = 1.0e-4; 
1234     const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
1235     const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
1236     Int_t i,j;
1237     Int_t ix, iz, idx=-1;
1238     AliITSdigitSDD *dig=0;
1239     Int_t ndigits=fDigits->GetEntriesFast();
1240     for(i=0; i<nofClusters; i++) { 
1241         AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
1242         if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
1243         if(clusterI) idx=clusterI->PeakPos();
1244         if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
1245         // try peak neighbours - to be done 
1246         if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)fDigits->UncheckedAt(idx);
1247         if(!dig) {
1248             // try cog
1249             fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
1250             dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
1251             // if null try neighbours
1252             if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix); 
1253             if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1); 
1254             if (!dig) printf("SDD: cannot assign the track number!\n");
1255         } //  end if !dig
1256         AliITSRecPoint rnew;
1257         rnew.SetX(clusterI->X());
1258         rnew.SetZ(clusterI->Z());
1259         rnew.SetQ(clusterI->Q());   // in KeV - should be ADC
1260         rnew.SetdEdX(kconvGeV*clusterI->Q());
1261         rnew.SetSigmaX2(kRMSx*kRMSx);
1262         rnew.SetSigmaZ2(kRMSz*kRMSz);
1263         if(dig){
1264             rnew.fTracks[0] = dig->fTracks[0];
1265             rnew.fTracks[1] = -3;
1266             rnew.fTracks[2] = -3;
1267             j=1;
1268             while(rnew.fTracks[0]==dig->fTracks[j] &&
1269                   j<dig->GetNTracks()) j++;
1270             if(j<dig->GetNTracks()){
1271                 rnew.fTracks[1] = dig->fTracks[j];
1272                 while((rnew.fTracks[0]==dig->fTracks[j] || 
1273                        rnew.fTracks[1]==dig->fTracks[j] )&& 
1274                       j<dig->GetNTracks()) j++;
1275                 if(j<dig->GetNTracks()) rnew.fTracks[2] = dig->fTracks[j];
1276             } // end if
1277         } // end if
1278         //printf("SDD: i %d track1 track2 track3 %d %d %d x y %f %f\n",
1279         //         i,rnew.fTracks[0],rnew.fTracks[1],rnew.fTracks[2],c
1280         //         lusterI->X(),clusterI->Z());
1281         iTS->AddRecPoint(rnew);
1282     } // I clusters
1283 //    fMap->ClearMap();
1284 }
1285 //______________________________________________________________________
1286 void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
1287     // find raw clusters
1288     
1289     fModule = mod;
1290     
1291     Find1DClustersE();
1292     GroupClusters();
1293     SelectClusters();
1294     ResolveClustersE();
1295     GetRecPoints();
1296 }
1297 //_______________________________________________________________________
1298 void AliITSClusterFinderSDD::Print(){
1299     // Print SDD cluster finder Parameters
1300
1301     cout << "**************************************************" << endl;
1302     cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
1303     cout << "**************************************************" << endl;
1304     cout << "Number of Clusters: " << fNclusters << endl;
1305     cout << "Anode Tolerance: " << fDAnode << endl;
1306     cout << "Time  Tolerance: " << fDTime << endl;
1307     cout << "Time  correction (electronics): " << fTimeCorr << endl;
1308     cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
1309     cout << "Minimum Amplitude: " << fMinPeak << endl;
1310     cout << "Minimum Charge: " << fMinCharge << endl;
1311     cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1312     cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1313     cout << "**************************************************" << endl;
1314 }